Set Forcing

Suppose M is a countable transitive model of ZFC
Then M has many set-generic extensions (uncountably many)

Turn this around:
M is a set-generic restriction of V iff
V is a set-generic extension of M

Questions:
1. How many set-generic restrictions does a countable V' have?
2. Can we “characterise” the set-generic restrictions of V7



Laver's Theorem

In fact, a countable V has only countably many set-generic
restrictions:

(Laver) Suppose that V is a set-generic extension of M. Then M is
a definable inner model of V' (with parameters).

Theorem

Proof. Choose a V-regular & so that P belongs to H(k)", where V
is P-generic over M. We need three facts:

1. M k-covers V: Any subset X of M in V of size < kin Visa
subset of such a set in M.

This is because if f maps some ordinal o < x onto X then for each
i < o there are < k possibilities for 7(i), given by the < x different
forcing conditions.



Laver's Theorem

2. M k-approximates V: If X is a subset of M in V all of whose
size < k M-approximations (i.e., intersections with size < k
elements of M) belong to M, then X also belongs to M.

This is because if X is forced not to be in M then we can choose
for each condition a set in M whose membership in X is not
decided by that condition; no condition can force the intersection of
X with the resulting size < k set of elements of M to be in M.



Laver's Theorem

3. If N is an inner model which k-covers and k-approximates V
such that M, N have the same H(xk™") then M = N.

By k-approximation it's enough to show that any set X of ordinals
of size < k in M also belongs to N (and vice-versa). Build a x-chain
X =Xo C X1 C--- of sets of size < k such that Xp,41 belongs to
M and X, belongs to N. If Y is the union of the X,'s then by
k-approximation, Y belongs to M N N. But as M, N have the same
H(x™) they also have the same subsets of the ordertype of Y and
therefore the same subsets of Y. It follows that X belongs to N.

Finally: All of this holds with M, V replaced by H(A\)M, H()\) for
V-regular cardinals A > x*. So H(A\)M is definable in V from ),
H(xT)M uniformly in X, so M is V-definable.



Global Covering

Another easy consequence of set-genericity is the following.

Proposition

Suppose that V is a set-generic extension of M. Then M globally
covers V: For some V-regular k, if f : o« — M belongs to V then
there is g : «« — M in M such that 1 (i) € g(i) and g(i) has
V-cardinality < k for all i < a.

To see this define g(i) to be the set of possible values of f(i) given
by the different forcing conditions. We can choose any k so that
the forcing is k-cc.

Suprisingly, we now know enough to characterise set-generic
restrictions.



Bukovsky's Theorem

Theorem

(Bukovsky) Suppose that M is a definable inner model which
globally covers V. Then V is a set-generic extension of M.

I'll give a proof of this and discuss some refinements and open
questions.

First suppose that V = M|[A] for some set of ordinals A; we’ll get
rid of this extra hypothesis later.

Fix a V-regular x such that A is a subset of x and M globally
k-covers V, ie., if f i — M in V then thereisg:a— Min M
so that (i) € g(i) and g(/) has V-cardinality < k for each i < a.



Bukovsky's Theorem

The language LI (M)
The formulas of L9 (M) are defined inductively by:

1. Basic formulas o € A, o ¢ A for a < k.
2.1f & € Mis a size < k set of formulas then so are \/ ¢ and A ¢.

Each formula can be regarded as an element of H(x)™. The set of
formulas forms a k-complete Boolean algebra in M, denoted by B.

A C k satisfies o iff ¢ is true when A is replaced by A.

T E @ iff for all A C k (in a set-generic extension of M), if A
satisfies all formulas in T then A also satisfies .

The above is expressible in M for T, in M and by Lévy
absoluteness, TF ¢ in Miff TE ¢ in V.



Bukovsky's Theorem

Quotients of BM: Suppose that T is a set of formulas in Bé‘é’qﬁ.

Then Z7 is the ideal of formulas in BY which are inconsistent with
T.

Now we prove the genericity of A over M.

Recall that M globally k-covers V. Let f be a function in V from
subsets of BM in M to BM such that:

If A satisfies some ¢ € ® then A satisfies f(P) € o.

Using a wellorder in M we can regard f as a function from some
ordinal into M. Apply global k-covering to get g in M so that
g(®) C ® has size < k and f(P) € g(P) for each O.

Consider the following set of formulas T in Bg“)*:
T={(Vo—Vg(®)|®cBY &cM}

Let P be the forcing (BM \ Z7)/Zt the set of T-consistent
formulas modulo T-provability.



Bukovsky's Theorem

Claim 1. P = (BM\ I7)/Z7 is k-cc.

