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I cofin(S∞) is the set of cofinitary permutations in S∞, i.e.
permutations σ ∈ S∞ which have finitely many fixed points.

I A mapping ρ : A→ S∞ induces a cofinitary representation of
FA if the canonical extension of ρ to a homomorphism
ρ̂ : FA → S∞ is such that im(ρ̂) ⊆ {I} ∪ cofin(S∞).
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Forcing M.c.g.’s

Let A,X be disjoint non-empty sets and let ρ : X → S∞ induce a
cofinitary representation. Then QA,ρ is the poset of all (s,F )
where s ⊆ A× ω × ω is finite, sa is a finite injection for all a and
F ⊆ ŴA∪X is finite. Define (s,F ) ≤PA,ρ

(t,E ) iff

I s ⊇ t, F ⊇ E and,

I for all n ∈ ω and w ∈ E , if ew [s, ρ](n) = n then already
ew [t, ρ](n)↓ and ew [t, ρ](n) = n.

If X = ∅ then we write QA for QA,ρ. If A is clear from the context
we just write Q.
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I QA,ρ is Knaster.

I Let G be QA,ρ generic and let ρG : A ∪ X → S∞ be a
mapping extending ρ and such that for all a ∈ A

ρG (a) =
⋃
{sa : (∃F ∈ ŴA∪X ) (s,F ) ∈ G}.

Then ρG induces a cofinitary representation of A ∪ X
extending ρ.
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Lemma: Complete Embeddings

Let A0 ∩ A1 = ∅, A = A0 ∪ A1 and let G be QA,ρ-generic. Then

I QA0,ρ is a complete suborder of QA,ρ,

I H = G ∩QA0,ρ is QA0,ρ-generic, K = {(s�A1,F ) : (s,F ) ∈ G}
is QA1,ρH -generic over V [H] and ρG = (ρH)K .
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Theorem
Let |A| > ℵ0 and G be a QA,ρ-generic over V . Then im(ρG ) is a
maximal cofinitary group in V [G ].

Proof
Let z /∈ X ∪ A, where ρ : X → S∞. Suppose there in V [G ] there is
σ ∈ cofin(S∞) such that ρ′G : A ∪ X ∪ {z} → S∞ defined by
ρ′G �X ∪ A = ρG , ρ′G (z) = σ induces a cofinitary representation.
Let σ̇ be a name for σ. Then there is A0 ⊆ A countable so that σ̇
is a QA0,ρ-name and so σ ∈ V [H], where H = G ∩QA0,ρ.
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Let a1 ∈ A \ A0 and let K be defined as in the previous Lemma.
Note that for every N ∈ ω

Dσ,N = {(s,F ) ∈ QA1,ρH : (∃n ≥ N)sa1(n) = σ(n)}

is dense in QA1,ρH and so in V [H][K ]

∃∞n((ρH)K (a1)(n) = σ(n)).

However (ρH)K = ρG , which contradicts that ρ′G induces a
cofinitary representation.
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Lemma: Strong Embedding

Let B,C ⊆ D, B ∩ C = A be given set and p ∈ QB,ρ. Then there
is a condition p0 ∈ QA,ρ such that whenever q0 ≤QC ,ρ

p0, then q0

is compatible in QD,ρ with p.

I We say that QB,ρ has the strong embedding property and q0

is called a strong reduction of p.

I If C = A, B = D then the above gives in particular that QA,ρ

is a complete suborder of QB,ρ.
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Definition: L
L consists of pairs (σ, φ) such that σ ∈ <ω(<ω[ω]), φ ∈ ω(<ω[ω])
such that σ ⊆ φ, ∀i < |σ|(|σ(i)| = i) and ∀i ∈ ω(|φ(i)| ≤ |σ|).
The extension relation is defined as follows: (σ, φ) ≤ (τ, ψ) if and
only if σ end-extends τ and ∀i ∈ ω (ψ(i) ⊆ φ(i)).

I A slalom is a function φ : ω → [ω]<ω such that
∀n ∈ ω(|φ(n)| ≤ n). A slalom localizes a real f ∈ ωω if there
is m ∈ ω such that ∀n ≥ m(f (n) ∈ φ(n)).

I L adds a slalom which localizes all ground model reals.
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I add(N ) is the least cardinality of a family F ⊆ ωω such that
no slalom localizes all members of F

I cof(N ) is the least cardinality of a family Φ of slaloms such
that every real is localized by some φ ∈ Φ.

I ag ≥ non(M).

