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Abstract

Let n be a positive integer. We show that it is consistent (relative
to the consistency of finitely many strong cardinals) that every X!-set
of reals is universally Baire yet there is a (lightface) projective well-
ordering of the reals. The proof uses "David’s trick” in the presence
of inner models with strong cardinals.

1 Introduction.

Let ' C T C P(R) be pointclasses, where I" is not too far away from
['. There is a conflict between every set in I' being ”nice” (being Lebesgue
measurable, having the property of Baire, being Ramsey, each of which con-
tradicts certain doses of choice) and I providing choice-like principles for I'
(every non-empty set in I' contains a I'-singleton or there is a well-ordering
of R in I). For example, Woodin has shown that if every projective set of
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reals is Lebesgue measurable and has the property of Baire and every projec-
tive relation on R? can be uniformized by a function with a projective graph
then ITj-determinacy holds (c.f. [14]).

The present paper also deals with this conflict at the projective level. Let
n>2,I'=3%} and I = A} . Of course, if every I'-set of reals is Lebesgue
measurable then there cannot be a well-ordering of R in I'. But we may ask
whether nevertheless there can be a projective well-ordering of the reals, or
one in IV for that matter.

An answer to this question can be found in the literature. Moschovakis
(cf. [9]) showed that if Projective Determinacy holds then there is an inner
model M™ with a X}, -well-ordering of R and in which A;_,-determinacy
holds (hence if n is odd then in M™ every set in I' is Lebesgue measurable
and has the property of Baire). Moreover, if M,_; denotes the minimal
sufficiently iterable inner model with n — 1 Woodin cardinals then in M,,_,
there is a A} -well-ordering of R and IT},_,-determinacy holds (hence in
M, 1 every set in I' is Lebesgue measurable and has the property of Baire;
cf. [12]).

Let us consider the following question.

Question. Let n > 3. Suppose that every Xl-set of reals is Lebesgue
measurable and has the property of Baire, and that there is a lightface pro-
jective well-ordering of the reals. Does Al | -determinacy hold?

For the case n = 3 or 4 this is refuted by a couple of theorems due to
the first author of the present paper. He showed (cf. [5]): starting from
a Mahlo cardinal in L (or, alternatively, from an inaccessible cardinal plus
#'s), one can construct a forcing extension with a A}-well-ordering of R in
which all 31-sets of reals are Lebesgue measurable and have the property
of Baire; and starting from a Mahlo cardinal plus #’s, one can construct a
forcing extension with a A}-well-ordering of R in which all X}-sets of reals
are Lebesgue measurable and have the property of Baire. (David had earlier
shown that if L has an inaccessible then there is a forcing extension with a
Aj-well-ordering of R in which all X3-sets of reals are Lebesgue measurable
and have the property of Baire; cf. [2].

We here answer the above question negatively for all n < w, as follows.

Theorem 1.1 Let n > 3. It is consistent, relative to the existence of n — 2
strong cardinals, that every Xl -set of reals is Lebesque measurable and has
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the property of Baire, and yet there is a lightface projective well-ordering of
the reals.

Recall that by a theorem of Woodin Al-determinacy implies the existence
of an inner model with a Woodin cardinal, and hence the existence of tran-
sitive models with infinitely many strong cardinals, so that Godel’s theorem
shows that 1.1 provides a negative answer to the above question, granting
the consistency of strong cardinals.

We shall obtain 1.1 as an immediate corollary to the following two theo-
rems.

Theorem 1.2 Let n € w. Let L[E"] denote the minimal inner model closed
under the §-operation if n = 0, viz. the minimal fully iterable inner model
with n strong cardinals if n > 0.

Then there is a real a (a =0 if n =0), set-generic over L[E™], such that
in L[E™)[a] every X, ,-set of reals is universally Baire, there is a A} 4(a)-
well-ordering of the reals, and a is a II},, ,-singleton (and hence there is a
A, s-well-ordering of R).

We shall in fact see that a may be chosen in such a way that every X}, ,-
set, of reals is Lebesgue measurable and has the property of Baire. Refining
this observation we can also show:

Theorem 1.3 Let n > 0, and let L|E™| be the minimal fully iterable inner
model with n strong cardinals. Suppose that in L[E™] there is an inaccessible
cardinal above the strong cardinals.

Then there is a set-generic extension of L{E™] in which every 3. ,-set
of reals is universally Baire, every 27114_3—86?5 of reals is Lebesque measurable
and has the property of Baire, and there is a A, 5-well-ordering of R.

Recall that a set A C R is called universally Baire if for every topological
space X and every continuous f: X — R it is the case that f~'”A has the
property of Baire (in X'). If A C R is universally Baire then A is Lebesgue
measurable, is Ramsey, and has the Bernstein property (and, trivially, has
the property of Baire, cf. [3] Theorems 2.2 and 2.3). In the following, as in
the statements of 1.2 and 1.3, we shall always suppose that L[E"| as well as
enough generics exist.



We don’t know whether the models of 1.2 and 1.3 have a Al ,-well-
ordering of their reals. We hence have to leave unanswered the strengthening
of the above question in which ”projective” is replaced by A}, (for n > 5).

We also don’t know whether the large cardinals used for constructing the
models in 1.2 and 1.3 are actually necessary, although the 3™ section will
provide partial evidence in favor of this. It is open as how to get more than
an inaccessible cardinal in L from the assumption of the above question.

The paper is organized as follows. Section 2 provides the necessary inner
model theory, and states a crucial technical lemma due to Woodin. Sections
3 and 4 contain proofs of 1.2 and 1.3, respectively, using heavily ideas of R.
David (cf. [1], [2], and also [4]). We shall in fact only prove 1.2 and 1.3 for
the case n > 0, as the case n = 0 is easily seen to be given by [2] (or may
be derived by simplifying the arguments to follow). The short Section 5 lists
three key open problems.

