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In this paper we study the global structure of the R-degrees. A cone
of B-degrees is a set of R-degrees of the form {g}g_z_do} for some fixed
B-degree do, partially ordered by 56' The base of thi;_Eone is the B-
degree doT_ Qur main result is that if B 1is countable then the Turing
degrees ;;H the B-degrees have isomorphic cones. If B = w?k then.the B-
degrees are the metadegrees and in this case the cone of metadegrees with
base 0' = complete meta-RE degree is isomorphic to the cone of Turing
degrees with base the Turing degree of Kleene's &

If V=1L we also construct some isomorphisms in the uncountable case
(sections two and three). If B8 has regular cardinality « and SB is
< k-closed then the B-degrees and the «k-degrees have isomorphic cones.

If B has singular cardinality « then some cone of «k-degrees is often
isomorphic to a cone in the regular B-degrees. The hypothesis in this case
is that there exist a tame injection SB —> k3 i.e., an injection g with
the property that g']ry € SB for each y < k.

Much of this work is based on techniques of Maass from Maass [1978]
and Maass [1979]. The uncountable case draws heavily on Friedman [1981
a,b,c] which provide "fine structure" characterizations of the hypotheses
used.

These results are in fact an application of ideas from inadmissible

recursion theory to degree theory on admissible (and inadmissible) ordinals.

*The preparation of this paper was supported by NSF Grant #MCS 7906084
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The isomorphism mentioned between a cone of Turing degrees and a cone of meta-
degrees converts the Turing jump into the weak metajump, a notion which first
arose out of the study of inadmissible ordinals.

SECTION ONE COUNTABLE CARDINALITY

Suppose B = <SS’B> is amenable; i.e., BN SY €S, for each y < B. Then

8
we define:

Z]cf(B) = least y s.t. there is a Z](B) unbounded f:y + B

Z1proj(8) = Jeast y s.t. there is a 21(B)injection fiB~>y.

1f Z1cf(B) = Z]proj(B) = w then there is a 21(8) bijection g:8 -+ w
and in this case Maass [1978] constructs Acw s.t. for C<uw, C is 21(8)
if and only if C s 21(Sw,A). The structure A = (sm,A) is called the Maass
collapse of B.
THEOREM 1. Suppose =‘(SB,B) is amenable and Z]cf(B) = 21 proj(B8) = w. Let
A= <Sw’A> be the Maass collapse of B. Then there is an isomorphism j between
the Turing degrees > Turing degree (A) and the B-degrees > B-degree (B).

In the proof it will be convenient to refer to the notion of B-degree:
For C,Dc SB write € <38 D iff C <g Dv B. Then B-degree (C) =
{D|C g D,D <z C}. The A-degrees are defined similarly. In this terminology
Theorem 1 asserts that the A-degrees and the B-degrees are isomorphic.

Define C S w to be B-bi-immune if neither C nor w-C contains an infi-
nite B-finite set. The following lemma is proved on pages 154-5 of Maass [1978].
LEMMA 2. Fach A-degree contains a f-bi-immune representative.

The significance of g-bi-immunity is this: The reducibilities f—A’f-B agree
on B-bi-immune sets. For, by the key property of the Maass collapse the reduction
procedures coincide for these reducibilities and B-bi-immunity insures that the

neighborhood conditions are also the same.

Proof of Theorem 1. Define Jj: A-degrees

> B-degrees by j(d) = B-degree (D)

for any B-bi-immune D € d. By the above remarks this is a well-defined monomorph-

ism. We show that j is onto. To do so we will make use of the reducibilities:
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C
ifBD< >Cif3DVB
C:wBD< >C§wBDVB.

Choose a B-recursive (that is, Z](B)) bijection g:SB < > w.

Given E < S, we construct a 8-bi-immune E Cw such that E,E have the same

g
B-degree. let E* = {Z€58|ZEE} v {ZESB|zﬂE#ﬂ}. Then Tet E** = g[E*] and

finally choose E to be any B-bi-immune set of the same A-degree as E**.

Then {ZGSB|ZSE} v {zESB}an=¢} Spg B EX < g E¥* and E¥* < o E

(since for any C,D c w, C < A D iff C < 8 D). Putting this chain of reduci-

~

bilities together and using the definition of < g We see that E < B E.

Moreover E < 8 E**» B** < ¢ E* and E* < g E. This vields E < B E.

