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Abstract. We improve the state-of-the-art proof techniques for realizing various spectra of aT
in order to realize arbitrarily large spectra. Thus, we make significant progress in addressing a

question posed by Brian in his work [4]. As a by-product, we obtain many complete subforcings

and an algebraic analysis of the automorphisms of the forcing which adds a witness for the

spectrum of aT of desired size.

1. Introduction

Fundamentally, combinatorial set theory studies the possible sizes and relations between special

subsets of reals. Usually, these special subsets are defined by some combinatorial property, e.g.

mad families, independent families or partitions of Baire space into compact sets. Classically, the

corresponding cardinal characteristics, i.e. the minimal sizes of such special subsets, and their

relations are of main interest. However, a more recent approach is the study of their corresponding

spectra, i.e. of all possible sizes of such special subsets at the same time. For some fixed type of

combinatorial family of reals its spectrum can be studied from the following two angles.

On one hand, one may consider which properties of the spectrum are provable in ZFC. On

the other hand, given a set of cardinals Θ with some additional assumptions one may construct

forcing extensions in which Θ is precisely realized as the spectrum. Thus, the ultimate goal is

to reduce the additional assumptions on Θ until they agree with the provable properties of the

spectrum in ZFC, so that we obtain a complete classification of the possible spectra of some type

of combinatorial family of reals.

Usually, the spectrum of some type of family may be rather arbitrary, so that there are not

many provable properties in ZFC. However, recent progress suggests that the following proper-

ties are shared between different spectra. First, usually by some straightforward combinatorial

argument the continuum c is in the spectrum (a notable exception is the tower number t). By

König’s Theorem we obtain the following necessary restriction on Θ:

(I) max(Θ) exists and has uncountable cofinality.

Secondly, there seems to be the following additional restriction on Θ:

(II) Θ is closed under singular limits.

For example, in [8] Hechler proved that spec(a) is closed under singular limits. Similarly, recently

Brian proved in [4] that also spec(aT) (cf. Definition 2.1) is closed under singular limits. However,

for most other types of families it is still not known if this restriction is necessary, i.e.:

Question. Are spec(i), spec(ae) and spec(ag) closed under singular limits?
1
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Finally, specifically for the spectrum of aT, Brian recently provided another necessary assump-

tion given by ZFC.

Theorem (Brian, 2022, [3]). Assume 0† does not exist. If θ has countable cofinality and we have

θ ∈ spec(aT), then also θ+ ∈ spec(aT).

In particular, a model in which θ ∈ spec(aT) and θ+ /∈ spec(aT) implies that 0† exists, so

that there exists an inner model with a measurable cardinal. Hence, such a model cannot be

constructed relative to ZFC. Note that this result is in stark contrast to the situation for the

spectrum of a. In this, case Shelah and Spinas proved in [10] that consistently (relative to ZFC)

ℵω ∈ spec(a), but ℵω+1 /∈ spec(a). Hence, despite their similarities there are distinct discrepancies

between the spectra of different types of families.

On the other hand, the realization of various spectra with the means of forcing was first studied

for almost disjoint families. There, Hechler defined a forcing adding a mad family of desired size,

which we will here refer to as Hechler forcing, to show that spectra may be arbitrarily large:

Theorem (Hechler, 1972, [8]). Let Θ be any set of uncountable cardinals. Then, there is a c.c.c.

forcing extension in which Θ ⊆ spec(a) holds.

In order to exclude values from the spectrum and precisely realize Θ as some spectrum, one

usually employs an isomorphism-of-names argument. For example, Blass proved that under the

following additional assumptions on the set Θ, in Hechler’s model the set Θ is already precisely

realized as the spectrum of mad families:

Theorem (Blass, 1993, [1]). Assume GCH and let Θ be a set of uncountable cardinals such that

(I) max(Θ) exists and has uncountable cofinality,

(II) Θ is closed under singular limits,

(III) ℵ1 ∈ Θ,

(IV) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(a) = Θ holds.

Employing a more sophisticated isomorphism-of-names argument, Shelah and Spinas later

improved this result by weakening assumption (III) and removing assumption (IV):

Theorem (Shelah, Spinas, 2015, [10]). Assume GCH and let Θ be a set of uncountable cardinals

such that

(I) max(Θ) exists and has uncountable cofinality,

(II) Θ is closed under singular limits,

(III) min(Θ) is regular.

Then, there is a c.c.c. forcing extension in which spec(a) = Θ holds.

By the previous discussion (I) and (II) are necessary assumptions. However, a may be singular,

so that (III) is definitely not necessary. In fact, Brendle proved that a may be any uncountable

singular cardinal, even of countable cofinality [2]. Thus, an answer to the following question

would yield a complete classification of all the possible spectra of a:
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Question. Can assumption (III) be removed from the previous theorem?

Similar progress has been made for independent families by Fischer and Shelah [6] and parti-

tions of Baire space into compact sets by Brian [4], which is the main focus of this paper:

Theorem (Brian, 2021, [4]). Assume GCH and let Θ be a set of uncountable cardinals such that

(I) max(Θ) exists and has uncountable cofinality,

(II) Θ is closed under singular limits,

(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,

(IV) min(Θ) is regular,

(V) |Θ| < min(Θ).

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Again, by the previous discussion (I), (II) and (III) are necessary assumptions. Assumption

(IV) is not necessary as aT may be any singular cardinal of uncountable cofinality. However,

unlike a it is still open if aT may have countable cofinality. Assumption (V) is also not necessary

as we may force any set of uncountable cardinals to be contained in spec(aT) similar to Hechler’s

theorem for spec(a). In other words, assumption (V) implies that once the minimum of Θ has

been fixed, only a bounded set of cardinals may be realized with the methods employed by Brian.

Thus, in [4] he asked if it is possible to remove assumption (V). Inspired by the methods of Shelah

and Spinas for spec(a) and towards obtaining a complete classification of the possible spectra of

aT, we prove the following Main Theorem 3.1 and give a partial answer to Brian’s question:

Main Theorem. Assume GCH and let Θ be a set of uncountable cardinals such that

(I) max(Θ) exists and has uncountable cofinality,

(II) Θ is closed under singular limits,

(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,

(IV) ℵ1 ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Thus, we are indeed able to realize arbitrarily large spectra, however our current proof methods

require us to strengthen assumption (IV). In Section 3 we outline the proof of Main Theorem 3.1

and discuss how to possibly avoid the strengthening of (IV) in order to obtain a full answer to

Brian’s question. Nevertheless, the following summarizes how the proof of Main Theorem 3.1

extends the current proof methods and techniques for realizing various spectra:

Generally, the forcing used to obtain our result is very similar to the forcing used in Brian’s

result above, but with a distinct modification in order to allow a more sophisticated isomorphism-

of-names argument. Inspired by Shelah’s and Spinas’ result for spec(a) the main feature of our

argument is the restriction to isomorphic complete subforcings of the entire forcing. In contrast,

Brian’s argument only uses automorphism of the entire forcing, which leads to his restriction (V).

The main difficulty of our proof is showing that we indeed have many complete subforcings (see

Theorem 7.1). In the situation for spec(a) there is a Suslin-c.c.c. product-like forcing, which adds

a maximal almost disjoint family of desired size. Thus, the existence of complete subforcings
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is easy to prove in that case. In contrast, for spec(aT) there is no known such Suslin-c.c.c.

product-like forcing and instead we have to use an iteration of c.c.c. forcings in order to obtain

a witness for aT of desired size. To establish the existence of complete subforcings, we introduce

the following novel advancements.

First, compared to Brian’s forcing in [4], our forcing (see Definition 4.10) has a distinct modifi-

cation, which allows for more automorphisms. In Section 5 we provide a very algebraic framework

of these automorphisms. Nevertheless, we strive for a self-contained presentation. Secondly, since

we do not have a Suslin forcing, we cannot simply use the standard notion of a canonical pro-

jection of a nice name of a real (cf. [7]). Instead, in Definition 7.4 we introduce the technical

notion of a nice name for a finite set of reals with respect to a sequence of names for trees. The

canonical projection of this technical nice name then has the desired properties in our proof to

obtain complete subforcings.

Finally, in Section 9 we prove the isomorphism-of-names argument needed for our Main Theo-

rem 3.1. However, again the situation is more complicated than for the spectrum of a by Shelah

and Spinas, because we are working with an iteration. To this end, in Section 8 we provide a very

algebraic/categorical framework for the isomorphisms between the many complete subforcings

just discussed. Lastly, we use these isomorphisms to show that the corresponding isomorphism-

of-names argument can be carried out for the iteration. Thus, the main insight is that this more

sophisticated isomorphism-of-names argument can not only be applied in a product-like context

as for spec(a), but also in a more intricate iteration-like context as for spec(aT).

Since the presented proofs are technical, for convenience of the reader we provide an appendix

with all relevant notions at the end of the paper.

2. Preliminaries

In this section we introduce the cardinal characteristic aT and its associated spectrum spec(aT).

We will also define a c.c.c. forcing which forces the existence of witnesses in spec(aT) of various

sizes. In Definition 4.10 we define a slightly tweaked version of this forcing in order to realize

arbitrarily large spectra of aT in our Main Theorem 3.1.

Definition 2.1. We define the spectrum

spec(aT) := {κ > ℵ0 | There is a partition of ω2 into κ-many closed sets}.

and define the cardinal characteristic aT := min(spec(aT)).

We arbitrarily fixed ω2 as our Polish space of choice here. However, Miller proved that a

witness for ℵ1 ∈ spec(aT) does not depend on the underlying Polish space:

Theorem 2.2 (Miller, 1980, [9]). There is a partition of ω2 into ℵ1-many closed sets iff there is

a partition of some Polish space into ℵ1-many closed sets iff every Polish space has a partition

into ℵ1-many closed sets.

More generally, Spinas proved in [11] that aT is independent of the underlying Polish space

and that d ≤ aT. Brian extended this result in the following way:
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Theorem 2.3 ([4]). Let κ be an uncountable cardinal. Then, all six statements of the following

form are equivalent:

Some/Every uncountable Polish space can be partitioned into κ compact/closed/Fσ-sets.

Hence, neither the cardinal characteristic aT nor its spectrum spec(aT) depend on the under-

lying Polish space, or if partitions into compact, closed or Fσ-sets are considered. In order to

force a desired constellation of spec(aT), we will add partitions of ω2 into Fσ-sets. To this end,

we will use the usual identification of non-empty closed set of ω2 and branches of trees:

Definition 2.4. A tree T is a non-empty subset of <ω2 such that

(1) for all s ∈ <ω2 and t ∈ T with s⊴ t we have s ∈ T ,

(2) for all s ∈ T we have s⌢ 0 ∈ T or s⌢ 1 ∈ T (or both).

We denote with [T ] the set of branches of T :

[T ] := {f ∈ ω2 | for all n < ω we have f ↾n ∈ T}.

We call T nowhere dense if it additionally satisfies

(3) for all s ∈ T there is a t ∈ <ω2 with s⊴ t and t /∈ T .

Remark 2.5. Given a tree T , the set [T ] is a non-empty closed set of ω2. Conversely, given any

non-empty closed set C the set

tree(C) := {s ∈ <ω2 | there is an f ∈ C with s⊴ f}

is a non-empty tree. Since, [tree(C)] = C and tree([T ]) = T we may identify trees and non-

empty closed sets of ω2 under these bijections. Furthermore, if T is nowhere dense, then also

[T ] is nowhere dense and conversely if C is nowhere dense, then also tree(C) is nowhere dense.

Hence, this identification restricts to nowhere dense trees and nowhere dense closed subsets.

Definition 2.6. Let S, T be trees. We call S and T almost disjoint iff S ∩ T is finite.

Note that by König’s lemma two trees S and T are almost disjoint exactly iff [S]∩ [T ] = ∅. In
order to force the existence of a witness for κ ∈ spec(aT), we will add κ-many countable families

{Tα | α < κ} of nowhere dense trees which satisfy

(1) for all α < β < κ and S ∈ Tα, T ∈ Tβ the trees S and T are almost disjoint,

(2) for all f ∈ ω2 there is an α < κ with f ∈
⋃

T∈Tα [T ].

Notice that for α < κ and S ̸= T ∈ Tα we do not require that S and T are almost disjoint.

However, the two conditions above imply that {
⋃

T∈Cα [T ] | α < κ} is a partition of ω2 into κ-

many Fσ-sets. Next, in order to approximate new nowhere dense trees with finite conditions we

fix the following notions.

Definition 2.7. Let n < ω. An n-tree T is a non-empty subset of ≤n2 such that

(1) for all s ∈ ≤n2 and t ∈ T with s⊴ t we have s ∈ T ,

(2) for all s ∈ T there is a t ∈ T ∩ n2 with s⊴ t.
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We denote with [T ] the set of leaves T ∩ n2 of T . Given n ≤ m, an n-tree S and an m-tree T we

write S⊴T iff T end-extends S, i.e. T ∩ ≤n2 = S.

Definition 2.8. Let T be a family of nowhere dense trees. We define the forcing T0(T ) to be

the set of all pairs p = (Tp, Fp), where Tp is an np-tree for some np < ω and Fp ⊆ ω2 is finite such

that for all f ∈ Fp we have f /∈
⋃

T∈T [T ] and f ↾np ∈ [Tp].

Given two conditions p, q ∈ T0(T ) we define q≤ p iff np ≤ nq, Fp ⊆ Fq and Tp⊴Tq. Further,

we define T(T ) to be the finitely supported product of size ω

T(T ) :=
∏
ω

T0(T ).

We just summarize the crucial properties of T0(T ) and T(T ) as they follow from standard

density and forcing arguments. See [5] for more details for a very similar forcing.

Remark 2.9. T0(T ) is σ-centered, so also T(T ) is σ-centered. Further, if G is T0(T )-generic in

V [G] the set

TG :=
⋃

{Tp | p ∈ G}

is a nowhere dense tree such that TG and T are almost disjoint for all T ∈ T . Analogously, if G

is T(T )-generic we denote with ⟨TG
n | n < ω⟩ the ω-many new nowhere dense trees by T(T ). We

have the following diagonalization properties:

(D1) For all n < ω the tree TG
n is almost disjoint from every T ∈ T .

(D2) For all f ∈ (ω2)V with f /∈
⋃

T∈T [T ] we have f ∈
⋃

n<ω[T
G
n ].

Note that in general TG
n and TG

m need not be almost disjoint for n ̸= m. The diagonalization

properties immediately yield the following lemma:

Lemma 2.10. Let κ be an uncountable cardinal. Then, there is a c.c.c. forcing which forces the

existence of a witness for κ ∈ spec(aT).

Proof. Sketch. Consider the following iteration: Start with the finitely supported product of

Cohen forcing of size κ. In the generic extension, let T1 be the set ⟨Tα | α < κ⟩, where Tα is

the nowhere dense tree with only branch the α-th Cohen real. Then, force with T(T1) to obtain

ω-many new nowhere dense trees ⟨Tn | n < ω⟩ with properties (D1) and (D2) in Remark 2.9.

Extend T1 to T2 := T1 ∪ {Tn | n < ω} and continue iterating T(Tα) the same way ℵ1-many times

with finite support. In the end we obtain κ + ℵ1 = κ-many Fσ-sets which are disjoint by (D1)

and cover ω2 by (D2) and since ℵ1 has uncountable cofinality. □

In order to realize a whole spectrum of aT, in Definition 4.10 we define our forcing as a product

of a slightly tweaked version of this iteration. Iterating the forcing of Lemma 2.10 of length κ

over a model with c = λ yields a model with aT = κ and c = λ for any regular κ and λ > κ of

uncountable cofinality [5]. Further, since d ≤ aT, for κ of uncountable cofinality any model of

d = κ = c satifies aT = κ. However, this leaves open the following question:

Question 2.11. Can aT be singular of uncountable cofinality and aT < c?
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In [2] Brendle constructed a model of a = ℵℵ0 . While we may use Lemma 2.10 to force the

existence of a witness for ℵℵ0 ∈ spec(aT) the following question is still open:

Question 2.12. Can aT be of countable cofinality? In particular is aT = ℵℵ0 consistent?

Note that d < aT must hold in such a model as d can only have uncountable cofinality.

3. Realizing arbitrarily large spectra of aT

The culmination of this paper is the following Main Theorem. In this section we will describe

the proof ingredients and summarize the role of each section towards this goal.

Main Theorem 3.1. Assume GCH and let Θ be a set of uncountable cardinals such that

(I) max(Θ) exists and has uncountable cofinality,

(II) Θ is closed under singular limits,

(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,

(IV) ℵ1 ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Our proof strategy is inspired by Shelah’s and Spinas’ work on the spectrum of mad families

mentioned above. They realize a desired spectrum Θ with a large product of Hechler’s forcing

for adding a mad family. To exclude cardinalities, their proof relies on the following fact:

Fact 3.2. Let HI be Hechler’s forcing for adding an almost disjoint family indexed by I. If I ⊆ J

then HI ⩽◦HJ , i.e. HI is a complete subforcing of HJ .