We want to emphasize that this paper contains yet another example in
which inner model theory (in fact, core model theory proper) is used for ob-
taining upper bounds for the consistency strength of set theoretical hypothe-
ses. Traditionally, core model theory is designed for getting lower bounds.

2 Preliminaries.

Woodin has seen how strong cardinals may be used to propagate univer-
sal Baireness in certain generic extensions. More precisely, he has shown
the following theorem which will become crucial for the construction of our
models.

Theorem 2.1 (Woodin) Let 0 < n < w, and let k1 < ... < Ky be strong
cardinals. Let G be P-generic over V for some P € V, and suppose that
(22"")V becomes countable in V[G]. Then in every set generic extension of
VI[G], every X}, ,,-set of reals is universally Baire.

In fact, in V|G] there is a definable sequence (Tp,, Spm:2 < m < n+2) of
proper class sized trees on w X OR such that:

(a) S is the Shoenfield tree for a universal Xi-set of reals in every (set-
generic) extension,

(b) for 3 < m < n+2, S, is Tn_1 reorganized so as to have p[Sp] =
IR p[Tr,_1], and



(c) for2<m <n+2, forall p.o.’s Q € V|G|,
Q I- plTn 1 o] = R\ p[Si [ o]
for sufficiently large a.

Notice that the existence of the sequence (T},,,S5,:2 < m < n+ 2) im-
plies that every X! 4o-set of reals is universally Baire (in every set-generic
extension) by the main characterization of universal Baireness from [3]. For
a proof of 2.1 see [15] (cf. also [3] p.240).

We now turn to the inner model theory. We shall presuppose that the
reader is familiar to a certain extent with [13]. In order to compute the
complexity of the canonical well-ordering of the reals in the models we are
about to construct, we shall also have to use some of the machinery of [8].

In the sections to follow we shall make heavy use of the fact that the
ground model we are starting with will be the core model of all of its set-
generic extensions. This is true if the ground model is a minimal fully iterable
inner model for a given large cardinal assuption (roughly) below one Woodin
cardinal. In particular, it will be true if the ground model happens to be
L[E™|, some n < w, the minimal fully iterable inner model with n strong
cardinals.

Suppose that V is closed under #’s (i.e., for any set x C OR, z* exists),
but there is no inner model with a Woodin cardinal. For any set + C OR, let
K* (of height the least z-indiscernible) denote the core model built inside

o
2*. By a "local definability” property, it is true that for all o < oo, JX
is stable on a cone of x’s, so that we may define a global core model K by
letting

!
K K®
Jo =Ty

for x having a large enough constructibility degree. (This ”trick” is well-
known among inner model theorists.) Throughout this section, the letter K
will be reserved for denoting the model constructed in this fashion.

Now let n > 0, and suppose that V' = L[E"]. In particular, then, V is
closed under f’s. Moreover, it is not too hard to check that K = V in this
case. (This quickly reduces to some absoluteness of iterability fact.) Also,
KV = K for any G being set-generic over V. (Cf. [13].)

Let n < w. For our purposes, a premouse M is called n-full iff there is
a universal weasel W > M having the definability property (see [13] 4.4) at
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all kK € M such that jKM = "there are < n many strong cardinals.” It is
straightforward to verify that if W > M witnesses that M is n-full then W
has the hull-property (see [13] 4.2) at all K € M such that JM | ”there
are < n many strong cardinals” (cf. [8] 1.3). One of the main results of
[8], namely Corollary 2.18 (a) which was shown by the second author of the
present paper, is that the set of all reals coding n-full premice is 11} +3- (The
informed reader will notice that the concept of ”n-fullness” of [8] is just a bit
stronger than the one defined above.)

Lemma 2.2 Suppose that V is closed under §’s. Let 1 < n < w, and suppose
that there 1s no inner model with n strong cardinals and a measurable above
them all. Let o be an infinite cardinal of K, and let M > JK be a premouse
with M |= "« is the largest cardinal.”
Then M < TE .« iff M is (n — 1)-full. Moreover, the set of reals coding
Kk is 1L} 5 in any code for JX.

PROOF. As to the first part, ”=" is trivial, so let us show "<«. Let Wp>M
witness that M is (n — 1)-full, and let K’ be a very soundness witness for
afiK. Let @ denote the common coiterate of W, K.

Claim. The iteration is above «a along the main branch on the W-side.

PROOF. Suppose not. Let 7y and mxq be the respective maps obtained
from the main branches on the W- and K'-side. Set x = c.p.(mwg), so that
k < o by assumption. Let I' be a class of fixed points under both my ¢ and
T which is thick in W, K', and @ (see [13] 3.8 through 3.11).

Of course, J has < n many strong cardinals, because otherwise we
would end up with an inner model with n strong cardinals and a measurable
above. By the above remarks, W hence has the hull- and definability property
at all K < xk which are strong in JY, and W has the hull property at .
Moreover, K’ has the hull- and definability property at all v < a™%.

Suppose k& = c.p.(Tkrg) < K, so that & is easily seen to be strong in
JE = gW. Then & = 7W[a, b] where 7 is a term, a € [£]<¥, and b € [[]<¥.
Hence mxig(k) = 79a, b] € ran(rg:g). Contradiction!

Repeating the same argument with x = 7% [a, b] for some term T, a €
[k]<¢, and b € [['|<¥ shows that actually we must have x = c.p.(mxqg). This
readily implies that W, @, and K’ all have the same P(k), just written P(x)
in what follows.



