STRICT GENERICITY
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The purpose of this note is to show that unlike for set forcing, an inner model of
a class-generic extension need not itself be a class-generic extension. Our counterex-
ample is of the form L[R], where R is a real both generic over L and constructible

from O#.

Definition (M. A). M transitive is a ground model if AC M. M |= ZFC + A Re-
placement and M is the smallest model with this property of ordinal height ORD(M).
G is literally generic over (M, A) if for some partial -ordering P definable over (M, A),
(i is P-generic over (M, A) and (M[H]|, A.H) E ZFC + (A, H)-Replacement for all
P-generic H. S is generic over M if for some A, S is definable over (M[G], A, ) for
some (¢ which is literally generic over (M. A), and S is strictly generic over M if we
also require that G is definable over (M[S], A, S).

The following is a classic application of Boolean-valued forcing and can be found

in Jech [78], page 265.

Proposition 1. If G is P-generic over (M, A) where P is an element of M, S
definable over (M[G], A) then S is strictly generic over M.

Proof Sketch. We can assume that P is a complete Boolean algebra in M and that
S C «a for some ordinal @ € M. Then H = G N Fy is Py-generic over M, where Py =
complete subalgebra of P generated by the Boolean values of the sentences “B €ao”,
where < a and ¢ is a P-name for S. Then H witnesses the strict genericity of 5. -

Now we specialize to the ground model (L, ¢), under the assumption that O% exists.

Theorem 2. There is a real B € L[O#] which is generic but not strictly generic
over L.
Our strategy for proving Theorem 2 comes from the following observation.

Proposition 3. If R is a real strictly generic over L then for some L-amenable A,
Sat(L[R]) is definable from R, A, where Sat denotes the Satisfaction relation.

Proof. Suppose that A, G witness that R is strictly generic over L. Let G be P-
generic over (L, A), P definable over (L, A), R € L[G], G definable over (L[R], A).
Also assume that (L[H], A, H) = ZFC + (A, H)-replacement for all P-generic H.
The latter implies that the Truth and Definability Lemmas hold for P-forcing. by a
result of M. Stanley (See Friedman[95]). Then we have: L[R] ¢ iff 3p € G(pIF ¢
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holds in L[o]) where o is a P-name for R and therefore Sat(L[R]) is definable from
R, Sat(L, A). As A is L-amenable and O¥ exists, Sat(L, A) is also L-amenable.

Remarks (a) Sat(L[R]) could be replaced by Sat({L[R], A)) in Proposition 3, how-
ever we have no need here for this stronger conclusion. (b) A real violating the
conclusion of Proposition 3 was constructed in Friedman [94], however the real con-
structed there was not generic over L.

Thus to prove Theorem 2 it will suffice to find a generic R € L[O#] such that for
each L-amenable A, Sat(L[R]) is not definable (with parameters) over (L[R], A). First
we do this not with a real R but with a generic class S, and afterwards indicate how
to obtain R by coding S.

We produce S using the Reverse Easton iteration P = (P,|a < oc), defined as
follows. Fy =trivial forcing and for limit A < oc, Easton support is used to define
Py (as a direct limit for A regular, inverse limit otherwise). For singular o, P,41 =
P.+Q(a) where Q(a) is the trivial forcing and finally for regular o, P,11 = P, * Q(a)
where Q(a) is defined as follows: let (b,|y < a) be the L-least partition of the odd
ordinals < a into a-many disjoint pieces of size @ and we take a condition in Q(a)
to be p = (p(0),p(1),...) where for some a(p) < a, p(n) : a(p) — 2 for each n.
Extension is defined by: p < ¢ iff a(p) > a(q), p(n) extends g(n) for each n and
gln+1)(v)=1,6 € b,N[alqg), a(p)) — p(n)(§) = 0. Thus if G is Q(a)-generic and
Sn=U{p(n)|p € G} then S,41(y) = 1iff S,(5) = 0 for sufficiently large § € b,.