Their isomorphism-of-names argument then uses this fact in this product-like setting by reduc-

ing to countable subforcings of their whole forcing and using appropriate isomorphisms between

these countable subforcings. In contrast, the isomorphism-of-names argument by Brian men-

tioned in his theorem above directly employs automorphisms of the whole forcing, which is less

flexible. In our proof of our Main Theorem 3.1 we adapt the proof strategy of Shelah and Spinas

for the iteration-like situation of aT instead of the product-like situation of a. Consequently, this

paper is structured as follows:

In Section 4 we define the c.c.c. forcing (see Definition 4.10) which yields Main Theorem 3.1.

Similarly to Brian’s forcing in [4], our forcing adds a witness for θ ∈ spec(aT) for every θ ∈ Θ.

However, in contrast we define our forcing directly as an iteration. Moreover, we fix a larger

family of trees after adding many Cohen reals in the first step of our iteration. Hence, the

family of trees is closed under more automorphisms of the initial Cohen forcing. In Section 5

we provide a very algebraic framework, how to extend automorphisms of the Cohen forcing to

automorphisms of the entire forcing, which culminates in Corollary 5.6. Next, throughout the

paper we will need to work with nice conditions of our iteration, which describes all the forcing

information in a given condition. Hence, in Section 6 we inductively define the notion of a nice

condition (see Definition 6.4) and prove their density in Lemma 6.7. We also define the hereditary

support of a condition (see Definition 6.8) and study the behaviour of nice conditions under the

automorphisms described in Section 5 (see Lemma 6.10 and Lemma 6.11).
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Section 7 is the heart of the entire proof. We show that our forcing from Section 4 has enough

complete subforcings to imitate the isomorphism-of-names argument by Shelah and Spinas. How-

ever, we do not obtain a direct analogue to Fact 3.2 above, but the slightly weaker Theorem 7.1:

Theorem. Let Φ ⊆ Ψ be a Θ-subindexing function and assume Φ is countable. Then, PΦ
α ⩽◦PΨ

α

for all α ≤ ℵ1.

Hence, with our current methods we can only show that we have complete subforcings if the

index set is sufficiently small (countable in the sense of Definition 4.1) and the iteration is at

most of length ℵ1. This is precisely where we require the strengthening of (IV) in our Main

Theorem 3.1. In other words, if Theorem 7.1 can be proven for longer iterations, requirement

(IV) can be again relaxed to the requirement ‘min(Θ) is regular’, which would yield a full answer

to Brian’s question.

Theorem 7.1 is proved in an elaborate inductive fashion. First, in order to show that the

embedding of some subforcing is well-defined we will need the additional automorphisms our

forcing possesses due to our modifications. Secondly, in order to show that these embeddings are

indeed complete, we introduce the technical notion of a nice name for a finite set of reals with

respect to a sequence of names for trees (see Definition 7.4). Then, the canonical projection of

such a nice name (see Lemma 7.5) will have the desired properties in order to define a reduction

of a condition in our forcing (see Lemma 7.6).

Finally, in Section 8 we give an algebraic/categorical analysis of isomorphisms between the

complete subforcings given by Theorem 7.1. We then put everything together and provide the

remaining isomorphism-of-names argument needed for Main Theorem 3.1 in Section 9.

4. Defining the iteration

In this section we define the forcing used to prove Main Theorem 3.1. For the remainder of

this paper let Θ be fixed as in Main Theorem 3.1.

Definition 4.1. A Θ-indexing function is a partial function Φ : Θ → V . For two Θ-indexing

functions Φ,Ψ, we write Φ ⊆ Ψ iff Φ is a Θ-subindexing function of Ψ, i.e. dom(Φ) ⊆ dom(Ψ)

and for all θ ∈ dom(Φ) we have Φ(θ) ⊆ Ψ(θ). Finally, we call a Θ-indexing function Φ countable

iff dom(Φ) is countable and for every θ ∈ dom(Φ) we have that Φ(θ) is countable.

Definition 4.2. Let Φ be a Θ-indexing function. Define CΦ to be the partial order adding new

Cohen reals indexed by pairs (θ, i) where θ ∈ dom(Θ) and i ∈ Φ(θ), i.e.

CΦ := {s :
⋃

θ∈dom(Φ)

({θ} × Φ(θ)) → C | supp(s) is finite}.

Further, we write ċΦ,θ
i for the canonical CΦ-name for the Cohen real indexed by (θ, i) and ṪΦ,θ

i

for the canonical CΦ-name for the tree with only branch ċΦ,θ
i .

Remark 4.3. Clearly, if Φ ⊆ Ψ we have that CΦ⩽◦CΨ. In fact there is a strong projection

from CΨ onto CΦ, which just forgets all Cohen information outside of Φ’s indexing. We denote
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this complete embedding by ιΦ,Ψ : CΦ → CΨ. Notice that for θ ∈ dom(Φ) and i ∈ Φ(θ) we have

ιΦ,Ψ(ċΦ,θ
i ) = ċΨ,θ

i and ιΦ,Ψ(ṪΦ,θ
i ) = ṪΨ,θ

i .

CΦ will be the first step of our iteration. Note that CΦ has a vast amount of automorphisms

and we need to extend some of these automorphisms through our iteration. In fact, we will need

even more - we also need to preserve the group structure of the automorphisms. Hence, it is very

natural to use the language of group actions and morphisms between group actions to express

these properties.

Definition 4.4. Let Γ denote the group
⊕

ω Z/2 with group operation +. We define a group

action Γ↷C for γ ∈ Γ, s ∈ C by dom(γ.s) := dom(s) and for n ∈ dom(s)

(γ.s)(n) :=

{
s(n) if γ(n) = 0,

1− s(n) otherwise.

Hence, an element γ ∈ Γ flips the Cohen information at place n precisely iff γ(n) = 1.

Remark 4.5. Note that the action Γ↷C preserves the order, that is γ.s ≤ γ.t for all s, t ∈ C
with s≤ t. In other words, the action Γ↷C is equivalent to a group homomorphism from

π : Γ → Aut(C). Further, as every element of Γ has order at most 2, all automorphisms π(γ) of

C given by the group action Γ↷C are involutions, that is π(γ) ◦ π(γ) = id.

Definition 4.6. Let Φ be a Θ-indexing function, θ ∈ dom(Φ) and i ∈ Φ(θ). Then, we have an

induced group action of Γ acting on the (θ, i)-th component of CΦ, which we denote with Γ
θ,i
↷CΦ.

In other words, we have that the inclusion map ιΦ,θ
i : C → CΦ is a morphism of Γ-sets, i.e. the

following diagram commutes for every γ ∈ Γ:

C CΦ

C CΦ

ιΦ,θ
i

π(γ) πΦ,θ
i (γ)

ιΦ,θ
i

where πΦ,θ
i is the group homomorphism corresponding to Γ

θ,i
↷CΦ.

Remark 4.7. Here, as usual a Γ-set is just another notion for an action Γ on some set. Since

we now have various group actions of Γ↷CΦ, we will usually use the corresponding group

homomorphisms πΦ,θ
i : Γ → Aut(CΦ) to avoid confusion. Also, note that more generally for any

Θ-subindexing function Φ ⊆ Ψ, θ ∈ dom(Φ) and i ∈ Φ(θ) we have that ιΦ,Ψ is a morphism of

Γ-sets, i.e. the following diagram commutes for every γ ∈ Γ:

CΦ CΨ

CΦ CΨ

ιΦ,Ψ

πΦ,θ
i (γ) πΨ,θ

i (γ)

ιΦ,Ψ
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Definition 4.8. Let Φ be a Θ-indexing function, θ ∈ dom(Φ) and i ∈ Φ(θ). Denote with Ṫ Φ,θ
i

the canonical CΦ-name for the set

{πΦ,θ
i (γ)(ṪΦ,θ

i ) | γ ∈ Γ}.

Similarly, we let Ṫ Φ,θ denote the canonical CΦ-name for the set

{πΦ,θ
i (γ)(ṪΦ,θ

i ) | i ∈ Φ(θ) and γ ∈ Γ}.

Remark 4.9. Since Γ is countable, also Ṫ Φ,θ
i is countable and Ṫ Φ,θ is of size |Φ(θ)| · ℵ0, hence

countable in case that Φ is countable. Further, using Remark 4.3 and 4.7 it is easy to verify the

following properties for every Θ-subindexing function Φ ⊆ Ψ, θ ∈ dom(Φ) and i ∈ Φ(θ):

• Ṫ Φ,θ is the canonical CΦ-name for
⋃

i∈Φ(θ) Ṫ
Φ,θ
i ,

• ιΦ,Ψ(Ṫ Φ,θ
i ) = Ṫ Ψ,θ

i ,

• CΦ ⊩
⋃

T∈Ṫ Φ,θ
i

[T ] = {f ∈ ω2 | f =∗ ċΦ,θ
i }.

Next, given a Θ-indexing function Φ we define the forcing iteration realizing the desired spec-

trum of aT for Main Theorem 3.1. The forcing is a finite support iteration of c.c.c. forcings of

length ℵ1:

Definition 4.10. Let Φ be a Θ-indexing function. We will define a finite support iteration

⟨PΦ
α , Q̇Φ

β | α ≤ ℵ1, β < ℵ1⟩, PΦ
α+1-names ṪΦ,θ

α,n for nowhere dense trees for θ ∈ dom(Φ), 0 < α < ℵ1

and n < ω, and PΦ
α -names Ṫ Φ,θ

α for families of nowhere dense trees for θ ∈ dom(Φ) and 0 < α ≤ ℵ1:

• Let Q̇Φ
0 be the forcing CΦ. Then, we already defined the CΦ-names Ṫ Φ,θ in Definition 4.8

for every θ ∈ dom(Φ). Then, let Ṫ Φ,θ
1 the corresponding canonical PΦ

1 -names.

• For α > 0 let Q̇Φ
α be the canonical PΦ

α -name for the finitely supported product∏
θ∈dom(Φ)

T(T Φ,θ
α ).

Also, for every θ ∈ dom(Φ) let ṪΦ,θ
α,n be the canonical PΦ

α+1-names for the ω-many new

nowhere dense trees added by T(T Φ,θ
α ), where n < ω. Finally, let Ṫ Φ,θ

α+1 be the canonical

PΦ
α+1-name for Ṫ Φ,θ

α ∪ {ṪΦ,θ
α,n | n ∈ ω}.

• At limit α for every θ ∈ dom(Φ) let Ṫ Φ,θ
α be the canonical PΦ

α -name for
⋃

β<α Ṫ
Φ,θ
β .

Grouping together the ω-many new trees added at each successor step into one Fσ-set, we have

that for every θ ∈ dom(Φ) the family Ṫ Φ,θ
ℵ1

will be witness of a partition of Cantor space into

Fσ-sets of size |Φ(θ)| · ℵ1. Thus, if every Φ(θ) is a set of size θ, then Θ ⊆ spec(aT) is forced by

PΦ
ℵ1

as in Lemma 2.10. Thus, it only remains to prove the reverse inclusion.

5. Extending group actions through the iteration

Since PΦ
1

∼= CΦ, in the last section we essentially considered group actions Γ
θ,i
↷PΦ

1 . In this

section, we will show that there is a canonical way to extend these group actions through the

iteration, i.e. to group actions Γ
θ,i
↷PΦ

α for 0 < α ≤ ℵ1,. This process leads to the notion of

an induced sequence of group actions in Corollary 5.6. We write ιΦ,Ψ
1 : PΦ

1 → PΨ
1 for the
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complete embedding corresponding to ιΦ,Ψ : CΦ → CΨ and πΦ,θ
1,i : Γ → Aut(PΦ

1 ) for the group

homomorphism corresponding to πΦ,θ
i : Γ → Aut(CΦ).

Definition 5.1. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and ϵ ≤ ℵ1. We say that

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ≤ ϵ⟩

is an increasing sequence of Γ-actions iff every πΦ,θ
α,i is a group homomorphism (i.e. an action of

Γ on PΦ
α), for all 0 < α ≤ ϵ, η ∈ dom(Φ) and γ ∈ Γ we have that

πΦ,θ
α,i (γ)(Ṫ

Φ,η
α ) = Ṫ Φ,η

α

and for all 0 < α ≤ β ≤ ϵ the canonical embedding ιΦα,β : PΦ
α → PΦ

β is a morphism of Γ-sets, i.e

the following diagram commutes for every γ ∈ Γ:

PΦ
α PΦ

β

PΦ
α PΦ

β

πΦ,θ
α,i (γ)

ιΦα,β

πΦ,θ
β,i (γ)

ιΦα,β

Our goal for this section is to provide a canonical extension of πΦ,θ
1,i as defined in Definition 4.6 to

an increasing sequence of Γ-actions of length ℵ1. Since the iterands of the forcing in Definition 4.10

are definable from the parameters Ṫ Φ,θ
α , it is crucial that the group action fixes these parameters,

which allows for an extension through the iteration. Before we consider the successor step,we

show that for limit steps by the universal property of the direct limit there is a unique way to

extend an increasing sequence of Γ-actions:

Lemma 5.2. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and let ϵ ≤ ℵ1 be a limit.

Assume

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α < ϵ⟩

is an increasing sequence of Γ-actions. Then there is a unique group homomorphism πΦ,θ
ϵ,i so that

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ≤ ϵ⟩

is an increasing sequences of Γ-actions.

Proof. By definition of an increasing sequence of Γ-actions (cf. Definition 5.1) we have a directed

system of maps

⟨ιΦα,ϵ ◦ (π
Φ,θ
α,i (γ)) : P

Φ
α → PΦ

ϵ | 0 < α < ϵ⟩

Since PΦ
ϵ is a direct limit there is a unique map πΦ,θ

ϵ,i (γ) : PΦ
ϵ → PΦ

ϵ , so that the following diagram

commutes for every 0 < α ≤ ϵ and γ ∈ Γ:

PΦ
α PΦ

ϵ

PΦ
α PΦ

ϵ

πΦ,θ
α,i (γ)

ιΦα,ϵ

πΦ,θ
ϵ,i (γ)

ιΦα,ϵ
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Next, fix γ, δ ∈ Γ. We need to verify that πΦ,θ
ϵ,i (γ) ◦ πΦ,θ

ϵ,i (δ) = πΦ,θ
ϵ,i (γ + δ), so let p ∈ PΦ,θ

ϵ .

Choose α < ϵ such that ιΦα,ϵ(p ↾α) = p. Then, we compute

πΦ,θ
ϵ,i (γ)(π

Φ,θ
ϵ,i (δ)(p)) = πΦ,θ

ϵ,i (γ)(π
Φ,θ
ϵ,i (δ)(ι

Φ
α,ϵ(p ↾α))) (choice of α)

= πΦ,θ
ϵ,i (γ)(ι

Φ
α,ϵ(π

Φ,θ
α,i (δ)(p ↾α))) (choice of πΦ,θ

ϵ,i (γ))

= ιΦα,ϵ(π
Φ,θ
α,i (γ)(π

Φ,θ
α,i (δ)(p ↾α))) (choice of πΦ,θ

ϵ,i (γ))

= ιΦα,ϵ(π
Φ,θ
α,i (γ + δ)(p ↾α)) (πΦ,θ

α,i is group homomorphism)

= πΦ,θ
ϵ,i (γ + δ)(ιΦα,ϵ(p ↾α)) (choice of πΦ,θ

ϵ,i (γ))

= πΦ,θ
ϵ,i (γ + δ)(p) (choice of α).

Thus, πΦ,θ
ϵ,i : Γ → Aut(PΦ

ϵ ) is a group homomorphism. Finally, by Definition 4.10 Ṫ Φ,η
ϵ is the

canonical name for
⋃

α<ϵ ι
Φ
α,ϵ(Ṫ

Φ,η
α ). Thus, for any γ ∈ Γ and η ∈ dom(Φ) we compute

πΦ,θ
ϵ,i (γ)(Ṫ

Φ,η
ϵ ) = πΦ,θ

ϵ,i (γ)(
⋃
α<ϵ

ιΦα,ϵ(Ṫ Φ,η
α )) (Definition 4.10)

=
⋃
α<ϵ

πΦ,θ
ϵ,i (γ)(ι

Φ
α,ϵ(Ṫ Φ,η

α )) (canonical name)

=
⋃
α<ϵ

ιΦα,ϵ(π
Φ,θ
α,i (γ)(Ṫ

Φ,η
α )) (choice of πΦ,θ

ϵ,i (γ))

=
⋃
α<ϵ

ιΦα,ϵ(Ṫ Φ,η
α ) (Definition 5.1)

= Ṫ Φ,η
α (Definition 4.10). □

Next, we consider the successor case. In this case, there is no unique extension of the increasing

sequence of Γ-actions. However, we prove that there is a canonical one in the following sense:

Definition 5.3. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and ϵ < ℵ1. Assume

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ≤ ϵ⟩

is an increasing sequence of Γ-actions. For every γ ∈ Γ define πΦ,θ
ϵ+1,i(γ) : PΦ

ϵ+1 → PΦ
ϵ+1 by

πΦ,θ
ϵ+1,i(γ)(p) := πΦ,θ

ϵ,i (γ)(p ↾ ϵ)
⌢ πΦ,θ

ϵ,i (γ)(p(ϵ)).