Proof. Suppose that ® is a maximal antichain in P. We show that
g(®) = & (and therefore ® has size < k). It suffices to show that
any p € ® is T-consistent with some element of g(®). Choose any
B C k which satisfies T U {¢} (this is possible because ¢ is
T-consistent). As T includes the formula \/ ® — \/ g(®) it follows
that B also satisfies \/ g(®) and therefore ¢ for some ¢ € g(P).
So ¢ is T-consistent with ¢ € g(®). O

Claim 2. Let G(A) be {[]z, | ¢ belongs to BM and A satisfies ¢}.
Then G(A) is P-generic over M.

Proof. Suppose that ® consists of representatives of a maximal
antichain X of equivalence classes in P. Then T E \/ ®, else the
negation of \/ ® represents an equivalence class violating the
maximality of X. As A satisfies the theory T it follows that A
satisfies some element of ® and therefore G(A) meets X. O



Bukovsky's Theorem

It now follows that M[A] is a P-generic extension of M, as
MI[A] = M[G(A)].

This proves Bukovsky's theorem assuming that V = M[A] for some
set of ordinals A.

But the same proof shows that M[A] is a k-cc generic extension of
M for any set of ordinals A € V.

Choose A so that M[A] contains all subsets of 2<% in V. Then
M[A] must equal all of V:

Otherwise for some set B of ordinals in V, M[A, B] is a nontrivial
k-cc generic extension of M[A] and therefore adds a new subset of
2<% to M[A].



Bukovsky's Theorem: Refinements

The above proof shows that for M a definable inner model of V:

V is a k-cc forcing extension of M iff
M globally k-covers V

Is there a similar characterisation with “x-cc” replaced by “size at
most k"7



Bukovsky's Theorem: Refinements

M k-decomposes V iff every subset of M in V is the union of at
most k-many subsets, each of which belongs to M.

Proposition

V' is a size at most k forcing extension of M itf M globally
kT -covers and k-decomposes V.

Proof. For the easy direction, suppose that V = M[G] where G is
P-generic and P has size at most x. As P is k-cc it follows that
M globally xT-covers V. To show that M k-decomposes V,
suppose that X € V is a subset of M and choose Y € M that
covers X. Let X be a name for X and for each p € G let Xp consist
of those x € M such that p forces x € X. Then the X,'s give the
desired x-decomposition of X.



Bukovsky's Theorem: Refinements

Conversely, suppose that M globally x™-covers and x-decomposes
V. By Bukovsky's Theorem, V is a P-generic extension of M for
some P which is kT-cc. We want to argue that P is equivalent to a
forcing of size at most . We may assume that P is in fact a
complete k*-cc Boolean algebra which we write as B.

Write V' as M[G] where G is B-generic over M. Take a B-name for
a k-decomposition G = J;_,. G of G, where each G; is forced to
belong to M. For each i < k let X; be a maximal antichain of
conditions in B which decide a specific value in M for G;. For each
pin X; let p(G,-) denote the value of G; forced by p and b(p) the
meet of the conditions in p(G;); b(p) is a nonzero Boolean value
because if G, is generic below p then G, must contain a condition
below each element of p(G;). Let D be the set of b(p) for p in the
union of the X;'s.



Bukovsky's Theorem: Refinements

Claim. D is dense in B.

If g belongs to P then some r below g forces that g belongs to Gi
for some J; we can assume that r extends some element p of X;.
But then as p decides a value for G;, it also forces that g belongs
to G; and therefore g is extended by b(p) € D. O

We have characterised k-cc generic extensions and size at most «
generic extensions in terms of covering and decomposition
properties. As a result, these properties are 1, properties of V with
a predicate for M.

Question. |s the property “V is a set-forcing extension of M" a
strictly X3 property of V with a predicate for M?



Bukovsky's Theorem: Refinements

Class Forcing

| don’t know a good version of Laver, Bukovsky for class forcing.
Below is a special case.

Morse-Kelley Class Theory MK: Can form new classes by
quantifying over classes.

Models of MK (with global choice) correspond to models of:

1. ZFC™ (without Power)
2. There is an inaccessible cardinal &
3. Every set has cardinality at most x

Call this theory SetMK.



Bukovsky's Theorem: Refinements

Theorem

Suppose that M C V' are models of SetMK, M is definable in V
and k is the largest cardinal of V. Then every element of V is in a
K-cc set-generic extension of M iff:

(%) For any V-definable function f : M — K there is an
M-definable g : M — k which dominates f.

In terms of models of MK (with global choice) this says:



Bukovsky's Theorem: Refinements

Theorem

Suppose that (M,CM) C (V,CY) are models of MK with global
choice and CM is definable in (V,C"') (by a formula which
quantifies over classes). Then each class in CV belongs to a
class-generic extension of (M,CM) via a class forcing whose
antichains are sets iff:

(¥) For any (V,CY)-definable function f from CM to M there is an
(M,CM)-definable function g from CM to M such that f(x) € g(x)
for each x € CM,

If one goes beyond class theory to hyperclass theory (hyperclasses
of classes) then the situation simplifies greatly. In the other
direction, working with a weak class theory like G&del-Bernays looks
very difficult.