Let X € P(k). As W has the hull-property at x we have X = 7"[a,b]Nx
where 7 is a term, a € [k]<¥, and b € [[|<¥. For & < k we have that
€€ 1mW[a,b]iff € € 79a, b] iff € € 75 [a, b], so that also X = 75'[a, b]N k. But
then for 8 < min{mwo(k), Trio(r)} we get that 8 € mwo(X) iff 8 € 79[a, V]
iff 5 € mgig(X). This finally would mean that the two first extenders used
for getting mw g and mxig are compatible. Contradiction!

O (Claim)

In particular, M < JW W = JﬁQ, as « is the largest cardinal of M.
Hence we are done in the case that Q@ = K'.

Otherwise let v be the index of the first extender used along the main
branch on the K’-side. Of course, ¥ > «, and because v will be a cardinal
in @ we have that v > a*?, and thus M < J%, < J2 = JX'. But
atl = oK' > o+@ 5o that in fact M < K, as desired.

This proves the first part. But now we have that M = JaliK iff Mo JK,
M | "« is the largest cardinal,” and M is (n — 1)-full, and for all A/ such
that N> K, N = 7« is the largest cardinal,” and A is (n — 1)-full we have
that ' < M. As (n—1)-fullness is IT}, , , in the codes, this proves the second
part.

0 (2.2)

As a simple corollary to 2.2 we get that under the hypotheses of 2.2
KNHCis ¥ ,,. (This generalizes a result of Jensen and Mitchell, cf. [13]
p. 85f.) Despite of [7] 3.6 (proving a weaker statement), both 2.2 and this
corollary seem to be new. Let us state the latter in the following way.

Corollary 2.3 Suppose that V is closed under §’s. Let 1 < n < w, and
suppose that there is no inner model with n strong cardinals and a measurable
above them all.

Then M < J% and M NOR is a cardinal in K iff [ M is (n — 1)-full,
1

and IF o < M NOR is a cardinal of M and N > TM is (n — 1)-full with
largest cardinal o« THEN N < M ].
In particular, the set of all reals coding some /\/l<1._7 with MNOR being

a K-cardinal is 11}, 5. Moreover, KN HC is X, in the codes.



PROOF. Straightforward, using 2.2 and the fact that (n — 1)-fullness is
IT), . , in the codes.

O (2.3)
We shall need later:

Corollary 2.4 Suppose that V is closed under §’s. Let n < w, and suppose
that there 1s no inner model with n strong cardinals and a measurable above
them all. Assume that K has n strong cardinals k1 < ... < K, such that
A =g <wy.

Then the set of reals coding J¥ is 1} ;.

PROOF. It is clear that that JX is the longest initial segment of K with
height a K-cardinal and satisfying ”there are n strong cardinals, the largest
of which is the second largest cardinal.” But then 2.3 easily gives the result.

O (2.4)

We shall be able to arrange later that under certain circumstances there
is a II}, , ,-singleton coding J¥.

We now have to turn towards condensation. In general, the condensation
properties provable for K are much weaker than the ones provable for L.
However, in the very special case that K = L[E"] for some n < w we get
that K satisfies an ” L-like” condensation lemma. We state it in the form in
which we shall need it.

Lemma 2.5 Let 0 < n < w, and set E = E™. Let k1 < ... < K, denote
the strong cardinals of L|E]. Let a > kit B e st Jo|E] is cardinal-correct
in L{E], i.e., all cardinals < o in J,[E| are also cardinals in L[E]. Let
0: M =y, Jo|E] where M is transitive and o | i 41 = id.

Then M = J5[E] for some a < «.

PROOF. In fact 2.5 is a consequence of the argument for Lemma 6.1 of
[11]. We may of course assume w.l.o.g. that o # id, and let J denote the
critical point of 0. Using o, any iteration of the phalanx P = ((J,[E], M), 9)
can be copied onto J,[E] to give an iteration of J,[E], so that in particular
P is iterable.



We may hence coiterate P with .J,[F], getting iteration trees 7 on P and
U on J,[E]. By copying T onto J,[E] we get T on J,[E] together with an
embedding 6: M7 — M. In the case that 7J, exists and M7 is above
Jo[E] we also have that 7. = om].

Claim 1. M is above M.

PROOF. Suppose not, so M7 is above J,[E]. If ML > MY or there were
a drop on the P-side then there wouldn’t be a drop on the J,[E]-side and

the map ¢ o 74, would give a contradiction with the Dodd-Jensen Lemma.

Similarily, if M7 < MY or there were a drop on the J,[E]-side then there
wouldn’t be a drop on the P-side and the map 7], would give a contradiction
with Dodd-Jensen.

Hence M7 = MY and there’s no drop on either side. Let £ be an ordinal.
We now have 7 (§) < ml, by Dodd-Jensen. Similarily, we have m (£) <

0o p

& o myt(€) by Dodd-Jensen; but 7], = & o 7], s0 G 0 . (§) < G o mH (£),

Ooco 0oo? Ooo (I[e%9]

and hence 7/ (&) < 74 (£). We have shown that m],, = 7., giving the

0oc0 0c0?
usual contradiction.

O (Claim 1)

Claim 2. 7] exists, and in fact M7 = M.

U
0o

would contradict the Dodd-Jensen Lemma.

PROOF. If there were a drop on the P-side of the comparison then 7
would exist and the map & o
Hence 7] exists. i

Now suppose that M7 # M, let F be the first extender used along
[0, 00]7, and let u be its critical point. By Claim 1 and what has been shown
so far we have that p > ¢ and pu is a cardinal in M. Then o(y) is a cardinal
in J,[E], hence in L[E] by cardinal-correctness, which implies that every x;,
0 < i < n, is strong in Jy(, [E]. So using o every x;, 0 < i < n, is strong in
TM.

g But this is now easily seen to imply that the model where F'is taken from
provides a sharp for an inner model with n strong cardinals. This contradicts
the choice of L[F] as the minimal (fully iterable) inner model with n strong
cardinals.