Then, we call πΦ,θ
ϵ+1,i the canonical extension of ⟨πΦ,θ

α,i : Γ → Aut(PΦ
α) | 0 < α ≤ ϵ⟩.

Lemma 5.4. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ) and ϵ < ℵ1. Assume

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ≤ ϵ⟩

is an increasing sequence of Γ-actions and let πΦ,θ
ϵ+1,i be the canonical extension. Then

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ≤ ϵ+ 1⟩

is an increasing sequence of Γ-actions.
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Proof. First, by definition of an increasing sequence of Γ-actions (cf. Definition 5.1) for every

η ∈ dom(Φ) and γ ∈ Γ we have

πΦ,θ
ϵ,i (γ)(Ṫ

Φ,η
ϵ ) = Ṫ Φ,η

ϵ .

By Definition 4.10 Q̇Φ
ϵ is the canonical PΦ

ϵ -name for
∏

η∈dom(Φ) T(T
Φ,η
ϵ ). Thus, we obtain

πΦ,θ
ϵ,i (γ)(Q̇

Φ
ϵ ) = Q̇Φ

ϵ ,

as both
∏

η∈dom(Φ) T(T
Φ,η
ϵ ) as well as the order ≤ are definable from the parameters T Φ,η

ϵ . Thus,

we get πΦ,θ
ϵ+1,i ∈ Aut(PΦ

ϵ+1). Next, we verify that for every γ ∈ Γ the following diagram commutes:

PΦ
ϵ PΦ

ϵ+1

PΦ
ϵ PΦ

ϵ+1

πΦ,θ
ϵ,i (γ)

ιΦϵ,ϵ+1

πΦ,θ
ϵ+1,i(γ)

ιΦϵ,ϵ+1

Let γ ∈ Γ and p ∈ PΦ
ϵ . Then, we compute

πΦ,θ
ϵ+1,i(γ)(ι

Φ
ϵ,ϵ+1(p)) = πΦ,θ

ϵ,i (γ)(ι
Φ
ϵ,ϵ+1(p) ↾ ϵ)

⌢ πΦ,θ
ϵ,i (γ)(ι

Φ
ϵ,ϵ+1(p)(ϵ)) (Definition 5.3)

= πΦ,θ
ϵ,i (γ)(p)

⌢ πΦ,θ
ϵ,i (γ)(1) (definition of ιΦϵ,ϵ+1)

= πΦ,θ
ϵ,i (γ)(p)

⌢ 1 (πΦ,θ
ϵ,i (γ) ∈ Aut(PΦ

ϵ ))

= ιΦϵ,ϵ+1(π
Φ,θ
ϵ,i (γ)(p)) (definition of ιΦϵ,ϵ+1).

Now, let γ, δ ∈ Γ. We need to verify that πΦ,θ
ϵ+1,i(γ) ◦ π

Φ,θ
ϵ+1,i(δ) = πΦ,θ

ϵ+1,i(γ + δ), so let p ∈ PΦ,θ
ϵ+1.

Then, we compute

πΦ,θ
ϵ+1,i(γ)(π

Φ,θ
ϵ+1,i(δ)(p)) = πΦ,θ

ϵ+1,i(γ)(π
Φ,θ
ϵ,i (δ)(p ↾ ϵ)

⌢ πΦ,θ
ϵ,i (δ)(p(ϵ))) (Definition 5.3)

= πΦ,θ
ϵ,i (γ)(π

Φ,θ
ϵ,i (δ)(p ↾ ϵ))

⌢ πΦ,θ
ϵ,i (γ)(π

Φ,θ
ϵ,i (δ)(p(ϵ))) (Definition 5.3)

= πΦ,θ
ϵ,i (γ + δ)(p ↾ ϵ)⌢ πΦ,θ

ϵ,i (γ + δ)(p(ϵ)) (πΦ,θ
ϵ,i is gr.hom.)

= πΦ,θ
ϵ+1,i(γ + δ)(p) (Definition 5.3).

Thus, πΦ,θ
ϵ+1,i : Γ → Aut(PΦ

ϵ ) is a group homomorphism. Finally, let η ∈ dom(Φ) and γ ∈ Γ.

By Definition 4.10 Ṫ Φ,η
ϵ+1 is the canonical name for ιΦϵ,ϵ+1(Ṫ

Φ,η
ϵ ) ∪ {ṪΦ,η

ϵ,n | n ∈ ω}. Since

πΦ,θ
ϵ+1,i(γ)(ι

Φ
ϵ,ϵ+1(Ṫ Φ,η

ϵ )) = ιΦϵ,ϵ+1(π
Φ,θ
ϵ,i (γ)(Ṫ

Φ,η
ϵ )) (by commutativity above)

= ιΦϵ,ϵ+1(Ṫ Φ,η
ϵ ) (by Definition 5.1),

it suffices to verify that for all n < ω we have

πΦ,θ
ϵ+1,i(γ)(Ṫ

Φ,η
ϵ,n ) = ṪΦ,η

ϵ,n .

But this follows since ṪΦ,η
ϵ,n is the canonical PΦ

ϵ+1-name for the n-th new nowhere dense trees

added by T(T Φ,θ
ϵ ) and check-names are fixed by any automorphism; remember that ṪΦ,η

ϵ,n is just

canonical name the union of the finite approximations in the generic filter. □
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Lemma 5.5. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ). Then, for every η ∈ dom(Φ)

and γ ∈ Γ we have πΦ,θ
1,i (γ)(Ṫ

Φ,η
1 ) = Ṫ Φ,η

1 , where πΦ,θ
1,i is defined as in Definition 4.6. In other

words

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ≤ 1⟩

is an increasing sequence of Γ-actions (of length 1).

Proof. Let η ∈ dom(Φ) and γ ∈ Γ. By definition 4.8 Ṫ Φ,η
1 is the canonical CΦ-name for the set⋃

j∈Φ(θ)

Ṫ Φ,η
1,j ,

so it suffices to check that for all j ∈ Φ(η) we have πΦ,θ
1,i (γ)(Ṫ

Φ,η
1,j ) = Ṫ Φ,η

1,j , so fix some j ∈ Φ(η).

By Definition 4.8 Ṫ Φ,η
1,j is the canonical CΦ-name for the set

{πΦ,η
j (δ)(ṪΦ,η

j ) | δ ∈ Γ}.

Thus, in case that (θ, i) = (η, j) we compute

πΦ,θ
1,i (γ)(Ṫ

Φ,θ
1,i ) = πΦ,θ

1,i (γ)({π
Φ,θ
i (δ)(ṪΦ,θ

i ) | δ ∈ Γ}) (Definition 4.8)

= {πΦ,θ
1,i (γ)(π

Φ,θ
i (δ)(ṪΦ,θ

i )) | δ ∈ Γ} (canonical name)

= {πΦ,θ
1,i (γ + δ)(ṪΦ,θ

i ) | δ ∈ Γ} (πΦ,θ
1,i is gr.hom.)

= {πΦ,θ
1,i (δ)(Ṫ

Φ,θ
i ) | δ ∈ Γ} (Γ is a group)

= Ṫ Φ,θ
1,j (Definition 4.8).

Otherwise, πΦ,η
j (δ)(ṪΦ,η

j ) has no information in the (θ, i)-th coordinate for every δ ∈ Γ, so that

πΦ,θ
1,i (γ)(Ṫ

Φ,η
1,j ) = πΦ,θ

1,i (γ)({π
Φ,η
j (δ)(ṪΦ,η

j ) | δ ∈ Γ}) (Definition 4.8)

= {πΦ,θ
1,i (γ)(π

Φ,η
j (δ)(ṪΦ,η

j )) | δ ∈ Γ} (canonical name)

= {πΦ,η
1,j (δ)(Ṫ

Φ,η
j ) | δ ∈ Γ} ((θ, i) ̸= (η, j))

= Ṫ Φ,η
1,j (Definition 4.8). □

Corollary 5.6. Let Φ be a Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ). Then, there is an

increasing sequence of Γ-actions

⟨πΦ,θ
α,i : Γ → Aut(PΦ

α) | 0 < α ≤ ℵ1⟩

such that πΦ,θ
ϵ+1,i the canonical extension of ⟨πΦ,θ

α,i : Γ → Aut(PΦ
α) | 0 < α ≤ ϵ⟩ for every ϵ < ℵ1.

We call this sequence the induced sequence of group actions of πΦ,θ
1,i and will reserve the notions

⟨πΦ,θ
α,i | 0 < α ≤ ℵ1⟩ for it.

Proof. We iteratively construct the desired sequence. By Lemma 5.5 we may start with πΦ,θ
1,i as

in Definition 4.6, use Lemma 5.4 for the successor step and Lemma 5.2 for the limit step. □
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6. A nice dense subset

In the following sections we will need to work with a nice dense subset DΦ
α of PΦ

α . A condition

p ∈ PΦ
α has finite support, where p(0) ∈ CΦ and for α ∈ supp(p) \ {0} we have

p ↾α ⊩ p(α) ∈ Q̇Φ
α =

∏
θ∈dom(Φ)

T(Ṫ Φ,θ
α ).

We will define DΦ
α , so that as many parameters for p(α) as possible are decided as ground model

objects. First, we will need the following definition of a nice name for a real.

Definition 6.1. Let P be a forcing and p ∈ P. A nice P-name for a real below p is a sequence

⟨(An, fn) | n < ω⟩ such that

• for all n < ω the set An is a maximal antichain below p and fn : An → 2>n,

• for all n < m the antichain Am refines An, i.e. every b ∈ Am there is a ∈ An with b≤ a,

• for all n < m, a ∈ An and b ∈ Am with b≤ a we have fn(a) ⊴ fm(b).

Further, we write name(⟨(An, fn) | n < ω⟩) for the canonical P-name of ⟨(An, fn) | n < ω⟩, i.e.

name(⟨(An, fn) | n < ω⟩) := {(a, (n, fn(a)(n))) | n < ω and a ∈ An}.

Remark 6.2. Remember, that for every p ∈ P and P-name ġ for a real below p we may inductively

define a nice P-name ⟨(An, fn) | n < ω⟩ for a real below p such that

p ⊩ ḟ = name(⟨(An, fn) | n < ω⟩).

Further, if P is c.c.c., then for any p ∈ P there are at most |P|ℵ0 many nice names for reals below p.

We also have that nice names and their canonical names behave nicely under automorphisms in

the following sense:

Remark 6.3. If ⟨(An, fn) | n < ω⟩ is a nice P-name for a real below p and π ∈ Aut(P), then
π(⟨(An, fn) | n < ω⟩) := ⟨(Bn, gn) | n < ω⟩, where Bn = π[An] and

gn(π(a)) := fn(a),

is a nice P-name for a real below π(p) with

π(name(⟨(An, fn) | n < ω⟩)) = name(⟨(Bn, gn) | n < ω⟩).

Definition 6.4. Let Φ be a Θ-indexing function and 0 < α ≤ ℵ1. DΦ
α is the set of all nice

conditions in PΦ
α , where inductively p ∈ PΦ

α is a nice condition

• for α = 1: iff p(0) = cp for some cp ∈ CΦ,

• for α+ 1 > 1: iff p ↾α ∈ DΦ
α and

◦ there is a finite set Θp
α ⊆ dom(Φ),

◦ for every θ ∈ Θp
α there is a finite set Ipα,θ ⊆ ω,

◦ for every i ∈ Ipα,θ there is np
α,θ,i < ω and an np

α,θ,i-tree spα,θ,i and a finite set F p
α,θ,i of

DΦ
α -names, where every ḟ ∈ F p

α,θ,i is the canonical DΦ
α -name of some nice DΦ

α -name

for a real below some q ∈ DΦ
α with p ↾α≤ q,
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◦ such that p(α) is the canonical name for the condition in Q̇Φ
α =

∏
θ∈dom(Φ) T(Ṫ

Φ,θ
α )

with supp(p(α)) = Θp
α and for every θ ∈ Θp

α with supp(p(α)(θ)) = Ipα,θ and for every

i ∈ Ipα,θ we have p(α)(θ)(i) = (spα,θ,i, F
p
α,θ,i),

• for limit α: iff p ↾β ∈ DΦ
β for all β < α.

Remark 6.5. Note that for any p ∈ DΦ
α the parameter cp and, for every β < α the parameters

Θp
β, I

p
β,θ, n

p
β,θ,i, s

p
β,θ,i and F p

β,θ,i are uniquely determined by p. Conversely, we may reconstruct p

from these parameters. Further, by definition of Q̇Φ
α , for every ḟ ∈ F p

α,θ,i as above, we have that

p ↾α ⊩ ḟ ↾np
α,θ,i ∈ spα,θ,i and ḟ /∈

⋃
T∈Ṫ Φ,θ

α

[T ].

Conversely, if ġ is the canonical DΦ
α -name of some nice DΦ

α -name for a real below some q ∈ DΦ
α

with p ↾α≤ q and for some η ∈ Θp
α and j ∈ Ipα,η we have

p ↾α ⊩ ḟ ↾np
α,η,j ∈ spα,η,j and ḟ /∈

⋃
T∈Ṫ Φ,η

α

[T ],

then we may extend p ∈ DΦ
α to a condition r ∈ DΦ

α by stipulating r ↾α := p ↾α and

• Θr
α := Θp

α,

• Irα,θ := Ipα,θ for every θ ∈ Θr
α,

• nr
α,θ,i := np

α,θ,i, s
r
α,θ,i := spα,θ,i and

F r
α,θ,i :=

{
F p
α,θ,i ∪ {ġ} if (θ, i) = (η, j),

F p
α,θ,i otherwise.

for every θ ∈ Θr
α and i ∈ Irα,θ.

Remark 6.6. For 0 < β ≤ α ≤ ℵ1 we have ιΦβ,α(D
Φ
β ) ⊆ DΦ

α and for limit α ≤ ℵ1 we have

DΦ
α =

⋃
β<α

ιΦβ,α(D
Φ
β ).

Lemma 6.7. Let Φ be a Θ-indexing function and 0 < α ≤ ℵ1. Then, DΦ
α is dense in PΦ

α .

Proof. By induction. Case α = 1 follows from PΦ
1
∼= CΦ. For limit α let p ∈ PΦ

α . Choose β < α

and such that ιΦβ,α(p ↾β) = p. By induction choose q ∈ DΦ
β with q≤ p ↾β. By Remark 6.6 we

have ιΦα,β(q) ∈ DΦ
α and ιΦβ,α(q) ≤ ιΦβ,α(p ↾β) = p.

Finally, for α+ 1 let p ∈ PΦ
α+1. Then

p ↾α ⊩ p(α) ∈ Q̇Φ
α =

∏
θ∈dom(Φ)

T(Ṫ Φ,θ
α )

and by induction DΦ
α is dense in PΦ

α we may choose q ∈ DΦ
α which decides all necessary parameters

of an element in
∏

θ∈dom(Φ) T(Ṫ
Φ,θ
α ). By Remark 6.2 there a nice DΦ

α -names for all DΦ
α -names
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for reals below q which occur in some F p
α,θ,i. Then, the canonical name q̇α for p(α) as defined in

Definition 6.4 satisfies

q ⊩ p(α) = q̇α.

Hence, q ⌢ q̇α ∈ DΦ
α+1 and q ⌢ q̇α≤ p. □

Definition 6.8. Let Φ be a Θ-indexing function, 0 < α ≤ ℵ1 and p ∈ DΦ
α . We will inductively

define countable subsets hsuppΘ(p) ⊆ dom(Φ) and hsupp(p) ⊆
⋃

θ∈hsuppΘ(p)({θ} × Φ(θ)) called

the hereditary support of p.

Once we have chosen this definition, we define for the canonical DΦ
α -name ḟ of a nice DΦ

α name

⟨(An, fn) | n < ω⟩ for a real below p the countable sets

hsuppΘ(ḟ) :=
⋃

n<ω,a∈An

hsuppΘ(a)

hsupp(ḟ) :=
⋃

n<ω,a∈An

hsupp(a)

For α = 1, we define hsupp(p) := supp(p(0)) and let hsuppΘ(p) be the projection of hsupp(p)

onto the first component. Next, for limit α we may choose β < α with ιΦβ,α(p ↾β) = p and define

hsuppΘ(p) := hsuppΘ(p ↾β) and hsupp(p) := hsupp(p ↾β). Finally, for α+ 1 > 1 we define

hsuppΘ(p) := hsuppΘ(p ↾α) ∪Θp
α ∪

⋃
{hsuppΘ(ḟ) | θ ∈ Θp

α, i ∈ Ipα,θ and ḟ ∈ F p
α,θ,i},

hsupp(p) := hsupp(p ↾α) ∪
⋃

{hsupp(ḟ) | θ ∈ Θp
α, i ∈ Ipα,θ and ḟ ∈ F p

α,θ,i}.

