
Set Forcing

Suppose M is a countable transitive model of ZFC

Then M has many set-generic extensions (uncountably many)

Turn this around:

M is a set-generic restriction of V i�

V is a set-generic extension of M

Questions:

1. How many set-generic restrictions does a countable V have?

2. Can we �characterise� the set-generic restrictions of V ?



Laver's Theorem

In fact, a countable V has only countably many set-generic

restrictions:

Theorem

(Laver) Suppose that V is a set-generic extension of M. Then M is

a de�nable inner model of V (with parameters).

Proof. Choose a V -regular κ so that P belongs to H(κ)M , where V

is P-generic over M. We need three facts:

1. M κ-covers V : Any subset X of M in V of size < κ in V is a

subset of such a set in M.

This is because if f maps some ordinal α < κ onto X then for each

i < α there are < κ possibilities for f (i), given by the < κ di�erent

forcing conditions.



Laver's Theorem

2. M κ-approximates V : If X is a subset of M in V all of whose

size < κ M-approximations (i.e., intersections with size < κ
elements of M) belong to M, then X also belongs to M.

This is because if Ẋ is forced not to be in M then we can choose

for each condition a set in M whose membership in Ẋ is not

decided by that condition; no condition can force the intersection of

Ẋ with the resulting size < κ set of elements of M to be in M.



Laver's Theorem

3. If N is an inner model which κ-covers and κ-approximates V

such that M,N have the same H(κ+) then M = N.

By κ-approximation it's enough to show that any set X of ordinals

of size < κ in M also belongs to N (and vice-versa). Build a κ-chain
X = X0 ⊆ X1 ⊆ · · · of sets of size < κ such that X2α+1 belongs to

M and X2α+2 belongs to N. If Y is the union of the Xα's then by

κ-approximation, Y belongs to M ∩ N. But as M,N have the same

H(κ+) they also have the same subsets of the ordertype of Y and

therefore the same subsets of Y . It follows that X belongs to N.

Finally: All of this holds with M,V replaced by H(λ)M ,H(λ) for

V -regular cardinals λ > κ+. So H(λ)M is de�nable in V from λ,
H(κ+)M uniformly in λ, so M is V -de�nable.



Global Covering

Another easy consequence of set-genericity is the following.

Proposition

Suppose that V is a set-generic extension of M. Then M globally

covers V : For some V -regular κ, if f : α→ M belongs to V then

there is g : α→ M in M such that f (i) ∈ g(i) and g(i) has

V -cardinality < κ for all i < α.

To see this de�ne g(i) to be the set of possible values of f (i) given

by the di�erent forcing conditions. We can choose any κ so that

the forcing is κ-cc.

Suprisingly, we now know enough to characterise set-generic

restrictions.



Bukovsky's Theorem

Theorem

(Bukovsky) Suppose that M is a de�nable inner model which

globally covers V . Then V is a set-generic extension of M.

I'll give a proof of this and discuss some re�nements and open

questions.

First suppose that V = M[A] for some set of ordinals A; we'll get

rid of this extra hypothesis later.

Fix a V -regular κ such that A is a subset of κ and M globally

κ-covers V , i.e., if f : α→ M in V then there is g : α→ M in M

so that f (i) ∈ g(i) and g(i) has V -cardinality < κ for each i < α.



Bukovsky's Theorem

The language LQFκ (M)

The formulas of LQFκ (M) are de�ned inductively by:

1. Basic formulas α ∈ Ȧ, α /∈ Ȧ for α < κ.

2. If Φ ∈ M is a size < κ set of formulas then so are
∨

Φ and
∧

Φ.

Each formula can be regarded as an element of H(κ)M . The set of

formulas forms a κ-complete Boolean algebra in M, denoted by BMκ .

A ⊆ κ satis�es ϕ i� ϕ is true when Ȧ is replaced by A.

T � ϕ i� for all A ⊆ κ (in a set-generic extension of M), if A

satis�es all formulas in T then A also satis�es ϕ.

The above is expressible in M for T , ϕ in M and by Lévy

absoluteness, T � ϕ in M i� T � ϕ in V .



Bukovsky's Theorem

Quotients of BMκ : Suppose that T is a set of formulas in BM(2<κ)+ .
Then IT is the ideal of formulas in BMκ which are inconsistent with

T .

Now we prove the genericity of A over M.

Recall that M globally κ-covers V . Let f be a function in V from

subsets of BMκ in M to BMκ such that:

If A satis�es some ψ ∈ Φ then A satis�es f (Φ) ∈ Φ.

Using a wellorder in M we can regard f as a function from some

ordinal into M. Apply global κ-covering to get g in M so that

g(Φ) ⊆ Φ has size < κ and f (Φ) ∈ g(Φ) for each Φ.

Consider the following set of formulas T in BM(2<κ)+ :
T = {(

∨
Φ→

∨
g(Φ)) | Φ ⊆ BMκ , Φ ∈ M}.

Let P be the forcing (BMκ \ IT )/IT the set of T -consistent

formulas modulo T -provability.



Bukovsky's Theorem

Claim 1. P = (BMκ \ IT )/IT is κ-cc.

Proof. Suppose that Φ is a maximal antichain in P . We show that

g(Φ) = Φ (and therefore Φ has size < κ). It su�ces to show that

any ϕ ∈ Φ is T -consistent with some element of g(Φ). Choose any

B ⊆ κ which satis�es T ∪ {ϕ} (this is possible because ϕ is

T -consistent). As T includes the formula
∨

Φ→
∨
g(Φ) it follows

that B also satis�es
∨
g(Φ) and therefore ψ for some ψ ∈ g(Φ).