Now we build a special P-generic G(< oc), definably over L[O#]. The desired
generic but not strictly generic class is So = U{p(0)|p € G(oc)}. We define G(< i,)
by induction on A € ORD, where (i,|]a € ORD) is the increasing enumeration of
T'U{0}, I = Silver Indiscernibles. G(< ig) is trivial and for limit A < oc, G(< 1)) =
U{G(< ia)|a < A}, G(in) = U{G(i2.)|a < A} (where io. = o).

Suppose that G(< 7)) is defined, A limit or 0, and we wish to define G(< iy4,) for
0 <n <w. Ifniseven and G(< iy4,) has been defined then we define G(< i)4p41)
as follows: (< ixpny1) is the L[O#]-least generic extending G(< iy,,). To define
G(ixynt1) first form the condition p € Q(irynt1) defined by:  a(p) = ixgn + 1,
p(m) T ixen = Glinga)(m) = Ufg(m)lg € G(irgn)} for all m, p(m)(ire,) = 1 iff
m > n. Then G(ixyny1) is the L[O#]-least Q(iygny1)-generic (over L[G(< ixpny1)])
containing the condition p. If n is odd and G(< iy4,) has been defined then we
define G(< ixjny1) as follows: G(< 1xy,41) is the L[O#]-least generic extending G(<
ixtn). To define G(iyynt1), first form the condition p € Q(irtnt1) by: a(p) = irin,
p(m)(y) = G(irgn)(m)(y) for v # ixgn—1 and p(m)(irgn—1) = 0 for all m. Then
G(irgns1) is the L[O#]-least Q(iriny1)-generic (over L[G(< iyynt1)]) containing the
condition p. This completes the definition of G(< oc).

Now for each 7 € TU{oc} and n € wlet S, (1) = U{p(n)|p € G(i)} and S(i) = So(7),

S = S(oc). We now proceed to show that S is not strictly-generic over L.

Definition. For X C ORD. a € ORD and n € w we say that a is X — X, stable if
(Lo[X], X Na) is ¥,-elementary in (L[X], X). a is X-stable if a is X —X,, stable for

all n.



Lemma 4. For A limit or 0, n even, [),,41 is not S-stable.

Proof. let i =iy, and j = iy4n41. Note that S, (j) is defined from S(j) just as
Sm(oc) is defined from S(oc) = S. But S(j) = S Nj and for M > n, S,,(j) # Sm(oc)
since 1 € S,,(7), t ¢ Sn(oc). So 7 is not S-stable. -

Lemma 5. For L-amenable A C ORD, i\4,41 is (5, A) — X, stable for sufficiently
large limit A, all n € w.

Proof. Let : = iy;,41 where X is large enough to guarantee that 1 is A-stable.
For p € Pyy = P+ Qi) and m € w, we let (p),, be obtained from p by redefining
p(1)(m) = ¢ for m > m and otherwise leaving p unchanged.

Claim. Suppose ¢ is 1l,, relative to S(i), B where BC i, B€ L. If p€ Py, plk ¢
then (p)m IF ¢.

Proof of Claim. By induction on m > 1. For m = 1. if the conclusion failed then
we could choose ¢ < (p)1, g(< 1) IF~ ¢ holds of ¢(0), B; then clearly (¢)o IF~ ¢. (¢)o
is compatible with p, which contradicts the hypothesis that p IF ¢. Given the result
for m, if the conclusion failed for m + 1 then we could choose ¢ < (p)mt1. q IF~ ¢.
Now write ~ ¢ as dzi, ¢ II,, and we see that by induction we may assume that
(q)m IF () for some z. But (q)m, p are compatible and p IF~ Jxe), contradiction.
(Claim.)

Now we prove the lemma. Suppose ¢ is II, and true of (S(i), A N ). Choose
p € G(< 1),p Ik ¢. Then by the Claim, (p), IF ¢. As ¢ is A-stable, (p), IF ¢ in
P(< o). By construction (p), belongs to G(< oc), in the sense that (p), (< i) €
G(< 1) CG(< oc) and (p)n(i) € G(oc). So ¢ is true of (S, A).

