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Part 1

Set Theory






CHAPTER 1

The Axiomatic system of Zermelo-Fraenkel

1. ZFC

In the following, we will formulate the axiomatic system of Zermelo-Fraenkel. For this we work in the language
of set theory, which has only one non-logical symbol, the binary relation, membership! The language of set theory
is denoted .%. The Axioms:

e Axiom 1 (Extensionality)

Vz(z€x<zE€y) 2 x=Yy

Axiom 2 (Foundation)

Py ex) = IPyexA-Tz(zexNzEY))

Axiom 3 (Comprehension Scheme) For each formula ¢ without y free:

WVx(x ey xevAp(x))

Axiom 4 (Pairing)
Jz(x €zAy €2)

Axiom 5 (Union)
JAVYVx(x EYANY € F > x€A)

Axiom 6 (Replacement Scheme) For each formula ¢ in which B is not a free variable
Vx € A3lyo(x,y) — IBVx € Ay € Bo(x,y)

REMARK 1.1. To formulate the last three axioms, we need some defined notions, namely the notions of a
subset, emptyset, successor of a set, intersection and singleton:

xCyiff Vz(zex —z€Yy)

x = 0iff Vz(z ¢ x)

y=Sx)iff Vz(zey < z€xVz=1x)
y=vNwiff Vx(x ey > x EVAX EW)
Sing(y) iff Iy € xVz € x(z =y).

Note that
e Thus S(x) = xU{x} and Sing(y) = {y}.
e The ordered pair (x,y) is the set {{x}, {x,y}}.
We continue with the axioms.
e Axiom 7 (Infinity)
(0 e xAVy e x(S(y) €x))
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4 1. THE AXIOMATIC SYSTEM OF ZERMELO-FRAENKEL

e Axiom 8 (Power Set)
IVz(zCx—zEY)

e Axiom 9 (Axiom of Choice)

0 ¢ FAVx € FYy e F(x#y—xNy=0) — 3CVx € F(Sing(CNx))

We refer to the above system of Axioms as ZFC. Note that ZFC is an infinite set of Axioms, because Axioms
3 (Comprehension) and 6 (Replacement) are in fact axiom schemes (one axiom for each formula). Moreover ZFC
is not finitely axiomatizable.

2. Relations and Functions

DEFINITION 2.1. Binary relation A set R is said to be a binary relation iff R is a set of ordered pairs, i.e. for
each u € R there are x,y such that u = (x,y) = {{x}, {x,y}}.
REMARK 2.2. Recall the following notions associated to a binary relation R:
e Ris a pre-order on A if R is reflexive and transitive on A.
e R partially orders A non-strictly if R is a pre-order on A and satisfies —=3x,y € A(XRy A\yRxAx #£ y).
e Ris atotal-order on A if R is irreflexive, transitive and satisfies trichotomy, i.e. for any a,b € A either aRb,
or bRa ora=b.
DEFINITION 2.3. A binary relation R is a function if
o for every x there is at most one y such that (x,y) € R.

If there is y such that xRy then R(x) denotes that unique y.
DEFINITION 2.4. For any set A, id4 = {(x,x) : x € A} is the identity function of A.

PROOF. (Justification of existence) Note that we can justify the existence of idy as follows: idg = {(x,x) €
P(P(A)) x €A} O

REMARK 2.5. e Note (x,x) = {{x},{x,x}} = {{x},{x}} = {{x}} and
e whenever x € A and x € B, then
(6y) = {{x}: {x.y}} € Z(Z(AUB)).
DEFINITION 2.6. AXxB={(x,y):x€AAy€ B}

PROOF. (Justification of existence) The existence of A x B follows from the Axioms of Power Set and Com-
prehension, since

AxB={(x,y) ={{x},{x,y}} € Z(P(AUB)) :xc ANy € B}.
O
REMARK 2.7. Justification, yet once again: A X B is a set Alternatively, one can use the Axioms of Replacement
and Union:

e By Replacement for each y € B,

Ax{y} ={(xy):xcA}

is a set. Again by Replacement S = {A x {y} : y € B} is a set.
e Now, by the Union Axiom |JS is a set.
e Thus, we can define A x B=JS.
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DEFINITION 2.8. (Domain and Range) For every set R define
e dom(R) = {x: Iy((x,y) ER)},
e ran(R) = {y: 3x((x,y) ER)}.

PROOF. (Justification of existence: Using Union and Comprehension) If {{x},{x,y}} € R, then
e {x},{x,y} belong to | JR and so
e x,ycUUR.

Thus,

e dom(R) ={xe JUUR: Iy((x,y) €R)}, and
e ran(R) = {y € UUR: Ix((x,y) €R)}.

O
Note that alternatively, one can use Replacement.
DEFINITION 2.9. (Restriction) R | A = {(x,y) € R:x € A}
PROOF. (Justification of existence) By the Axiom of Comprehension. (|

REMARK 2.10. The notions of a function, injection, bijection, surjection, can be defined in a similar way.

LEMMA 2.11. Assume Vx € A3lyp(x,y) and assume the Axiom of Replacement. Then there is a function f
such that dom(f) = A and such that Vx € A, f(x) is the unique y such that ¢(x,y).

DEFINITION 2.12. (A set of functions) Given sets A, B let
B*=4B={f|f:A— B}.

PROOF. (Justification of existence: Power set and Comprehension) If f is a function from A to B, then f C
A x B. Therefore
ABC P (A xB).

DEFINITION 2.13. Let A be a set and let R be a relation on A. Then, we say that

(1) R totally orders A strictly if R is transitive, irreflexive, satisfies trichotomy on A.
(2) R well-orders A iff R totally orders A and R is well-founded on A, i.e. every B C A has an R-minimal
element.

LEMMA 2.14. If R is a well-order on a set A and X C A, then R is a well-order on X.

PROOF. Clearly R is a total order on X. Moreover, every subset of X has an R-minimal element. ]






CHAPTER 2

Ordinal Arithmetic

1. Ordinals

DEFINITION 1.1. A set zis an ordinal if z is transitive, i.e. Vx(x € z — x C z) and the membership relation € is
well-founded on z.

EXAMPLE 1.2.

0,

{0},

{0.{0}}.
{0.{0},{0,{0}}}

REMARK 1.3. Every natural number is an ordinal.
NoOTATION. ON denotes the collection of all ordinals. Greek letters are used to denote ordinals.
LEMMA 1.4. Suppose « is an ordinal, z C ¢. Then z is also an ordinal.

PROOF. By transitivity of &, z C . Thus € is well-founded on z. We need to check if z is transitive. Let x € z
and y € x. Then x € a. But « is transitive and so x C o. Thus y € ¢. Therefore x,y,z are elements of &. But € is
transitive on ¢ and so we have y e x Ax € z =y € z. Thus y € z. Thatis x C z, i.e. z is transitive. (|

LEMMA 1.5. Let «, 8 be ordinals. Then e N f is an ordinal.

PROOF. e Since aN P C «a, the € is well-founded on ot N 3.
e Is N p transitive? Letx e aNPBandy € x. Thenx CaNPandsoy e anP. Thusx CoNP,ie. aNP

is a transitive set.
O

LEMMA 1.6. Let o, be ordinals. Then o C  if and only if o« € BV o = .
PROOF. (<) If o € B, then by transitivity of 3, we have a C . Therefore @ € BV ot = 3 implies that oc C S3.

(=) If o = B, then clearly we are done. So, suppose @ # . Thus X = 8\ ¢ # 0 and so there is & = min S\ a.
Then
EePBandé ¢ a.
We will show that & = a. First we will show that & C a:
e Let i € &. Then by transitivity of 8, we have & C 3 and so i € .
o If u ¢ o, we get a contradiction to the minimality of &.
Thus u € o and so & C o.
Now, suppose & C @, but £ # a! Then take any pick u € a\&. Then u € B (because @ C 3 by hypothesis)
and & € B8, since £ = min B\ . Thus, by the trichotomy of € on B we getu=EvucéVvE e .

7



8 2. ORDINAL ARITHMETIC

e However u € @, but £ ¢ o. Thus p # €.
e By the choice of u, p ¢ €.
e Thus & € u.
Since 1t € a and « is transitive, & € o, which is a contradiction to the choice of ! Thus & = a. O O

THEOREM 1.7. (The collection of all ordinals “behaves” like an ordinal)

(1) (Transitivity) For all o, B and y ordinals, if . € BAP € ythen a € .

(2) (Irreflexivity) for every ordinal a, —(a € @).

(3) (Trichotomy) for all o, ordinals: o € BV B € otV ot = B.

(4) (Well-foundedness) If X # 0 is a set of ordinals, then X has an €-least element.

PROOF. (1) Since v is a transitive set, B C yand so @ € 7.

(2) Suppose & € ¢. Thatis ¢ is an element of o. But € is irreflexive on & and so =(¢ € ). This is a contradiction.
Therefore o ¢ a.

(3)Let 6 = anpP. Then 6 C a, & C . But then by a previous Lemma we have:
dcavo=oaanddcBVdo=p.

elf6=a,thenaCPBandsoacfBVa=2.
e If0=Pf,thenBCaandsof caVf=a.
e Thus suppose 0 # a, 0 # 3. Therefore 6 € a and d € 3,i.e. 6 € aN P = J, which is a contradiction to

(2).
(4) Let X # 0 and X be a set of ordinals. Let & € X. If @ = minX, then we are done. Otherwise
Xo={E:EcXNEca}#0.

Then u = minXj exists, because Xy C . Thus g = minX N . Note that g = minX. Consider any 6 € X and
suppose 8 € i. Then 6 € « (since 1 C @), which is a contradiction to 4 = minX N o. ]

REMARK 1.8. The above theorem shows that the collection of all ordinals, “behaves” like an ordinal.

e But is the collection of all ordinals a set?
o In fact, is there a set containing all ordinals?

THEOREM 1.9. (Bourali-Forty Paradox) There is no set containing all ordinals.
PROOF. Suppose not and let X be a set containing all ordinals. Then let
Y = {y € X : yis an ordinal}.

By the Axiom of Comprehension Y is a set. By the previous theorem € is well-founded on Y and Y is a transitive
set. Thus, Y is an ordinal. But then ¥ € Y, contradiction to (2) of the previous theorem. Thus, there is no such
X. O O

NOTATION. (1) With ON we denote the class of all ordinals.
(2) Let a, B be ordinals. Then o < 8 denotes & € 8 and @ < 8 denotes o € BV & = 3.

LEMMA 1.10. Let a, 3 be ordinals. Then
oanNP =min{e,B} and 0 U P = max{a,B}.

LEMMA 1.11. If A #£ 0 is a set of ordinals, then
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(1) NA = minA,

(2) A € ON

(3) If Vo € AJB € A(a < B), then |JA is the smallest ordinal that exceeds all ordinals in A. Thus, we denote
(JA also supA.

PROOF. (2) We need to show that | JA is a transitive set and € is well-founded on | JA. Let @ € | JA. Thus there
is B € A such that o € 3. But f3 is transitive and so & C 3. Therefore o C |JA.

To show well-foundedness of €, let X C [JA. Thus Vx € X there is &, € A such that x € o,. Now {a, : x € X}
is a set of ordinals and so by well-foundedness of the membership relation on ON, there is oy = min{a, : x € X }.
Then either ap = minX or @ N X # 0, in which case min(c NX) is as desired.

(3) Let 8 =JA. Then 6 = {o: 3B € A(a € B)}. Since for every o € A there is B € A such that o < 3, we get
that every o € A is an element of . On the other hand, if & < 8, then & € § and so there is € A such that o € 3.
But, then 8 ¢ a and so o does not exceed all elements of A. O

LEMMA 1.12. Let & be an ordinal. Then
e S(a) = aU{a} is an ordinal,
e o< S(a) and
o for all ordinals 7,
y<S(o)iffy<a.

PROOF. The membership relation is well-founded on S(@) and clearly S(c) is a transitive set. The rest is
straightforward. |

DEFINITION 1.13. (Successor and Limit Ordinals) An ordinal f is

(1) asuccessor iff there is an ordinal ¢ such that = S(a) = aU{a},
(2) alimit ordinal iff B # 0 and f is not a successor ordinal,
(3) afinite ordinal or a natural number if and only if Voo < (o0 = 0V o is a successor).

REMARK 1.14. If n is a natural number, then S(n) is a natural number and every element of n is a natural
number.

THEOREM 1.15. Principle of ordinary induction If 0 € X and for all y € X(S(y) € X), then every natural
number is in X.

PROOF. Suppose not and let n € N\X. Consider Y = S(n)\X. Thenn € Y and so Y # 0. Let k = minY. Thus
k < n. Therefore k = @ or k is a successor. However @ ¢ Y, because @ € X and so k = S(i) for some i. By minimality
of k, we must have i € X. But then also k = S(i) € X, which is a contradiction. O

REMARK 1.16. e Recall the Axiom of Infinity: 3x(0 € X AVy € x(S(y) € x)).
e Thus if X is a set which contains all natural numbers, then {n € X : n is a natural number} is a set.