O (Claim 2)



Notice that the second part of Claim 2 immediately gives that MY > M:
this is clear if there is a drop on the main branch of I/; but if not we have
MYNOR>a> MNOR.

Claim 3. MY = J,[E].

PROOF. Suppose not, and let F' be the first extender used along [0, ooly,
and let p be its critical point.

Let us first assume that p < 6. Using a "minimality of L[E]” argument
as above it is then straightforward to check that u = k; for some 0 <7 < n.
Let v be the index of F. Then v is a cardinal in MY | and hence in M by
MY > M. Moreover, JM does not satisfy that k; is strong (minimality
again!), so that x; is not strong in J,(,[E].

But using o we have that o(v) is a cardinal in J,[F], and hence in L[E] by
cardinal-correctness. So after all x; must be strong in J,(,y[E]. Contradiction!

So i > 6. But we can now again just vary the "minimality of L[E]”
argument from above. We shall have that y is a cardinal in MY, and hence
of M by MY > M. Thus o(u) is a cardinal in J,[E], and hence of L[E] as
well. But then every x;, 0 < i < n, is strong in J,(,)[E], and hence is strong
in jp{"‘ as well. But then the model where F' is taken from provides a sharp
for an inner model with n strong cardinals. Contradiction!

O (Claim 3)
0 (2.5)

The reader will have noticed that by the above proof the hypothesis of
2.5 can be further weakened.

3 Proof of 1.2.

Throughout this section we fix some n < w, n > 0, and we assume L[E™|, the
minimal fully iterable inner model with n strong cardinals, exists. We shall
write L[E] = L[E"]. Let k1 < ... < Ky be the strong cardinals of L[E], and
set A = T As explained above, L[FE] is the core model of all set-generic
extensions of L[E].

To a certain extent, the construction to be described closely follows [1].

However, there are some complications here, as we force over L[F] rather
than L.
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PROOF of 1.2. To begin with, we define a sequence (Ty:k < w) of AT-
Suslin trees inside L[E]. Given a tree T" and an ordinal o we write 7 for the
a'h level of T. We define the T}’s by simultaneously constructing all 72’s by
induction on a < A*¥). We shall have that T C ©2, and Ty = U+ T¢
(where A\t = ATEED) ordered by C.

Work inside L[E] until further notice. We set z € T iff x = 0, and
€ TP iff x = y70 or = y"1 for some y € T2. If o is a limit ordinal of
cofinality < A then we let z € T iff x [ 8 € T,f for all § < a (noticing that
we only get < A<* = \ many branches).

Now suppose that « is a limit ordinal of cofinality A. Let n = n, be least
such that (T,f: k <w,B < a)€ J,[E], every set has cardinality < A in J,[E],
cf(n) = A, and J,|E| = ZF~. Inside J,[E], let us consider the forcing

P, ={pe“V:pk,&) € | J T{ for all (k,&) € dom(p)},

B<a

ordered by p’ <p, piff p'(k,&) D p(k, &) for all (k,&) € dom(p). In V' (which
is L[E] for the moment), we may pick some P,-generic over J,[E] (notice
<AIE] € J,|E], and P, is < A-closed). Any such generic gives A many
branches for each (J,_, TP, We let (T2: k < w) be the result of adding these
branches at level a, for the <,g-least P,-generic over J,[E].

This defines (Ty: k < w). For X C w we write P for [, . Tk, and we
write P = P¥. So forcing with P adds cofinal branches thru the 7}’s.

Claim 1. Let X C w. Then P¥ is < )A-closed and has the A\T-c.c. In
particular, 7} is a Suslin tree in L[E]"**" for any | < w.

PROOF. < A-closedness is trivial. Let A C PX be a maximal antichain
in PX. Let o: J,[E] = Jy++|E] be elementary such that o [ A =id, 7 < AT,
and A € ran(o). (Such a map exists by 2.5.) Let a = c.p.(0). We may
assume that cf(a) = A.

It is easy to see that (T’:k < w, < a) € J;[E]. But also n = 1, > T,
because @ = A' in J[F], whereas every set has size < X in J,[E]. In
particular, P, € J,[FE], and using the elementarity of o we get that every
f € Tliex Us<a T? is compatible with some element of o= 1(A).

So if p € P,, we can easily find a ¢ <p, p with the same domain as p
such that for all (k,&) € dom(p) with k € X, q(k, &) extends some element
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of 071(A). Thus by a straightforward density argument, every z € T, for
k € X, extends some element of o=1(A).
Thus 07! (A) is maximal, A = ¢7!(A), and A has size < \.

O (Claim 1)

Stepping out of L[E], we now force with (P, @), where @ = Col(w, ).
Fix a P-generic over L[E], and let B = (By: k < w) be the sequence of cofinal
branches obtained from the generic (essentially, B is the generic). Pick G
being Q-generic over L[E][B]. Then A*LEl = \+LIBIB] — LEIBIC wpjep
we shall from now on denote by ws.

From Claim 1 we easily get:

Claim 2. Let X C w, X € L[E]. Then PX has the c.c.c. in L[E][G]. In
particular, forcing with (Q, P*\%) over L[E] does not destroy Suslinness of
1;, for any [ < w.

We may fix some recursive bijection e: w — <“2. We have (<“2,C) € J, 4
is a tree, any two cofinal branches of which give a pair of almost disjoint (a.d.)
subsets of w via e. Let us fix (ax: k < w) € L, obtained from the first (in <z)
w many branches in L thru (<¥2,C). Then (ay: k < w) is definable (without
parameters) inside any transitive structure S O J, -

Let x C w be any real. We then let

z% = {k < w:x Nay is finite }.