Lemma 6.9. Assume CH and let Φ be a Θ-indexing function, 0 < α ≤ ℵ1 and assume that both

Θ0 ⊆ Θ and I0 ⊆
⋃

θ∈Θ0
({θ}×Φ(θ)) are countable. Then, there are at most ℵ1-many p ∈ DΦ

α with

hsuppΘ(p) ⊆ Θ0 and hsupp(p) ⊆ I0. Thus, for any p ∈ DΦ
α there are at most ℵ1-many canonical

DΦ
α -names ḟ of nice DΦ

α -names for reals below p with hsuppΘ(ḟ) ⊆ Θ0 and hsupp(ḟ) ⊆ I0.

Proof. In order to see the second part of the statement, let ḟ be the canonical DΦ
α -name of a nice

DΦ
α -name ⟨(An, fn) | n < ω⟩ for a real below p ∈ DΦ

α with hsuppΘ(ḟ) ⊆ Θ0 and hsupp(ḟ) ⊆ I0.

Then, for any n < ω and a ∈ An we also have hsupp(a) ⊆ I0 and hsuppΘ(a) ⊆ Θ0. But by the

first part of the statement∣∣{p ∈ DΦ
α | hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}

∣∣ ≤ ℵ1,

so that Remark 6.2 using CH and the fact that PΦ
α is c.c.c., we may compute the number of nice

DΦ
α -names for reals below p as at most

ℵℵ0
1 = (ℵℵ0

0 )ℵ0 = ℵℵ0·ℵ0
0 = ℵℵ0

0 = ℵ1.

We prove the first part of the statement by induction. For α = 1, as |C| = ℵ0 and I0 is countable

there are at most ℵℵ0
0 = ℵ1-many conditions in PΦ

1
∼= CΦ with hsupp(p) ⊆ I0. For limit α, note
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that by Remark 6.6 we have

{p ∈ DΦ
α | hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}

=
⋃
β<α

{ιΦβ,α(p) | p ∈ DΦ
β ,hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}

Thus, by induction we compute∣∣{p ∈ DΦ
α | hsupp(p) ⊆ I0 and hsuppΘ(p) ⊆ Θ0}

∣∣ ≤ |α| · ℵ1 = ℵ1.

Finally, for α + 1 > 1 and p ∈ DΦ
α+1 we have p ↾α ∈ DΦ

α and hsuppΘ(p ↾α) ⊆ hsuppΘ(p) ⊆ Θ0

and hsupp(p ↾α) ⊆ hsupp(p) ⊆ I0, so by induction there are at most ℵ1-many choices for p ↾α.
Also, Θp

α ⊆ hsuppΘ(p) ⊆ Θ0, so there are at most countably many choices for Θp
α. Further, for

any of the finitely many θ ∈ Θp
α there are at most countably many choices Ipα,θ and for any of the

finitely many i ∈ Ipα,θ there are at most countably many choices for np
α,θ,i and spα,θ,i. Finally, for

any ḟ ∈ F p
α,θ,i choose q ∈ DΦ

α such that ḟ is the canonical DΦ
α -name of some nice DΦ

α -name for

a real below q with p ↾α≤ q. Then, we have hsuppΘ(q) ⊆ hsuppΘ(p ↾α) ⊆ hsuppΘ(p) ⊆ Θ0 and

hsupp(q) ⊆ hsupp(p ↾α) ⊆ hsupp(p) ⊆ I0, so by induction assumption there at most ℵ1-many

choices for q. Analogously, hsuppΘ(ḟ) ⊆ hsuppΘ(p) ⊆ Θ0 and hsupp(ḟ) ⊆ hsupp(p) ⊆ I0, so by

induction assumption there are at most ℵ1-many choices for ḟ . Hence, there are at most ℵ1-many

choices for F p
α,θ,i. By Remark 6.5 p(α) is uniquely determined by these parameters, so that there

are at most ℵ1-many choices for p. □

Next, we prove that the action of Γ on PΦ
α restricts to actions on our nice dense set DΦ

α .

Lemma 6.10. Let Φ be an Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and 0 < α ≤ ℵ1.

Then, πΦ,θ
α,i (γ)(D

Φ
α ) = DΦ

α .

Proof. It suffices to verify that πΦ,θ
α,i (γ)(D

Φ
α ) ⊆ DΦ

α , which we prove by induction. For α = 1, let

p ∈ DΦ
1 . Then, we compute

πΦ,θ
1,i (γ)(p)(0) = πΦ,θ

1,i (γ)(p(0)) = πΦ,θ
1,i (γ)(c

p) ∈ CΦ,

so that πΦ,θ
1,i (γ)(p) ∈ DΦ

1 . For limit α, let p ∈ DΦ
α and choose β < α such that ιΦβ,α(p ↾β) = p. By

induction assumption πΦ,θ
β,i (γ)(p ↾β) ∈ DΦ

β . By Remark 6.6 we have ιΦβ,α(π
Φ,θ
β,i (γ)(p ↾β)) ∈ DΦ

α .

Hence, by Definition 5.1 we compute

πΦ,θ
α,i (γ)(p) = πΦ,θ

α,i (γ)(ι
Φ
β,α(p ↾β)) = ιΦβ,α(π

Φ,θ
β,i (γ)(p ↾β)) ∈ DΦ

α .

Finally, for α+ 1 > 1 let p ∈ DΦ
α+1. Then, p ↾α ∈ DΦ

α and by Definition 5.3

πΦ,θ
α+1,i(γ)(p) = πΦ,θ

α,i (γ)(p ↾α)
⌢ πΦ,θ

α,i (γ)(p(α)).

By induction assumption we obtain πΦ,θ
α,i (γ)(p ↾α) ∈ DΦ

α . By Remark 6.3 πΦ,θ
α,i (γ)(p(α)) is the

canonical name for the condition in Q̇Φ
α =

∏
θ∈dom(Φ) T(Ṫ

Φ,θ
α ) with supp(πΦ,θ

α,i (γ)(p(α))) = Θp
α

and for every θ ∈ Θp
α with supp(πΦ,θ

α,i (γ)(p(α))(θ)) = Ipα,θ and for every i ∈ Ipα,θ we have

πΦ,θ
α,i (γ)(p(α))(θ)(i) = (spα,θ,i, π

Φ,θ
α,i (γ)(F

p
α,θ,i)). Hence, π

Φ,θ
α+1,i(γ)(p) ∈ DΦ

α+1. □
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Lemma 6.11. Let Φ be an Θ-indexing function, θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and p ∈ DΦ
α for

some 0 < α ≤ ℵ1 such that πΦ,θ
1,i (γ)(p ↾ 1) = p ↾ 1. Then, there is q ≤ p in DΦ

α with q(0) = p(0)

and πΦ,θ
α,i (γ)(q) = q.

Proof. By induction. The case α = 1 is exactly the assumption given on γ. For limit α choose

β < α with ιΦβ,α(p ↾β) = p. By induction assumption choose q ≤ p ↾β in DΦ
β such that q(0) = p(0)

and πΦ,θ
β,i (γ)(q) = q. Then, we have ιΦβ,α(q)(0) = q(0) = p(0), by Remark 6.6 ιΦβ,α ∈ DΦ

α and by

Definition 5.1 we compute

πΦ,θ
α,i (γ)(ι

Φ
β,α(q)) = ιΦβ,α(π

Φ,θ
β,i (γ)(q)) = ιΦβ,α(q).

Finally, for α + 1 > 1 let p ∈ DΦ
α+1. Then, by induction assumption we may choose q ≤ p ↾α in

DΦ
α with q(0) = p(0) and πΦ,θ

α,i (γ)(q) = q. We define

• Θq
α := Θp

α,

• Iqα,θ := Ipα,θ for every θ ∈ Θq
α,

• nq
α,θ,i := np

α,θ,i and sqα,θ,i := spα,θ,i for every θ ∈ Θq
α and i ∈ Iqα,θ,

• F q
α,θ,i := F p

α,θ,i ∪ πΦ,θ
α,i (γ)(F

p
α,θ,i).

Let q̇α be the canonical name for the condition in Q̇Φ
α =

∏
θ∈dom(Φ) T(Ṫ

Φ,θ
α ) with supp(q̇α) = Θq

α,

for every θ ∈ Θq
α with supp(q̇α(θ)) = Iqα,θ and for every i ∈ Iqα,θ we have q̇α(θ)(i) = (sqα,θ,i, F

q
α,θ,i).

We claim that q ⌢ q̇α is as desired. To obtain q ⌢ q̇α ∈ DΦ
α+1 by Remark 6.5 it suffices to verify

that for every θ ∈ Θp
α, i ∈ Ipα,θ and ḟ ∈ F p

α,θ,i we have

q ⊩ πΦ,θ
α,i (γ)(ḟ) ↾n

p
α,θ,i ∈ spα,θ,i and πΦ,θ

α,i (γ)(ḟ) /∈
⋃

T∈Ṫ Φ,θ
α

[T ].

To this end, notice that p ∈ DΦ
α+1 implies

p ↾α ⊩ ḟ ↾np
α,θ,i ∈ spα,θ,i and ḟ /∈

⋃
T∈Ṫ Φ,θ

α

[T ],

so also q ≤ p ↾α forces this. Further, πΦ,θ
α,i (γ)(q) = q and πΦ,θ

α,i (γ)(Ṫ
Φ,θ
α ) = Ṫ Φ,θ

α , so applying the

automorphism theorem to the previous statement yields the desired conclusion. Next, we have

πΦ,θ
α,i (γ)(F

q
α,θ,i) = F q

α,θ,i since πΦ,θ
α,i (γ) is an involution. This implies

πΦ,θ
α+1,i(γ)(q

⌢ q̇α) = πΦ,θ
α,i (γ)(q)

⌢ πΦ,θ
α,i (γ)(q̇α) = q ⌢ q̇α.

Finally, by definition we have q ⌢ q̇α≤ p and (q ⌢ q̇α)(0) = q(0) = p(0). □

7. Complete embeddings

In this section we combine the results of the previous sections in order to prove that our

forcing in Definition 4.10 has enough complete subforcings to carry out our isomorphism-of-

names argument for Main Theorem 3.1. The whole section will be devoted towards the proof of

the following Theorem 7.1 as it is an elaborate inductive construction of complete embeddings.
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Theorem 7.1. Let Φ ⊆ Ψ be a Θ-subindexing function and assume Φ is countable. Then,

PΦ
α ⩽◦PΨ

α for all α ≤ ℵ1.

By induction over α ≤ ℵ1 we define embeddings ιΦ,Ψ
α : PΦ

α → PΨ
α and prove that they admit

reductions from PΨ
α to PΦ

α . Thus, ι
Φ,Ψ
α will be a complete embedding. Additionally, we will verify

the following properties along our iteration:

(A) For all β ≤ α the following diagram commutes:

PΦ
β PΨ

β

PΦ
α PΨ

α

ιΦβ,α

ιΦ,Ψ
β

ιΨβ,α

ιΦ,Ψ
α

(B) For all θ ∈ dom(Φ) and i ∈ Φ(θ) the embedding ιΦ,Ψ
α : PΦ

α → PΨ
α is a morphism of Γ-sets,

i.e. the following diagram commutes for every γ ∈ Γ:

PΦ
α PΨ

α

PΦ
α PΨ

α

πΦ,θ
α,i (γ)

ιΦ,Ψ
α

πΨ,θ
α,i (γ)

ιΦ,Ψ
α

(C) For all θ ∈ dom(Φ) and i ∈ Φ(θ) we have

ιΦ,Ψ
1 (ċΦ,θ

i ) = ċΨ,θ
i and thus ιΦ,Ψ

1 (ṪΦ,θ
i ) = ṪΨ,θ

i .

(D) For all α = β + 1 > 1, θ ∈ dom(Φ) and n < ω we have

ιΦ,Ψ
β (ṪΦ,θ

β,n ) = ṪΨ,θ
β,n .

(E) If α > 0, then for all θ ∈ dom(Φ), the name Ṫ Ψ,θ
α is the canonical PΨ

α -name for

ιΦ,Ψ
α (Ṫ Φ,θ

α ) ∪
⋃

i∈Ψ(θ)\Φ(θ)

ιΨ1,α(T
Ψ,θ
i ).

(F) For all θ ∈ dom(Φ), i ∈ Ψ(θ)\Φ(θ), γ ∈ Γ we have that πΨ,θ
α,i (γ) acts trivially on ιΦ,Ψ

α (PΦ
α).

(G) For all θ ∈ dom(Φ), i ∈ Ψ(θ) \ Φ(θ), γ ∈ Γ and PΦ
α -name ḟ for a real

PΨ
α ⊩ ιΦ,Ψ

α (ḟ) ̸= ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )).

First, we prove that (G) follows from (F), so that we only need to verify (A) to (F) inductively:

Proof. Let p ∈ PΨ
α . By Lemma 6.7, we may assume p ∈ DΨ

α . Choose N /∈ dom(p(0)(θ, i)). Let

δ ∈ Γ be defined by δ(N) = 1 and 0 otherwise. Then, πΨ,θ
1,i (δ)(p ↾ 1) = p ↾ 1, so by the Lemma 6.11

we may choose q ≤ p in DΨ
α such that q(0) = p(0) and πΨ,θ

α,i (δ)(q) = q. Thus, N /∈ dom(q(0)(θ, i))

and we may define qk ≤ q which replaces p(0)(θ, i) by p(0)(θ, i)∪ ⟨N, j⟩ for j ∈ 2. Then, we have

πΨ,θ
α,i (δ)(qj) = q1−j for j ∈ 2 and there is a k ∈ 2 with

q0 ⊩ ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = k.
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Further, using (δ + γ)(N) = 1− γ(N) we compute

πΨ,θ
α,i (δ)(ι

Ψ
1,α(π

Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )))(N) = ιΨ1,α(π

Ψ,θ
1,i (δ)(π

Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )))(N)

= ιΨ1,α(π
Ψ,θ
1,i (δ + γ)(ċΨ,θ

i ))(N)

= 1− ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N).

Thus, by the automorphism theorem we obtain

q1 ⊩ ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = 1− k.

Choose r0 ≤ q0 such that r0 ⊩ ιΦ,Ψ
α (ḟ)(N) = l for some l ∈ 2. Since ḟ is a PΦ

α -name by (F) we

have πΨ,θ
α,i (δ)(ι

Φ,Ψ
α (ḟ)) = ιΦ,Ψ

α (ḟ). Thus, the automorphism theorem yields

πΨ,θ
α,i (δ)(r0) ⊩ ιΦ,Ψ

α (ḟ)(N) = l.

But then either r0 ≤ q0 ≤ q ≤ p and

r0 ⊩ ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = k ̸= l = ιΦ,Ψ

α (ḟ)(N)

or πΨ,θ
α,i (δ)(r0) ≤ πΨ,θ

α,i (δ)(q0) = q1 ≤ q ≤ p and

πΨ,θ
α,i (δ)(r0) ⊩ ιΨ1,α(π

Ψ,θ
1,i (γ)(ċ

Ψ,θ
i ))(N) = 1− k ̸= l = ιΦ,Ψ

α (ḟ)(N). □

Next, we inductively define ιΦ,Ψ
α and verify properties (A) to (F), so consider α = 1 first.

In this case we already defined ιΦ,Ψ
i : PΦ

1 → PΨ
1 as the complete embedding corresponding to

ιΦ,Ψ : CΦ → CΨ.

(A) There is nothing to show.

(B) Follows immediately from Remark 4.7.

(C) By definition of ċΦ,θ
i , ċΨ,θ

i and ιΦ,Ψ
1 .

(D) There is nothing to show.

(E) Let θ ∈ dom(Φ). Then, we compute

Ṫ Ψ,θ
1 =

⋃
i∈Ψ(θ)

Ṫ Ψ,θ
i (Remark 4.9)

=
⋃

i∈Φ(θ)

Ṫ Ψ,θ
i ∪

⋃
i∈Ψ(θ)\Φ(θ)

Ṫ Ψ,θ
i

=
⋃

i∈Φ(θ)

ιΦ,Ψ
1 (Ṫ Φ,θ

i ) ∪
⋃

i∈Ψ(θ)\Φ(θ)

Ṫ Ψ,θ
i (Remark 4.9)

= ιΦ,Ψ
1 (

⋃
i∈Φ(θ)

Ṫ Φ,θ
i ) ∪

⋃
i∈Ψ(θ)\Φ(θ)

Ṫ Ψ,θ
i (canonical name)

= ιΦ,Ψ
1 (Ṫ Φ,θ

1 ) ∪
⋃

i∈Ψ(θ)\Φ(θ)

Ṫ Ψ,θ
i (Remark 4.9).