In our intended forcing construction cofinally often we will force
with the partial order L, which using the above characterization
will provide a lower bound for ag .
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Definition: σ-Suslin
Let (S,≤S) be a Suslin forcing notion, whose conditions can be
written in the form (s, f ) where s ∈ <ωω and f ∈ ωω. We will say
that S is n-Suslin if whenever (s, f ) ≤S (t, g) and (t, h) is a
condition in S such that

h�n · |s| = g�n · |s|

then (s, f ) and (t, h) are compatible. A forcing notion is called
σ-Suslin, if it is n-Suslin for some n.
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I If S is n-Suslin and m ≥ n, than S is also m-Suslin.

I Every σ-Suslin forcing notion is σ-linked and so has the
Knaster property.

I Hechler forcing H is 1-Suslin, localization L is 2-Suslin.
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Definition: Nice name for a real
Let B be a partial order and y ∈ B. For each n ≥ 1 let Bn be a
maximal antichain below y . We will say that the set
{(b, s(b))}b∈Bn,n≥1 is a nice name for a real below y if

1. whenever n ≥ 1, b ∈ Bn then s(b) ∈ nω

2. whenever m > n ≥ 1, b ∈ Bn, b′ ∈ Bm and b, b′ are
compatible, then s(b) is an initial segment of s(b′).

We can assume that all names for reals are nice and abusing
notation we will write ḟ = {(b, s(b))}b∈Bn,n∈ω.
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Lemma: Canonical Projection of a name for a real

Let A be a complete suborder of B, y ∈ B and x a reduction of y
to A. Let ḟ = {(b, s(b))}b∈Bn,n≥1 be a nice name for a real below
y . Then there is ġ = {(a, s(a))}a∈An,n≥1, a A-nice name for a real
below x , such that for all n ≥ 1, for all a ∈ An, there is b ∈ Bn
such that a is a reduction of b and s(a) = s(b).

Whenever ḟ , ġ are as above, we will say that ġ is a canonical
projection of ḟ below x .
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Definition: Good Suslin
Let S be a Suslin forcing notion, whose conditions can be written
in the form (s, f ) where s ∈ <ωω, f ∈ ωω. Then S is said to be
good if whenever A is a complete suborder of B, x ∈ A is a
reduction of y ∈ B and ḟ is a nice name for a real below y such
that y 
B (š, ḟ ) ∈ Ṡ for some s ∈ <ωω, there is a canonical
projection ġ of ḟ below x such that x 
 (š, ġ) ∈ Ṡ.
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D and L are good σ-Suslin forcing notions.
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I Let (L,≤) be a linearly ordered set, x ∈ L. Then
Lx := {y ∈ L : y < x}.

I If L0 ⊆ L and A ⊆ L, then the L0-closure of A, clL0(A), is the
smallest set B ⊇ A such that if x ∈ B then Lx ∩ L0 ⊆ B.
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Definition: Template

A template is a tuple T = ((L,≤), I, L0, L1) where L = L0 ∪ L1,
L0 ∩ L1 = ∅, (L,≤) is a linear order, I ⊆ P(L), such that

I I is closed under finite intersections and unions, ∅, L ∈ I.

I If x , y ∈ L, y ∈ L1 and x < y then ∃A ∈ I(A ⊆ Ly ∧ x ∈ A).

I If A ∈ I, x ∈ L1\A, then A ∩ Lx ∈ I.

I {A ∩ L1 : A ∈ I} is well-founded when ordered by inclusion.

I All A ∈ I are L0-closed.
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I Define Dp : I → ON by letting Dp(A) = 0 for A ⊆ L0 and

Dp(A) = sup{Dp(B) + 1 : B ∈ I ∧ B ∩ L1 ⊂ A ∩ L1}.

Let Rk(T ) = Dp(L).

I For A ⊆ L let

TA = ((A,≤), I�A, L0 ∩ A, L1 ∩ A),

where I�A = {A ∩ B : B ∈ I}. If A ∈ I then
Rk(TA) = Dp(A).

I For x ∈ L let Ix = {B ∈ I : B ⊆ Lx}.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Templates
Iteration along a template
Isomorphism of names

Definition: Iterating good σ-Suslin posets along a template
and adding m.c.g.