LEMMA 1.17. Let X be a set of ordinals, which is an initial segment of ON. That is Vf§ € XVa < (o € X)).
Then X is an ordinal itself.

PROOF. Note that € is a well-order on X. Since X is an initial segment of the ordinals, X is also a transitive
set. Thus X is an ordinal. O

REMARK 1.18. So in particular, every transitive set of ordinals is an ordinal.

DEFINITION 1.19. Let w denote the set of all natural numbers.
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REMARK 1.20. Note that ® is an initial segment of ON and so ® is an ordinal. Moreover @ is not a successor
ordinal and  is not finite. Thus, @ is the first limit ordinal.

DEFINITION 1.21. Assume the Axiom of Infinity and for each n € N let
B"="B={F|F:n— B}.
Then let
B =<“B:=| {B":nc 0}.
PROOF. (Justification of existence) Use the Power Set Axiom or the Axiom of Replacement. ]

REMARK 1.22. Let & = (¢, %, %) be a first order language and let B be the set of all logical and non-logical
symbols of .. Then the set of formulas of .Z is a subset of B<®.

LEMMA 1.23. Let a, 8 be ordinals and suppose that f : (a,€) — (8, €) is an order preserving bijection (i.e.
an isomorphism). Then o = § and f = id.

PROOF. Let & € a. Then f(&) € B. Furthermore:
f&):={veB:vef@)}={f(u):neanu <&}

That is f(£) ={f(u): < &}. Suppose Xo = {& € o : f(&) # &} # 0. Then Xy has a minimal element g. Thus
forall & < u, f(§)=¢& and so

f)={r@&): ¢ <ut={8: & <ut=u,
which is a contradiction. Therefore Xy = 0 and so f is the identity. (]

THEOREM 1.24. Let A be a set and let R be a well-order on A. Then there is a unique ordinal o such that
(A,R) = (a, €).

REMARK 1.25. Uniqueness follows from the previous statement.
PROOF. (Existence) Fora € Aleta ):={x €A :xRa} and let
G={acA:3E €ON((al,R)= (&, €))}.

Since A is a set, by the Axiom of Comprehension G is also a set. Since Va € G 3&, as above, by Replacement there
isaset X C ON and a function f : G — X such that for all a € G, f(a) = &,. Then € is a well-order on range(f) C X.
Moreover range(f) is a transitive and so it is an ordinal, say &. Then f : (G,R) = (¢, €). Note that:

e if G = A, then we are done.
o if GCAand G #A, lete=ming(A\G). Thene |=Gand f: (¢ |,R) = (a, €). That is &, = a. But, this
implies that e € G, which is a contradiction. Thus G = A.

O

DEFINITION 1.26. (Order Type) Let R be a well-order on A. Then type(A, R) is the unique ordinal o such that
(A,R) = (a, €). We denote this ordinal by type(A, R).
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2. Ordinal Arithmetic
DEFINITION 2.1. Let a, 8 be ordinals. Then
(1) The ordinal multiplication of & and f3, denoted « - B3, is the ordinal
type(B X e, <ex)-
(2) The ordinal addition of ¢ and 3, denoted o + 3, is the ordinal
type({0} x c U{1} X B, <fex)-
LEMMA 2.2. If R well-orders A and X C A, then R well-orders X and
type(X,R) < type(A,R).
PROOF. We can assume that (A,R) = (&, €). Thus, in particular, X and A are sets of ordinals. Let § =

type(X,R) and let f : (X,R) = (8,€). Suppose Xo ={& € X : f(§) > &} # 0 and let u = minXy. Then f(u) > p
and V€ e XN u(f(§) < &). Since f is an isomorphism

F) ={f(8): ¢ <u}<p,
which is a contradiction. Therefore for all £ € X, f(£) < &. Then
6={f(&):£eX}Caandso b Ca.

EXAMPLE 2.3. e W+ W

0,1,---,n,n+1,- -, 0=w0+0,0+1,0+2,--- ,0+n,- -

-2 =type({0,1} X @, <jox)
(070)7(071)7 7(0,1’[),"' 7(170)7(171)7"' ,(1,}’1),"'
Thus @ + @ = w - 2 (because the order type is unique!).
However 1 + @ = @, while ® < @+ 1. Thus 1 + @ # @0 + 1.
Also 2- @ = type(@ x {0,1}, <jox) = @, while ®-2 = 0 + 0 > .
More precisely, what is 2- @?
(070)7(07 1)7(170)7(17 1)7(270)7(27 1)7 7(”70)7(’17 1))

In particular 2- @ # - 2.
e Both, ordinal multiplication and ordinal addition are associative, but not commutative.

THEOREM 2.4. (Transfinite Induction on ON) Let y(&t) be a formula. If there is an ordinal o such that y (),
then there is a least ordinal & such that y(§).

PROOF. Fix a such that y(a). If « is least, then we are done. Otherwise, X = {§ € a: y(a)} # 0 and so
& =minX is as desired. O

REMARK 2.5. (Ordinal Exponentiation) Note that induction is a method for giving proofs, while recursion is a
method for giving definitions. Recursively, one can define ordinal exponentiation as follows:
a’ =1, a’B) =af . a, o = sup oP for y limit.
B<y
THEOREM 2.6. (Primitive Recursion on ON) Suppose for all s there is a unique y such that ¢(s,y) and define
G(s) to be this unique y. Then there is a formula y for which the following two properties are provable:
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(1) Vx3lyw(x,y). Thus, v defines a function F, where F (x) is such that y(x,F(x)).
(2) ¥§ € ON(F(§) = G(F(¢))).

PROOF. §-approximations to F: Let § € ON and let App(J,h) abbreviate
h is a function,dom(h) = 8,V& € 6h(E) = G(h | E).

Uniqueness: We will show that
5 <8 ANApp(8,h) ANApp(8',1') = h="h | 8.
In particular, the case 6 = &’ gives the uniqueness of 4.
Fix 8,8’ h,l as above. Suppose h # ' | §. Then
X={E<o:n&)#N(&)}#0

and so there is £ = minX. Then for all £ < u h(&) =h'(€). Thatish [ u=~Hh [ u. Butthen h(§) =G(h | &) =
G(W | &) =H (&), which is a contradiction. Therefore X =@ and h=H"| 6.

Existence: By transfinite induction on ON show that Vo3hApp(8,4). Suppose not and let § € ON be least such that
—=3hApp(S,h). Thus in particular V& < §3h¢ such that App(&, A ).

Case 1:1f 6 = B+ 11let f = hg U{(B,G(hg))}. Then App(9, f) which contradicts our hypothesis.
Case 2: 0 = 0 - impossible, since App(0,0).
Case 3: § is a limit ordinal. Let f = (J{hg : & < §}. Then uniqueness implies that f is a function and further-

more App(8, f), which is a contradiction to the choice of 6.
Thus V6 € ONIhApp(8, k). Let y(x,y) be the following formula:

(x¢ ONAy=0)V (x € ONATS > xFh(App(6,h) Ah(x) =y)).

The uniqueness and existence of & imply that Vx3!yy(x,y) and so y(x,y) defines a function F. Now, let £ € ON.
Then pick any & > & and h such that App(8,4). Then

F(§)=h(&)=G(h[&)=G(F¢)

as desired. O

REMARK 2.7. One can define ordinal addition and exponentiation by transfinite recursion on the ordinals as

follows:
Ordinal addition Let o € ON. Recursively over § € ON define a + 8 as follows:

1) x+0=aq,

(2) a+B=S(a+p)if B=S(y).

(3) a+ B =Uyep(a+y)if B is alimit > 0.
Ordinal multiplication Let o € ON. By recursion over § € ON define the ordinal « - 8 as follows:

(1) x-0=0,

2) a-p=(a-y)+aif f=S(),

(3) a-B =Uyep(a-7),if B is alimit > 0.

EXERCISE 1. The latter two definitions are equivalent to the definitions of ordinal addition and ordinal multi-

plication respectively, which we gave earlier in the lecture.



CHAPTER 3

Cardinal Arithmetic

1. Comparing infinities

DEFINITION 1.1. Let X,Y be sets.

(1) X XY iff there is an injective function f : X —Y;
(2) X ~ Y iff there is a bijection f : X — Y.

REMARK 1.2. Note that

e = is transitive and reflexive, and that
e ~2 is an equivalence relations.

So, we can think of different infinite sizes as equivalence classes, consisting of sets any two of which are in bijective
correspondence.

LEMMA 1.3. If B C A and there is an injective f : A — B then A = B.

PROOF. Using the fact that f(A) C B C A obtain:
ADBDf(A)2f(B)2 f*(A) 2 f*(B) 2 f(4) D ..
Let 0 = id and for each n € N let
H, = f"(A\f"(B), Ku = f"(B)\/"'(A).
We will show that for each n, the functions
fIHy:Hy, = Hypand f [ K, 0 Ky — Ky
are bijections.
CLAM 14. f|H,:H, — H, is a bijection, where H, = f"(A)\ /"(B).

PROOF. Let g = f | H,. Clearly since f is injective, then also g is injective. We need to show that g is onto.

o Letx € Hyy1. Thus x € f"71(A)\ f"!(B). So clearly, there is y € f"(A) such that x = f(y).
e We need to show thaty ¢ f"(B). However, if y € f"(B) then f(y) = x € f"+!(B) which is a contradiction.

Thus, x = f(y) for some y € H, = f"(A)\f"(B), i.e. g is a bijection. O
Consider the set P = ,,co /" (A) = Npeo S (B). Then
A=PUHyUH UHU---UKgUK U~ -
B=PUH UH,UH3U---UKyUKj U---
are partitions of A, B. Then the function k : A — B defined by

e k[ H,= f | H, for each n,
e k[ P=idand

13
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e k| K, =id for each n,
is a bijection from A to B. ]

THEOREM 1.5. (Schroder-Bernstein) A =~ B iff A < Band B =< A.

PROOF. (=)If f:A — Bis a bijection, then f witnesses A < B and f~! witnesses B < A.

(<) Suppose f: A — Band h: B — A are injective. Let B = h(B). Then B C A and h : B — B is a bijection. Thus,
by definition B ~ B. On the other hand B C A and so ho f : A — B witnesses A < B. Thus, by the previous Lemma
A~ B. Since B ~ B we obtain A ~ B. O

DEFINITION 1.6. X <Y iff X <Y and it is not the case that Y < X.

REMARK 1.7. By the theorem of Schréder-Bernstein, X < Y means that X can be mapped injectively into Y,
but there is no bijection between X and Y.

LEMMA 1.8. (Cantor’s Diagonal Element) If F is a function, dom(f) =A and D ={x € A : x ¢ f(x)} then
D ¢ ran(f).

PROOF. Suppose D € ran(f). Then there is x € A such that D = f(x). There are two possibilities:

If x € f(x), then x € D (since f(x) = D) and so x the defining characteristic of D, i.e. x is an element of A such
that x ¢ f(x). This is a contradiction.

If x ¢ f(x), then since x € A we have that x satisfies the defining characteristic of D and so we must have that
x €D, ie. x € f(x). Again we reach a contradiction.

Therefore D ¢ ran(f). O

THEOREM 1.9. A < Z(A).

PROOF. Clearly A < Z(A) witnessed by the mapping x — {x} for each x € A. We claim that Z(A) A A. Well,
suppose to the contrary that #?(A) < A. Then by Schroder-Bernstein #?(A) = A and so there is a bijection

fiA—= Z(A).
ThensinceD={x€A:x¢ f(x)} € Z(A) and f is onto we must have
D={x€A:x¢ f(x)} €ran(f)
contradicting Cantor’s Diagonal Element Lemma. (|
COROLLARY 1.10. N < Z(N).

REMARK 1.11. Characteristic Functions Let A be a set and let B C A. Then we refer to x5 : A — 2 = {0,1}

defined by
1 ifaeB
x8(a) = {

0 otherwise

as the characteristic function of B.
The mapping B — x where B € Z2(A) is a bijection between 42 and Z(A). Thus

2 P(A).
In particular N2 = 2N ~ 2(N).
Note that
(1) IfA < Band C < D, then*C < 8D.
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(2) If2 < C, then A < P(A) <AC, simply because Z(A) ~42 <AC.

LEMMA 1.12. (1) €(BA) = C*BA
(2) (BYOA ~BA x €A, where B and C are disjoint.

PROOF. (1) Consider the mapping ® : €(BA) — €*BA defined by

(f)(e,b) = (f(c)) (D).

(2) Consider the mapping ¥ : B°CA — BA x €A given by
P(f)=(f1B,f1C).

DEFINITION 1.13. (Finite, countable and uncountable sizes)

(1) A set A is said to be countable, if A < .

(2) A setA is said to be finite if A < n for some n € ®.

(3) Infinite means not finite. Uncountable means not countable.
(4) A countably infinite set is a countable set which is infinite.

2. Cardinal Numbers

FAcT 1.

(1) If B C o then type(B, €) < a.
(2) If B < «, then B =~ § for some 6 < .
B)Ifa<B<yanda=ythena=~f =Y.