Since E is B-bi-immune we have E'< g E. ]

~

The applicability of Theorem 1 depends on the possibility, given a countable

limit ordinal B, of choosing B < S, such that B = (SB’B> is amenable and

B8
z] cf(B) = Z] proj(B) = w. Our next result says that this is always possible.

THEOREM 3. Suppose f: B < > w is a bijection. There is B < S, B if

8 gt
such that B = <SB’B> is amenable and Zl cf(B) = Zl proj(B) = w.
Proof. Define B = {(BO,...,Bn)\f(Bi) =14 for all i}. Then BN SY is the

finite for all y < B. Moreover f is Z](SB,B) and B <co f. —]

C
X we have:

In case B = Wy
COROLLARY 4. The Turing degrees > Turing degree (#) are isomorphic to the meta-
degrees > 0' = the complete meta-RE degree.

Proof. There is a AZ(Lm ck) bijection between w]CK and w. By Theorem 3 we can

1
choose a A,(L cx) set B<L cx such that (L cx,B) obeys the hypothesis of
2 wy wq wy

Theorem 1. But ¢ is a A, master code for L ox; i.e., Acw is A (L cx)
wy = 2 y

iff A< T 0 (for a proof see Jockusch-Simpson [1976]). If (Lm,A) is the

Maass collapse of (Lw e, Bv C) where C = a regular complete meta-RE set, then

1
A hSS ¢ since A is Az(Lw]CK) and G’iT A since ¢ is A]<LM]CK, C). So by
Theorem 1 the Turing degrees > Turing degree (&) are isomorphic to the meta-

degrees > metadegree (B v C) = 0'. ——]

For other ordinals B < w% we can choose the least pair {y,n) so that
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there is a An(SY) bijection B < > w. Then the Turing degrees > Turing
degree(A) are isomorphic to the RB-degrees > R-degree (A) where A is a B-bi-

mmune A, master code for Sy. The B-degree of A is the largest R-degree

of a set DESB such that both {ZGSB|ZSD} and {ZGSBIZHD=G} are

I,(5,). For example, if A is a recursive 1imit ordinal then the A-degrees are

isomorphic to the Turing degrees > 0(8) = Bth jump of 0, where A = w+B. (The
degree O(B) is just the Turing degree of Ha where a € &' is a notation for
B and Ha is the associated Kleene H-set.} If X = mHCK = nth admissible

greater than w then the X-degrees > X-degree (complete A-RE set) are isomorphic

O(H) - nth «

to the Turing degrees > hyperjump of 0. If A = %wnc then the
A-degrees are isomorphic to the Turing degrees > Turing degree(c}(“’)) where 0“”) =
recursive join of ((‘},0(2),0(3),...).

We now discuss what effect the isomorphism j of Theorem 1 has on relative
RE-ness. If C,D < SB then C is tamely B-RE relative to D if {ZESB}ZEC}
is B-RE Telative to D. If B = (SB,B) is amenable then C 1is tamely B-RE
if € is tamely B-RE relative to B. The following result describes the range
of Jj on the A-RE degrees.

THEOREM 5. If j is the isomorphism of Theorem 1 then an A-degree d contains
an A-RE set iff j(d) contains a tamely B-RE set.

Proof. If D ed is A-RE then so is 6, the canonical B-bi-immune set of the
same A-degree as D obtained from Maass [1978]. But then 6 is tamely B-RE
since D is B-RE and {z ¢ SB|Z 56} ={z¢ SB|Z is finite, zga}. So j(d)
contains the tamely B-RE set 6

Conversely if E < S, is tamely B-RE then we show that E has the same

g
B-degree as a B-bi-immune A-RE set. Consider the sets E*, E**, E from the
proof of Theorem 1. As E is tamely B-RE we see that E* 1is B-RE. Hence E**
is B-RE and therefore A-RE. Once again, E is also A-RE as it is obtained
as the canonical B-bi-immune set of the same A-degree as E**. The proof of
Theorem 1 showed that E,E have the same B-degree. ——|

Note that if B = (SB,B) satisfies the hypothesis of Theorem 1 then every

B-degree is regular; that is, every B-degree contains a set C such that <SB’C)
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is amenable. For, if f:w —> B {s an order-preserving unbounded Z](B) function

then any E < S8 has the same B-degree as f[E], where E comes from the

proof of Theorem 1. As a result Theorem 5 can be applied to yield:

COROLLARY 6. If 3 is the isomorphism of Theorem 1 then for A-degrees dl,dz:

dl is A-RE relative to d2 < > j(dl) is tamely B-RE relative to j(dz).