Theorem 6. S is generic, but not strictly generic, over L.

Proof. By Proposition 3 (which also holds for classes), if S were strictly generic over
L then for some L-amenable A we would have that Sat(L[S], S) would be definable
over (L[S], S, A). But then for some n, all sufficiently large (5, A) — X,, stables would

be S-stable, in contradiction to Lemmas 4.5. -

To prove Theorem 2 we must show that an S as in Theorem 6 can be coded by a
real R in such a way as to preserve the properties stated in lemmas 4.5. We must
first refine the above construction:

Theorem 7. Let (A(i)|i € I) be a sequence such that A(:7) is a constructible subset
of ¢ for each ¢ € I. Then there exists S obeying Lemmas 4.5 such that in addition,
A(7) is definable over (L,;[S], S N1) for i € Odd (1) = {ixgn|A limit or 0,n odd}.

Proof. We use a slightly different Reverse Easton iteration: @Q(«) specifies n(a) < w
and if n(a) < w, it also specifies a constructible A(a) C a; then conditions and
extension are as before, except we now require that if n(a) < w then for p to extend



q, we must have p(n(a))(26 4+ 2) =1iff 8 € A(a), for 26+ 2 € [a(q), a(p)). Then if
n(a) < w, the Q(a)-generic will code A(a) definably (though the complexity of the
definition increases with n(a) < w).

Now in the construction of G(< 1,), a < oc we proceed as before, with the following
additional specifications: n(iy4,) = n for odd n and n(iy4,) = w for even n (A limit
or 0). And for odd n we specify A(ir;,) to be the A(i),7 = iy4, as given in the
hypothesis of the Theorem.

Lemma 4 holds as before; we need a new argument for Lemma 5. Note that for
i € 0dd(7) it is no longer the case that P(< 1) IF Qi) = Q(oc) N L;[G(< 1)]. Let
Q*(1) denote Q(oc) N L;[G(< 1)], i.e., the forcing (i) where n(i) has been specified
as w. Define (p),, as before for p € P(<1).

Claim. Suppose m <n+1, niseven, i = ixyn41 (A limit or 0) and ¢ is 11, relative
to S(7), B with parameters, where B C i, B € L. If p€ P(<1) (where n(¢) =n+1)
then p Ik ¢ in P(<4) iff (p)m IF ¢ in P*(< 1) = P(< 1)« Q*(0) iff p Ik ¢ in P*(<1).

Proof. As in the proof of the corresponding Claim in the proof of Lemma 5. If
m =1 and pIF ¢ in P(< 1), then if the conclusion failed, we could choose ¢ < (p);
in P*(< 1), g Ik~ ¢; then (we can assume) (¢)o IF~ ¢ in P(< 1), but (q)o and p are
compatible. The other implications are clear, as P(< i) € P*(< ). Given the result
for m < n, ¢ Ill,,41 and p IF ¢ in P(< 1), if the conclusion failed we could choose
g < (P)m41 In P*(< 1), gk~ ¢ (indeed, g IF~ (x) some z, where ¢ = V), ¥,,);
then ¢ Ik~ ¢ in P(< 1), (@)m IF~ ¢ in P*(< 1), (¢)m IF~ ¢ in P(< 4) by induction.
But (q)m,p are compatible in P(< 1), using the fact that m < n and g < (p)mt1,
contradiction. And again the other implications follow, as P(< 1) C P*(< 1),
(Claim.)

Now the proof of Lemma 5 proceeds as before, using the new version of the Claim.

_|
The choice of (A(7)|: € I) that we have in mind comes from the next Proposition.

Proposition 8. For each n let A, = {a| Fori < j; < ... < j, in [,a < 1,
(a,g1...7n) and (2,71 ... J,) satisfy the same formulas in L with parameters < a}.
Then any L-amenaable A is A;-definable over (L, A,,) for some n.