(F) Follows immediately from the fact that πΨ,θ
α,i (γ) only acts on Cohen information outside

of the indexing of Φ.
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Next, we consider limit α. Then, by (A) for every β′ ≤ β < α the following diagram commutes:

PΦ
β′ PΨ

β′

PΦ
β PΨ

β

ιΦ
β′,β

ιΦ,Ψ

β′

ιΨ
β′,β

ιΦ,Ψ
β

By the universal property of the direct limit there is a unique map ιΦ,Ψ
α : PΦ

α → PΨ
α such that

for every β ≤ α the diagram in (A) commutes. Further, as a direct limit of complete embeddings,

also ιΦ,Ψ
α is a complete embedding. Note that (C) and (D) are vacuous at limits.

(A) Follows from the universal property of the direct limit.

(B) Let θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and p ∈ PΦ
α . Choose β < α such that ιΦβ,α(p ↾β) = p.

Then, we compute

πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p)) = πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (ιΦβ,α(p ↾β))) (choice of β)

= πΨ,θ
α,i (γ)(ι

Ψ
β,α(ι

Φ,Ψ
β (p ↾β))) (A)

= ιΨβ,α(π
Ψ,θ
β,i (γ)(ι

Φ,Ψ
β (p ↾β))) (Definition 5.1)

= ιΨβ,α(ι
Φ,Ψ
β (πΦ,θ

β,i (γ)(p ↾β))) ((B) inductively)

= ιΦ,Ψ
α (ιΦβ,α(π

Φ,θ
β,i (γ)(p ↾β))) (A)

= ιΦ,Ψ
α (πΦ,θ

α,i (γ)(ι
Φ
β,α(p ↾β))) (Definition 5.1)

= ιΦ,Ψ
α (πΦ,θ

α,i (γ)(p)) (choice of β).

(E) Let θ ∈ dom(Φ). Then, we compute

Ṫ Ψ,θ
α =

⋃
β<α

ιΨβ,α(Ṫ
Ψ,θ
β ) (Definition 4.10)

=
⋃
β<α

ιΨβ,α

ιΦ,Ψ
β (Ṫ Φ,θ

β ) ∪
⋃

i∈Ψ(θ)\Φ(θ)

ιΨ1,β(T
Ψ,θ
i )

 ((E) inductively)

=
⋃
β<α

ιΨβ,α(ιΦ,Ψ
β (Ṫ Φ,θ

β )) ∪
⋃

i∈Ψ(θ)\Φ(θ)

ιΨβ,α(ι
Ψ
1,β(T

Ψ,θ
i ))

 (canonical name)

=
⋃
β<α

ιΦ,Ψ
α (ιΦβ,α(Ṫ

Φ,θ
β )) ∪

⋃
i∈Ψ(θ)\Φ(θ)

ιΨ1,α(T
Ψ,θ
i )

 (A)

= ιΦ,Ψ
α

⋃
β<α

ιΦβ,α(Ṫ
Φ,θ
β )

 ∪
⋃

i∈Ψ(θ)\Φ(θ)

ιΨ1,α(T
Ψ,θ
i ) (canonical name)

= ιΦ,Ψ
α (Ṫ Φ,θ

α ) ∪
⋃

i∈Ψ(θ)\Φ(θ)

ιΨ1,α(T
Ψ,θ
i ) (Definition 4.10).
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(F) Let θ ∈ dom(Φ), i ∈ Ψ(θ) \ Φ(θ), γ ∈ Γ and p ∈ PΦ
α . Choose β < α with ιΦβ,α(p ↾β) = p.

Then, we compute

πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p)) = πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (ιΦβ,α(p ↾β))) (choice of β)

= πΨ,θ
α,i (γ)(ι

Ψ
β,α(ι

Φ,Ψ
β (p ↾β))) (A)

= ιΨβ,α(π
Ψ,θ
β,i (γ)(ι

Φ,Ψ
β (p ↾β))) (Definition 5.1)

= ιΨβ,α(ι
Φ,Ψ
β (p ↾β)) ((F) inductively)

= ιΦ,Ψ
α (ιΦβ,α(p ↾β)) (A)

= ιΦ,Ψ
α (p) (choice of β).

Finally, consider α+1 > 1. By induction we have that ιΦ,Ψ
α : PΦ

α → PΨ
α is a complete embedding.

Thus, we may naturally define for p ∈ PΦ
α+1

ιΦ,Ψ
α+1(p) := ιΦ,Ψ

α (p ↾α)⌢ ιΦ,Ψ
α (p(α)).

However, we need to verify that

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (p(α)) ∈ Q̇Ψ
α .

Since Φ ⊆ Ψ, by definition of Q̇Ψ
α it suffices to prove that if θ ∈ dom(Φ) and ḟ is a PΦ

α -name with

p ↾α ⊩ ḟ /∈
⋃

T∈Ṫ Φ,θ
α

[T ],

then also

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) /∈
⋃

T∈Ṫ Ψ,θ
α

[T ].

By induction assumption of (E) we may distinguish the following three different types of trees in

Ṫ Ψ,θ
α . First, let i ∈ Φ(θ) and γ ∈ Γ. By assumption on ḟ we have

p ↾α ⊩ ḟ ̸= ιΦ1,α(π
Φ,θ
1,i (γ)(ċ

Φ,θ
i )),

so that

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) ̸= ιΦ,Ψ
α (ιΦ1,α(π

Φ,θ
1,i (γ)(ċ

Φ,θ
i ))).

Secondly, let β < α and n < ω. By assumption on ḟ we have

p ↾α ⊩ ḟ /∈ [ιΦβ,α(Ṫ
Φ,θ
β,n )].

Thus, by induction assumption of (A) and (C) we get

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) /∈ [ιΦ,Ψ
α (ιΦβ,α(Ṫ

Φ,θ
β,n ))] = [ιΨβ,α(ι

Φ,Ψ
β (ṪΦ,θ

β,n ))] = [ιΨβ,α(Ṫ
Ψ,θ
β,n )].

Finally, for i ∈ Ψ(θ) \ Φ(θ) by induction assumption of (G) we get

ιΦ,Ψ
α (p ↾α) ⊩ ιΦ,Ψ

α (ḟ) ̸= ιΨ1,α(π
Ψ,θ
1,i (γ)(ċ

Ψ,θ
i )).
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Next, given p ∈ PΨ
α+1 we have to find a reduction q ∈ PΦ

α+1 with respect to the embedding ιΦ,Ψ
α+1.

By Lemma 6.7 we may assume p ∈ DΨ
α+1. By induction, pick a reduction q ∈ PΦ

α of p ↾α ∈ DΨ
α

with respect to ιΦ,Ψ
α . Remember, that for every θ ∈ Θp

α, i ∈ Ipα,θ and ḟ ∈ F p
α,θ,i we have

p ↾α ⊩ ḟ /∈
⋃

T∈Ṫ Ψ,θ
α

[T ].

Thus, we will need to find a reduction ġ of ḟ which satisfies

q ⊩ ġ /∈
⋃

T∈Ṫ Φ,θ
α

[T ].

Note that the standard canonical projection of a real (cf. [7]) need not satisfy this requirement.

Thus, we introduce the following technical notions. For technical reasons, we need to enumerate

the finite set
⋃
{{θ} × {i} × F p

α,θ,i | θ ∈ Θp
α, i ∈ Ipα,θ} by ⟨(θk, ik, ḟk) | k ∈ K⟩. In particular, we

have θ• : K → Θp
α. For every θ ∈ Θp

α by assumption on Φ the family Ṫ Φ,θ
α is countable, so we

may enumerate it as ⟨Ṡθ
n | n < ω⟩. Next, we will need the following refinement of the definition

of a nice name for a real below p in Definition 6.1.

Definition 7.2. Let P be a forcing, p ∈ P and K a finite set. A nice P-name for K-many reals

below p is a sequence ⟨(An,Kn) | n < ω⟩ such that

• for all n < ω the set An is a maximal antichain below p and Kn : K ×An → 2>n,

• for all n < m the antichain Am refines An, i.e. every b ∈ Am there is a ∈ An with b≤ a,

• for all n < m, k ∈ K, a ∈ An and b ∈ Am with b≤ a we have Kn(k, a) ⊴ Km(k, b).

Further, we write name(⟨(An,Kn) | n < ω⟩) for the canonical P-name of ⟨(An,Kn) | n < ω⟩, i.e.

name(⟨(An,Kn) | n < ω⟩) := {(a, ((k, n),Kn(k, a)(n))) | n < ω and a ∈ An} ∈ K×ω2.

Remark 7.3. Notice that if ⟨(An,Kn) | n < ω⟩ is a nice P-name for K-many reals below p, then

for every k ∈ K the sequence ⟨(An,Kn(k)) | n < ω⟩ is a nice P-name for a real below p with

name(⟨(An,Kn(k)) | n < ω⟩) = name(⟨(An,Kn) | n < ω⟩) ↾({k} × ω).

However, ⟨(An,Kn) | n < ω⟩ is more than just the product of K-many nice P-names for reals

below p as all antichains have to coincide.

With respect to the fixed p ∈ DΨ
α+1, θ• : K → Θp

α and sequence ⟨Ṡθ
n | n < ω⟩ above, we define

the following notion:

Definition 7.4. Let ⟨(An,Kn) | n < ω⟩ be a nice PΨ
α -name for K-many reals below p ↾α. Then,

we say ⟨(An,Kn) | n < ω⟩ is a nice P-name for K-many reals below p ↾α with respect to θ• and

⟨⟨Ṡθ
n | n < ω⟩ | θ ∈ Θp

α⟩ iff for all n < ω, k ∈ K and a ∈ An we have

a ⊩ Kn(k, a) /∈ ιΦ,Ψ
α (Ṡθk

n ).

First, we argue that there is such a nice PΨ
α -name ⟨(An,Kn) | n < ω⟩ of K-many reals below

p ↾α with respect to θ• and ⟨⟨ṠΦ
n | n < ω⟩ | θ ∈ Θp

α⟩, so that for every k ∈ K we have

p ↾α ⊩ ḟk = name(⟨(An,Kn(k)) | n < ω⟩).
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Proof. We construct the nice name by recursion on n. Set A−1 := {p ↾α}. Now, assume An is

defined. For every a ∈ An choose a maximal antichain B(a) below a such that for every b ∈ B(a)
and k ∈ K there is Kn+1(k, a) ∈ 2>n with Kn(k, b) ⊴ Kn+1(k, b) if n ̸= −1 and such that

b ⊩ Kn+1(k, b) ⊴ ḟk and Kn+1(k, b) /∈ ιΦ,Ψ
α (Ṡθk

n+1).

This is possible as b≤ a, K is finite and by assumption on ḟk we have for every k ∈ K

p ↾α ⊩ ḟk /∈ [ιΦ,Ψ
α (Ṡθk

n+1)].

Finally, set An+1 :=
⋃

a∈An
B(a). Clearly, ⟨(An,Kn) | n < ω⟩ then has the desired properties. □

In [7][Lemma 3.8] the existence of a reduction of a nice name for a real is proven. We will need

an analogous result for nice names of K-many reals:

Lemma 7.5. Let Q be a complete suborder of P, p ∈ P, q ∈ Q a reduction of p and assume that

{(An,Kn) | n < ω} is a nice P-name for K-many reals below p. Then, there is a nice Q-name

{(Bn, Ln) | n < ω} for K-many reals below q such that for all n < ω and b ∈ Bn there is an

a ∈ An such that b is a reduction of a and Kn(k, a) = Ln(k, b) for all k ∈ K.

Proof. Exactly the same proof as for Lemma 3.8 in [7]. □

Analogously to [7], we will call the nice PΦ
α -name {(Bn, Ln) | n < ω} a canonical projection of

the nice PΨ
α -name {(An,Kn) | n < ω} below q.

Lemma 7.6. Assume ⟨(An,Kn) | n < ω⟩ is a nice PΨ
α -name for K-many reals below p ↾α with

respect to θ• and ⟨⟨Ṡθ
n | n < ω⟩ | θ ∈ Θp

α⟩. Further, assume that ⟨(Bn, Ln) | n < ω⟩ is a canonical

projection of {(An,Kn) | n < ω} below q. Then, for every k ∈ K

q ⊩ name({(Bn, Ln(k)) | n < ω}) /∈
⋃
n<ω

[Ṡθk
n ].

Proof. Assume not, so choose k ∈ K, n < ω and r0≤ q such that

r0 ⊩ name({(Bn, Ln(k)) | n < ω}) ∈ [Ṡθk
n ].

Choose b ∈ Bn such that b || r0. Choose r1 ∈ PΦ
α with r1≤ b, r0. Since {(Bn, Ln) | n < ω} is a

canonical projection below q of {(An,Kn) | n < ω} choose a ∈ An such that b is a reduction of a

and Kn(k, a) = Ln(k, b). Thus, ι
Φ,Ψ
α (r1) || a. Then, by assumption we have

r1 ⊩ Ln(k, b) ∈ Ṡθk
n ,

which implies

ιΦ,Ψ
α (r1) ⊩ Kn(k, a) = Ln(k, b) ∈ ιΦ,Ψ

α (Ṡθk
n ).

On the other hand, since ⟨(An, fn) | n < ω⟩ is a nice name with respect to θ• and ⟨Ṡn | n < ω⟩

a ⊩ Kn(k, a) /∈ ιΦ,Ψ
α (Ṡθk

n )

contradicting ιΦ,Ψ
α (r1) || a. □
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Finally, we define a reduction of p as follows: By the previous discussion choose a nice PΨ-name

⟨(An,Kn) | n < ω⟩ of K-many reals below p ↾α with respect to θ• and ⟨⟨Ṡθ
n | n < ω⟩ | θ ∈ Θp

α⟩,
so that for every k ∈ K we have

p ↾α ⊩ ḟk = name(⟨(An,Kn(k)) | n < ω⟩).

By Lemma 7.5 choose a canonical projection ⟨(Bn, Ln) | n < ω⟩ of ⟨(An,Kn) | n < ω⟩. Now, for

θ ∈ Θp
α and i ∈ Ipα,θ we define Gα,θ,i as

{name(⟨(Bn, Ln(k)) | n < ω⟩) | k ∈ K with θk = θ and ik = i}.

Let q̇α be the canonical name for the condition in Q̇Φ
α =

∏
θ∈dom(Φ) T(Ṫ

Φ,θ
α ) with supp(q̇α) = Θp

α,

for every θ ∈ Θα with supp(q̇α(θ)) = Ipα,θ and for every i ∈ Iα,θ we have q̇α(θ)(i) = (spα,θ,i, Gα,θ,i).

Since ⟨Ṡθk
n | n < ω⟩ enumerates Ṫ Φ,θk

α by Lemma 7.6 for every k ∈ K we have

q ⊩ name(⟨(Bn, Ln(k)) | n < ω⟩) /∈
⋃

T∈Ṫ Φ,θk
α

[T ].

Hence, we obtain

q ⊩ q̇α ∈ Q̇Φ
α =

∏
θ∈dom(Φ)

T(Ṫ Φ,θ
α ),

i.e. q ⌢ q̇α ∈ PΦ
α+1. It remains to show that q ⌢ q̇α is indeed a reduction of p with respect to ιΦ,Ψ

α+1.

Proof. Let r≤ q ⌢ q̇α. We need to show that ιΦ,Ψ
α+1(r) || p. By extending r we may assume r ∈ DΦ

α+1.

Further, r ↾α≤ q. Since r ↾α ⊩ r(α) ≤ q̇α we have

• Θp
α ⊆ Θr

α,

• Ipα,θ ⊆ Irα,θ for every θ ∈ Θp
α,

• np
α,θ,i ≤ nr

α,θ,i for every θ ∈ Θp
α and i ∈ Ipα,θ,

• spα,θ,i ⊴ srα,θ,i for every θ ∈ Θp
α and i ∈ Ipα,θ,

• For every k ∈ K there is ḣk ∈ F r
α,θk,ik

such that

r ↾α ⊩ ḣk = name(⟨(Bn, Ln(k)) | n < ω⟩).

Let N := max {nr
α,θ,i | θ ∈ Θp

α, i ∈ Ipα,θ}. Since r ↾α≤ q and BN is a maximal antichain below

q choose b ∈ BN and r̄ ∈ PΦ
α with r̄≤ r ↾α, b. As ⟨(Bn, Ln) | n < ω⟩ is a canonical projection

of ⟨(An,Kn) | n < ω⟩ choose a ∈ AN , so that b is a reduction of a and for all k ∈ K we have

KN (k, a) = LN (k, b). Hence, ιΦ,Ψ
α (r̄) || a, so choose p̄ ∈ PΨ

α with p̄≤ ιΦ,Ψ
α (r̄), a. We define

• Θp̄
α := Θr

α,

• I p̄α,θ := Irα,θ for every θ ∈ Θp̄
α,

• np̄
α,θ,i := nr

α,θ,i and sp̄α,θ,i := srα,θ,i for every θ ∈ Θp̄
α and i ∈ I p̄α,θ,

• F p̄
α,θ,i := F p

α,θ,i ∪ ιΦ,Ψ
α (F r

α,θ,i) for every θ ∈ Θp̄
α and i ∈ I p̄α,θ,

where every undefined set is to be treated as the empty set. Let ˙̄pα be the canonical name

for the condition in Q̇Φ
α =

∏
θ∈dom(Φ) T(Ṫ

Φ,θ
α ) with supp( ˙̄pα) = Θp̄

α and for every θ ∈ Θp̄
α with

supp( ˙̄pα(θ)) = I p̄α,θ and for every i ∈ I p̄α,θ we have ˙̄pα(θ)(i) = (sp̄α,θ,i, F
p̄
α,θ,i). By definition of p̄⌢ ˙̄pα
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we have p̄⌢ ˙̄pα≤ p, ιΦ,Ψ
α+1(r), so we finish the proof by showing that p̄⌢ ˙̄pα ∈ PΨ

α . By definition of

F p̄
α,θ,i we distinguish the following two cases. First, let k ∈ K, by Remark 6.5 we have to prove

p̄ ⊩ ḟk ↾n
p̄
α,θk,ik

∈ sp̄α,θk,ik and ḟ /∈
⋃

T∈Ṫ Ψ,θk
α

[T ].