PROOF. (2) If B = a, then B ~ & for some d < « (identify B with a subset of & and apply part (1)).
(3) Since @ C B and B < o imply that o ~ 3. O

Thus, the ordinals come in blocks of the same size. Informally, the first ordinal in a block is called a cardinal.
DEFINITION 2.1. A cardinal is an ordinal ¢ such that & < o for all £ € a.

REMARK 2.2. Thus, an ordinal ¢ fails to be a cardinal iff there is & < o such that & ~ a.. We denote by CDD
the collection of all cardinals.

THEOREM 2.3. (1) If o > o is a cardinal, then « is a limit ordinal.
(2) Every natural number is a cardinal.
(3) If A is a set of cardinals, then supA is a cardinal.
(4) o is a cardinal.

PROOF. (1) Let o > @ be an infinite cardinal. Suppose « is a successor ordinal. Thus ¢ =8 +1=0U{d}.
Then f: §U{8} — & defined by f(6) =0, f(n) =n+1foralln € wand f(§) =& forall & such that 0 < § < &
is a bijection. Thus & € «, but 6 £ a, which is a contradiction to & being a cardinal.

(2) Proceed by induction. Now, O is trivially a cardinal. Suppose # is a cardinal and suppose S(n) =n+ 1 is not a
cardinal. Then 3§(& < S(n)) such that & ~ S(n). Thus there is a bijection f : & — S(n) = nU{n}. Clearly & # 0
and so & = S(m) for some m < n. But, then

fimU{m} —nU{n}
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is a bijection. Thus & = S(m) for some m < n and f: mU{m} — nU{n} is a bijection. We have the following
options:
If f(m) = n, then f [ m: m — n is a bijection, contradiction to the assumption that # is a cardinal.
Otherwise f(m) = j € n. Now n € ran(f) and so there is i € m such that f(i) = n. Consider the mapping
g:m—n
defined by g(i) = jand g | m\{i} = f. Then g is a bijection, again a contradiction to the assumption that n is a
cardinal.

(3) Suppose, by way of contradiction that supA = [JA is not a cardinal. Thus there is & < supA such that & ~ supA.
Recall that supA is the least ordinal, which is greater or equal each element of A. Thus there is & € A such that
& < a. Then by one of the earlier Lemmas

S~a,
which is a contradiction to & being a cardinal.
(4) Note that

W =supn = U n
neN neN
and so the claim follows from items (2) and (3) above. O

DEFINITION 2.4.
(1) We say that a set A is well-orderable, if there is a relation R on A such that (A, R) is a well-order.
(2) If A is well-orderable, then the cardinality of A, denoted |A|, is the least ordinal & such that A =~ o.
REMARK 2.5.

o Note that the cardinality of a set is always a cardinal number.
e Under the Axiom of Choice every set can be well-ordered and so under the AC every set is characterised
by its cardinality.

LEMMA 2.6.

(1) If Ais a set, which can be well-ordered and f : A — B is an onto mapping, then B can be well-ordered and
B < [A].
(2) Let k be a cardinal and B # 0. Then B =< « if and only if there is an onto mapping f : Kk — B.

COROLLARY 2.7. (A) set B # 0 is countable if and only if there is an onto function f : ® — B.

THEOREM 2.8. (Hartogs, 1915) Let A be a set. Then there is a cardinal K such that K £ A.

PROOF. Fix A and let W = {(X,R) : X C AAR well-orders X }. Then if ¢ is an ordinal, we have that
o <Aiff 3(X,R) e W s.t. o = type(X,R).

By the Axiom of Replacement Z = {type(X,R)+1: (X,R) € W} is a set. But then B = supZ is an ordinal.
Moreover, for each o0 < A, we have that 8 > a. Thus, § A A. Take x = |B|. Then k ~ f§ and k A A. O

DEFINITION 2.9. Let A be a set. Then X (A) denotes the least cardinal x such that k¥ A A. For ordinals o define
+ =
o X (o).
DEFINITION 2.10. By transfinite recursion on ON, define the cardinal numbers Ng as follows:
1) Xo=wmp=0
(2) Repp = =(Xg)"
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(3) Xy = oy =sup{X¢: & < n} whenever 7 is a limit ordinal.
REMARK 2.11. (The class of all cardinals) The collection of all cardinals is a proper class.
o= N <X < Rp <o < Nppooe < Ny < Ry <o

DISCUSSION 2.12. The cardinality of the real line How large is R? What is |R|? Note that |R| = |#?(N)|
and |2 (N) = 2%0 where 20 is cardinal exponentiation (to be defined shortly) and is the cardinality of the set of
functions from N to 2.

THEOREM 2.13. Suppose o > @ is an ordinal. Then |o x a| = |@|. Thus in particular, if k > ® is a cardinal,
then |k X K| = K.

REMARK 2.14. Observe that it is sufficient to prove the claim for cardinal numbers. Indeed. Suppose « is an
infinite ordinal and we have proved that ||a| X |a|| = |at|. Now o = |a

, which induces a bijection witnessing
lo| x || ~ a x o,
and so ||of| x |et]| = |ex].
PROOF. Define a relation <t on ON x ON as follows: (&1,&) <1(ny,n2) iff

o cither max{&;, &} < max{n;,n2},
o or max{&;, &} = max{n;, M2} and (&1,8) <iex (N1,M2)-
Note that < is a well-order. It is sufficient to show that

CLAIM 2.15. For each infinite cardinal k, type(k X k,<1) = K.

PROOF. Proceed by transfinite induction on k. Let k be the least infinite cardinal such that type(k x k, <1) # K.
Now, let § = type(k x k,<1) and let F : (8,<) — (k X k,<1) be an order preserving bijection.

Suppose 6 > k. Then F (k) is defined and so 3(§;, &) € k x k such that F (k) = (&1, &). Let o = max{&;, &} +
1. Then since x is a limit ordinal, & < k. Moreover since F is order preserving, F”"k C o x o. Therefore
K = a X o < K, which is clearly a contradiction.

Now, suppose 6 < k. Then k < k X k¥ ~ §, which is a contradiction, since K is a cardinal.

Thus k = 8, which is a contradiction to the choice of k.

Therefore there is no such k, i.e. for each infinite cardinal x,

K X kK| = k. This proves the claim and the
theorem. O

O

3. Cardinal Arithmetic

DEFINITION 3.1. (Cardinal addition, multiplication and exponentiation) Let k and A be cardinals. Then:
(1) K+ A is defined to be the cardinality of the set {0} x kU{1} x 7.
(2) & x A is defiend to be the cardinality of the set kK x A.
(3) x* is the cardinality of the set ¥4 := {f | f: k — A}.

LEMMA 3.2. (Monotonicity) Let x, k', 4, A’ be cardinals such that k < k’, A < A’. Then:
() k+A <K'+ 2/,
Q) k- A<x-A,
3) &* < ().
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PROOF. (1) Note that {0} x kU{1} x A C {0} x K¥’U{1} x A". Thus
id: x4+ =<'+
andso k+A <k’ +A'.
(2) Similarly k x A C k¥’ x A’ and soid : k- A < k’- A’. Therefore k-4 < k-1’

(3) Consider the mapping @ : * x — (') («’) defined by
* ¢(f)[A=fand
e o(f)(&§)=0forallA <& <A
When x = k¥’ = 0, note that
0" =1%] = [{0}| =1

and for A >0,
0* = [*0| = |o| = 0.

LEMMA 3.3. Let k, A, 0 be cardinals. The following properties refer to cardinal arithmetic:
() k+A =14k,
2) k- A=A1-x,
3) (k+14)-6=x-60+1-0,
4) Kk(A-0) — (Kl)e’
(5) KA10) — A 4.
PROOF. To see (1) note that AUB = BUA. To see (2) note that A x B = B x A. To see (3) observe that
(AUB) xC=AxCUBxC. To see (4) note that € (BA) ~C*B A. To see (5) observe that (BY)A ~ BA x €A provided
that B, C are disjoint. ]

EXAMPLE 3.4.
(1) o, ®- o, ®+ o are three different ordinals, all of the same cardinality.
(2) @® as ordinal exponentiation is equal to sup,, ", which is a countable set.
(3) However, ®® as cardinal exponentiation is uncountable: || = |2 (w)| = N(}; 0 =2%0 (to be proven
shortly).

LEMMA 3.5. Let k, A be cardinals and suppose at least one of them is infinite.

e Then the cardinal sum of k and A is equal to max{x,A}.
o If none of them is O, then the cardinal product of x and A is equal to max(k,A).

PROOF. Let k < A. Thus A is infinite. But then
A=<K+A=<AXA.

However we proved that A x A ~ A. Therefore A < k¥ + A and Kk + A < A. Therefore K+ A = max{k,1} = 1.
To see the second claim assume that k¥ < A. Thus A is infinite. Then

A<SKXA=SAXAxA
andso Kk XA ~ A. O

LEMMA 3.6. If2 <k < 224 and A is infinite, then Kkt =24 All exponentiation here is cardinal exponentiation.

PROOF. 2* < i* < (2M)* <244 =44 — oA O O
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COROLLARY 3.7. 29 = @®.

REMARK 3.8. (CH and GCH)

(1) For every ordinal o, 28 > Nt
(2) The Continuum Hypothesis(abbreviated CH) is the statement that

2%0 =y,
(3) The Generalized Continuum Hypothesis (abbreviated GCH) is the statement
2% = R
for all ¢ € ON.

REMARK 3.9. Thus CH is the statement that the cardinality of the real line is the first uncountable cardinal, i.e.
|R| = X,. If CH holds, then there are no infinite sizes between |N| and |R|.






CHAPTER 4

Cofinality and Lemma of Konig

1. Cofinality

DEFINITION 1.1. (Cofinality)
(1) If yis a limit ordinal, then the cofinality of Y is defined as follows:

cf(y) = min{type(X) : X C yAsup(X) = 7}.
(2) We say that v is a regular ordinal, if cf(y) = 7.
REMARK 1.2. Note that cf(y) < 7.

EXAMPLE 1.3.
Np< N < .. <X, <. < Ry <.l

LEMMA 1.4. Let y be a limit ordinal. Then:

(1) IfA C yand sup(A) = ¥, then cf(y) = cf(type(A)).
(2) cf(cf(y)) = cf(y). Thus cf(y) is a regular ordinal.
B) o<cf(y)<[y[ <.

(4) If yis a regular ordinal, then Y is a cardinal.

PROOF. (1) Let a = type(A). Since 7 is limit and A is unbounded in ¥, o must be limit as well. Let f : (@, €
) = (A, €) be an isomorphism.

cf(y) < cf(a): If Y C a is unbounded in «, then f”(Y) is unbounded in y and type(f”(Y)) = type(Y). Now,
take Y C o such that type(Y) = cf(a). Then Y C 7 is unbounded in 7, type(Y) = cf(¢e). Thus cf(y) < cf(a).

cf(a) < cf(y): Let X C 7y be unbounded and let type(X) = cf(y) and consider the mapping i : X — A(C y)
given by:
h()=min{n:neAAn >}
Then A is non-decreasing. Consider the set

X' ={nex:v&exnn(h(&) <h(n))}

Therefore h | X' : X' — A is order preserving and so injective. Thus /(X’) is unbounded in A. However the set A
was chosen to be of order type o. Therefore

cf(a) < type(X') < type(X) = cf(y).
(2) Let A C v be an unbounded subset of y of order type cf(y). Then by part (1) of this Lemma, cf(y) =
cf(type(4)) = cf(cf(y)).

21
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(3) By definition @ < cf(y) and |y| < 7. So, we need to show that cf(y) < |y|. For this purpose, let k := |y| and fix
an onto function f : k¥ — Y. Recursively, define the following function g : Kk — ON:

g(n) :=max{f(n),sup{g(§) +1:& <n}}
What can we say about g?
(1) dom(g) =dom(f) = x,
(2) g(n) = f(n) foralln € k,

(3) if & <1 then g(&) < g(n), because g(n) > g(5) +1 > g(&),
(4) If n=_{+1, then

8(E+1) =max{f(§+1),sup{g(§): & < {}} = max{f(E+1),8(5)+1}.

In particular we have that g : ¥ = ran(g) and so type(ran(g)) = k.

Ifran(g) C v, then since g(n) > f(n) and ran(f) = ¥, we have ran(g) is unbounded in y. Therefore cf(y) <
K = |¥|. Done!

Ifran(g) Z 7, we can find 1 € K least such that g(n) > 7.

Suppose = & + 1. Then

g(n) =g(E+1)=max{g(§)+1,f(n)}

However g(n) > v and f(n) < y. Thus g(n) = g(§) + 1. By minimality of 17, g(§) < yand so g(§)+1<.
Therefore g(n) = g(&) +1 <y <g(n). Butthen y = g(&) + 1 is a successor, which is a contradiction!
Therefore 7 is a limit ordinal and g”7 is unbounded in y. Moreover g [ 1 : & g"7. In particular type(g”n) <

n.
Then cf(y) < type(g’n) < n < x = |y|. Done!