For S as above and x € S we have that (%)% = 29¢. We also want to have
a notation at hand for a second decoding device. Given & C w, we define
E Cwxwby (k1) € Eiff T'(k,l) € x (T being Gddel’s pairing function),
and we let

M, = the transitive collpse of (w, E),

provided that E is well-founded and extensional (if not, we let M, be unde-
fined). Hence if S is admissible and x € S then (M,)% = M, (if it exists).
We shall also have to deal with the function sending x to M ac.. Let us write
M for M aec.

Now pick a real ¢ C w (inside L[E][B][G]) such that M, = J,[E]. We
may and shall assume that L[E|[B][G] = L[E][B][g]. We want to force over
L[E][B][g] to obtain a real a such that g = a?%¢ (hence M* = Jy[E]), and a
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is a IT}, , ,-singleton inside L[E][a]. It will then be easy to see that L[E][a] is
as desired.

Let us fix (a;:7 < wy) € L[E][g], obtained from the first (in <pgg)) wi
many branches in L[E][g] thru (<¥2, C). Notice that for k£ < w, a; has now
been defined twice, but the point is that both definitions yield the same
object. In particular, the a;’s form a family of a.d. subsets of w. The forcing
R (for adding a) consists of conditions p = ({(p), r(p)) where l(p): k — 2 for
some k < w and r(p) is a finite subset of wy. We set ¢ = (I(¢),7(q)) <rp =
(l(p),r(p)) iff l(q) D l(p), r(¢) D r(p), and the following holds true:

Vk [k < dom(l(p)) Nk € g =

{m € dom(l(q)) \ dom(l(p)): l(g)(m) = 1} Nay = 0],
Vk Va [k < dom(l(p)) Nl(p)(k) =1ANa €r(p) N By, =

{m € dom(l(q)) \ dom(l(p)): 1(g)(m) = 1} N datwi2e = 0], and
VEk Ya [n < dom(l(p)) ANMl(p)(k) =0Aa € r(p) N Bogy1 =

fm € dom(i(g)) \ dom(I(p)):1(g)(m) = 1} N Garwpansn = 0.

Let H be R-generic over L[E][g], and let a C w be such that | J,c 5 l(p) is its
characteristic function. Clearly:

Claim 3. Vk (k € g & aNay is finite ), i.e., g = a%¢, and J,[E] =
Setting Dy = {a: a N agrwik 18 finite }, we also easily get

Claim 4. Vk (k € a = Dy, = Bop A Doy = ),

and

Claim 5. Vk (k ¢ a = Doy = O A Doy 1 = Bajy1)-

As in [1], the following two claims are crucial.

Claim 6. Vk (k € a = T4 is Suslin in L[E][a] ).

Claim 7. Vk (k ¢ a = Ty is Suslin in L[E][a] ).

13



PROOF. We give the proof of Claim 6, that of Claim 7 being identical
modulo notational changes. Suppose that [ € a, but Ty, is no longer a
Suslin tree in L[E][a]. Set T = Ty1. Essentially, (G, (By:k # 20 + 1))
is (Q, P*\2+1})_generic over L[E]. Moreover, there is a canonical forcing
R’ € LIE][G][(Bg: k # 21 + 1)] such that

(P,Q)* R=1[(Q, P\ )« R %T.

(R’ is defined exactly as R except that we require that [(p)(l) = 1 and rewrite
the definition of <g so as not to mention Bygi1.) It now suffices to show
that 7T is still Suslin in L[E][(G, (By: k # 2l + 1),a)].

By Claim 2, T is still Suslin in L[E][(G, (Bg: k # 2141))]. It hence remains
to show that forcing with R’ over this model does not add an antichain A C T
of size wy.

So let A be a name for a maximal antichain A in T, and let p € R’ be
such that

p |- Ais a maximal antichain in 7.

Let A ={z €T:q |- & € A, some q<p p}. As A’ D A, it suffices to show
that A’ is countable in L[E|[G][(By: k # 2l + 1)].

Let us work in L[E][G][(Bg: k # 20 +1)], and suppose that A’ is uncount-
able. For any x € A’ we may pick ¢, <p p with ¢, |- = € A. Of course,
@ = {g,: x € A’} cannot be countable, as otherwise there were an uncount-
able A" C A’ such that ¢, = ¢ for all x,2’ € A”. But such A” would also
be an antichain in 7.

So @ is uncountable. But then there is an uncountable A* C A’ such that
I(qz) = l(gy) for all z, 2" € A*. In particular, any two conditions ¢, g, in
A* are compatible, which implies that x, z’ itself are incompatible. But now
we get that {z € T: ¢, € A*} is an uncountable antichain. Contradiction!

We have thus shown that A’ and hence A must be countable, so that T
is still Suslin in L[E][(G, (By:k # 2l + 1), a)].