Since p ∈ DΨ
α+1 we have

p ↾α ⊩ ḟ /∈
⋃

T∈Ṫ Ψ,θk
α

[T ],

so also p̄≤ a≤ p ↾α forces this. For the other property, choose ḣk ∈ F r
α,θk,ik

such that

r ↾α ⊩ ḣk = name(⟨(Bn, Ln(k)) | n < ω⟩).

Since r ∈ DΦ
α+1 we have

r ↾α ⊩ ḣk ↾n
r
α,θk,ik

∈ srα,θk,ik .

Furthermore, as N ≥ nr
α,θk,ik

and b ∈ BN we have

b ⊩ name(⟨(Bn, Ln(k)) | n < ω⟩) ↾nr
α,θk,ik

= ↾LN (k, b) ↾nr
α,θk,ik

.

Hence, r̄≤ r ↾α, b implies that

r̄ ⊩ LN (k, b) ↾nr
α,θk,ik

= ḣk ↾n
r
α,θk,ik

∈ srα,θk,ik .

Thus, we obtain LN (k, a) ↾nr
α,θk,ik

∈ srα,θk,ik . But np̄
α,θk,ik

= nr
α,θk,ik

, sp̄α,θk,ik = srα,θk,ik and by

choice of b we have LN (k, b) = KN (k, a), so that

KN (k, a) ↾np̄
α,θk,ik

∈ sp̄α,θk,ik .

Finally,

a ⊩ ḟk = name(⟨(Bn, Ln(k)) | n < ω⟩)
and p̄≤ a yield the desired

p̄ ⊩ ḟk ↾n
p̄
α,θk,ik

= KN (k, a) ↾np̄
α,θk,ik

∈ sp̄α,θk,ik .

Secondly, let θ ∈ Θr
α, i ∈ Irα,θ and ḣ ∈ F r

α,θ,i. Then, r̄≤ r ↾α implies

r̄ ⊩ ḣ ↾nr
α,θ,i ∈ srα,θ,i and ḣ /∈

⋃
T∈Ṫ Φ,θ

α

[T ].

As before, we obtain

ιΦ,Ψ
α (r̄) ⊩ ιΦ,Ψ

α (ḣ) ↾nr
α,θ,i ∈ srα,θ,i and ιΦ,Ψ

α (ḣ) /∈
⋃

T∈Ṫ Ψ,θ
α

[T ].

Hence, p̄≤ ιΦ,Ψ
α (r̄) implies that

p̄ ⊩ ιΦ,Ψ
α (ḣ) ↾np̄

α,θ,i ∈ sp̄α,θ,i and ιΦ,Ψ
α (ḣ) /∈

⋃
T∈Ṫ Ψ,θ

α

[T ].

Thus, we finished proving p̄⌢ ˙̄pα ∈ PΨ
α . □
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To complete the induction, it remains to prove (A) to (F):

(A) By induction on (A) it suffices to verify the following. Let p ∈ PΦ
α . Then, we compute

ιΦ,Ψ
α+1(ι

Φ
α,α+1(p)) = ιΦ,Ψ

α+1(p
⌢ 1)

= ιΦ,Ψ
α (p)⌢ 1

= ιΨα,α+1(ι
Φ,Ψ
α (p)).

(B) Let θ ∈ dom(Φ), i ∈ Φ(θ), γ ∈ Γ and p ∈ PΦ
α+1. Then, we compute

πΨ,θ
α+1,i(γ)(ι

Φ,Ψ
α+1(p)) = πΨ,θ

α+1,i(γ)(ι
Φ,Ψ
α (p ↾α)⌢ ιΦ,Ψ

α (p(α))) (definition of ιΦ,Ψ
α+1)

= πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p ↾α))⌢ πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (p(α))) (Definition 5.3)

= ιΦ,Ψ
α (πΦ,θ

α,i (γ)(p ↾α))
⌢ ιΦ,Ψ

α (πΦ,θ
α,i (γ)(p(α))) ((B) inductively)

= ιΦ,Ψ
α+1(π

Φ,θ
α,i (γ)(p ↾α)

⌢ πΦ,θ
α,i (γ)(p(α))) (definition of ιΦ,Ψ

α+1)

= ιΦ,Ψ
α+1(π

Φ,θ
α+1,i(γ)(p)) (Definition 5.3).

(C) There is nothing to show.

(D) Let θ ∈ dom(Φ) and n < ω. Then, ιΦ,Ψ
α+1(Ṫ

Φ,θ
α,n ) = ṪΨ,θ

α,n immediately follows, since ιΦ,Ψ
α

preserves check-names.

(E) Let θ ∈ dom(Φ). Then, we compute using (E) inductively, (D), (A) and the fact that

every name is chosen as a canonical name:

Ṫ Ψ,θ
α+1 = ιΨα,α+1(Ṫ Ψ,θ

α ) ∪ {ṪΨ,θ
α,n | n ∈ ω}

= ιΨα,α+1

ιΦ,Ψ
α (Ṫ Φ,θ

α ) ∪
⋃

i∈Ψ(θ)\Φ(θ)

ιΨ1,α(T
Ψ,θ
i )

 ∪ {ιΦ,Ψ
α+1(Ṫ

Φ,θ
α,n ) | n ∈ ω}

= ιΨα,α+1(ι
Φ,Ψ
α (Ṫ Φ,θ

α )) ∪
⋃

i∈Ψ(θ)\Φ(θ)

ιΨα,α+1(ι
Ψ
1,α(T

Ψ,θ
i )) ∪ ιΦ,Ψ

α+1({Ṫ
Φ,θ
α,n | n ∈ ω})

= ιΦ,Ψ
α+1(ι

Φ
α,α+1(Ṫ Φ,θ

α )) ∪ ιΦ,Ψ
α+1({Ṫ

Φ,θ
α,n | n ∈ ω}) ∪

⋃
i∈Ψ(θ)\Φ(θ)

(ιΨ1,α+1(T
Ψ,θ
i ))

= ιΦ,Ψ
α+1

[
ιΦα,α+1(Ṫ Φ,θ

α ) ∪ {ṪΦ,θ
α,n | n ∈ ω}

]
∪

⋃
i∈Ψ(θ)\Φ(θ)

(ιΨ1,α+1(T
Ψ,θ
i ))

= ιΦ,Ψ
α+1(Ṫ

Φ,θ
α+1) ∪

⋃
i∈Ψ(θ)\Φ(θ)

(ιΨ1,α+1(T
Ψ,θ
i )).
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(F) Let θ ∈ dom(Φ), i ∈ Ψ(θ) \ Φ(θ), γ ∈ Γ and p ∈ PΦ
α+1. Then, we compute

πΨ,θ
α+1,i(γ)(ι

Φ,Ψ
α+1(p)) = πΨ,θ

α+1,i(γ)(ι
Φ,Ψ
α (p ↾α)⌢ ιΦ,Ψ

α (p(α))) (definition of ιΦ,Ψ
α+1)

= πΨ,θ
α,i (γ)(ι

Φ,Ψ
α (p ↾α))⌢ πΨ,θ

α,i (γ)(ι
Φ,Ψ
α (p(α))) (Definition 5.3)

= ιΦ,Ψ
α (p ↾α)⌢ ιΦ,Ψ

α (p(α)) ((F) inductively)

= ιΦ,Ψ
α+1(p) (definition of ιΦ,Ψ

α+1).

This completes the induction and thus the proof of Theorem 7.1. □

8. Extending Isomorphisms through the iteration

In Section 5 we considered how to extend automorphisms of certain group actions through the

iteration. Similarly, given bijections between the index sets of the Cohen reals of our iteration we

will show how to extend these bijections to isomorphisms of the full iteration. These extension

have a very categorical flavour, nevertheless we provide a self-contained presentation.

Definition 8.1. Let Φ,Ψ be Θ-indexing functions. Then, we say x = (g, {hθ | θ ∈ dom(Φ)}) is
an isomorphism from Φ to Ψ iff the following properties hold:

(1) g : dom(Φ) → dom(Ψ) is a bijection,

(2) for every θ ∈ dom(Φ) also hθ : Φ(θ) → Ψ(g(θ)) is a bijection.

Definition 8.2. Let Φ be a Θ-indexing function. Then, we define the identity isomorphism from

Φ to Φ by 1Φ := (iddom(Φ), {idΦ(θ) | θ ∈ dom(Φ)}).

Definition 8.3. Let Φ,Ψ,X be Θ-indexing functions, x0 = (g0, {hθ0 | θ ∈ dom(Φ)}) an isomor-

phism from Φ to Ψ and x1 = (g1, {hθ1 | θ ∈ dom(Φ)}) is an isomorphism from Ψ to X. Then, we

define its composition x1 ◦ x0 := (g2, {hθ2 | θ ∈ dom(Φ)}) by
(1) g2 := g1 ◦ g0,
(2) for every θ ∈ dom(Φ) we define hθ2 := h

g0(θ)
1 ◦ hθ0.

Clearly, x1 ◦ x0 is an isomorphism from Φ to X and it is easy to check, that composition is

associative and the identity isomorphism satisfies left and right unit laws. In other words, the

class of all Θ-indexing functions with isomorphisms as morphisms is a category.

Definition 8.4. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) an isomor-

phism from Φ to Ψ. Then, we define its inverse x−1 := (g∗, {hθ∗ | θ ∈ dom(Ψ)}) by
(1) g∗ := g−1,

(2) for every θ ∈ Θ we define hθ∗ := (hg
−1(θ))−1.

Clearly, x−1 is an isomorphism from Ψ to Φ and it is easy to check, that it is the unique

isomorphism which satisfies x−1 ◦ x = 1Φ and x ◦ x−1 = 1Ψ. In other words, we not only have a

category but a groupoid.
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Definition 8.5. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) an isomor-

phism from Φ to Ψ. Define κx : CΦ → CΨ for p ∈ Cθ, θ ∈ dom(Ψ) and i ∈ Ψ(θ) by

κx(p)(θ, i) := p(g−1(θ), (hg
−1(θ))−1(i)).

In other words, the information of p is swapped around as given by the bijections g and hθ.

Clearly, κx is an isomorphism from the partial order CΦ to CΨ.

Lemma 8.6. Let Φ,Ψ,X be Θ-indexing functions, x0 = (g0, {hθ0 | θ ∈ dom(Φ)}) an isomorphism

from Φ to Ψ and x1 = (g1, {hθ1 | θ ∈ dom(Ψ)}) is an isomorphism from Ψ to X. Then, we have

(1) κ1Φ = idCΦ,

(2) κx1◦x0 = κx1 ◦ κx0.

In other words, κ• is a functor between the groupoid of Θ-indexing functions with isomorphisms

to the groupoid of pre-orders with isomorphisms.

Proof. For the first statement let p ∈ CΦ, θ ∈ dom(Φ) and i ∈ Φ(θ). Then, we compute

κ1Φ(p)(θ, i) = p((id−1
dom(Φ)(θ), (idΦ(θ))

−1(i)) (Definition 8.2 and 8.5)

= p(θ, i).

Secondly, let p ∈ CΦ, θ ∈ dom(X) and i ∈ X(θ). Then, we compute

κx1◦x0(p)(θ, i) = p((g1 ◦ g0)−1(θ), (h
(g0◦(g1◦g0)−1)(θ)
1 ◦ h(g1◦g0)

−1(θ)
0 )−1(i)) (Definition 8.3 and 8.5)

= p(g−1
0 (g−1

1 (θ)), (h
g−1
1 (θ)

1 ◦ hg
−1
0 (g−1

1 (θ))
0 )−1(i))

= p(g−1
0 (g−1

1 (θ)), (h
g−1
0 (g−1

1 (θ))
0 )−1((h

g−1
1 (θ)

1 )−1(i)))

= κx0(p)(g
−1
1 (θ), (h

g−1
1 (θ)

1 )−1(i)) (Definition 8.5)

= κx1(κx0(p))(θ, i) (Definition 8.5)

= (κx1 ◦ κx0)(p)(θ, i). □

Next, we need to verify that the canonical CΦ-names Ṫ Φ,θ
i are mapped to Ṫ Ψ,g(θ)

hθ(i)
by κx. To

this end, we prove that κx behaves nicely with respect to the Γ-actions.

Lemma 8.7. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) is an isomorphism

from Φ to Ψ. Let θ ∈ dom(Φ) and i ∈ Φ(θ). Then, κx : CΦ → CΨ is a morphism of Γ-sets, i.e.

the following diagram commutes for every γ ∈ Γ:

CΦ CΨ

CΦ CΨ

κx

πΦ,θ
i (γ) π

Ψ,g(θ)

hθ(i)
(γ)

κx
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Proof. Let γ ∈ Γ and p ∈ CΦ. Further, let η ∈ dom(Ψ) and j ∈ Ψ(η). In case that θ = g−1(η)

and i = (hg
−1(η))−1(j) we compute:

κx(π
Φ,θ
i (γ)(p))(η, j) = πΦ,θ

i (γ)(p)(g−1(η), (hg
−1(η))−1(j)) (Definition 8.5)

= πΦ,θ
i (γ)(p)(θ, i) (case property of η, i)

= π(γ)(p(θ, i)) (Definition 4.6)

= π(γ)(p(g−1(η), (hg
−1(η))−1(j))) (case property of η, i)

= π(γ)(κx(p)(η, j)) (Definition 8.5)

= πΨ,η
j (γ)(κx(p))(η, j) (Definition 4.6)

= π
Ψ,g(θ)

hθ(i)
(γ)(κx(p))(η, j) (case property of η, i).

Otherwise, we have that πΦ,θ
i acts trivially on the (g−1(η), (hg

−1(η))−1(j))-component of p and

π
Ψ,g(θ)

hθ(i)
(γ) acts trivially on the (η, j)-component of κx(p), so we compute

κx(π
Φ,θ
i (γ)(p))(η, j) = πΦ,θ

i (γ)(p)(g−1(η), (hg
−1(η))−1(j)) (Definition 8.5)

= p(g−1(η), (hg
−1(η))−1(j)) (πΦ,θ

i acts trivially)

= κx(p)(η, j) (Definition 8.5)

= π
Ψ,g(θ)

hθ(i)
(γ)(κx(p))(η, j) (π

Ψ,g(θ)

hθ(i)
acts trivially). □

Lemma 8.8. Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) is an isomorphism

from Φ to Ψ. Let θ ∈ dom(Φ) and i ∈ Φ(θ). Then, we have

(1) κx(ċ
Φ,θ
i ) = ċ

Ψ,g(θ)

hθ(i)
and thus κx(Ṫ

Φ,θ
i ) = Ṫ

Ψ,g(θ)

hθ(i)
,

(2) κx(Ṫ Φ,θ
i ) = Ṫ Ψ,g(θ)

hθ(i)
,

(3) κx(Ṫ Φ,θ) = Ṫ Ψ,g(θ).

Proof. (1) immediately follows from the definition of κx and the definition of the canonical name

for a Cohen real. For (2) by Definition 4.8 remember Ṫ Φ,θ
i is the canonical CΦ-name for the set

{πΦ,θ
i (γ)(ṪΦ,θ

i ) | γ ∈ Γ}.