Proof. Just note that if C has B-degree j(dz), <SB’C) amenable, then

<SB’C> obeys the hypothesis of Theorem 1 and the resulting isomorphism js

i [ (A-degrees z_dz). Thus by Theorem 5 d] is A-RE relative to d, < > j(d1)

> j(d]) is tamely B-RE relative to j(dz). —

is tamely (SB’C>_ RE <
We end this section by determining the inverse image under j of the

B-RE degrees. The answer comes from work of Maass [1979]. Theorem 1 of that

paper implies that in case B = (Ss,ﬂ) obeys the hypothesis of our Theorem 1 then

a B-degree contains a regular B-RE set (i.e., a B-RE set C such that <SB’C>

is amenable) if and only if it contains a B-bi-immune set S such that: D ‘is

A-RE relative to E for some A-RE set E <

ZA
implies that each B-RE degree contains a regular B-RE set. Thus the B-RE

D. Our remark after Theorem 5

degrees in this case correspond under j to the A-degrees which are A-RE relative
to an A-RE predecessor. As Maass remarks in statement 3) after Theorem 1 of

Maass [1979], this also works for any structure B satisfying the conditions of
our Theorem 1. We give Maass' proof specialized to the present context.

THEOREM 7. If, j 1is the isomorphism of Theorem 1 then for any A-degree d,

j(d) is B-RE iff d is A-RE relative to some A-RE degree e < d.

Proof. Let g: S

g < > w be a Z](B) bijection and for D<w let D be the

canonical B-bi-immune set of the same A-degree as D.

B
and let D = dfb*]. Then C "3 D and D is B-bi-immune. But D is A-RE
relative to the A-RE set g[C]: To see this, it suffices to show that g[C*]
> g7 w) = ¢0,2), 20 C % D)

> [Ix € g[C](g'1(W) = {0,2z) and

If C<S, is B-RE let C* = {z¢ SBlz nNc+Prvize SB|Z n (SB—C) i 9}

is A-RE relative to g[C]. But w € g[C*] <
or (g7(w) = 1.2, zn (Sg-C) % 01 <
9_1(x) €z) or 3x ¢ g[C](g'](w) = (1,z) and g_](x) €2z)]. So gIC*] s B-RE

relative to g[C] using only finite neighborhood conditions on g[Cl. Thus
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glC*] is A-RE relative to g[C]. Also note that giC] B g[C*] and hence
glC] <, glC*] <, D.

Conversely, suppose D,E S w are_g-bi-immune and E is A-RE, E fA D, D
is A-RE relative to E. Let {D°|s e w} be a 21(A,E) enumeration of D and
{E%[s €w} a I1(A) enumeration of E. Choose a 21(8) increasing, unbounded

f: w > B. Then define:

C={{F(n),s.tyn € 5 DSk =Ens,t =

t

least t>s s.t. E-ns=Fqnsl.

C §s co-B-RE as DS}

only ‘depends on E N's and the condition on t is
c0-A-RE (hence co-B-RE). Then D g C as ned <—— Is,k,t GLw(<f(n)S,K,t)EC)
and n é D <—> {f{n}} x Lm x L(u X Lm < SB—C. As D is B-bi-immune this gives
D <g C. To show that C <z D: To determine C N Sf(n) one need only know a
stage s where DNn-= 0° N n. This can be determined from D N n given a large
enough t s.t. Et Nns=Ens. Thus C g D v E and we are done since E fA D
and E is B-bi-immune. —|

A consequence of Corollary 6 is that for any B-degree b there is a largest
B-degree which is tamely B-RE relative to b. This B-degree is called the weak
B-jump of b. Theorem 7 implies that weak B-jump (weak B-jump (b)) = b' =
B-jump(b) = largest B-degree which is B-RE relative to b. Thus we have:
COROLLARY 8. For any A-degree d, j(d') = weak B-jump(j(d)) and 3j(d") = j(d)’
Some Remarks 1) Theorem 7 establishes the density and splitting theorems for
the B-RE degrees whenever 21 cf(B) = Z]proj(B) =y {for example B = SS’ B a
recursive ordinal). For it is not difficult to show that for any A < these

theorems hold in {Turing degree (B)|A 5 B,B is RE in some C <y B such that

T
C is RE in A}.