(4) This is a direct corollary to (3). Indeed, suppose ¥ is regular. Then v = cf(y). But, by item (3)
cf(y) <[yl <7.
Thus ¥ < |y| < yand so Y = || is a cardinal. O

DEFINITION 1.5. (Regular and Singular Cardinals) Let ¥ be an infinite cardinal.

(1) If y =cf(7y), we say that y is regular.
(2) If cf(y) < 7, we say that y is singular.

REMARK 1.6. By the previous Lemma, part (1), we have that cf(a + ) = cf(f). Indeed, the set
A={a+&: &< B}
is unbounded in o + 3. Thus, for every limit ordinal y < @,
cf(y) = o.
For every limit ordinal 7y such that y < ,
either cf(y) = @ or cf(y) = w;.

LEMMA 1.7. Let y be a limit ordinal.

(1) Suppose Y= X g, where ¢ =0 or & = 8 + 1 is a successor ordinal. Then ¥ is regular.
(2) If y= X for a limit ordinal ¢, then cf(y) = cf(a).
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PROOF. (1) If ¢ =0, then Xg = Xg = @ and @ < cf(®) < |0| < @ is regular. Thus, suppose ¥ = Xg, .
Consider any A C Xg_ such that
type(A) < Xpgy.
It is sufficient to show that A is not unbounded in X g, since then g, ; < cf(y). But cf(y) < |y| = Xg; and so

cf(Rpi1) = Xpyr.
To show that A is not unbounded in ¥, consider supA = [JA. Note that |A| < X g, because |A| < type(A) < Rg;.

e Moreover, every element of A is of cardinality at most X g. Therefore we can view A as a collection of
<X p-many sets, each of cardinality at most X B
e Then, by the Axiom of Choice we obtain that [supA| = [[JA| < X g (see Lemma A).

Thus supA < Xg_ | (otherwise contradiction to the notion of a cardinal!) Thus A can not be unbounded in Xg_ .
(2) LetA = {X¢: & < a}. Then A C Xy and supA = Xg. By a previous Lemma

cf(Xg) = cf(type(A)).
However cf(type(A)) = cf(e). Thus cf(Xy) = cf(a). O

EXAMPLE 1.8.

o cf(X,) = X, foreachn € @, and
o cf(Xy)=0.

2. Konig’s Lemma

LEMMA 2.1. (AC) Let A, B be sets such that A # 0. Then there is an injective function g : B — A if and only if
there is an onto function f : A — B.

PROOF. (<=) Suppose there is an onto mapping f : A — B. Then {f~!(b)},cp is a non-empty family of non-
empty sets and so for each b € B we can chose a, € f~!(b) such that f(a,) = b. Since f~'(by)Nf~ (b)) =0
whenever by # by, we must have ay,, # ay,,. Therefore the mapping g : B — A defined by g(b) = a;, is injective.

(=) Let g : B— A be an injective mapping. For each a € ran(g), we have a = g(b) for some b € B (note that b
is unique by the injectivity of g). For such a’s define f(a) = b, i.e. define f: A — B so that f [ ran(g) = g~ !. It
remains to define f | (A\ran(g)). To do this, fix an arbitrary b* € B and for each a € A\ran(g) define f(a) = b*.
Thus f = g ' U((A\ran(g)) x {b*}) is an onto mapping from A to B. O O

LEMMA 2.2. (AC) Let k be an infinite cardinal. If .% is a family of sets with |.#| < k and |X| < k for each
X € #, then |UJ.Z| < k.

PROOF. Assume .% # @ and 0 ¢ .%. Then there is an onto function f : Kk — .%. Similarly, for each B € % fix
an onto function
g k— f(a).
This defines an onto mapping % : k X Kk — |J.% given by

h(o, B) = 8 ¢(a)(B)-

Since |k X k| = K, we obtain an onto mapping from k onto J.%. O

THEOREM 2.3. (AC) Let 0 be a cardinal.

(1) Suppose 0 is regular and F is a family of sets, such that | F| < 6 and moreover |S| < 0 for all S € Z.
Then |J.Z| < 6.
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(2) Suppose cf(0) = A < 0. Then there is a family F of subsets of 0 with || = A and ||J F| = 0 such that
IS| < 6 forall S € Z.

PROOF. (1) LetX ={|S|:S€.Z}. Then X C 0, |X| < 6 and so type(X) < 6. Since 0 is regular, type(X) <
cf(6) and so X is not unbounded in 6. Thus sup(X) < 6. Consider k := max{sup(X),|.Z|}. Then k < 6. If k is
infinite, then by Lemma A ||J.#| < k. If « is finite, then (J.Z is finite. In either of those two cases ||J.Z#| < 6.

(2) Just take .% to be a subset of 0 such that type(.#) = A and sup(F#) =J.¥% = 6. O

THEOREM 2.4. (Konig) Let k > 2 and A be infinite. Then cf(x*) > A.

PROOF. Let 6 = k*. Note that 0 is infinite and 6% = k** = x* = 9. Thus, we can enumerate 29 is order
type 6, i.e. *0 = {fy : & € 8}. There are two options. Either cf(k*) < A or cf(x*) > A.

If cf(k*) < A < 2* <k, then by Lemma B we have 6 = Ue<a Sg, where each [Sg| < 6. Let g: 4 — 6 be the
function g(§) = min(6\{fa(&): & € S¢}). Then g € 49 and so there is & € 0 such that g = f,,. Take & < A such
that & € Se. Then g(&) # fa (&), contradiction.

Therefore cf(k*) > A. O

EXAMPLE 2.5.
(1) cf(2%0) > X = @ and so 2%0 can not be X,.
(2) Consistently (using the method of forcing) 2¥0 is any cardinal of uncountable cofinality, e.g. X220,
Rpi1, Xg,, etc.

THEOREM 2.6. Assume GCH. Let k, A be cardinals such that max{x,A} > .
(1) Suppose2 < k < A*. Then k* = A+.
(2) Suppose 1 < A < k. Then k* = x provided that A < cf(x) and k* = k™ provided that A > cf(x).

PROOF. (1) Since we have GCH, 2* = A*. Then 2 < k < 2*. But then
2 < it < (2/1)1 — A _ ok
and so k* = 2*. Thus by GCH we obtain k* = A +.

(2) Since 1 <A < k we have that k¥ < Kk} < Kk = 2K = k™ (the latter equality by GCH). Therefore either x* =
x or k* = k. By Konig’s Lemma cf(k*) > A. Thus:
o If cf(x) <A, then Kt = K. Therefore k* = k*. Done!
e If 1 < cf(x), then every f : A — K is bounded. Thus for all f € *« there is &ty < Kk such that f € * o
and s0 Y = Uy at. Now *a € Z(A x ) and for o < «, |4 x o| < k. Therefore |*a| < k by GCH.
Then by Lemma 2.2 we have also |*k| < k and so k* = k. Done!
O

DEFINITION 2.7. (The beth function) By recursion on the ordinals define :C as follows:
(1) Do=Xo=0,
(2) Dy =27,
(3) 3y =sup{J; : £ < n} for n limit ordinal.
REMARK 2.8. CH is equivalent to the statement that 3; = X and GCH is equivalent to the statement that
Jg = X forall § € ON.

DEFINITION 2.9.
e A cardinal « is said to be weakly inaccessible if kK > ®, k is regular and k > A* forall A < k.
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e A cardinal x is strongly inaccessible if k¥ >  is regular and k¥ > 2* forall A < «.

REMARK 2.10. If k is strong inaccessible, then x is weakly inaccessible. The existence of a strong inaccessible
cardinal is not provable in ZFC.
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CHAPTER 5

Structures and Embeddings

1. Structures, Substructures, Expansions

DEFINITION 1.1. (Z-structure) Let . be a language. An .Z-structure is a pair A = (A, (Z%))zc.o where:

(1) A is anon-empty set, referred to as the domain or universe of U,
(2) Z* € A whenever Z is a constant symbol,

(3) Z% : A" — A whenever Z is an n-ary function symbol,

(4) Z® C A" if Z is an n-ary relation symbol.

By the cardinality of a structure 2, we understand the cardinality of its universe.

DEFINITION 1.2. (Homomorphic Structures) Let 2l and B be £ -structures.

(1) Amap h:A — Bis called a homomorphism if:
e forallc € €y

h(c®) =P,
e forall aj,---,a, € Aandall f € Fy
h(f(ar, - an) = £ (hlar), - han)),
e forallay,---,a,€AandallR € Z

if R*(ay,--- ,a,) then R® (h(ay),--- ,h(a,)).
DEFINITION 1.3. (Embedding) An injective homomorphism is called an embedding.

DEFINITION 1.4. (Isomorphic Structures) Let 2l and 23 be . -structures.
(1) If h: A — B is an injective homomorphism and

R¥ay,--- ,ay,) iff R® (h(ay), - ,h(ay)),

then A is called an (isomorphic) embedding.

(2) An isomorphism is a surjective embedding.

(3) Two structures are said to be isomorphic if there is an isomorphism between them. We use the notation
A =B,

DEFINITION 1.5. (Automorphism) An automorphism of a structure 2 is an isomorphism of 2 with itself. The
set of automorphisms of a structure 2 is denoted Aut(2l).

EXAMPLE 1.6. Show that Aut(2() is a group under the operation of composition.

DEFINITION 1.7. (Substructure)

29
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(1) Let 2,8 be structures. We say that 2l is a substructure of 8, denoted
ACPB,

if the universe A of 2l is a subset of the universe B of 5 and the identity mapping is an embedding.
(2) If A is a substructure of 28, we also say that B is an extension of 2.

EXAMPLE 1.8. Let & = (¥¢,.%,%) be a language and let 9B be a .Z-structure.

(1) Suppose A # 0 and A C B, where B is the universe of 8. Show that A is the universe of a uniquely
determined substructure 2 of 9B if and only if the set A is closed under all functions 2, where f € F 4.
That is, for each n-ary f we must have

FE A" A" - A.
(2) If Z.4 = €4 = 0, then any non-empty subset C of B is the universe of a substructure € of 8.

REMARK 1.9. Let *B be a .Z-structure. Let {2, };c; be an enumeration of all substructures of 8. Note that:
(1) {c‘B tc € By} CNigrAi (indeed ¢B = % € A; for each i),
(2) NiesAi is closed under 3 forall f € .Zy (justify!).
Thus, if € # 0 then
(A #0
iel
is the universe of a substructure of 8. Moreover, this is the universe of the smallest substructure of 8 (Why?
Explain!), denoted (0). If € = 0, then we set (0)F = 0.

EXAMPLE 1.10. (Generated Substructures) Let 23 be a structure and let S # @ be a subset of the universe of 3.
Let St(S) = {A C B : S CA}. Show that:

() N{A: A € St(S)} is the domain of a structure 9t such that S is contained in its universe;
(2) M is the smallest substructure of B containing S in its universe.!

DEFINITION 1.11. We refer to 9t as the structure generated by S and denote it (S). If S is finite, then we say
that 9t = (S)?® is finitely generated.

LEMMA 1.12. Let 2 be a structure generated by the set S. Then, every homomorphism % : 2 — B is determined
by its values on the set S.

PROOF. Suppose h,h' : 2l — 9B are homomorphisms from 2[ to B such that for each s € S we have that h(s) =
h(s’). Show that h = K. O

LEMMA 1.13. Let 20 = 2’ be isomorphic structures witnessed by an isomorphism 4. Whenever B is an exten-
sion of A (i.e. A C B), then there is an extension B’ of A and an isomorphism g : B = B’ which extends 7, i.e.
glA=h.

PROOF. Extend the bijection & : A — A’ to a bijection g : B — B and use g to define an .#-structure on B’. [J

DEFINITION 1.14. (Directed System of Structures, Chains) Let (I, <) be a directed partial order. This means
that for all i, j € I there exists k € I such thati <k and j <k.

(1) A family {2;}ic; of Z-structures is said to be directed if whenever i < j, then ; C ;.
(2) If the set I is linearly ordered, we say that the family {2l;};¢; is a chain.

1What is the partial order on the collection of all substructures of B that we are referring to here?
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LEMMA 1.15. Let {2, }c; be a directed family of .Z-structures. Then A = [ J;; A; is the universe of a uniquely
determined .#-structure, denoted  J;c; 2l;, which is an extension of each 2I;.

PROOF. Let A = |J;c;A;. We will define a structure 2 with universe A as desired. Let R be an n-ary relation
symbol and ay, - - - ,a, elements of A. Find k € I such that {g;}?_, C A; and define R% (ar,---,ap) iff R (ay, - ;).
Note that to claim the existence of k we have to use fact that {2l;};¢; is directed. Constant and function symbols are

treated similarly. 0

DEFINITION 1.16. (Reduct, Expansion) Let K C L be a sublanguage, i.e. € C v, Zy C Zy and Fy C
Fp.
(1) To every .Z-structure, we associate a .# -structure, called the reduct to JZ", by forgetting the interpretation
symbols from .Z\. 7.
(2) The reduct is usually denoted 2 [ K = (A, (Z%)zc.» ).
(3) Conversely, 2 is said to be an expansion of 2 [ JZ".