Hence, we compute

κx(Ṫ Φ,θ
i ) = κx({πΦ,θ

i (γ)(ṪΦ,θ
i ) | γ ∈ Γ}) (Definition 4.8)

= {κx(πΦ,θ
i (γ)(ṪΦ,θ

i )) | γ ∈ Γ} (canonical name)

= {πΨ,g(θ)

hθ(i)
(γ)(κx(Ṫ

Φ,θ
i )) | γ ∈ Γ} (Lemma 8.7)

= {πΨ,g(θ)

hθ(i)
(γ)(Ṫ

Ψ,g(θ)

hθ(i)
) | γ ∈ Γ} (1)

= Ṫ
Ψ,g(θ)

hθ(i)
(Definition 4.8).
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Finally, for (3) we compute

κx(Ṫ Φ,θ) = κx(
⋃

i∈Φ(θ)

Ṫ Φ,θ
i ) (Remark 4.9)

=
⋃

i∈Φ(θ)

κx(Ṫ Φ,θ
i ) (canonical name)

=
⋃

i∈Φ(θ)

Ṫ Ψ,g(θ)

hθ(i)
(2)

=
⋃

i∈Ψ(g(θ))

Ṫ Ψ,g(θ)
i (hθ : Φ(θ) → Ψ(g(θ)) is a bijection)

= Ṫ Ψ,g(θ) (Remark 4.9). □

So far, we have constructed a functor κ• mapping Θ-indexing functions Φ to posets of the form

CΦ. In terms of our iteration this corresponds to a functor κ1• mapping Θ-indexing functions to

posets of the form PΦ
1 . We will extend these functors through the iteration to obtain an increasing

sequence of functors in the following sense:

Definition 8.9. Let ϵ ≤ ℵ1. We say that

⟨κα• | 0 < α ≤ ϵ⟩

is an increasing sequence of functors iff every κα• is a functor mapping Θ-indexing functions

Φ to posets PΦ
α , for all 0 < α ≤ ϵ, Φ,Ψ Θ-indexing functions, x = (g, {hθ | θ ∈ dom(Φ)}) an

isomorphism from Φ to Ψ and θ ∈ dom(Φ) we have

κx(Ṫ Φ,θ) = Ṫ Ψ,g(θ)

and for every 0 < α ≤ β ≤ ℵ1, Θ-indexing functions Φ,Ψ and isomorphism x from Φ to Ψ the

following diagram commutes:

PΦ
α PΨ

α

PΦ
β PΨ

β

κα
x

ιΦα,β ιΨα,β

κβ
x

In other words, for every 0 < α ≤ β ≤ ℵ1 the maps ι•α,β are a natural transformation from the

functor κα• to the functor κβ• .

Corollary 8.10. ⟨κα• | 0 < α ≤ 1⟩ is an increasing sequence of functors (of length 1).

Proof. By Lemma 8.6 κα• is a functor, the second property of Definition 8.9 holds by Lemma 8.8,

and the third property is vacuous for a sequence of length 1. □

Note the similarity to Definition 5.1 and Lemma 5.5. In Section 5 we made sure to preserve

some group structure of automorphisms through the iteration. Similarly, in this section we need

to preserve the groupoid structure given by isomorphisms between Θ-indexing functions.
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Proposition 8.11. Let ϵ ≤ ℵ1 be a limit. Assume

⟨κα• | 0 < α < ϵ⟩

is an increasing sequence of functors. Then, there is a unique functor κϵ• so that

⟨κα• | 0 < α ≤ ϵ⟩

is an increasing sequences of functors.

Proof. Define κϵ• as the pointwise direct limit of ⟨κα• | 0 < α < ϵ⟩. That is, for given Θ-indexing

functions Φ,Ψ and an isomorphism x = (g, {hθ | θ ∈ Θ}) from Φ to Ψ we define κϵx to be the

direct limit of ⟨καx | α < ϵ⟩. Then, argue as in Lemma 5.2. □

Analogously to Definition 5.3 the extension at successor steps is not unique. However, there

is a canonical way to extend an increasing sequence of functors.

Definition 8.12. Let ϵ ≤ ℵ1. Assume ⟨κα• | 0 < α ≤ ϵ⟩ is an increasing sequence of functors.

Let Φ,Ψ be Θ-indexing functions and x = (g, {hθ | θ ∈ dom(Φ)}) an isomorphism from Φ to Ψ.

Then, we define κϵ+1
x : PΦ

ϵ+1 → PΨ
ϵ+1 for p ∈ PΦ

ϵ+1 by

κϵ+1
x (p) := κϵx(p ↾α)

⌢ κϵx(p(ϵ)).

Then, we call κϵ+1
• the canonical extension of ⟨κα• | 0 < α ≤ ϵ⟩.

Finally, analogous to Lemma 5.4 and Corollary 5.6 we obtain our desired induced sequence of

with the following lemma.

Lemma 8.13. Let ϵ < ℵ1. Assume ⟨κα• | 0 < α ≤ ϵ⟩ is an increasing sequence of functors and let

κϵ+1
• be the canonical extension. Then ⟨κα• | 0 < α ≤ ϵ+ 1⟩ is an increasing sequence of functors.

Corollary 8.14. There is an increasing sequence of functors ⟨κα• | 0 < α ≤ ℵ1⟩ such that κϵ+1
•

the canonical extension of ⟨κα• | 0 < α ≤ ϵ⟩ for every ϵ < ℵ1. We call this sequence the induced

sequence of functors and will reserve the notions ⟨κα• | 0 < α ≤ ℵ1⟩ for it.

Proof. We iteratively construct the desired sequence. By Lemma 8.8 we may start with κα• as in

Definition 8.5, use Lemma 8.13 for the successor step and Lemma 8.11 for the limit step. □

The final ingredient we will need for the proof of Main Theorem 3.1 is a notion of restriction

for isomorphisms between Θ-indexing functions. We also show inductively that our increasing

sequence of functors in Corollary 8.14 maps restrictions to restrictions.

Definition 8.15. Let Φ,Ψ be Θ-indexing functions, x = (g, {hθ | θ ∈ dom(Φ)}) is an isomor-

phism from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing function. Then, we define the image of Φ0 under

x denoted by x[Φ0] as the Θ-subindexing function of Ψ defined by dom(x[Φ0]) := g(dom(Φ0))

and for θ ∈ dom(x[Φ0]) by

x[Φ0](θ) := {hg−1(θ)(i) | i ∈ Φ0(g
−1(θ))}.

The restriction of x to Φ0 denoted by x ↾Φ0 is the isomorphism from Φ0 to x[Φ0] is defined by

x ↾Φ0 := (g ↾dom(Φ0), {hθ ↾Φ0(θ) | θ ∈ dom(Φ0)}).
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Lemma 8.16. Let Φ,Ψ be Θ-indexing functions, x = (g, {hθ | θ ∈ dom(Φ)}) is an isomorphism

from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing function. Set Ψ0 := x[Φ0]. Then, the following

diagram commutes

CΦ0 CΨ0

CΦ CΨ

κx ↾Φ0

ιΦ0,Φ ιΨ0,Ψ

κx

Proof. Let p ∈ CΦ0 , θ ∈ dom(Ψ) and i ∈ Ψ(θ). If θ ∈ dom(Ψ0) and i ∈ Ψ0(θ), we compute

ιΨ0,Ψ(κx ↾Φ0(p))(θ, i) = κx ↾Φ0(p)(θ, i) (i ∈ Ψ0(θ))

= p(g−1(θ), (hg
−1(θ))−1(i)) (Definition 8.5)

= ιΦ0,Φ(p)(g−1(θ), (hg
−1(θ))−1(i)) ((hg

−1(θ))−1(i) ∈ Φ0(θ))

= κx(ι
Φ0,Φ(p))(θ, i) (Definition 8.5)

Otherwise, θ ∈ dom(Ψ)\dom(Ψ0) or i ∈ Ψ(θ)\Ψ0(θ). Then, we have g
−1(θ) ∈ dom(Φ)\dom(Φ0)

or (hg
−1(θ))−1(i) ∈ Φ(θ) \ Φ0(θ), respectively. Then, we compute

ιΨ0,Ψ(κx ↾Φ0(p))(θ, i) = 1

= ιΦ0,Φ(p)(g−1(θ), (hg
−1(θ))−1(i))

= κx(ι
Φ0,Φ(p))(θ, i) (Definition 8.5). □

Inductively, we show that this commutative diagram not only holds for κ1•, but for the entire

increasing of functors ⟨κα• | 0 < α ≤ ℵ1⟩.

Lemma 8.17. Let ϵ < ℵ1. Let Φ,Ψ be Θ-indexing function, x = (g, {hθ | θ ∈ Θ}) is an isomor-

phism from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing function. Set Ψ0 := x[Φ0]. Then, the following

diagram commutes

PΦ0
ϵ+1 PΨ0

ϵ+1

PΦ
ϵ+1 PΨ

ϵ+1

κϵ+1
x ↾Φ0

ι
Φ0,Φ
ϵ+1 ι

Ψ0,Ψ
ϵ+1

κϵ+1
x

Proof. Let p ∈ PΦ0
ϵ+1. Then, we compute

ιΨ0,Ψ
ϵ+1 (κϵ+1

x ↾Φ0
(p)) = ιΨ0,Ψ

ϵ (κϵ+1
x ↾Φ0

(p) ↾ ϵ)⌢ ιΨ0,Ψ
ϵ (κϵ+1

x ↾Φ0
(p)(ϵ)) (see Section 7)

= ιΨ0,Ψ
ϵ (κϵx ↾Φ0

(p ↾ ϵ))⌢ ιΨ0,Ψ
ϵ (κϵx(p(ϵ))) (Definition 8.12)

= κϵx(ι
Φ0,Φ
ϵ (p ↾ ϵ))⌢ κϵx(ι

Φ0,Φ
ϵ (p(ϵ))) (induction)

= κϵx(ι
Φ0,Φ
ϵ+1 (p) ↾ ϵ)⌢ κϵx(ι

Φ0,Φ
ϵ+1 (p)(ϵ)) (see Section 7)

= κϵ+1
x (ιΦ0,Φ

ϵ+1 (p)) (Definition 8.12). □
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Lemma 8.18. Let ϵ ≤ ℵ1 be a limit. Let Φ,Ψ be Θ-indexing function, x = (g, {hθ | θ ∈ Θ}) is

an isomorphism from Φ to Ψ and Φ0 ⊆ Φ a Θ-subindexing function. Set Ψ0 := x[Φ0]. Then, the

following diagram commutes

PΦ0
ϵ PΨ0

ϵ

PΦ
ϵ PΨ

ϵ

κϵ
x ↾Φ0

ι
Φ0,Φ
ϵ ι

Ψ0,Ψ
ϵ

κϵ
x

Proof. Let p ∈ PΦ0
ϵ . Choose α < ϵ such that ιΦ0

α,ϵ(p ↾α) = p. Then, we compute

ιΨ0,Ψ
ϵ (κϵx ↾Φ0

(p)) = ιΨ0,Ψ
ϵ (κϵx ↾Φ0

(ιΦ0
α,ϵ(p ↾α))) (choice of α)

= ιΨ0,Ψ
ϵ (ιΨ0

α,ϵ(κ
α
x ↾Φ0

(p ↾α))) (Definition 8.9)

= ιΨα,ϵ(ι
Ψ0,Ψ
α (καx ↾Φ0

(p ↾α))) ((A) in Section 7)

= ιΨα,ϵ(κ
α
x(ι

Φ0,Φ
α (p ↾α))) (induction)

= κϵx(ι
Φ
α,ϵ(ι

Φ0,Φ
α (p ↾α))) (Definition 8.9)

= κϵx(ι
Φ0,Φ
ϵ (ιΦ0

α,ϵ(p ↾α))) ((A) in Section 7)

= κϵx(ι
Φ0,Φ
ϵ (p)) (choice of α). □

9. Proof of the Main Theorem

Finally, we prove the our Main Theorem 3.1. The main part of the proof is an isomorphism-

of-names argument to exclude values from spec(aT). For similar arguments, also see [4], [10].

Main Theorem 3.1. Assume GCH and let Θ be a set of uncountable cardinals such that

(I) max(Θ) exists and has uncountable cofinality,

(II) Θ is closed under singular limits,

(III) If θ ∈ Θ with cof(θ) = ω, then θ+ ∈ Θ,

(IV) ℵ1 ∈ Θ.

Then, there is a c.c.c. forcing extension in which spec(aT) = Θ holds.

Proof. For technical reasons we assume that max(Θ) appears max(Θ) many times in Θ, so that Θ

has size max(Θ) and we add max(Θ) many partitions of ω2 into Fσ-sets of size max(Θ). Let Ψ be

the Θ-indexing function defined by Ψ(θ) := θ for every θ ∈ Θ. We show that PΨ
ℵ1

⊩ spec(aT) = Θ.

Since PΨ
ℵ1

is c.c.c. no cardinals are collapsed and since
∣∣PΨ

ℵ1

∣∣ = max(Θ) and max(Θ)ℵ0 = max(Θ)

we have PΨ
ℵ1

⊩ c = max(Θ). Further, as in Lemma 2.10 we have

PΨ
ℵ1

⊩ Θ ⊆ spec(aT),

so we only have to prove the reverse inclusion. Let λ /∈ Θ, p ∈ PΨ
ℵ1

and ⟨Ṫα | α < λ⟩ be a family

of PΨ
ℵ1
-names such that

p ⊩ ⟨Ṫα | α < λ⟩ is an almost disjoint family trees.
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Since trees can be coded by reals we may assume that Ṫα is a nice PΨ
ℵ1
-name as in Definition 6.1.

By assumption on Θ and GCH there is a regular uncountable cardinal σ ≤ λ with [σ, λ] ∩Θ = ∅
and such that for all µ < σ we have µℵ0 < σ. Now, fix α < λ. We define Θα := hsuppΘ(Ṫα),

Dα := hsupp(Ṫα) and for every θ ∈ Θ let Dα(θ) := Dα ∩ ({θ} × V ) (see Definition 6.8). Then,

⟨Θα | α < σ⟩ satisfies the assumptions of the generalized ∆-system lemma:

• ⟨Θα | α < σ⟩ is a family of size σ,

• |Θα| < ℵ1 for all α < σ,

• ℵ1 < σ and for all µ < σ we have µ<ℵ1 = µℵ0 < σ.

Choose I0 ∈ [σ]σ and ΘR such that {Θα | α ∈ I0} is a ∆-system lemma with root ΘR. Since

|Θ| = max(Θ) > σ, we may assume that we extended every Θα for α ∈ I0 such that

(1) Θα is still countable and {Θα | α ∈ I0} is still a ∆-system with root ΘR,

(2) For every α ∈ I0 we have |Θα \ΘR| = ℵ0.

Next, also {Dα | α ∈ I0} satisfies the assumptions of the generalized ∆-system lemma:

• {Dα | α ∈ I0} is a family of size σ,

• |Dα| < ℵ1 for all α ∈ I0,

• ℵ1 < σ and for all µ < σ we have µ<ℵ1 = µℵ0 < σ.

Choose I1 ∈ [I0]
σ and R such that {Dα | α ∈ I1} is a ∆-system lemma with root R. For every

θ ∈ Θ let R(θ) := R ∩ ({θ} × V ). For every θ > σ we have |Ψ(θ)| > σ, so we may assume that

we extended every Dα for α ∈ I1 such that

(3) Dα is still countable and {Dα | α ∈ I1} is still a ∆-system with root R,

(4) For every α ∈ I1 and θ ∈ ΘR with θ > σ we have |Dα(θ) \R(θ)| = ℵ0,

(5) For every α ∈ I1 and θ ∈ Θα \ΘR we have |Dα(θ)| = ℵ0.

Now, set I2 := {α ∈ I1 | For all θ ∈ ΘR with θ < σ we have Dα(θ) ⊆ R(θ)}. Then, I2 ∈ [I1]
σ as

for every θ ∈ ΘR with θ < σ there are only <σ-many α ∈ I1 with Dα(θ) \ R(θ) ̸= ∅, since
|Ψ(θ)| = θ and {Dα | α ∈ I1} is a ∆-system of size σ > θ. Thus, we obtain

(6) For every α ∈ I2 and θ ∈ ΘR with θ < σ we have Dα(θ) = R(θ).

We extend our ∆-system by one more element as follows. Choose Θλ ⊆ Θ countable such that

ΘR ⊆ Θλ, |Θλ \ΘR| = ℵ0 and for all α < λ we have Θλ ∩ Θα = ΘR. This is possible since

|Θ| = max(Θ) > λ. Now, for θ ∈ Θ we define Dλ(θ) as follows:

• If θ ∈ ΘR and θ < σ define Dλ(θ) := R(θ),

• If θ ∈ ΘR and θ > σ we have |Ψ(θ)| = θ > λ, so choose Dλ(θ) ⊆ ({θ} ×Ψ(θ)) countable

with R(θ) ⊆ Dλ(θ), |Dλ(θ) \R(θ)| = ℵ0 and for all α < λ we have Dλ(θ)∩Dα(θ) = R(θ),

• If θ ∈ Θλ \ΘR choose any countable subset Dλ(θ) ⊆ ({θ} ×Ψ(θ)),

• If θ ∈ Θ \Θλ set Dλ(θ) := ∅.

Finally, we define Dλ :=
⋃

θ∈ΘDλ(θ). By choice of Θλ we have that {Θα | α ∈ I2 ∪ {λ}} is a

∆-system with root ΘR and similarly by choice of Dλ also {Dα | α ∈ I2 ∪ {λ}} is a ∆-system with

root R and properties (1) to (6) still hold for every α ∈ I2∪{λ}. Next, we define a Θ-subindexing
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function ΦR of Ψ by dom(ΦR) := ΘR and for θ ∈ ΘR by

ΦR(θ) := {i ∈ Ψ(θ) | (θ, i) ∈ R(θ)}.