2) Shore pointed out to me that another corollary of this work is: The Turing
degrees with jump are not isomorphic to the metadegrees with metajump. For, if
this were the case then the Turing degrees between 0' and 0" would be iso-
morphic to the metadegrees between metajump (0) and metajump (metajump (0)). By

the above results the latter is isomorphic to the Turing degrees between ¢~ and

¢'. But as in Feiner [1970] any arithmetically presented linear ordering can be
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embedded as an initial segment of the Turing degrees between 0 and 0",
but for some large N any topped initial segment of the degrees between 0' and
0" s O(N) presentable. There are arithmetically-presentable linear orderings
which are not O(N)-presentame.

SECTION TWO UNCOUNTABLE REGULAR CARDINALITY

We now investigate how the work of the preceding section can be adapted to
ordinals B of cardinality k,< regular. Assume B = <SB’B> is amenable and
Z]cf(B) = z]proj(B) = k. As before there is a A Sk such that for C<«x, C is
Z](B) if and only if C is Z](LK,A). Moreover Maass' proof of Lemma 2 also

covers the present situation: Thus, if A = (LK,A) then each A-degree contains
a B-bi-immune set. We must now examine the proof of Theorem 1.
The function Jj: A-degrees ——> B-degrees can be defined as before. It is

clearly a monomorphism but a further hypothesis is now needed to show that it is

onto. Given E<S, define E*, E**, E as in the proof of Theorem 1. Also, for

B
¢ CZ—CSB define Cy < gC, iff {(Z'I’ZZ)'Z’I SCz, NCy =P,
B-card(z] U 22) <} ifg{zng)lZ] c C2,22 n C2 =9, B—card(z1 u 22) < k}. "Then ai

before one can show that {{z, ’ZZ)IZ‘I’ZZ €S CE, 2y NE = P} <epf* < gb¥*< gE

g’ 4
and hence E < B E. The problem is in showing E g E. We have E B E**  but to

have E** <¢B E* we need the property: g—‘I [x] € S, whenever x € LK(g is tame).

B

More seriously, to get E* B E we need to have: If z ¢ SB has R-cardinality

<k and Yw € z{wn E ¢ @) then there is z'eSBs.t. z' CE and wnz' %0

for all w € z (similarly for S,-E as well). Of course both of these properties

8

are guaranteed if we assume that S‘3 is {k-closed; i.e., if we assume that any

fivy > SB Y < x belongs to S Thus we have:

8"
THEOREM 9. Suppose B = (SB’B> is amenable and Zlcf(B) = leroj (B) = k,k

regular. Let A = (LK,A) be the Maass collapse of B. Further assume that SB
is {K-closed. Then there is an isomorphism j between the A-degrees and the

B-degrees.

Theorem 3 goes over in this situation if one assumes the ({k-closure of SB'
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For, if f:B < >k is a bijection then the ({x-closure of S_, guarantees

B8
the amenability of (SB’B) where B = {(BO,B],...,BY)lY < K, f(Bd) = § for all

§<vy}. And B <z f, f is ],(5,,B). The remaining results of section 1 aiso

carry over when Ss is {k-closed, provided uses of <¢g 2re replaced by “<B"

To summarize:

THEOREM 10. Suppose B has regular cardinality «, SB is {k-closed.

Then there is A €« and isomorphism j between the K-degrees > k-degree(4)

and the B-degrees > B-degree(A). If d., d, are K-degrees > k-degree(A) then

2

1 2

1,
d, 1is K-RE relative to d, 1iff j¢ 1) is tamely B-RE relative to j(dz),

Moreover j(dl) is B-RE relative to j(dz) iff d, 1is K-RE relative to some

1

d, <4, such that d, is «-RE relative to d,. Thus j(@") = weak B-jump{(j{d))

and j(d") = (3@N'.
In case B8 < (K+)L = least L-cardinal greater than « then A can be chosen

to be a An master code for -SY where Yy is the least ordinal > B such that

there is a A (Sy) bijection B <

> K.
n

If we assume V =L, Friedman [1981b] provides a characterization of those

B8 such that SB is {k-closed in terms of the critical projecta of R. In the

terminology of that paper, SB is (k-closed iff the critical projecta of R all
have cofinality k. We shall have great use for the critical projecta in the next

section.