EXAMPLE 1.17.

(1) Let R be an n-ary relation on A. Introduce a new relation symbol R and denote by (2, R) the expansion B
of 2 to an .Z U {R}-structure in which R is interpreted by R, i.e. R = R.

(2) For given elements ay, - - - ,a, of 2 introduce new constants a;,4a,, - - ,a, and consider the ZU{a,,--- ,a,}-
structure
B = (A {aitin)
where g% = q;, and ‘B has the same universe as 2.

i
EXAMPLE 1.18.

(1) Let B C A, where A is the universe of the structure 2. Then, for every element b of the set B we can
introduce a new constant symbol b. Thus, we expand the language £ to a new language ¥ (B) = £ U{b:
b € B} and the structure 2 to a . (B)-structure

Q[B' - (91719)1763'

(2) The group of automorphisms of 2z consists of exactly those automorphisms f of 2 which are the identity
on B, i.e. forall b € B(f(b) =b).

(3) In general, whenever we expand a language .Z by a set of new constant symbols C, we denote the new
language with .Z(C).

Recall the notion of a term:

DEFINITION 1.19. (Term)

(1) Every variable v; and every constant c¢ is an .#-term.
(2) If f is an n-ary function symbol and #y, - - ,¢, are .Z-terms, then f? - - -¢, is also an .Z-term.
(3) The number of occurrences of a function symbols in a term is called its complexity.

DEFINITION 1.20. (Term evaluation) Let 2 be a .%-structure.

(1) A mapping which assigns to every variable v; a value b; € A, where i € N, is said to be an assignment. We
denote such assignments with b.
(2) For an .Z-term ¢ and an assignment b, we define the interpretation 2 [b] by

o VXD = b,

o A =c2,
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o fir--ib] = fARPL - 1 B))

EXAMPLE 1.21. (Term evaluation) Suppose 24 is a structure associated to an expanded language % (A), where
A is the universe of a .Z-structure 2. If #(xy,---,x,) is an .Z-term, then #(ay,--- ,a,) is a term in the expanded
language .Z(A) and

As

t(a1,~~-,an) :tm[a17"'7an]~

PROOF. Induction on the complexity of 7. ]

REMARK 1.22. Let 2 be a .Z-structure and suppose S C A, where A is the universe of 2(. Then the structure
(S)® generated by S is closed under the evaluation of terms. In fact:
() ($Y* ={r¥ay, - ,an] 1 t(x1,--- ,x,) is an L-term,ay,--- ,a, € A}.
(2) (0)* = {r® : ¢ is a term with no variables}.

Recall the definition:

DEFINITION 1.23. (Z-formulas)

(1) t;=t, where t1,t, are .£-terms;

(2) Rt;---t, where R is an n-ary relation symbol from £ and t1,- - - ,t, are .Z-terms;

(3) —y where y is an .Z-formula;

4) (y1 Ayn) where y; and v, are .£-formulas;

(5) (3xy) where y is an .Z-formula, x is a variable.
The formulas corresponding to items (1) — (2) above are called atomic formulas. The number of occurrences of
—,3, A in a formula is referred to as the complexity of that formula.

DEFINITION 1.24. Let 2 be an .Z-structure. For an .Z’-formula y and all assignments b define the relation

AE (p[B] recursively over the complexity of ¢:

(1) AEn=0[b] iff 2 [b] = 12[b],

(2) Rty -1, [b] iff RA(t2[B),-- - ,t2[B)),

(3) AE —~y[B] iff A y[b].

@) AF (yr A ) [B] iff 2 =y [B] and AF (B, .

(5) Fxy(b] iff Ja € A such that 2 F y[b¢], where b¢ is the assignment which maps each v; (except x) to b;

and x to a*

IfAE (p[z] holds, then we say that ¢ holds in the structure 2( for the assignment b. Alternatively, we say that b
satisfies ¢ in 2.

DEFINITION 1.25. (Free variables) Let ¢ be a formula and x a variable. We say that the variable x occurs free
in @ if it occurs in a place in the formula ¢@ which is not on the scope of a quantifier. If x occurs in ¢ and is not free,
then we say that x isbound in ¢. A recursive definition of the concept on the complexity of terms is here:

(1) xis free in t;=t, iff x occurs in #; and in f,,

(2) xisfreein Rty -- -1, iff x occurs in one of t;,

(3) xis free in ~y iff x is free in y,

(4) xisfree in (y; A yn) iff x is free in y; or x is free in y»,
(5) xis free in Jyy iff x # y and x is free in y.

DEFINITION 1.26. (Definable subsets) Let 2 be a .Z-structure.

ZRemember that x is one of the variables in the list {vi}ien.
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(1) A Z-formula ¢ defines an n-ary relation

o(A) ={a:AF old]}

on the set A, referred to as the realisation set of ¢ (in 21).

(2) Let BC A and let ¢ be a .Z(B)-formula. Then the set @(2(p) is said to be a B-definable subset of 2[. Thus,
a definable subset of 2 is simply a set definable over the empty set.

(3) Two formulas are said to be equivalent if in every structure they define the same set.

LEMMA 1.27. (Substitution Lemma) 2 F @(ty,--- ,1,)[b] if and only if 2 F @[r2[B],--- ,12[B]

PROOF. Induction on the complexity of ¢. ]
REMARK 1.28. Note that A4 E ¢(ay, - ,a,) if and only if A F @[a;,- - ,ay].

Recall the definitions:

DEFINITION. We refer to formulas without free variables as sentences. Atomic formulas and their negations
are called basic formulas. Formulas without quantifiers are Boolean combinations of basic fromulas, i.e. built from
basic formulas by successively applying —, A. Recall that T denotes a formula which is always true, | a formula
which is always false.

DEFINITION 1.29. (Basic formulas, Negation normal form)

(1) Atomic formulas and their negations are called basic.
(2) A formula is in a negation normal form if it is build from basic formulas using A, V,3,V.

REMARK 1.30. Every formula can be transformed into an equivalent formula which is in a negation normal
form (i.e. it is logically equivalent to a formula in negation normal form).

LEMMA 1.31. Let i : 20 — B be an embedding (we write /4 : 20 < *B).

(1) Let ¢@(xy,...,x,) be an existential formula. Let ay,...,a, be elements of A. If A F ¢lay,...,a,] then B F

olh(ay),....h(ay)].
(2) Let y be universal. If B E y[h(ay),...,h(a,)] then A E ylay,...,an).

PROOF. By induction on the complexity of the formulas. Suppose ¢ (%) is Iyy(%,y). If
AE ¢[d]
then Ja € A such that 20 F ya, a]. However, by inductive hypothesis
B F ylh(a), h(a)]
and so B F @[h(a)]. O

DEFINITION 1.32. (Atomic diagram) Let 2l be an .Z-structure. The atomic diagram of 2 is the set of all basic
Z(A)-sentences such that 24 F ¢.

REMARK 1.33. Given a structure 2 we denote by Diag(2() the atomic diagram of 2.

LEMMA 1.34. Let 2, B be .Z-structures.

(1) Let i : A — B be an embedding. Then (B, h(a))aea F Diag(A).
(2) Leth:A — Band (%8,h(a))sca F Diag(2). Then i : A — B is an embedding.
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PROOF. (1): Let ¢ € Diag(2). Then 2 F ¢[ay, ...a,]. By the previous Lemma B F ¢[h(a;),...,hA(s,)]. Thus
(B, h(a))sea F Diag(2).

(2): First we will show that £ is injective. Consider the formula ¢; (x1,x;) : =(x;=x;). Then for each a; # a; from
A, ¢(ay,az) € Diag(A). Thus (B,4(a))eeca F ¢(a1,a2). More precisely, af # a3, i.e. h(ay) # h(az). Therefore h
is injective.

Now, we will show that / respects the interpretation of constants. Let ¢ € € and let a = ¢ € A. The formula
@(x1) : x;=c is atomic and @ (a) € Diag(21). Then (B,4(a))aeca F ¢(a) and so ¢® = 4%, ie. ¢® = h(a) = h(c?).
Thus A respects the interpretation of all constants.

Next we show that & respects interpretation of function symbols. Let f € .% . Consider the formula ¢ (x,...x,) :
xo=f(x1,...,x,). For each (ag,...,a,) such that f%(ay,...,a,) = ao, ¢(ag,...,a,) € Diag(2A). Thus (B, h(a))secs F
¢(ay,...a,) andsoay = 2 (al,...,a>). Thatis h(ap) = £ (h(ai),...,h(ay)). Now, since ag = f>(ay, ...,a,) we
also get h(ag) = h(f*(ai,...,a,)). Thus h(f2(ay,...,a,)) = f= (h(ay),...,h(a,)) and so h respects f.

Finally, we show that & respects the interpretation of relation symbols. The fact that if (ai,...,a,) € R* then
(h(ay),...,h(a,)) € R® is shown similarly. Indeed, given R € . for each tuple (a,...,a,) € R* one can use the
formula R(a,,...,q,). O

2. Theories
DEFINITION 2.1. Definition: Theory A theory is a set of .Z-sentences.

DEFINITION 2.2. (Consistency)

(1) A theory T is consistent, if it has a model.
(2) A set of Z-formulas ® is consistent if there is an .#’-structure and an assignment b such that

AF [b]

for all ¢ € .
(3) A set of formulas @ is consistent with a theory T if T U® is consistent.

LEMMA 2.3. Let T be an .Z-theory, .#’ an expansion of .Z. Then T is consistent as an .%-theory iff T is
consistent as an .#’-theory.

PROOF. Every .Z-structure is expandable to an .#’-structure. 0 ]

DEFINITION 2.4. (Valid formulas)
(1) If a sentence @ holds in all models of 7', then we say that ¢ follows from 7" and write T |- .
(2) If 0+ @, we say ¢ is valid.

REMARK 2.5. Because of completeness of first order logic the above definitions coincides with the notion of
validity given in the first lecture.

LEMMA 2.6.
() ¥TH@andTH (¢ — y) then T - y.

(2) T+ ¢(cy,-..,c,) and the constants ¢y, ..., ¢, occur neither in 7', nor in @(x1, ..., x,) then T - Vx;...x, @(x, ...

PROOF. To see (1) consider any 2 T. Then A E ¢ and A F —¢ V y. Clearly 2( = y. Thus T + y. To see item
(2) consider &' = L \{c1,...,cn}. Let A be a £’ -structure such that A = 7. Then for each ay, ...,a, in A we have

R, ar,....a,) E@(cr, - ,cn).

7xn)~
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Thus A E Vxp..x,0(x1,...,X%,). Then T FVxp..x,@0(x1, ..., %p)- O

DEFINITION 2.7. Let T, S be theories.
(1) We say that T E S iff every model of T is also a model of S.
(2) T = S iff they have the same models. The theories are said to be elementarily equivalent.

DEFINITION 2.8. (Completeness) A consistent .Z-theory T is said to be complete iff for every .Z-sentence ¢
either T @ or T - —¢.

EXAMPLE 2.9. Let 2 be a .Z-structure. Then
Th(A) = {¢ : AE @, is a ZL-sentence}
is a complete theory.

LEMMA 2.10. Let T be a consistent .Z-theory. Then T is complete iff 7 is maximal consistent, i.e. 7T is
elementarily equivalent to every consistent .#-theory T’ such that T C T".

PROOF. (<=): Suppose T is maximal consistent, but not complete. Then there is a .Z-sentence ¢ such that
neither T' - ¢, nor T F —¢. Thus:

e there is 2 such that A F T, bit 2 & ¢, and
o there is 9B such that B = T but B ¥ —¢.

Then in particular 2 F —¢@, B E ¢. Now TU{—¢} is a consistent extension of T (with model ), but TU{—¢} £ T.
Indeed, B E T, but B # T U{—¢}. Thus, T is not maximal consistent, which is a contradiction.

(=): Suppose T is complete, but not maximal consistent. Then there is a .Z-sentence ¢ such that T U {¢} is
consistent, but TU{@} #T.

e Thus there is 24 F T such that A ¢, i.e. A E —0.
e Moreover, since T U{¢@} is consistent, it has a model *B.
e But, then T t/ ¢ (because of 2() and T I/ —¢ (because of B).

Therefore T is not complete, which is a contradiction. |

DEFINITION 2.11. (Elementary equivalence) Two .2 -structures 2, ‘B are said to be elementarily equivalent iff
they satisfy the same sentences, i.e. Th(2() = Th(8B). We write 2 = 5.

EXERCISE 2.

(1) If A =B then A =B.

(2) Give an example of 2(,B such that 2 = B, but 2 2 8.
LEMMA 2.12. The following are equivalent:

(1) T is complete.
(2) All models of T are elementarily equivalent.
(3) There is a structure 2 such that 7 = Th(2().

PROOF. (1) = (3): Let A= T. Take ¢ € Th(2l). Then A F ¢. Since T is complete T + ¢. Then Th(2) and T
have the same models.

(3) = (1): Straightforward.
(3) = (2): Let BE T. Then B  Th(2() and so B = 2.