O (Claims 6, 7)

We are now going to write down a formula showing that a is a II},,-
singleton inside L[E][a]. In order to do this we have to relativize the con-
struction of (Ty:k < w), our sequence of Suslin trees in L[E], as well as
(a;:i < wy), our sequence of pairwise a.d. subsets of w.
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Let N be a premouse with a largest cardinal  which actually happens
to be a double successor cardinal in A'. We may then, working inside N,
construct a sequence (T{V:k < w) of trees of height 7 by using a word for
word repetition of how (7: k < w) was constructed in L[E], but with every
occurence of ” L[E]” replaced by " A, and with " \” replaced by ”the prede-
cessor of n in N/.” Further, if z is any real with A/[z] admissible such that

Nz] N, [w])

wy © exists then we shall write (a; *:4 < w{v for that sequence of pairwise
Nz]

a.d. subsets of w obtained from the first (along <yfy]) wi
in NV[z%€] thru (<2, C).
We now consider the following formula, abbreviated ®(z):

many branches

"Mk = J,\[E], and

IF (a) N is (n — 1)-full, N' > M3,

(b) MXNOR is the second largest cardinal of N,

(¢) Nz] = ZF~,

(d) (TV:n < w) and (afv T < w{v[w]) are as described above, and
(€) (BN:n < w) is such that BY " = {a:a N agfjjc is finite },
THEN we have that:

(a)’ if k € x then BA"" is a cofinal branch thru Ty, and

(b)" if k ¢ x then Byl is a cofinal branch thru T3y ,.”

Claim 8. {z: ®(z)} is a II}, ,,-set of reals.
Proor. This readily follows from 2.4.

O (Claim 8)
Claim 9. In L[FE][a], for all € R we have that ®(z) iff x = a.

PRrOOF. We work inside L[E][a]. First let € R be given such that ®(x)
holds. Suppose that  # a, and suppose w.l.o.g. that there is [ < w such
that | € x, yet [ ¢ a, so that in particular Ty is a Suslin tree by Claim 5.
(Otherwise we can pick [ € a \ x and consider Ty 1, being Suslin by Claim
4.)

We may now pick o:N[z] — J,,[F][z] with N being countable and
c.p.(c) > A. By 2.5 we have that N’ = J,[E] where A\ < 7 < w;. Notice
that AN = c.p.(0), which is sent to w; by o.
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We have that M} = J,\[E] by the first part of ®(x), so that A and z
certainly satisfy the IF part of ®(x). We have that a(TQ{:[E]) = Th,.

From (a’) we now get that B)* € N[z] is a cofinal branch thru 73", so
that by the elementarity of o there is a cofinal branch (in J,, [E][z]) thru T%.

Contradiction!

Conversely, we want to show that ®(a) holds. Well, the first part of ®(a)
is fulfilled by Claim 3. Moreover, for any A as in (a) through (c) of the IF
part of ®(a) we have by 2.2 that N'= J,[E] where A\ < 7 < w;.

But then (af\/’a:i < wf[[a]) = (a;:1 < wi\[[a]) and B,va’a = B, NN are
claer. Moreover, we claim that T3 = Ty, NN, in fact that (T)V:k < w) =
(Tlc N N: k< Cc)).

To verify this, one has to show (T¢)Y = T for all k < w and all a <
w1 = \*N by induction on a. Notice that *aNL[E] C N, so that the only
non-trivial case is when « has cofinality A (both in N and in L[E]). But
then 7, < AtV is easily seen, so that (T2)Y = T follows from the choice of
e,

But now (a’) and (¥') are clear.

O (Claim 9)

Now by virtue of 2.1 and Claims 8 and 9, in order to finish the proof of
1.2 it suffices to show:

Claim 10. In L[E][a], there is a A} ;(a)-well-ordering of R.

ProOF. Using the fact that (P, Q) * R has the AT-c.c., it is easily seen
that R C J,,[F][a]. Setting P = J,,[F][a], the reals of L[F][a] may hence be
well-ordered by <p, the order of constructibility of P.

As J\[E] = M2, 2.2 gives that for any z,y € RN L[E][a], z <p y iff

AN (N is (n — 1)—full, p,(N) = ORN M
N> M,, and = <p y).

This is a X}, 5(a)-relation. Hence <p is a A, s(a)-well-ordering of R N
L[E][a].

O (Claim 10)
O (1.2)
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4 Proof of 1.3.

As in the last section we fix n < w, n > 0, and we assume L[E"|, the minimal
fully iterable inner model with n strong cardinals, to exist. However, we shall
now assume that L[E"] has an inaccessible cardinal above its strong cardinals.
(This is for example the case if in V' there is an inaccessible cardinal above
the strong cardinals of L[E™].) Again, we shall write L[E] = L[E"], we let
K1 < ... < Ky be the strong cardinals of L[E], and we let > k, be the least
inaccessible in L[E] above k.

The construction to follow will absorb the construction of the previous
section, and it will heavily use the key idea of [2] (for a general formulation
of David’s trick, cf. [4]). We shall make use of the following little lemma
(which is well-known).

Lemma 4.1 Let A C R, and suppose that there is an inner model W with
countably many reals and a tree (on w X K say, for some ordinal k) T € W
such that A = p[T| (in V). Then A is Lebesque measurable and has the

property of Baire.

PROOF. For a real # we have that x € A iff x € p[T] iff W{z]| = x € p[T],
so A is Solovay over W. But the set of all reals not being random over
W is null, and the set of all reals not being Cohen over W is meager (by
Card(R N W) = Rp), and hence A is Lebesgue measurable and has the
property of Baire.

O (4.1)

It is a simple observation that 4.1 can be used to get a real a, set-generic
over L[E] such that in L[E][a] every (lightface) X} ;-set of reals is universally
Baire whereas there is a A, ;(a)-well-ordering of the reals. (For example,
just let a be a code for some Col(w, iy T ¥)-generic over L|E].) Being
familiar with the methods of the preceding section one may then find some
such a being a II} , ,-singleton.

This idea can be exploited a bit further to give a

PROOF of 1.3. This time, we have to start from a sequence (T}:i <
nAk < w) of n*t-Suslin trees inside L[E]. In fact, we construct this sequence
in exactly the same way as we had constructed (T;: k£ < w) in the proof of 1.2,
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except that A\ is replaced by n, and we want to obtain 7 many trees instead
of just w many. We shall not repeat the details of the construction here.