Let Q = QL0 the poset adding a m.c.g. with L0-generators, S good
σ-Suslin. P(T ,Q,S) is defined recursively:

If Rk(T ) = 0, then P(T ,Q,S) = QL0 . Let P(T ,Q, S) be defined
for all templates of rank < κ. Let Rk(T ) = κ and for all
B ∈ I(Dp(B) < κ) let PB = P(TB ,Q,S). Then

I P(T ,Q, S) consists of all P = (p,F p) where p is a finite
partial function with dom(p) ⊆ L, (p�L0,F

p) ∈ Q and if

xp
def
= max{dom(p) ∩ L1} is defined then ∃B ∈ Ixp such that

P�Lxp = (p�Lxp ,F
p) ∈ PB , p(xp) = (špx , ḟ

p
x ), where spx ∈ <ωω,

ḟ p
x is a PB name for a real and (P�Lxp , p(xp)) ∈ PB ∗ Ṡ.
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Define Q ≤P P iff dom(p) ⊆ dom(q), (q�L0,F
q) ≤Q (p�L0,F

p),
and if xp is defined then either

I xp < xq and ∃B ∈ Ixq such that P�Lxq ,Q�Lxq ∈ PB and
Q�Lxq ≤PB

P�Lxq , or

I xp = xq and ∃B ∈ Ixq witnessing P,Q ∈ P, and such that

(Q�Lxq , q(xq)) ≤PB∗Ṡ (P�Lxp , p(xp)).
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Completeness of Embeddings Lemma

Let T = ((L,≤), I, L0, L1), let Q = QL0 be the poset for adding
m.c.g. with L0-generators, S be good σ-Suslin.

Let B ∈ I, A ⊂ B be closed. Then PB is a poset, PA ⊂ PB , every
P = (p,F p) ∈ PB has a canonical reduction P0 = (p0,F

p0) ∈ PA

such that

I dom(p0) = dom(p) ∩ A, F p0 = F p,

I sp0x = spx for all x ∈ dom(p0) ∩ L1

I (p0�L0,F
p0) is a strong QA-reduction of (p�L0,F

p)

and whenever D ∈ I, B,C ⊆ D, C is closed, C ∩ B = A and
Q0 ≤PC

P0, then Q0 and P are compatible in PD .
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If A = C , D = B then PA is a complete suborder of PB .
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Lemma

I P(T ,Q, S) is Knaster.

I Let x ∈ L1, A ∈ Ix . Then the two-step iteration PA ∗ S
completely embeds into P.

I For any p ∈ P(T ,Q, S) there is countable A ⊆ L such that
p ∈ Pcl(A). If τ is a P-name for a real then there is a
countable A ⊆ L such that τ is a Pcl(A)-name.
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Lemma
Let P = P(T ,QL0 ,L) and let λ0 be a regular uncountable cardinal
such that λ0 ⊆ L1 (as an order), λ0 is cofinal in L, and Lα ∈ I for
all α < λ0. Then in V P, non(M) = λ0 and so ag ≥ λ0.
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Proof
Let G be P-generic and let φα be the slalom added in coordinate
α < λ0. Since λ0 is regular, uncountable and is cofinal in L, the
family 〈φα : α < µ〉 localizes all reals V [G ] (indeed any real must
appear in some V [G ∩ PLα ] for some α < λ0.) Thus cof(N ) ≤ λ0.
On the other hand, if F ⊆ ωω is a family of size < λ0 in V [G ],
then there must be some α < λ0 such that all reals of F already
are in V [G ∩ PLα ], and so φα localizes all reals in F . Thus
add(N ) ≥ λ0. Therefore non(M) = λ0 and so ag ≥ µ.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Templates
Iteration along a template
Isomorphism of names

Lemma
Let P = P(T ,QL0 ,L), L of uncountable cofinality, L0 cofinal in L.
Then P adds a maximal cofinitary group of size |L0|.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Templates
Iteration along a template
Isomorphism of names

Assume CH. Let λ =
⋃

n λn, where λn is a regular cardinal,
{λn}n∈ω increasing and λ0 ≥ ℵ2. Consider a template T = (L, I)
such that

I λ0 ⊆ L1, λ0 is cofinal in L, Lα ∈ I for all α < λ0.

I L has uncountable cofinality, L0 is cofinal in L.

Then in V P for P = P(T ,QL0 ,L)

I λ0 = non(M), and so λ0 ≤ ag

I there is a mcg of size λ and so ag ≤ λ.
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An isomorphism of names argument provides that in V P there are
no mcg of size < λ and so V P � ag = λ.

Vera Fischer Template iterations and maximal cofinitary groups



Maximal Cofinitary Groups
Good, σ-Suslin posets

Template Iterations

Templates
Iteration along a template
Isomorphism of names

Theorem (V.F., A. Törnquist)

It is consistent with the usual axioms of set theory that the minimal
size of a maximal cofinitary group is of countable cofinality.
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Thank you!
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