(2) = (1): Let AET. If @ € Th(A) then T F ¢ (otherwise there is B such that B F T and B F —¢, which is a
contradiction to (2)). O
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DEFINITION 2.13. (Elementary Class) Let T be a .Z-theory. The class of all .Z-structures 2l such that A = T
is called an elementary class.

3. Elementary Extensions

DEFINITION 3.1. (Elementary embedding) Let 2( and B be two .Z-structures. A map h: A — B is said to be
elementary if for every formula @(x;,--- ,x,) and all a;,--- ,a, in A we have:

AE @lay, - ,an] < BE olh(ar), - ,hlay)].

REMARK 3.2. Since the function & from the above definition preserves quantifier free formulas, 4 is an em-
bedding. We use the notation £ : 21 < B.

LEMMA 3.3. Let 2l and B be .Z-structres.

(1) I/ : 9 < B then (B, h(a))aca F Th(2An).
(2) If h: A — B where B is the universe of a structure B such that (B, i(a))aeca F Th(24) then 7 : A < B.

REMARK 3.4. The proof is almost identical to an earlier proof.

DEFINITION 3.5.

(1) Th(A4) is called the elementary diagram of 2.
(2) Let A C ‘B. Then 2 is said to be an elementary substructure of B if id : 2 < ‘B is an elementary embed-
ding. We say also that ‘B is an elementary extension of 2.

REMARK 3.6. Recall that id : 21 < B is just saying that for every formula ¢(x,--- ,x,) and all a;,--- ,a, in A
we have:
AE @lar, - ,a,] < BE@lar,- - ,ay).

THEOREM 3.7. (Tarski’s Test) Let B be an £ -structure and let A C B. Then A is the universe of a structure
such that A < B if and only if every £ (A)-formula ¢(x) which is satisfiable in B, is also satisfiable by an element
of A.

PROOF. (=): Suppose 2l < 9B. Then if B F Ix¢(x) we must have 2 F Ix@(x).

(«<=): We have to show that there is a structure 2 with universe the set A such that 2f < B. First of all consider
the Z(A)-formula x=x. Now B E x=x and so for some b € B, B F (x=x)(b). By hypothesis, x=x is satisfiable
by an element of 2 and so A # (0. To show that A is the universe of a substructure of 9B, it is sufficient to show
that A is closed wrt the interpretation of constant and function symbols. Fix f € £y, n-ary, where n > 0. Let ¢(x)
be the formula f(ay,--- ,a,)=x for fixed a;,--- ,a, in A. Since it is satisfiable in B there must be a € A such that
B (ar,---,a,) = a. Thus fB A" : A" — A. Thus A is the universe of a substructure 2 of B.

Next, we will show that 2( is an elementary substructure of 8. Thus, we need to show that for every £ (A)-
sentence Y, we have 2 F y <> 9B F y. If y is atomic, or of the form —¢, (] A ) this is straightforward. Suppose
v = Jx@(x). Clearly if 2l F y then B F . Suppose B F Ix¢(x). Then by hypothesis on the theorem there is a € A
such that 8 F ¢(a). Now by induction hypothesis 2 F ¢(a) and so 2 F Ix@(x). O

COROLLARY 3.8. Let B be a .Z-structure, S C B. Then there is 2 < B such that S is contained in the universe
A and || < max{|S|,|-Z], Xo}.

PROOF. Construct an increasing chain of sets {S;},cry where Sy = S as follows. Suppose S; is defined. Let

Fi{o(x) | @is Z(S;)-formulas.t. BF ¢(x)} — B,
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where

F(@(x)) =ag and B E @(agp).
Take S;y1 = S;Uran(F). Then A = [J;c,, S is the universe of an elementary substructure. Note also that the number
of .Z-formulas does not exceed max{|-Z|, Xo}. O

THEOREM 3.9. (Lowenheim-Skolem Downwards) Let B be a £ -structure, S a subset of 6 and K an infinite
cardinal. Suppose
max{[S|,[Z|} <k < |B].

Then B has an elementary substructure of cardinality K containing S.
PROOF. Take S’ C B, such that § C §’ and |§’| = k. Apply the previous Corollary. O
DEFINITION 3.10. A directed family {2;}c; is elementary if 2; < 2; for all i < j.

LEMMA 3.11. (Tarski’s Chain Lemma) Let {2; },c; be an elementary directed family. Then 2 = [J;;2; is an
elementary extension of all 2;’s.

PROOF. Let 2 = [J;c;2;. We will prove by induction on ¢(%) that for all i € [ and all tuples a in 2;,
A Fo(a) < AE @(a).

Fix i. If ¢ is atomic, or @ is negation or conjunction of formulas for which the claim has been proved, the argument
is straightforward.
Thus, suppose @(¥) = Jyy(%,y). Fix a in 2;. Note that

AE @(a) iff 3b € As.t. AE w(a,b).
Then 3j > i such that b € A;. By Inductive Hypothesis
AEy(a,b) <A Eya,b).
However 2(; < 2; and so there is b’ € A; such that 2; = y(a,b’). Thus ; F Iyy(a,y). O






CHAPTER 6

Theorem of Compactness

1. Theorem of Compactness

THEOREM 1.1. (Compactness) If T is finitely satisfiable, i.e. every finite subset of T is consistent, then T is
satisfiable.

DEFINITION 1.2. (Henkin theory) Let . be a language, C a set of new constants. A .Z(C)-theory T’ is called
a Henkin theory if for every .Z(C)-formula ¢(x) there is ¢ € € such that
JIxo(x) = @(c) € T'.
REMARK 1.3. The elements of % are called Henkin constants.

Until the end of the section, we will be occupied with the proof of the Theorem of Compacntess. For the
purposes of the proof we will work with the following notion.

DEFINITION. A Z-theory T is said to be finitely complete, if it is finitely satisfiable and if every .Z’-sentence
@ satisfies
ocTor-pcT.

We will make use of the following Lemma.

LEMMA 1.4. Every finitely satisfiable .Z-theory T can be extended to a finitely complete Henkin theory T*.

PROOF. Inductively we will define an increasing sequence @ = Cy C C; C --- of new constants by assigning to
every .Z(C;)-formula ¢(x) a constant ¢y and defining

Cit1 = {cg() : 9(x) is an Z(C;)-formula}.
Take C = U;en Gi,
TH = {Fxp(x) — P(cow)) : @(x) is an Z(C)-formula}.
Suppose 2 is a Z-structure and 2 F Ix@(x). Then let c%m = a where 2 F ¢(a). Thus 2l can be extended to a

Z(C)-structure A’ such that 2’ = TH.

Note that, the above shows that every .Z-structure can be extended to a . (C)-structure satisfying 7%/. There-
fore TUTH is a finitely satisfiable Henkin theory in .#(C). Extend T UT* to a maximal finitely satisfiable .#(C)-
theory T*.

CLAIM. T"* is finitely complete.

PROOF. Suppose not. Thus, there is a .Z’(C)-sentence ¢ such that neither ¢, nor —¢ is in 7*. Then neither
T*U{@}, nor T*U{—¢} is finitely satisfiable, by maximality of 7*. Thus in particular there are A}, A, € [T*]<?
such that neither A; U{@} nor Ay U{—¢} is satisfiable. Therefore A = A; UA; is a finite subset of 7% and AU {¢}
as well as AU {—¢} is not satisfiable. Thus A is not satisfiable, which is a contradiction. ]

39
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LEMMA. Suppose T* is a finitely complete Henkin theory. Then 7* has a model, the universe of which consists
of constants. This model is unique up to isomorphism.

REMARK. Note that every sentence which follows from a finite subset of 7* belongs to 7*. Indeed. Let ¢ be
a Z-formula. Then either ¢ € T* or — € T*, because T™* is finitely complete. Suppose A € [T*]<® and A+ ¢ for
some @. If =@ € T* then AU{—¢} is not satisfiable, contradicting T* being finitely complete. Thus ¢ € T*.

Now, define for ¢,d € C: ¢ = d <» ¢c=d € T*. Then = is an equivalence relation. Define a. := [c]~. Take
A ={a,:c € C} and define a Z-structure 2 with universe A as follows. For each relation symbol R and each n-ary
function symbol f, where n > 0, let

Rm(acl,--- ,ae,) < R(cy, -+ ,cq) €T
fQ[(an' o >acn> = aCO — f(cl7 e ,Cn)iC() S T*
EXERCISE. Check that the above is well defined.

First we will show that the definition of R* for R € % & does not depend on the representatives of the equiva-
lence classes. Thus, suppose A7, c; = d; and R € % . We need to show that

R(cy, - ,cp) €T iIff R(dy, - ,dy) €T".
Suppose R(c1,- -+ ,¢,) € T*. By hypothesis also {c¢;=d;}! ; C T*. However
AP (ci=d;) = (R(c1,y-++ ,cn) <> R(dy, -+ ,dy))
is a valid formula and so T* F R(d,- - - ,d,). Thus, by our Remark R(d,,-- ,d,) € T*
EXERCISE. Which is the finite set of formulas referred to in the last item above?

Next, we will deal with the interpretation of function symbols. Thus, fix f € % 4. We need to show that
2 (@, ,ac,) (provided it is defined) does not depend on the representatives, argue as above. To show that f s
a function, take any {a,}"_ ; C A. We want to show that 2 (ac -+ ,ac,) is defined. Pick representatives c; € a,.
Since f € Z,
Elx(f(c] y ’Cn)ix)
is a valid formula and so 3x(f(cy,---,c,)=x) € T*. However T* is Henkin and so there is ¢g € C such that

xf(er, - en)=x— flcr, - ,cn)=co € T™.
Therefore f(cy,---cn)=co € T* and so fm(ac1 ,++ g, ) is defined.
Expand 2 to the £ (C)-structure 2A* = (A, a¢)cec-
EXERCISE. Show by induction on the complexity of ¢ that for every .2 (C)-sentence ¢

AEQ—@eT".

COROLLARY 1.5. T - ¢ iff there is a finite A C T such that A+ ¢.

PROOF. By the Compactness theorem, @ follows from 7 iff 7 U {—¢} is inconsistent iff 7 U {—¢} is not

finitely satisfiable iff there is a finite A C T such that AU {—¢} is not satisfiable iff A+ ¢@. ]
COROLLARY 1.6. A set of formulas X(xi,---,x,) is consistent with 7 iff every finite subset of £ is consistent
with T
PROOF. Letcy,---,c, be new constants. Then X is consistent with T if and only if T UX(cy,- - ,¢y) is consis-

tent if and only if every finite subset is consistent. ]
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2. Theorem of Lowenheim-Skolem Upwards

THEOREM 2.1. (Lowenheim-Skolem Upwards) Let B be a £ -structure, S a subset of the universeof 5 and let
K be an infinite cardinal. Suppose B is infinite and max{|B|,|-Z|} < k. Then B has an elementary extension of
cardinality K.

PROOF. Let C be a set of new constant symbols of cardinality k. Since the universe of B is an infinite set,
the theory Th(Bp) U {—c=d : c,d € C,c # q} is finitely satisfiable and so by the theorem of Compactness it has a
model 2. Thus in particular 2 F Th(Bp) and so B < 2. Moreover, for each ¢ # d in C, we have A =+ d¥ and
so the universe of 2 is of cardinality at least k. It remains to observe that by the Downwards Lowenheim-Skolem
Theorem 2 has an elementary submodel containing B, which is of cardinality k. ]

COROLLARY 2.2. Let T be a Z-theory. Suppose T has an infinite model. Then 7 has a model of every
cardinality k¥ > max{|%|, Xo}.

DEFINITION 2.3. (Categoricity) Let k be an infinite cardinal. A theory T is called x-categorical if all models

of T of cardinality x are isomorphic.

3. The Separation Theorem

THEOREM 3.1. (The Separation Theorem) Let Ty and T, be two theories and let 7€ be a set of sentences which
is closed under \,V contains T, L. The following are equivalent:

(1) Thereis ¢ € F such that T1 - @ and T> - —.
(2) For each pair of models Ay and A, such that Ay & Ty and A, E T, there is a formula ¢ € € such that

A1 E @ and Ay E .
REMARK 3.2. We say that ¢ separates 2[; and 2.

PROOF. The implication (1) = (2) is straightforward. We need to show (2) = (1). We can assume that the
theories are consistent as otherwise the statement if vacuously true. For each model 2l of 77 define

o ={p e :AkE @}
By the hypothesis of (2) for each 2 E Ty, 5% # 0.
CLAIM 3.3. Let A F T7. Then T> U 7% is not consistent.

PROOF. Assume B = T, U 5%. Now, by (2) there is ¢ € % such that 2L F ¢ and B F —¢@. Then ¢ € %y and
s0 B E @ A —@, contradiction. ]

CLAIM 3.4. Let 2(F Ty. Then there is g € 57 such that A F @y and 75 F —¢.