Analogously, for every α ∈ λ ∪ {λ} define a Θ-subindexing function Φα of Ψ by dom(Φα) := Θα

and for θ ∈ Θα by

Φα(θ) := {i ∈ Ψ(θ) | (θ, i) ∈ Dα(θ)}.

As ΘR and R are roots of their respective ∆-system we obtain ΦR ⊆ Φα for every α ∈ I2 ∪ {λ}.
Since, hsupp(Ṫα) ⊆ Dα we may pick a nice PΦα

ℵ1
-name Ṫ ∗

α with ιΦα,Ψ
ℵ1

(Ṫ ∗
α) = Ṫα. Further, by (2) we

may fix bijections ⟨gα : Θα → ω | α ∈ I2 ∪ {λ}⟩ such that gα ↾ΘR = gβ ↾ΘR for all α, β ∈ I2∪{λ}.
Then, for α, β ∈ I2 ∪ {λ} we define gα,β : Θα → Θβ by

gα,β(θ) := g−1
β (gα(θ)).

Note that Θα ∩Θβ = ΘR and gα ↾ΘR = gβ ↾ΘR implies that

gα,β(θ) = g−1
β (gα(θ)) = θ

for all θ ∈ ΘR and α, β ∈ I2∪{λ}. Hence, it is easy to verify that we obtain a system of bijections

{gα,β : Θα → Θβ | α, β ∈ I2 ∪ {λ}} with the following properties for all α, β, γ ∈ I2 ∪ {λ}:
(G1) gα,α = idΘα and g−1

α,β = gβ,α,

(G2) for all θ ∈ ΘR we have gα,β(θ) = θ,

(G3) gα,γ = gβ,γ ◦ gα,β.
Next, for every α ∈ I2 ∪ {λ} and θ ∈ Θα we may fix a bijection hθα : Φα(θ) → ω such that for

all α, β ∈ I2 ∪ {λ}, θ ∈ ΘR and i ∈ R(θ) we have hθα(i) = hθβ(i). This is possible, since by (4)

and (6) we have |Dα(θ) \R(θ)| = |Dβ(θ) \R(θ)| for every θ ∈ ΘR. Then, for α, β ∈ I2 ∪ {λ} and

θ ∈ Θα we define a map hθα,β : Φα(θ) → Φβ(gα,β(θ)) for i ∈ Φα(θ) by

hθα,β(i) := ((h
gα,β(θ)
β )−1 ◦ hθα)(i).

We verify the following properties for all α, β, γ ∈ I2 ∪ {λ} and θ ∈ Θα:

(H1) hθα,α = idΦα(θ) and the map hθα,β : Φα(θ) → Φβ(gα,β(θ)) is a bijection with inverse h
gα,β(θ)
β,α ,

(H2) for all i ∈ R(θ) we have hθα,β(i) = i,

(H3) hθα,γ = h
gα,β(θ)
β,γ ◦ hθα,β.

Proof.

(H1) Let i ∈ Φα(θ). Then, gα,α(θ) = θ by (G3), so that

hθα,α(i) = ((h
gα,α(θ)
α )−1 ◦ hθα)(i) = ((hθα)

−1 ◦ hθα)(i) = i.

Next, by definition we have h
gα,β(θ)
β,α : Φβ(gα,β(θ)) → Φα(gβ,α(gα,β(θ))). Further, by (G1)

gβ,α(gα,β(θ)) = θ, so that h
gα,β(θ)
β,α : Φβ(gα,β(θ)) → Φα(θ), so the domains are correct.
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Now, let i ∈ Φα(θ). Then, we compute

(h
gα,β(θ)
β,α ◦ hθα,β)(i) = ((h

gβ,α(gα,β(θ))
α )−1 ◦ hgα,β(θ)

β ◦ (hgα,β(θ)
β )−1 ◦ hθα)(i)

= ((hθα)
−1 ◦ hθα)(i) = i.

Analogously, for i ∈ Φβ(gα,β(θ)) we compute

(hθα,β ◦ hgα,β(θ)
β,α )(i) = ((h

gα,β(θ)
β )−1 ◦ hθα ◦ (hgβ,α(gα,β(θ))

α )−1 ◦ hgα,β(θ)
β )(i)

= ((h
gα,β(θ)
β )−1 ◦ hθα ◦ (hθα)−1 ◦ hgα,β(θ)

β )(i)

= ((h
gα,β(θ)
β )−1 ◦ hgα,β(θ)

β )(i) = i.

(H2) Let i ∈ R(θ). Then, θ ∈ ΘR and gα,β(θ) = θ by (G2). Hence, by choice of the bijections

hθα,β(i) = ((h
gα,β(θ)
β )−1 ◦ hθα)(i)

= ((hθβ)
−1 ◦ hθα)(i)

= ((hθβ)
−1 ◦ hθβ)(i)

= i.

(H3) Finally, let θ ∈ Θα and i ∈ Φα(θ). Then, gα,γ = gβ,γ ◦ gα,β by (G3), so we compute

(h
gα,β(θ)
β,γ ◦ hθα,β)(i) = ((h

gβ,γ(gα,β(θ))
γ )−1 ◦ hgα,β(θ)

β ◦ (hgα,β(θ)
β )−1 ◦ hθα)(i)

= ((h
gα,γ(θ)
γ )−1 ◦ hθα)(i)

= hθα,γ(i). □

Now, if for every α, β, γ ∈ I2 ∪ {λ} we define the tuple xα,β := (gα,β, {hθα,β | θ ∈ Θα}) (G1) to

(G3) and (H1) to (H3) may be rephrased as a system of isomorphisms of Θ-indexing functions

⟨xα,β | α, β ∈ I2 ∪ {λ}⟩ which satisfies

(K1’) xα,α = 1Φα and x−1
α,β = xβ,α,

(K2’) xα,α ↾ΦR = 1ΦR
,

(K3’) xα,γ = xβ,γ ◦ xα,β.

Applying the functor κℵ1
• from Corollary 8.14 to the system ⟨xα,β | α, β ∈ I2 ∪ {λ}⟩, we obtain a

system of isomorphisms ⟨κxα,β
: PΦα

ℵ1
→ PΦβ

ℵ1
| α, β ∈ I2 ∪ {λ}⟩ which satisfies

(K1) κxα,α = idPΦα
ℵ1

and κ−1
xα,β

= κxβ,α
,

(K2) κxα,β
◦ ιΦR,Φα

ℵ1
= ι

ΦR,Φβ

ℵ1
,

(K3) κxα,γ = κxβ,γ
◦ κxα,β

.

Fix β0 ∈ I2. For every α ∈ I2 we have that Ṫ ∗
α is a nice PΦα

ℵ1
-name for a tree. Thus, κxα,β0

(Ṫ ∗
α) is

a nice PΦβ0
ℵ1

-name for a tree. However, Φβ0 is countable, so by Lemma 6.9 there are only ℵ1-many

nice PΦβ0
ℵ1

-names for such trees. Thus, choose I3 ∈ [I2]
σ such that κxα,β0

(Ṫ ∗
α) = κxα′,β0

(Ṫ ∗
α′) for

all α, α′ ∈ I3.
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Finally, choose any α0 ∈ I3 and define Ṫ ∗
λ to be κxα0,λ

(Ṫ ∗
α0
). Then, Ṫ ∗

λ is a nice PΦλ
ℵ1

-name for

a tree. We show that this definition is independent of the choice of α0 ∈ I3, so let α ∈ I3. Then,

we compute

Ṫ ∗
λ = κxα0,λ

(Ṫ ∗
α0
) (definition of Ṫ ∗

λ )

= κxβ0,λ
(κxα0,β0

(Ṫ ∗
α0
)) (K3)

= κxβ0,λ
(κxα,β0

(Ṫ ∗
α)) (α ∈ I3)

= κxα,λ
(Ṫ ∗

α) (K3).

Finally, let β < λ. Since {Θα | α ∈ I3} is a ∆-system with root ΘR and Θβ is countable, there can

only be countably many α ∈ I3 with Θα ∩Θβ ̸⊆ ΘR. Further, since {Dα | α ∈ I3} is a ∆-system

with root R and for every θ ∈ ΘR the set Φβ(θ) is countable, there can only be countable many

α ∈ I3 with Φα(θ) ∩ Φβ(θ) ̸⊆ R(θ). Thus, we may choose α ∈ I3 \ {β} such that Θα ∩Θβ ⊆ ΘR

and for all θ ∈ ΘR we have Φα(θ)∩Φβ(θ) ⊆ R(θ). By definition of Θλ we also have Θλ∩Θβ ⊆ ΘR

and for all θ ∈ ΘR also Φλ(θ)∩Φβ(θ) ⊆ R(θ). For ν ∈ {α, λ} we define a Θ-subindexing function

Φ∗
ν of Ψ by dom(Φ∗

ν) := Θν ∪Θβ and for θ ∈ Θ∗
ν by

Φ∗
ν(θ) := Φν(θ) ∪ Φβ(θ),

where every undefined set is treated as the empty set. We define a bijection g∗α,λ : Θ∗
α → Θ∗

λ for

θ ∈ Θ∗
α by

g∗α,λ(θ) :=

{
gα,λ(θ) if θ ∈ Θα,

θ if θ ∈ Θβ.

This is well-defined by (G2) and Θα ∩ Θβ ⊆ ΘR. Further, for every θ ∈ Θ∗
α define a bijection

hθ,∗α,β : Φ∗
α(θ) → Φ∗

β(g
∗
α,λ(θ)) as follows:

• If θ ∈ ΘR we have Φ∗
α(θ) \Φα(θ) = Φ∗

λ(θ) \Φλ(θ) and g∗α,λ(θ) = θ, so we may extend the

bijection hθα,λ : Φα(θ) → Φλ(θ) to hθ,∗α,β : Φ∗
α(θ) → Φ∗

β(θ) by

hθ,∗α,λ(i) =

{
hθα,λ(i) if i ∈ Φα(θ),

i otherwise.

This is well-defined by (H2) and Φα(θ) ∩ Φβ(θ) ⊆ R(θ).

• If θ ∈ Θα\ΘR, then we have Φ∗
α(θ) = Φα(θ), Φ

∗
λ(θ) = Φλ(θ), so we may define hθ,∗α,λ = hθα,λ.

• If θ ∈ Θβ \ΘR, then we have Φ∗
α(θ) = Φβ(θ) = Φ∗

λ(θ) and g∗α,λ(θ) = θ, so we may define

hθ,∗α,λ = idΦ∗
α(θ)

.

Then, the tuple x∗
α,λ = (g∗α,λ, {h

θ,∗
α,λ | θ ∈ Θ∗

α}) is an isomorphism from Φ∗
α to Φ∗

λ. Further, we

have Φα,Φβ ⊆ Φ∗
α and Φλ,Φβ ⊆ Φ∗

λ as well as

(L1’) x∗
α,λ ↾Φα = xα,λ,

(L2’) x∗
α,λ ↾Φβ = 1Φβ

.

By Lemma 8.18 applying κℵ1
• from Corollary 8.14 yields an automorphism κx∗

α,λ
: PΦ∗

α
ℵ1

→ PΦ∗
λ

ℵ1

with the following properties:
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(L1) κx∗
α,λ

◦ ιΦα,Φ∗
α

ℵ1
= ι

Φλ,Φ
∗
λ

ℵ1
◦ κxα,λ

,

(L2) κx∗
α,λ

◦ ιΦβ ,Φ
∗
α

ℵ1
= ι

Φβ ,Φ
∗
λ

ℵ1
.

Choose p∗ ∈ PΦR
ℵ1

with ιΦR,Ψ
ℵ1

(p∗) = p. Then, we compute

κx∗
α,λ

(ι
ΦR,Φ∗

α
ℵ1

(p∗)) = κx∗
α,λ

(ι
Φβ ,Φ

∗
α

ℵ1
(ι

ΦR,Φβ

ℵ1
(p∗))) (ΦR ⊆ Φβ ⊆ Φ∗

α)

= ι
Φβ ,Φ

∗
λ

ℵ1
(ι

ΦR,Φβ

ℵ1
(p∗)) (L2)

= ι
ΦR,Φ∗

λ
ℵ1

(p∗) (ΦR ⊆ Φβ ⊆ Φ∗
λ).

Similarly, by (L2) we have κx∗
α,λ

(ι
Φβ ,Φ

∗
α

ℵ1
(Ṫ ∗

β )) = ι
Φβ ,Φ

∗
λ

ℵ1
(Ṫ ∗

β ). We also compute

κx∗
α,λ

(ι
Φα,Φ∗

α
ℵ1

(Ṫ ∗
α)) = ι

Φλ,Φ
∗
λ

ℵ1
(κxα,λ

(Ṫ ∗
α)) (L1)

= ι
Φλ,Φ

∗
λ

ℵ1
(Ṫ ∗

λ ) (α ∈ I3).

We may now finish the argument. Since

p ⊩ PΨ
ℵ1

[Ṫα] ∩ [Ṫβ] = ∅,

we have

ι
Φ∗

α,Ψ
ℵ1

(ι
ΦR,Φ∗

α
ℵ1

(p∗)) ⊩ PΨ
ℵ1

[ι
Φ∗

α,Ψ
ℵ1

(ι
Φα,Φ∗

α
ℵ1

(Ṫ ∗
α))] ∩ [ι

Φ∗
α,Ψ

ℵ1
(ι

Φβ ,Φ
∗
α

ℵ1
(Ṫ ∗

β ))] = ∅.

By Theorem 7.1 we may use downwards absoluteness to obtain

ι
ΦR,Φ∗

α
ℵ1

(p∗) ⊩
PΦ∗

α
ℵ1

[ι
Φα,Φ∗

α
ℵ1

(Ṫ ∗
α)] ∩ [ι

Φβ ,Φ
∗
α

ℵ1
(Ṫ ∗

β )] = ∅.

Applying the isomorphism κx∗
α,λ

: PΦ∗
α

ℵ1
→ PΦ∗

λ
ℵ1

and the computation above yields

ι
ΦR,Φ∗

λ
ℵ1

(p∗) ⊩
P
Φ∗
λ

ℵ1

[ι
Φλ,Φ

∗
λ

ℵ1
(Ṫ ∗

λ )] ∩ [ι
Φβ ,Φ

∗
λ

ℵ1
(Ṫ ∗

β )] = ∅.

By Theorem 7.1 we may use Π1
1-absoluteness to obtain

p ⊩ PΨ
ℵ1

[Ṫλ] ∩ [Ṫβ] = ∅,

so that

p ⊩ PΨ
ℵ1

⟨Ṫα | α < λ⟩ is not maximal. □

As a closing remark, remember that by the discussion in the introduction the assumptions

(I), (II) and (III) are really necessary for realizing spectra of aT relative to ZFC. Also, note that

assumptions (II) and (III) are only needed for the choice of σ in the beginning of the previous

proof. However, assumption (IV) is certainly not necessary and is a limitation of our proof

method, as we only know how to work with an iteration of length ℵ1. The isomorphism-of-names

argument can also be carried out for longer iterations, so the issue really is that we do not know

how to prove an analogue of Theorem 7.1 for longer iterations. The assumption on the length of

the iteration is crucial in our proof of Theorem 7.1 in order to find suitable reductions of names

for reals as in Definition 7.4 relative to only a countable sequence of trees, so likely a different
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proof is needed to verify complete embeddability for longer iterations. Thus, a positive answer to

the following would give a complete classification of the spectra of aT realizable relative to ZFC

as it implies that assumption (IV) may be dropped from Main Theorem 3.1.

Question. Let Φ ⊆ Ψ be a Θ-subindexing function, assume Φ is countable and κ is regular. Is

it true that PΦ
α ⩽◦PΨ

α for all α ≤ κ?

It would also be interesting to know if the assumption of countability of Φ can be dropped in

the previous question. Remember, that this is indeed true for Hechler’s forcing for adding a mad

family as mentioned in Fact 3.2.

10. Appendix

The following is a reference for all symbols fixed for important objects throughout the paper:

Γ Definition 4.4 9

πΦ,θ
i Definition 4.6 9

ιΦ,θ
i Definition 4.6 9

ιΦ,Ψ Remark 4.7 9

ċΦ,θ
i Definition 4.8 9

ṪΦ,θ
i Definition 4.8 9

Ṫ Φ,θ
i Definition 4.8 9

Ṫ Φ,θ Definition 4.8 9

PΦ
α Definition 4.10 10

ṪΦ,θ
α,n Definition 4.10 10

Ṫ Φ,θ
α Definition 4.10 10

ιΦα,β Definition 5.1 11

πΘ,θ
α,i Corollary 5.6 14

DΦ
α Definition 6.4 15

Θp
β Definition 6.4 15

Ipβ,θ Definition 6.4 15

np
β,θ,i Definition 6.4 15

spβ,θ,i Definition 6.4 15

F p
β,θ,i Definition 6.4 15

ιΦ,Ψ Theorem 7.1 20

κ• Definition 8.5 29

κα• Corollary 8.14 33
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