SECTION THREE SINGULAR CARDINALITY

In this case we do not obtain isomorphisms, only monomorphisms. (We know of
cases where an isomorphism does not exist.) Thus Tet 8 have singular cardinality
x and assume B = (SB’B) ic amenable, E]proj(B) = k. Qur first obstacle js the
fact that the Maass collapse does not apply in this context unless Z]cf(B) = K.
This last condition is a 1ot to hope for when x is singular as «x may very well
be singular inside Sg- However we show that if Z1cf(8) = Z](B) - cof(k) then
nevertheless there does exist a A1 master code for B; i.e., a set Ack,
such that for Ccx, € is J, (LA} iff C is J,(B). We can then use the
structure A = (LK,A) instead of the Maass collapse of B.

LEMMA 11. If zlcf(B) = zl(B) - cof(k), leroj (B) = k then there is a
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ZI(B)bijection g: SB < > Kk which is tame; i.e., g_l[z] € SB for each
z € L. and the function z |—> g_l{z] is ZI(B).
Proof. Much Tike Lemma 4 of Friedman [1981c]. Let o Z]cf(B). Fix a 21(8)

injection f: S, —> k and a Z](B) partition (PYIY < YO) of x into

B
Y, - many subsets of ordertype «. We assume that h(y +1) - hiy) < PY, where
h: Y, —> K is a Z](B) orderpreserving, unbounded function and h(0) = 0. Also
choose an orderpreserving, unbounded 21(89-function k: Y, — B and for each

th approximation to f (thus if graph(f) =

Y < Y, let f' be the Y
A

{xy)[Bl=o(x,y) 1,0 [y then graph (£Y) = L(x.y)] € S ) BN Sy )=

#{x,y)}). We can assume that Range(fY+1)-Range(fY) has orderype « for each

Y <Yy

o Thus we can choose a Z](B) sequence (ley < YO) such that for each

R lY is a bijection between Range(fy+1)~Range(fY) and PY. We are
finally prepared to define:

+ +
T AMON

g(x) = 2 o f x), where vy = least y s.t. x € Dom(

Then g is a Z](B) bijection between SB and «. The tameness of g follows
from the fact that z ¢ LK —> z Nk < h(y+1) for some v < Y, — 2 Nk < RY
— g'][z] can be computed from £ —
COROLLARY 12, Under the hypothesis of Lemma 11 there is a Al master code for
B.
Proof. Let ¢{e,x) be a universal 21 formula and set
T= {(e,x,c)i(SO,B n SO)I = ¢{e,x)}. By Lemma 11 choose a tame g: SB <> K
and let A = g[T]. Then {A N yl|y < k) is 21(8) since by the tameness of g
the sequence (T N g-][Y]|Y < k) fis 21(3). From this it follows that any C
which is Z](LK,A> is also Z](B). But if Ccx is 21(3) then for some e
x € C <—>130'((g{e),q(x),0') € A). As we can assume g [k s Z](LK,A) (for
example, require g(y) = vy +v) this shows that C is Z]<LK,A). —]

Our second obstacle to overcome is that Lemma 2 may not apply in the singular
case. (In fact if « ds singular in S8 and V =L then no subset-of «k is

B-bi-immune.) Instead we need a different way of choosing representatives of the

‘A-degrees so that A and <g agree on these sets. This method is obtained as
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an extension of Lemma 11 of Friedman [1981a].

Definition. C <« is B-reduced if

{(x,y) €S -[x cCynC=p}<pllxoy) el [xeCync=p}

It is clear that if C],C2 C k are B-reduced then C] fBCZ —> C] fACZ.

Lemma 13. (V = L) Suppose K is singular with respect to Zl(B) functions. Then
any A-degree contains a B-reduced set.

Proof. Let Y, T Z = Z] - cof(k) < k. Choose order-preserving, un-
bounded Z](B) functions f: Y, —> B and g: y —> k such that gly) is a

cardinal for each vy < Y,- Choose a parameter p € S, such that f,g are 21(8)

B
with parameter p and for each vy < Y, Tet HY = Z] Skolem hull of g(y) U {p}
inside BY =<Sf(Y)’B n Sf(Y))' For each y < Yoo sY = HY n g(y)+ = least ordinal
not in HY'

Given C <« we let gc(y) = rank (C n g(y)) in the canonical wellordering
of L .- Thus gC(Y) < g(y)+ for each vy < Y, Finally, C* = {§ <k | For
some Y <y, gly) <6 and (8 < Sy + gc(y) or HY n (6,6+)+ 2)}. The sets C
and C* have the same A-degree as the sequences (g(y)|y < yo), (sYly <y, are
both Z](A) and g. and C code the same information.