For X C 1 x w we write P* for [, ,cx T}, and we write P = P7*.
We shall leave it to the reader to formulate and verify analogues to Claims
1 and 2 in the previous section. They play the same role here as they played
there.

Forcing with PI@#)} over L[E] gives a generic By, a cofinal branch thru
the tree T¢. We want to code Bj "nicely” by A%, a certain bounded subset of
1. Before actually doing this we want to illustrate the method by describing
a simplified version of the forcing which is to come.

Fix (a;:1 < n*) € L[E], a canonical sequence of pairwise a.d. subsets of
n, obtained in a fashion as in the previous section. Let Q¢ be the standard
a.d. forcing for coding B{ by a subset of 1, using (a;:i < n™). Forcing with
Qi over L[E]|[B}] adds A% C n coding B, and Q% is < n-closed and has the
nt-c.c.

We now let © denote the theory ZF~+ "there is exactly one inaccessible
cardinal, also being the second largest cardinal.” If A/ = © we denote by
nV its inaccessible cardinal. We may also denote by (a}V:i < (fV)*N) e N/
a canonical sequence of pairwise a.d. subsets of 7. Moreover, as in the
previous section, we may let ((T7)V:i < nV,k < w) denote the sequence of
(nM) N Suslin trees being defined in A in exactly the same way as (1}:i <
N,k < w) is defined in L[E].

We now consider a forcing Q% for adding A%, defined as follows. We let
conditions be functions p: § — 2 for some ¢ < 7 and such that the following
holds true:

VNALE] (NEOANA N pIVEOAi<N =
{e e (THN : a¥ N AL is bounded in 7V}
is a cofinal branch thru (T} ).

Claim 1. For all p € Q% and all § < 7 there is some g <qi P with
dom(q) > 6.

ProOOF. Easy. Just pick ¢ such that dom(q) > max{d, dom(p) + w} and
such that {n < w:gq(dom(p) 4+ n) =1} codes a well-ordering of length ¢.

18



O (Claim 1)
Claim 2. Qi is < n-distributive (in L[F][AL]).

PROOF. Let (D, < 7 < ) € L[E][AL] be a sequence of open dense
subsets of Q%, and let p € Q. Notice that {p, (Dn:a < )} C Jy+[E][AL].

We define (X,:a < 7) by the following recursion: X, = the smallest
X < J+[E[AL] with {x;},4,p, (Da: o < )} C X and nNX being transitive,
Xo11 = the smallest X < J,+[E][A%] with X, U{X,} C X and nN X being
transitive, and Xy = |J,., Xa for a limit ordinal A < . By 2.5, all X,’s
condense to models of the form J,[E][AL N 3]. Le., we get

ot Np = Jo [B[AL N Ba] = X, < Jye+[E][AL],

where f3, is the critical point of o4, and 04(3,) = 1. Notice B, = V=,

Next, we aim to define a sequence (p,:a < 7) of conditions such that
Po = D; Pat1 = the least ¢ <gi po With ¢ € Xot1, dom(q) > Ba, and g € Do,
and for limit ordinals A <7, px = U<\ Pa-

It remains to show that this latter recursion does not break down, i.e.,
that p,; € Q% is defined. Well, the successor step does not cause any problems
due to Claim 1 above. So let A < 77 be a limit ordinal. Notice that £, <
dom(pa+1) < Pas1 for a < A, so that dom(py) = Ba.

Let N'<L[E] be as in the definition of the conditions. Then NNOR < 7y,
because (B,:a < \) is definable over Ny and hence if NN OR > v, then
(Ba:ax < A) € N would witness that ) is singular in N, contradicting
NAL N By, pa] E ©.

But then 7V = ™ = By, and (T} = (T))* NN by a reasoning as in
the proof of Claim 9 of the previous section. Moreover, we clearly also have
a) = aévA for 7 < B/J\“N.

By elementarity, {¢€ € (T} : ¢ N Ai is bounded in $,} is a cofinal
branch thru (77), from which we may conclude by the previous paragraph
that {& € (T})V : @ N A% is bounded in 7"V} is a cofinal branch thru (77)V,
as desired.

O (Claim 2)

We now have to turn towards the forcing which we shall actually use for
constructing our model. Because we have to eventually code B} ”"down to
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a real” without destroying the inaccessibility of n (to be able to apply 4.1),
we have to incorporate more advanced Jensen-like coding techniques, due to
the first author (cf. [6]), to vary the above forcing construction. However,
whereas Jensen coding itself achieves a ”coding into L,” we have to code into
K instead - otherwise we would end up with a Al-well-ordering of the reals!

Let (k%4 < n) enumerate the cardinals of L[F] in the half-open interval
[T, 7). By combining the above approach with [6], inside L[E][B;] there is
a forcing S; adding a subset A% of [k“"!, k'™?) such that the following holds
true:

Claim 3. For all N with J1[E]<N < L[E] and N' = O as well as
NTAL N (5] = © we have that if AL N (x"")*V is decoded inside
NTAL N (k1) ] - using a coding device as in [6] - then a cofinal branch
thru (T})V is obtained.

PrOOF SKETCH. Code relative to L[E] as one codes relative to L, using
the ”almost disjoint codes” provided by the natural wellordering of L[E].
Our ”coding structures” will be initial segments of L[E]|. Simultaneously
with the coding we will be forcing the branches through the trees T7. We
require that our coding structure at an ordinal o < n™ be tall enough to
contruct the restrictions of our branches to «, relative to E. These coding
structures are cardinal-correct in L[E].