PROOF. Since T U7 is not consistent, there is a finite {¢;}}_; C /% such that 7> U{¢@;}’,_, is inconsistent.
Thus 7> U{N’}_, ¢;} is also inconsistent. Let ¢ = A'}_; @;. Then 7o U { ¢y} is inconsistent and so 75 - =g . Since
¢ is closed under conjunctions , Qg € JZ. |

CLAIM 3.5. T U{—@g : AF T;} is inconsistent.

PROOF. If A* = T then A* = @g+ and so A* F =@y - .
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By the Theorem of Compactness there are finitely many models 24, - - -, 2, of 7; such that 73 U {—¢g, }?; is
inconsistent. Thus 77 U {A]_, ~@g, } is inconsistent and so
T F— /\?:1 Py

That is 77 = VL @g,. We claim that ¢ = VI, @y, € S separates T1 and T5.
Well, ¢ € 7, because ¢ is closed under V. Thus, it remains to show that 7> = —¢. By the choice of ¢, for
each i, Tr = —=@qy; and so T - AL =@y, which is equivalent to 7> F —¢. O



CHAPTER 7

Preservation Theorems

1. A-elementary mappings

DEFINITION 1.1. Let .Z be a language, 2,*B structures, A a set of .Z’-formulas.

(1) Let f: A — B. We write f : A —4 B if f preserves the formulas in A. That is, if for each ¢ € A and each
ap, - ,dy EA’

ifAF (P(Cl] L aan) then B = (P(f(al)7' B af(a”))'
(2) A = B denotes the fact that Th(A) NA C Th(B) NA.

QUESTION 1.2. In the above definition, item (1): If B E ¢(f(a1), -, f(a,)) is it necessarily the case that
AE @(a, - ,a,)?

REMARK 1.3. Well, if A @(ay, - ,a,) then A E —@(ay,---,a,) and so B F =@(f(a1),:--, f(an)), contra-
diction. Thus f : 2 —A ‘B means that ¢ € A and each ay,---,a, €A,

AF (P(ah"' ’aﬂ) iff B F q)(f(al)’ ,f(an))

DISCUSSION 1.4. Can you formulate item (1) from the above Definition in a different way? How about the
following:
Let .Z be a language, 2, B structures and A a set of .Z-formulas. Let

A(A)={6(a):6(kX) e Aand ais atuplein A}.
Let f: A — B. Then, say f : 2 —5 B if
Th(</s) NA(4) C Th((B, £(@))aca).
The latter two theories are theories in the expanded language £ (A).
REMARK 1.5. (A special case) Now, if A is the set of all .Z-formulas, then f : 2l —4 B states that

Th(24) € Th((B, f(a))aca)-
That is, (9B, f(a))sea E Th(2U4) and so by our earlier characterisation, we get that f is an elementary embedding of
2 into B, i.e.
fiA=B.
THEOREM 1.6. Let T be a theory, 2 a structure, A a set of £ -formulas which is closed under existential
quantification, conjunction and substitution of variables. The following are equivalent:

(1) (Th(A)NA)UT is consistent.
(2) there is a model B = T and there is a map f : A — B.
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PROOF. ((2)= (1)): Let BET and f : A —4 B. Consider any ¢ € Th(2)NA. Since f: A —4 B we must
have B F ¢. Thus B F (Th(A)NA)UT.

((1) = (2)): Let Tha(UA4) = {A(a) : 6(%) € A,U4 F 6(a)}. Note that
o If B ETha(A4) and f(a) = a® foreach a € A, then f: A —, B.
o Alsoif f: 20— B, then (B, f(a))aea E Tha(Aa).

Thus, there is a one-to-one correspondence between the models B of Thp (2(4) and the maps f : A — 5 B.

((1) = (2)): It is sufficient to find a model of 7UThu(2(4). By Compactness, it is sufficient to find a model of
T UD for each D € [Tha(2(4)]<®. Fix such a finite set D and let 6(a) be the conjunction of all elements in D. Then
20 = 358 (). By hypothesis of (1), there is a model 90t of 7 U{3x8(x)} and so for some finite b in M, M k= §(b),
i.e (M,b) = 8(a). Thus (9,b) £ T UD and so by the theorem of Compactness, T UThy (2,4 ) has model B. Then
B ET and if f(a) = a™ then f: A —, B. O

QUESTION 1.7. Where in the above proof did we use the fact that A is closed with respect to substitution of
variables? How about existential quantification and conjunction?

COROLLARY 1.8. Let 2, B be .Z-structures, T = Th(B) and A a set of formulas, which is closed under
existential quantification, conjunction and substitution of variables. Then the following are equivalent:
(1) Th(A) N A is consistent with 7 = Th(:B).
(2) Thereis amodel B’ =T and f: A —4 B'.

REMARK 1.9. Note that B’ £ T is equivalent to B’ = B. Thus, item (1) is equivalent to the existence of
B’ = 9B such that f: A —, B’ for some f.

COROLLARY 1.10. Let 2,5 be .Z-structures and A a set of .£-formulas which is closed under existential
quantification, conjunction and substitution of variables. The following are equivalent:
(1) A=2*B
(2) 3f: A —4 B’ where B’ = B.

PROOF. ((1) = (2)): By hypothesis Th(2) NA C Th(2B)NA. Thus Th(B)U (Th(2() N A) is consistent (well,
this set is in fact just Th(B)) and so by the Preservation Theorem applied to T = Th(®B), there is a model B’ E T
and f: 2l —5 B’. Since B’ = T we get B’ = B.

((2) = (1)): By the hypothesis (2) if ¢ € Th(2()NA, then ¢ € Th(B') =Th(B). Thus Th(A)NAC Th(B)NA. O
REMARK 1.11. If 2; C 2, and 2y, A, can not be separated by a universal sentence, then in particular for every
formula Jx¢(x) we have:
if 2 F Tx@(x) then 2A; = Tx@(x).

Note that this is not sufficient to conclude that 2; < 2,. Can you see why? For this to be the case, we need the
above property for all £ (A) formulas, not only the .£-ones.

THEOREM 1.12. (Universal Separation) Let T1, T> be theories. The following are equivalent:

(1) There is a universal sentence separating Ty from T5.
(2) No model of T is a substructure of a model of T.

PROOF. ((1) = (2)) Let ¢ be an universal sentence such that

T'Feand T - —¢.



1. A-ELEMENTARY MAPPINGS 45

Suppose 2 F T; and 2A, = T such that 2, C 2A;. Since ¢ is universal, 2, F ¢ (by downwards absoluteness of
universal formulas) and so
2 E A,
which is a contradiction.
((2) = (1)) We will show —(1) = —(2). Thus, suppose there is no universal sentence which separates 7; from 75.
Then by the Separation Theorem, there are models 2A; F 77 and 2, F 7> which can not be separated by an universal
sentence. Then in particular,
if 2, F 3x@(x) then A; F Ixep(X)
(we write 2, =3 2). By Corollary B there is 2] =2 and f : 2, —3 2. But, then for some 2, we have that
5 =2 and A, CAj.

Thus a model of 77 is a substructure of a model of 7>, which is what we wanted to prove. U

QUESTION 1.13. The use of the subscript 3 in the above proof (for example in 2, =>32(;) is just an abbreviation
for which set A5 of .Z-formulas?

DEFINITION 1.14. Let T be a .Z-theory. The formulas ¢(x) and (%) are said to be equivalent under T if
T HE((3)  wi(E).
COROLLARY 1.15. Let T be a theory and ¢(¥) a formula. The following are equivalent:
(1) There is an universal y(%) such that T - VZ(@(%) <> y(%)).
(2) If A C*B are models of T and @ = (ay,--- ,a,) is an n-tuple in A, then:
if BE ¢(a) then AF ¢(a).

PROOF. ((2)=(1)): Extend .Z by adding new constants {c;}”_; andlet¢ = (ci,---,c,). Let Ty = TU{¢(¢)},
T, =TU{=¢(¢)}. Now, if 2= T} and B C 2, then B E T». By the Universal Separation Theorem the theories 7
and 75 can be separated by a universal .Z(%)-sentence y/(¢).

Thus T+ ¢(¢) — y(¢) and so T - Vx(@(x) — y(X)). Similarly, T - —y(¢) — —¢(¢) and so T E Vx(—@(x) —
—y(x)). Thus ¢(%) is modulo T equivalent to the universal formula y(%), i.e.

T VE(p(R) © y().
((1) = (2)): Straightforward. O

COROLLARY 1.16. A theory T is equivalent to an universal theory (i.e. a theory consisting of universal sen-
tences) if and only if all substructures of models of 7' are again models of T'.

PROOF. (=): If T is equivalent to an universal theory, then by downwards absoluteness of universal formulas,
every substructure of a model of T is again a model of 7.

(«<): Suppose T is a theory with the property that all substructures of a model of T are again models of 7. Fix
@ € T. Consider the theories 7} = T and T» = {—¢@}. If B E T} and 2 C B, then by hypothesis 20 F 7;. Thus in
particular, 2 & T5. Thus, no model of 75 is a substructure of a model of 7}. Therefore there is an universal sentence
v which separates 71 and 75, i.e. 71 F y and —¢ - —y. Note that

—¢@ -~y if and only if y I ¢.
Thus for every formula ¢ € T there is an universal formula y, such that

T+ yypand Yy - .
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Thus every sentence of T follows from
Ty={y:TF y,yis universal},
andso Ty =T. ]

2. Inductive Theories

DEFINITION 2.1. (V3-formulas) A formula is said to be a V3-formula if it is of the form Vxy/(X) where y(X) is
existential.

LEMMA 2.2. Suppose @ is a V3-sentence, {2;};c; a directed family of models for ¢ and B = |J;;2;. Then
B = 0.

PROOF. We can write @ in the form V¥y/(X), where y(%) is existential. Now, pick any tuple b of elements in
2B. Then we can find i € I such that b is a tuple of elements in 2;. Since 2; = VXy/(¥), we have

Ai = y(b).
But y(b) is existential and since existential formulas are upwards absolute, we must have
B w(b).
Thus 9B = Viy (%), i.e. B E ¢. O

DEFINITION 2.3. (Inductive theories) A theory T is called inductive, if the union of any directed family of
models of T is again a model of T'.

THEOREM 2.4. Let Ty and T be two theories. The following are equivalent:

(1) There is a V3-sentence which separates Ty from T,.
(2) No model of T, is the union of a chain (or of a directed family) of models of T;.

PROOEF. ((1)=-(2)): Suppose ¢ is a V3-sentence, T3 - ¢ and 7> - —¢. Let {2;};c; be a directed family of
models of 71, B = |J;; ;. Since V3-formulas are inductive, B = ¢ and so B = T.

((2)=(1)) Suppose —(1). Then T} and T> have models 2 = T} and B0 = T> which cannot be separated by a V3-
sentence. Thus in particular, 8% =, 2. By Corollary B there is 2A° = 2 and f : B° —y 2A°. We can assume that
280 C A and that f is the identity mapping. Let B be the universe of B°. Then 8% =, 2% and so A% =3 BY. Apply
Corollary B to obtain a model B} = B% and f : A3 —3 BL. Without loss of generality A% C B and so BY C BL.
Note that since B} = BY, in particular B} = Th(B%). Thus, B < B! and so B° C A° C B! and B° < B!

Consider 2 and B! and suppose they can be separated by a V3-formula y. Say, ¥ = Vip (&) where p is
existential. Thus A = y and B! = -y, ie. B! = Ix-p(¥). However, B® < B!, which implies that for some tuple
b in the universe B of B, B! = —p(b). By downwards absoluteness of universal formulas: B° |= —p(b). Thus,
B0 |= Ax-p (%), i.e. B |= . That is 2 and B can be separated by a ¥3-formula, which is a contradiction to
their choice. Thus, 2 and B! can not be separated by a Y3-formula. Now, apply the same argument to 2 and B! to
obtain an extension 2! of B! such that A' = A and an extension B2 of A' such that B' < B2,

Proceeding inductively we can obtain an infinite chain

plcA’cy cAt BT,

where for eachi € N
B < Bt and A = A
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Let B = [J;cn 2. But then also B = [J;ony B’ and so B is an elementary extension of B°, which implies that
B |= T,. Since each Al = T1, we obtain a model of 7> which is the union of a chain of models of T}, i.e. we
established —(2). O

COROLLARY 2.5. Let T be a theory. For each sentence ¢ the following are equivalent:

(1) ¢ is equivalent modulo T to an V3-sentence.
(2) If {2 }icn is a chain of models of a theory T and B = | J;cy 2; is also a model of 7', then B = ¢ if A; = ¢
foreachi € N.

PROOF. ((1)=(2)) Let B = U;cn 2 and suppose A; =T U {¢@} for each i € N. Moreover, suppose B |=T.
By hypothesis there is a V3-sentence y which is equivalent modulo 7 to ¢. Then in particular for each i, ; = v
and since V3-sentences are inductive, we obtain B = .

((2)=(1)) Consider the theories T} = TU{¢} and T = {—¢}. By hypothesis (2) no model of 7> is the union of a
chain of models of 77. By the V3-separation Theorem, the theories 77 and 7> can be separated by a V3-sentence y.
Thus 71 =y and T, = —y. That is

TU{g}F yand {-¢}F -y,
which implies 7+ ¢ — yand - —~¢ — —y. Thatis T - ¢ < y. |

COROLLARY 2.6. A theory T is inductive if and only if T = T3 where
Ty = {y: yis a V3-sentence such that T - y}.