The point of C* is that if x ¢ HY, X € S8 then whether or not x is a sub-
set of C* or is disjoint from C* only depends on C* n g(y). For, if x ¢ HY
then for all &, u(x n 6+) € HY. So, x < C* iff |xn 6+] <& for each & and
x N g(y) < C*. Moreover, if x € HY, x N [6,é+) P for some & > g(y) then
xNC*+@., Thus xnNC*=90, x € HY--—> x€L. As any x € SS belongs to
HY for some y <y  we see that C* is B-reduced. ——|

We now see how to define the monomorphism j. Assume V = L. Suppose

= (S3-B) is amenable and 14proj(B) = x, ],cf(B) 21 - cof(x). Then if
Z1cf(8) =k define A and j as in section 2. Otherwise let A = (LK,A)
where A is a Ay master code for B8 and for any A-degree d define j(d) =
B-degree(D) where D € d is B-reduced. Then Jj 1is a well-defined monomorphism.
THEOREM 14. If j is defined as above then j i5 an isomorphism between the

A-degrees and the regular B-degrees.
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Proof. Notice that if f: Yo B, g: Y, —> K are Z](B), orderpreserving
and cofinal (yo = X]cf(B)) then any B-reduced set D <« has the same B-degree
as {f(y),D ng(y))|y < v} and this set is regular. Thus Range(j) < regular
B-degrees.

Conversely, suppose E < S, is regular and (similarly to the proof of Theorem

B
1) define E* = {z ¢ 5842 CElv{ze 5812 NE$ P}, E¥* = g[E*) where g comes
from Lemma 11, E a B-reduced set of the same A-degree as E**., As before it is
easy to show that E <g E. But conversely E <A E**,

{{x,y) € LK4x S E**,y N E** = @} < g E¥ by the tameness of g, E* <z E by the
regularity of E. —|

In case « = R, (and V = L) the results of Friedman {1981a] show that the
1

A-degrees are well-ordered. Thus the regular B-degrees are well-ordered. However
it is known that the B-degrees are not well-ordered in this case and thus the
monomorphism j of Theorem 14 is not onto all the B-degrees. It is not known at
present if j 1is onto when « =8uf (In this case the A-degrees are not well-
ordered.)

As in earlier sections one can determine the Range of j on the A-RE degrees
and the inverse image under j of the B-RE degrees. Thus Jj[A-RE degrees] =
Tamely B-RE degrees and j_][B-RE degrees] = {d € A-degrees{d is A-RE relative
to an A-RE e < d}. The proof uses the tameness of g and a slightly modified
construction of B-reduced sets (so as to produce an A-RE B-reduced set in a
given A-RE degree).

Finally we determine under what conditions given an ordinal B of cardinality

«, there exists B < S, such that B = (SS’B> is amenable and satisfies our

B
above hypotheses; i.e., Z]proj(B) = K, Z]cf(B) =} (B)-cof(x). We have already

seen that this implies the existence of an injection g: SB —> k such that

g_] Iy e SB for each y <« (if Z]cf(B) =« then let g be any Z](B) in-
jection SB —> k3 otherwise use Lemma 11). But if g 9s any such injection we
can define B E;SB such that our conditions are satisfied: B = {g_] Fyly < k}.

The regularity of B follows from the key property of g. Clearly leroj(B) =K
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as g is Z](B). And, Z1cf(8) = Z](B)-cof(»c) as there is a 21(3) cofinal
function « —> B: Let f{y) = least & s.t. g_] My € Ss-

Now the existence of g can be completely analyzed using the techniques of
Frienman [1981c) (see the proof of Theorem 9 of that paper). This yields the
next result.

THEOREM 15. (V = L) Suppose B has cardipality Kk and the critical projecta of
B all have cofinality = cofinality(c). Then there is an injection g: SS —_ K

such that g_l rY € §.' for all Y < k. Moreover this last condition implies that

B

there 1s a set A S K such that the K-degrees > k-degree(A) are isomorphic to

the regular f-degrees > B-degree(A). If dl, <.’\2 are K-degrees > K-degree(A) then
dl is K-RE relative to d2 iff j(dl) is tamely B-RE relative to j(dz) and
j(dl) is B-RE relative to j(dz) iff dl is k-RE relative to some d3 < dl s.t.

d; is K-RE relative to d,. Thus j(d') = weak B-jump (j(d)) and j(d") =

Ga@n’.



The Turing Degrees and the Metadegrees have Isomorphic Cones
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