We are not trying here to preserve large cardinals properties, but only to
verify distributivity for the forcing. As a result, our only concern is that we
have enough condensation to do so. However the only condensations that
take place are within our coding structures, which are cardinal-correct initial
segments of L[E], using hulls which contain #; MBI 1 1. Condensation of this
form follows from 2.5.

O (Claim 3)

We shall also need that that S; preserves cofinalities, and that in fact
more is true. Let '
S= [[ Pixsi
<n,k<w

so that S adds (Bj:i < 1,k < w), a sequence of branches thru the 7}’s,
together with codes A% C [£"™, k™) for ¢ < n and k < w. We shall need
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that S preserves cofinalities, and that analogues to Claims 1 and 2 in the
previous section are still valid.

Next we want to add reals 7 by forcings R in such a way that r* col-
lapses £'T! to w and such that r* "codes” (AL:k < w) in much the same
way as we had that a ”codes” (Ax:k < w) in the previous section. We let
R' be Col(w, Je+1[E])x the forcing R from the previous section, but with
wy replaced by x**? and with g being canonically obtained from the the
Col(w, Ji+1[E])-generic (and naturally called ¢g° now). We shall denote

rR=]][ R
1<n

We denote by (r’:7 < n) the sequence of reals obtained by forcing with R over
L[E][(A%:i < 1,k < w)]. Our model witnessing 1.3 shall be L[E][(r*: 1 < n)].

Claim 4. In L[E][(A}:i < n,k < w)][(r:i < n)], for any i < 1 there are
¢' Cw and (Di:k < w) with:

(a) (r')%c = ¢', and M¥*, = Jon[E], in fact g* is Col(w, Jei1[E])-generic
over L[E|[(A%:i <n,k < w)], and

(b) if (a;:1 < k**2) is the ”least” sequence of pairwise a.d. subsets of w
in L[E][g"] then, setting D; = {a: 7" N ag1w is finite }, we have that

Vi(l € r' = Dy = Al A Dy = ) and

Vl(l ¢ Ti = Dgl = @ N D2l—|—1 = A§l+1-

We now consider the model L[E][F], where we write ¥ = (r*:i < ). We
again have the following:

Claim 5. Vi Vk (k € r* = Ty, is Suslin in L[E][F]).
Claim 6. Vi Vk (k ¢ r* = Tj, is Suslin in L[E][7]).

These two claims are verified in the same fashion as were Claims 6 and 7
of the previous section. In fact, the proof also shows that n = wlL[E]m, which
we shall denote by w; from now on.

Claim 7. For any x € RNL[E][F] there is some a < w; with z € J,[E][7" |
al, and 7 is inaccessible in L[E][z].
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PROOF. Let x € J,[E][F], where p > w; is a cardinal of L[E]. By 2.5 we
may pick some
T Jol B[ T 7] = J[E[7)

with 7 < o < wy, e.p.(m) = 7, and 7(7) = w;. But then x € J,[E][7 | .

That 7 is still inaccessible in J,[F][7 | o] (and hence in L[F][z]) fol-
lows from the fact that 7 [ « is obtained by forcing with [],_, R over
LIE|(Bi:i < n,k <w)].

O (Claim 7)

Now Claim 7 together with 4.1 immediately buys us that in L[E][F], every
»! 13-set of reals is Lebesgue measurable and has the property of Baire.
Moreover, 2.1 tells us that in L[E][], every 3 ,-set of reals is universally
Baire.

We are hence left with having to verify that L[F][7] has a A;_5-well-
ordering of its reals. The key for being able to do this is the following:

Claim 8. For any ¢ < wy, r* is uniformly II} , in any code for J,:[E].
PROOF. We consider the following formula, abbreviated ®(x, J,:[E]):
"M = Jein[E], and

IF N is such that (a) M%< N < L[E], and

(b) N = O, and N[z| = ©

THEN we have that

(a)’ if k € = then there is a cofinal branch in N[z] thru (7%,)", and
(b)’ if k ¢ x then there is a cofinal branch in Az] thru (T4, )V.”

By 2.2, "M% = J1[E]” can be written uniformly as a I} ;-formula in
any code for J:[FE], and by 2.3, the second conjunct is certainly uniformly
IT;, ., in any code for J,:[E].

Using Claim 3 above we can then verify that ®(z, J:[F]) holds iff z = r*
in much the same way as we had verified Claim 9 in the last section, but this
time by using Claim 3 above.

O (Claim 8)
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We finally obtain the following:
Claim 9 In L[E|[7], there is a A} _ ;-well-ordering of R.

PROOF. Set P = J,,[E][F]. By Claim 7, RN L[E][F] C P, so that we
may well-order the reals by <p, the order of constructibility of P.
Well, we now clearly have that for any z, y € RN L[E][F], z <p y iff

NG AN 3(s':i < NNOR) [ No = Jwo[E] AN <N < J, [E]A

(s, Np) AVi < NNOR ®(s M%) 1.

Here, ®(—, —) is the formula from the proof of Claim 8.

An inspection shows that, using 2.4 and 2.3 together with Claim 8, the
displayed formula can be rewritten in a 3, ,-way. Hence <p is a A}, ;-well-
ordering of RN L{E][F].

O (Claim 9)
This finishes the proof of 1.3.

0 (1.3)

5 Open problems.

We want to finish this paper by stating three key open problems.

(1) Let n < w. Starting only from an inaccessible, can you construct
a model in which every 3, ;-set of reals is Lebesgue measurable and has
the property of Baire, yet there is a (lightface) projective (ideally, Al ,)
well-ordering of the reals?

(2) Do the conclusions of 1.2 and 1.3 imply the consistency of strong
cardinals? (Cf. [3].)

(3) Is there a A, ,-well-ordering of R in the model of 1.3 or a variant
thereof?
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