PROOF. (<) Suppose T = T3 and let {2, };cn be an increasing chain of models of 7. Then {l;};cn is also
an increasing chain of models of 7y3. However V3-sentences are preserved by increasing chains of models and so
B = Ujeni | Tyg. Since Tyz =T we obtain B =T

(=) Suppose T is inductive and let ¢ € T. Let B be the increasing union of the chain {2(;};cn. Then B = ¢ and so
B £ —¢. Thus, no increasing chain of models of T is a model of {—¢@}. Therefore by the V3-Separation Theorem,
the theories 7 and {—¢} are separated by a V3-sentence y. Thus

THyand {—¢}F —y.
Therefore T = ¢ <+ . Since ¢ was arbitrary in T we get T = Ty3. |
DisCcUSSION 2.7. Consider the language . consisting of a single binary relation symbol <. Let 2y be the
Z-structure with universe Ag = {0, 1,---} and the natural interpretation of <. Moreover for each n € N let 2, be

the .#-structure with universe A, := {—n,---,—1,0,1,2,---} again with the natural interpretation of <. Note that
{2 }ien forms an increasing chain of . -structures and let B = [J;cy i

(1) Show that Th(2(p) = Th(2;) for each i € N.
(2) Find a V3-sentence y such that B |= y, but g = v.
(3) Is Th(2ly) inductive?
3. Quantifier Elimination

DEFINITION 3.1. A theory T has quantifier elimination if every £-formula ¢(x;,---,x,) in T is equivalent
modulo 7 to a quantifier free formula p(x1,- -+ ,x,).

EXAMPLE 3.2. If T has quantifier elimination, then every sentence is equivalent to a quantifier free sentence.
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EXAMPLE 3.3. Let .Z be a language and T an .Z-theory. Expand the language .Z by adjoining new relation
symbols R, for each #-formula ¢. In the expanded language the theory

TU{Vx Xy (Rop(x1,- - ,x0) <> @(x1,--- ,x,)) : @ is an £ — formula}
has quantifier elimination.
Recall that atomic formulas and their negations are called basic formulas, as well as the following fact.

FACT 2.

(1) Every quantifier free formula is equivalent to a formula in the form A;<;, V j<m; 7; j and to a formula in
the form Vi<, A j < m;7; j, where in both formulas each 7; ; is basic. The former is referred to as a
conjunctive normal form, the latter as a disjunctive normal form.

(2) Every formula is equivalent to a formula in prenex normal form, i.e. to a formula in the form Qx; - - - O, x, @,
where Q; € {3,V} for each i and ¢ is a quantifier free formula.

DEFINITION 3.4.
(1) A simple existential formula is a formula in the form Jy¢, where ¢ is a quantifier-free formula.

(2) A primitive existential formulas is a formula in the form Jy@, where @ is a conjunction of basic formulas.

LEMMA 3.5. A theory T has quantifier elimination if and only if every primitive existential formula is equiva-
lent modulo T to a quantifier free formula.

PROOF. («=): Let ¢ be simple existential. That is ¢ = Jyp for some quantifier free formula p. Write p in
disjunctive normal form. Then ¢ = JyV;, p; where each p; = A, ;;, 7;; basic. Then ¢ is equivalent to V;,3yp;.
Thus ¢ is equivalent to a disjunction of primitive existential formulas. Therefore every simple existential formula
is equivalent modulo 7 to a quantifier free formula.

(«<): Now, consider an arbitrary formula ¢. Then ¢ can be written in prenex normal form Q;x; - - Q,x,p where
each Q; is a quantifier (i.e. 3 or V) and p is quantifier free.

Suppose Q,, = 3. Then dx,p is a simple existential formula and so there is a quantifier free formula py equivalent
modulo T to 3x,p. Continue by considering the formula Qx; - -- O, 1X,—1Po-

If O, =V then Vx,p is equivalent to -—Vx,p. Note that —Vx,p is equivalent to 3x,,—p. Moreover 3x,,—p is simple
existential and thus it is equivalent modulo T to a quantifier free formula p;. Then —p; is still quantifier free and
equivalent to Vx,p. Proceed with Qx; --- Qp—1X,—17p1-

(=): Straightforward. O

THEOREM 3.6. Let T be a theory. Then the following are equivalent:

(1) T has quantifier elimination.
(2) Whenever mL M2 are models of T with a common £-substructure 2, then

mh =om3.

(3) Whenever M', MM? are models of T with common substructure 2, then for all primitive existential formu-
las @(x1,- -+ ,x,) and parameters ay,- - - ,a, from A:

m! o(ar,- - ,ap) =M E o(ar,- - ,an).
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PROOF. (1) = (2)): Fix M, 92 with a common substructure 2A. Consider the expanded language .Z’(A) and
a .Z(A)-sentence @(a) such that M' E ¢(a). Since T has quantifier elimination there is a quantifier free formula
p (%) which is equivalent modulo T to ¢(%). Then '  p(a) and so A F p(a), which implies that M F p(a) and
finally 92 F ¢(a).

((2) = (3)) Straightforward.

((3) = (1)) It is sufficient to show that every primitive existential formula is equivalent modulo 7 to a quantifier

free formula. Fix a primitive existential formula ¢ (). Consider the expanded language .#'(C), where C = {c;}__, is

a set of new constants. Let ¢ = (cy,---,¢y). It is sufficient to show that T} =T U{¢@(¢)} and T, = TU {—¢(¢)} can

be separated by a quantifier free sentence p(¢). Consider two .Z()-structures, (9!, a') and (92, %) satisfying Ty

and T respectively. Here @' = (al,---,a}) and @ = (a?,--- ,a?) are designated n-tuples in M' and M? respectively.
Suppose (9!, a') and (9M?,a%) can not be separated by a quantifier free sentence in .Z(C).

. . .
EXERCISE. Show that the generated substructure A! = ({a! ;’:1>fm is isomorphic to the generated substruc-
2
ture A% = ({a?}7_)™".

Thus, without loss of generality (9t!,a') and (9t%,a*) have a common substructure 2. Then by the hypothesis
of (3) we obtain:
M Eo(ay,--,a,) = M2 E @lar,-- ,a),
which is a contradiction. Then, 7} and 75> can be separated via a quantifier free sentence and so @(X) is equivalent
to a quantifier free sentence. ]

4. Model Completeness

DEFINITION 4.1. A theory T is said to be model complete if for all models 9! and IM? of T, if M! C
M2 then 9! < M2,

COROLLARY 4.2.

(1) If T has quantifier elimination, then 7' is model complete.
(2) A theory T is model complete if and only if for every model 9t of T, the theory T UDiag(90t) is complete.

REMARK 4.3. Recall that

Diag(9) = {¢ : ¢ is a basic .Z(M)-sentence such that Dy, = @}

COROLLARY 4.4. (Robinson Test) Let T be a theory. The following are equivalent:

(1) T is model complete.
(2) Whenever M' C 9012 are models of T and ¢ is an . (M")-existential sentence and 90t* ¢, then M! & ¢.
(3) Each formula is modulo T equivalent to a universal formula.

PROOF. Item (1) implies item (2) by definition of model completeness; (1) is equivalent to (3) is a restatement
of an earlier Corollary. To see that (2) implies (3) note that by (2) and same Corollary, every existential formula is
equivalent modulo 7 to a universal formula.

Take an arbitrary formula ¢ and write it in prenex normal form Qix; - -- Q,x,p where p is quantifier free and
each Q; is a quantifier, 3 or V. Proceed inductively. Here are the interesting cases:

If O, = J then Q,x,p is existential and by the above observation Q,x,p is equivalent modulo 7 to a universal
formula y. Consider Q,,_1x,_; ¥ and suppose Q,_; = 3. Let ¥ = 3x,_1y. Then ¥ is equivalent to —~Vx,_;—y.
However —y is equivalent to an existential formula ¢; and ¢; is equivalent modulo T to a universal formula y;
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(by the above observation). Thus y is equivalent modulo 7 to the formula —Vx,_;y;. However the negation of a
universal formula is equivalent to an existential formula and so in particular, =Vx,_; y; is equivalent to an existential
formula ¢,. Again by the above observation ¢, is equivalent modulo 7T to a universal formula y,. Thus, ¥ is modulo
T equivalent to the universal formula y,. Following the same argument, in finitely many steps one can show that ¢
(the formula we started with) is equivalent modulo T to a universal formula. U

EXERCISE 3. Let T be a model complete theory and let 9T be a model of 7" which embeds into every model of
T. Show that T is complete.

REMARK 4.5. Note that there are theories which are model complete, but do not have quantifier elimination.
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CHAPTER 8

w-saturatedness

1. The Omitting Type Theorem

DEFINITION 1.1. Let T be an .#-theory and let £(x) be a set of .Z-formulas.
(1) A model of T which does not realize X(x) is said to omit X(x).
(2) A formula @(x) is said to isolate X(x) in T if T U {¢(x)} is consistent and for each & (x) € Z(x) we have
T FVx(p(x) = o(x)).

THEOREM 1.2. (Omitting type) Suppose T is a countable consistent theory and ¥.(x) is a set of formulas which
is not isolated in T. Then T has a model which omits £(x).

REMARK 1.3. If T is complete and @(x) isolates X(x) in T, then X(x) is realised in every model of 7. Moreover
every element which realizes ¢ (x) will realize X(x).

PROOF. Let ¥ = {c;}i<o be a countable set of new constants. Let {y;(x)}i<, enumerate all .Z(%)-formulas.
Inductively construct an increasing chain {7;};cn of consistent extensions of 7" as follows. Let Ty = T.. Assume T»;
has been defined. Pick ¢ € € such that ¢ does not occur in T; U {y;(x)} and take ;1 = To; U {3xyi(x) — wi(c)}.
Since T; is consistent, then so is Tp;41. Without loss of generality, T»;+1 = T U{8(c;,¢)}, where ¢ is a finite tuple of
new constants and ¢; does not occur in ¢. Now, consider the formula 375 (x, 7). Then by hypothesis 376 (x,y) does
not isolate X(x) and so there is o(x) € X(x) such that

T ' Vx(F56(x,7) — o(x)).
Thus, T U {358(x,7) A —o(x)} is consistent and so Tr;y1 U{—0(c;)} is also consistent. Take Tri1p = Thip1 U
{=0(c;)}. Finally, let 7" = (JT;. Then:
(1) T’ is Henkin. Indeed, for every £ (¢)-formula y(x) there is a constant ¢ € ¢ such that the formula
ey (x) = y(c)isin T
(2) for every constant ¢ € € there is a formula o (x) € (x) such that =o(c) € T'.

Then 7’ is consistent with a model say (2, a.).c¢. Since T’ is Henkin, by the Tarski-Vaught criterion there is an
elementary submodel 2’ < 2( with universe {a, }.c. Then for every ¢ € €, A' E —c(c) which gives us a model of

T which does not realize X(x). O
COROLLARY 1.4. For each i let £(xi,-- - ,x,,) be a set of formulas with free variables in {x;}}" . Suppose T is
a countable consistent theory and none of the sets X(xy,- -+ ,Xy,) is isolated in 7'. Then T has a model omitting all of

these partial types.

PROOF. Generalize the proof of the Omitting type theorem. (]

2. The Space of Types

DEFINITION 2.1. Let T be a theory.
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(1) An n-type is a maximal set of formulas p(xy,---,x,) which is consistent with T'.

(2) S,(T) denotes the set of all n-types.

(3) Si(T) is often denoted S(T).

(4) So(T) is the set of all maximal consistent extensions of T’ (note that if p € So(7T') then p consists of closed
formulas, i.e. sentences).

The following is a revision, however it might be helpful.

DEFINITION 2.2. Let 2 be an .#-structure, B C A, a € A, ¥(x) a set of £ (B) formulas with at most x as a free
variable.

e Then a € A is said to realize X(x), if 2z F o(a) for all o € X(x).
o We write g F Z(a) or simply 2 F X(a).

Note that by the Compactness Theorem, the set X(x) is finitely satisfiable in 2( if and only if there is an elemen-
tary extension of 2 which realizes X(x).

DEFINITION 2.3. Let 2l be a .Z-structure, B C A.

(1) A set p(x) of Z(B)-formulas is said to be a type over B if p(x) is maximal finitely satisfiable in 2. The
set B is called the domain of p.
(2) S(B) = S®(B) denotes the set of types over B.

REMARK 2.4. Let 2 be an .Z-structure and let a € A. Then the set
tp(a/B) = tp*(a/B) = {@(x) : A F @(a), ¢ is a £ (B)-formula}.
Note that a € A realizes the type p € S(B) if and only if p = tp(a/B).
EXERCISE 4. Show thatif 2 <, BC A, a € A then:
(1) $*(B) = 5*'(B)
2) ¥ (a/B) =1p*(a/B)
DEFINITION 2.5.