Proof. For each 1 € 1. AN L; belongs to L and hence is of the form t(z)(}o(z) i,
<&(n(i))) where (i) is a Ag-Skolem term for L, jo(i) is a finite sequence of indis-

cernibles < ¢ and & (n(17)) is any sequence of indiscernibles > ¢ of length n(i) € w.
By Fodor’s Theorem and indiscernibility we can assume that (i) = ¢, ;O(i) = jo and
n(i) = n are independent of i. To see that A is Aj-definable over (L, A,,41) it suffices to
show that for i < ]increasing sequences from A, of length n+1, 7 and j satisfy the

2

same formulas in L with parameters < min (;) But by definition, for @ < min(z) and
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Now for ¢ € I write i = iy4,, A limit or 0, n € w and let A(i) = A, Ni. Thus
by Theorem 7 there is S obeying Lemmas 4,5 such that A, N ¢ is definable over
(L;[S]. SNi) for i = ix4p41. 1 even.

Proof of Theorem 2 First observe that as in Friedman [85], we may build G(< oc)
to satisfy Theorem 7 for the preceding choice of (A(i)|: € I) and in addition preserve
the indiscernibility of Lim [. Then by the technique of Beller-Jensen-Welch [82],
Theorem 0.2 we may code (G(< oc),S) by a real R, where S = Go(oc). The resulting
R obeys Lemma 4 because S is definable from R; to obtain Lemma 5 for R we must
modify the coding of (G(< oc),S) by R in the following way: for inaccessible &
we require that any coding condition with & in its domain reduce any dense D C
P<* ={qla(q) < k} strictly below &, when D is definable over (L.[G(< oc), S], G(<
k), S N k). This extra requirement does not interfere with the proofs of extendibility,
distributivity for the coding conditions (see Friedman [96]).

Now to obtain Lemma 5 for R argue as follows: Given L-amenable A, choose n and
A large enough so that A is Aj-definable from A, with parameters < 7). Then t)4,41
is (G(< oc), S, A)— X, stable. And also ANiyi,41 is definable over (L;[G(< 1), SN1],
G(< 1), S N1y where i = iyyny1. Thus if ¢ is I, and true of G(< 1), SN, AN7 then
¢ is forced by some coding condition p € P<* (p in the generic determined by R) and
hence by the (G(< oc), S, A) — X, stability of i, we get that ¢ is true of G(< o), S, A.
_|

We built R as in Theorem 2 by perturbing the indiscernibles. However with extra
care we can in fact obtain indiscernible preservation.

Theorem 9. There is a real R € L[O#] such that R is generic but not strictly
generic over L, L-cofinalities equal L[R]-cofinalities and % = I.

Proof. Instead of using the iyy,,n € w (A limit or 0) use the ", n € w where
i = least element of A, greater than i,. Thus U{:%|n € w} = 1,41 and as above
we can construct S to preserve indiscernibles and L-cofinalities and satisfy that no
i".n odd is S-stable, "% is (S5, A) — X, stable for large enough a,n (given any L-
amenable A) and A, Ni"*! is definable over (L;[S], S N4) for i = 2!, n even. Then
code (G(< oc),S) by a real, preserving indiscernibles and cofinalities, requiring as
before that for inaccessible k, any coding condition with & in its domain reduces dense
D C p<* strictly below &, when D is definable over (L.[G(< k), SNk], G(< &), SNK).
Then for any L-amenable A, i"*! will be (R, A) — X, stable for sufficiently large a, n.

This implies as before that R is not strictly generic.

Remark 1. A similar argument shows: For any n € w there is a real R € L[O¥]
which is strictly generic over L, yet G is not ¥, (L[R], R, A) whenever R € L[G],G

literally generic over (L, A). Thus there is a strict hierarchy within strict genericity,



given by the level of definability of the literally generic G from the strictly generic
real.

Remark 2. The nongeneric real R constructed in Friedman [94] is strictly generic
over some L[S] wher R ¢ L[S]. The same is true of the real R constructed here to
satisfy Theorem 2. This leads to:

Questions (a) Is there a real R € L[O¥], R not strictly generic over any L[S], R ¢
L[S]? (b) Suppose R is strictly generic over L[S], S generic over L. Then is R generic
over L7
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