The Completeness of Isomorphism

An important theme in DST (Descriptive Set Theory):

Borel reducibility of equivalence relations

If E, F are equivalence relations on the reals then E is
Borel-reducible to F, E <g F, iff

(¥)g There is a Borel (boldface Al) total function f (a Borel
reduction) such that

x Ey+ f(x) F f(y) for all x,y

Especially important are the analytic (boldface ¥1) equivalence
relations, such as isomorphism on countable structures:

x ~ y iff x, y code countable structures which are isomorphic

An important observation: Isomorphism ~ on countable structures
is not Borel-complete:



The Completeness of Isomorphism

Theorem

There are 3} equivalence relations which are not Borel-reducible to
Isomorphism ~.

Proof. Let X be a set of reals which is £} but not Borel.
Define: x Ex y iff x,y e X or x =y

Then Ex is £} and X is a non-Borel equivalence class of Ex.
But:

Theorem

(Scott) The equivalence classes of ~ are Borel, i.e., if A is a
countable structure then the set [A]~ of codes for structures B
which are isomorphic to A forms a Borel set.

It follows that Ex cannot Borel-reduce to ~



The Completeness of Isomorphism

The picture is different in the computable setting.
Suppose E, F are equivalence relations which are effectively 1.
E is Hyp-reducible to F on the computable reals iff

(*)comp There is a Hyp (effectively Borel) total function f on the
reals sending computable reals to computable reals such that:

x E y <> f(x) F f(y) for all computable x,y

Theorem

(FFHKMM) Every effectively ¥1 equivalence relation is
Hyp-reducible to ~ on the computable reals (i.e., ~ for computable
structures is complete).

Question. For which natural classes of countable structures between
the class of computable structures and the class of all countable
structures is isomorphism complete?



Classes of structures

Assume V = L. We use Godel's L-hierarchy to define classes of
structures as follows:

For a pair («, n) where « is infinite and 0 < n € w define:

X(a, n) = all reals (subsets of w) which are A, definable over L,
S(a, n) = all structures on w with codes in X(c, n)

Also when « is a countable ordinal greater than w define:

X(a,0) = all reals which are elements of L,
S(«,0) = all structures on w with codes in X(«, 0)



Classes of structures

Suppose E, F are equivalence relations on reals which are ! with
parameter from X(a, n)

E is Hyp reducible to F on X(«, n) iff there exists a total f on the
reals sending X(a, n) into X(«, n) such that for x,y € X(a, n):

x F yiff f(x) E f(y),

where f is Hyp with parameter from X(«, n).

E is complete on X(c, n) iff every equivalence relation which is ¥}
with parameter from X(c«, n) is Hyp reducible to E on X(«, n).

Note that ~ is a £1 equivalence relation without parameter so is a
“candidate” for completeness on X(a, n) for each («, n)

Main Question. For which «, n is ~ complete on X(a, n)?



Reduction to the case n =0

[Main Question. For which «, n is ~ complete on X(«, n)?]

We can reduce the problem to the case n = 0 using a
fine-structural fact:

Theorem

(A, Master Codes) Suppose that n > 0 and X(«, n) # X(«,0).
Then for some real c(c, n):
x € X(a, n) iff x <7 c(c, n).

Corollary
Suppose that n > 0 and X (o, n) # X(a,0). Then ~ is complete on
X(ay, n).

Proof. By the FFHKMM Theorem, ~ is complete on the
computable reals. Now relativise to the real c(«, n). O



When « is a limit of admissibles

[Question. For which « is ~ complete on X(«, 0)7]

Recall that ~ is not complete on the set of all reals because of:

Theorem

(Scott) If A is a countable structure then the set [A]~ of codes for
structures which are isomorphic to A forms a Borel set.

Refinement: If ¢ is a code for A then [A]~ has a Borel code
definable over the least admissible set containing c.

So if ¢ belongs to L, « a limit of admissibles then Scott’s
Theorem holds in L, and we obtain:

Corollary

If « is a limit of admissibles then ~ is not complete on X(«,0).



When « is computable in some real in L,

[Question. For which «, n is ~ complete on X(«, n)7?]

Now suppose that « is computable.

Then there is a Hyp bijection between X(«,0) and the computable
reals.

So ~ is complete on X(«,0) because it is complete on the
computable reals.

By relativisation, if a is computable in some real in L, then ~ is
complete on X(«, 0).

To summarise, we now have the following:



Reduction to the Hyp Case

Theorem

(1) If n > 0 and X(a, n) # X(«,0) then ~ is complete on X(«, n).
(2) Suppose X(a,0) # X(/3,0) for any 8 < c. Then:

(a) If « is a limit of admissibles, ~ is not complete on X(«,0).

(b) If « neither admissible nor the limit of admissibles, ~ is
complete on X(«,0).

(The reason for 2(b) is that its hypotheses imply that « is
computable in some real in L,.)

So we are left with the case: « is admissible, not the limit of
admissibles and X(«,0) # X(,0) for 5 < .

This implies that for some real p, X(a, n) is exactly the set of reals
Hyp in p. Ignoring p our problem reduces to the following:



The Hyp Case

Key Case. Is ~ complete on the set of Hyp reals?

le., if E is a X1 equivalence relation (with Hyp code) is there a
total Hyp function f such that for Hyp reals x,y: x E y iff
f(x), f(y) code isomorphic structures?