So ϕ is T -consistent with ψ ∈ g(Φ). �

Claim 2. Let G (A) be {[ϕ]IT | ϕ belongs to BMκ and A satis�es ϕ}.
Then G (A) is P-generic over M.

Proof. Suppose that Φ consists of representatives of a maximal

antichain X of equivalence classes in P . Then T �
∨

Φ, else the

negation of
∨

Φ represents an equivalence class violating the

maximality of X . As A satis�es the theory T it follows that A

satis�es some element of Φ and therefore G (A) meets X . �



Bukovsky's Theorem

It now follows that M[A] is a P-generic extension of M, as

M[A] = M[G (A)].

This proves Bukovsky's theorem assuming that V = M[A] for some

set of ordinals A.

But the same proof shows that M[A] is a κ-cc generic extension of

M for any set of ordinals A ∈ V .

Choose A so that M[A] contains all subsets of 2<κ in V . Then

M[A] must equal all of V :

Otherwise for some set B of ordinals in V , M[A,B] is a nontrivial

κ-cc generic extension of M[A] and therefore adds a new subset of

2<κ to M[A].



Bukovsky's Theorem: Re�nements

The above proof shows that for M a de�nable inner model of V :

V is a κ-cc forcing extension of M i�

M globally κ-covers V

Is there a similar characterisation with �κ-cc� replaced by �size at

most κ�?



Bukovsky's Theorem: Re�nements

M κ-decomposes V i� every subset of M in V is the union of at

most κ-many subsets, each of which belongs to M.

Proposition

V is a size at most κ forcing extension of M i� M globally

κ+-covers and κ-decomposes V .

Proof. For the easy direction, suppose that V = M[G ] where G is

P-generic and P has size at most κ. As P is κ+-cc it follows that

M globally κ+-covers V . To show that M κ-decomposes V ,

suppose that X ∈ V is a subset of M and choose Y ∈ M that

covers X . Let Ẋ be a name for X and for each p ∈ G let Xp consist

of those x ∈ M such that p forces x ∈ Ẋ . Then the Xp's give the

desired κ-decomposition of X .



Bukovsky's Theorem: Re�nements

Conversely, suppose that M globally κ+-covers and κ-decomposes

V . By Bukovsky's Theorem, V is a P-generic extension of M for

some P which is κ+-cc. We want to argue that P is equivalent to a

forcing of size at most κ. We may assume that P is in fact a

complete κ+-cc Boolean algebra which we write as B .

Write V as M[G ] where G is B-generic over M. Take a B-name for

a κ-decomposition Ġ =
⋃
i<κ Ġi of Ġ , where each Ġi is forced to

belong to M. For each i < κ let Xi be a maximal antichain of

conditions in B which decide a speci�c value in M for Ġi . For each

p in Xi let p(Ġi ) denote the value of Ġi forced by p and b(p) the

meet of the conditions in p(Ġi ); b(p) is a nonzero Boolean value

because if Gp is generic below p then Gp must contain a condition

below each element of p(Ġi ). Let D be the set of b(p) for p in the

union of the Xi 's.



Bukovsky's Theorem: Re�nements

Claim. D is dense in B .

If q belongs to P then some r below q forces that q belongs to Ġi
for some i ; we can assume that r extends some element p of Xi .

But then as p decides a value for Ġi , it also forces that q belongs

to Ġi and therefore q is extended by b(p) ∈ D. �

We have characterised κ-cc generic extensions and size at most κ
generic extensions in terms of covering and decomposition

properties. As a result, these properties are Π2 properties of V with

a predicate for M.

Question. Is the property �V is a set-forcing extension of M� a

strictly Σ3 property of V with a predicate for M?



Bukovsky's Theorem: Re�nements

Class Forcing

I don't know a good version of Laver, Bukovsky for class forcing.

Below is a special case.

Morse-Kelley Class Theory MK: Can form new classes by

quantifying over classes.

Models of MK (with global choice) correspond to models of:

1. ZFC− (without Power)

2. There is an inaccessible cardinal κ
3. Every set has cardinality at most κ

Call this theory SetMK.



Bukovsky's Theorem: Re�nements

Theorem

Suppose that M ⊆ V are models of SetMK, M is de�nable in V

and κ is the largest cardinal of V . Then every element of V is in a

κ-cc set-generic extension of M i�:

(∗) For any V -de�nable function f : M → κ there is an

M-de�nable g : M → κ which dominates f .

In terms of models of MK (with global choice) this says:



Bukovsky's Theorem: Re�nements

Theorem

Suppose that (M, CM) ⊆ (V , CV ) are models of MK with global

choice and CM is de�nable in (V , CV ) (by a formula which

quanti�es over classes). Then each class in CV belongs to a

class-generic extension of (M, CM) via a class forcing whose

antichains are sets i�:

(∗) For any (V , CV )-de�nable function f from CM to M there is an

(M, CM)-de�nable function g from CM to M such that f (x) ∈ g(x)
for each x ∈ CM .

If one goes beyond class theory to hyperclass theory (hyperclasses

of classes) then the situation simpli�es greatly. In the other

direction, working with a weak class theory like Gödel-Bernays looks

very di�cult.