The method of FFHKMM does not seem to work for the Hyp case:
There is no Hyp enumeration of all Hyp reals.

The Scott method does not seem to work either: If A has a Hyp
code there need not be a Borel set B with Hyp code such that
[Al~ N Hyp = B N Hyp.

The solution comes from a deeper look at descriptive set theory
and infinitary logic.



The Relation E;

For x C w and n € w define (x), = {m| (m,n) € x}, where {.,.) is
a computable pairing function on w.

The equivalence relation E; is defined by:
x Eyy iff (x), = (y)n for large enough n.

E; is a Hyp equivalence relation. First we show:

Theorem

Suppose that « is a limit of admissibles. Then Ey is not reducible
to ~ on X(«,0): There is no total Hyp function f such that for
x,y in Ly, x Ey y iff f(x),f(y) code isomorphic structures.

So in fact ~ is very incomplete on L,: There are even Hyp
equivalence relations which are not Hyp-reducible to ~ on L.



The Relation E;

[Theorem. If « is a limit of admissibles then Ej is not reducible to
~on L,.]

We outline the proof.
Suppose f were a Hyp-reduction of E; to ~ on L,,.
Define: ~9 = ~ and ~, = (~ fixing 0,1,...,n—1).

Choose an admissible oy < o so that the code for f belongs to L,
and «g is countable in L.

Also write x Ef y iff x(i) = y(i) for i > k and x(i) [ k = y(i) | k
for i < k.



The Relation E;

[Theorem. If « is a limit of admissibles then Ej is not reducible to
~on L,.]

Claim. For each n there is k so that if g, h € L, are Cohen-generic
over L, and g Ef h then f(g) ~, f(h).

Proof Sketch. Let gy in L, be Cohen-generic over L, and choose a
Cohen condition which forces that f(g) and f(go) are isomorphic
sending (0,1,...,n—1) to k= (ko, ki, ..., kn—1) for some fixed k.
If g,hin L, are Cohen-generic over L,, below this condition then
f(g) ~n f(h). O (Claim)



The Relation E;

Now build a sequence of g”'s in L, which are Cohen-generic over
Lo, so that g" Elk" g™t where k, is large enough to guarantee:

1. f(g") ~m, f(g™') where m, is large enough so that there is an
isomorphism between (g°) and f(g") under which the images and
pre-images of the numbers less than n are all less than m,,.

2. The k,'s go to infinity

3. g"(n—1),g""1(n — 1) differ somewhere, and

4. g = the limit of the g"'s is Cohen-generic over L.

Then g is not Ej-equivalent to g° by 3.

The sequence of g"’s can be built in L, as ag is countable in L,
and any two isomorphic structures in L, are also isomorphic in L.
Using 1, 2 and 4, f(g°) ~ f(g).

But this contradicts the assumption that f is a reduction of E; to
~on L,. O



The Hyp Case

The difficulty in applying the above argument to the Hyp case is
that two Hyp structures can be isomorphic without being Hyp
isomorphic.

However this does not happen for Hyp structures of low
(computable) Scott rank. So we at least have:

Theorem

There is no Hyp reduction f of E; to ~ on Hyp such that for each
Hyp x, f(x) is a structure of low Scott rank.

To complete the argument for Hyp, we use a method for converting
arbitrary structures to structures of low Scott rank.

Let =, denote elementary equivalence for sentences of L, of
rank less than a.



The Hyp Case

Theorem

Suppose that o is a computable ordinal.

Then there is a Hyp function A — A* on countable structures A
such that:

(a) A~B— A* ~ B*.

(b) A* =, B* - A=, B.

(c) For each A, A* has Scott rank at most c.

(In fact, (b) can be made into an equivalence.)

Now if f were a Hyp reduction of E; to ~ on Hyp we could choose
a computable « so that f reduces E; (on enough of Hyp) to =,.
Use the Theorem to ensure that the range of f consists solely of
Hyp structures of low Scott rank, which by the previous Theorem
yields a contradiction.



Conclusion

Completeness of isomorphism on the X(a, n)’s is therefore
characterised as follows:

Say that («, n) is a relevant pair if either n # 0 and
X(a, n) # X(«,0) or X(a,n) = X(«,0) # X(,0) for g < .
Clearly only relevant pairs are relevant.

Theorem

Suppose that («, n) is a relevant pair. Then ~ is incomplete on
X(a, n) iff n =0 and « is either admissible or the limit of
admissibles.

And we have seen that if («,0) is relevant and « is either
admissible or the limit of admissibles then even the Hyp equivalence
relation E; does not Hyp-reduce to ~ on X(a, 0).



Questions

But when (v, 0) is relevant and « is a limit of admissibles, one has
even more:

E; does not reduce to any equivalence relation resulting from a
Borel action of a Polish group where both the action and group are
coded in L.

Is there a Hyp analogue of this result?

Finally, one can ask about the completeness of ~ on X when X is
not of the form X(a, n).

If X is closed under Hyp-reducibility then one obtains the
incompleteness of ~ on X as above.

But what if, for example, (go, g1, ..) is a sequence of reals generic
for Cohen® over the arithmetical sets and X consists of those reals
arithmetical in finitely-many gj’s; is >~ on X complete?



