STRICT GENERICITY ## Sy D. Friedman¹ M.I.T. The purpose of this note is to show that unlike for set forcing, an inner model of a class-generic extension need not itself be a class-generic extension. Our counterexample is of the form L[R], where R is a real both generic over L and constructible from $O^{\#}$. **Definition** $\langle M, A \rangle$, M transitive is a ground model if $A \subseteq M$, $M \models ZFC + A$ Replacement and M is the smallest model with this property of ordinal height ORD(M). G is literally generic over $\langle M, A \rangle$ if for some partial -ordering P definable over $\langle M, A \rangle$, G is P-generic over $\langle M, A \rangle$ and $\langle M[H], A, H \rangle \models ZFC + (A, H)$ -Replacement for all P-generic H. S is generic over M if for some A, S is definable over $\langle M[G], A, G \rangle$ for some G which is literally generic over $\langle M, A \rangle$, and S is strictly generic over M if we also require that G is definable over $\langle M[S], A, S \rangle$. The following is a classic application of Boolean-valued forcing and can be found in Jech [78], page 265. **Proposition 1.** If G is P-generic over $\langle M, A \rangle$ where P is an element of M, S definable over $\langle M[G], A \rangle$ then S is strictly generic over M. **Proof Sketch.** We can assume that P is a complete Boolean algebra in M and that $S \subseteq \alpha$ for some ordinal $\alpha \in M$. Then $H = G \cap P_0$ is P_0 -generic over M, where $P_0 =$ complete subalgebra of P generated by the Boolean values of the sentences " $\hat{\beta} \in \sigma$ ", where $\beta < \alpha$ and σ is a P-name for S. Then H witnesses the strict genericity of S. \dashv Now we specialize to the ground model $\langle L, \phi \rangle$, under the assumption that $O^{\#}$ exists. **Theorem 2.** There is a real $R \in L[O^{\#}]$ which is generic but not strictly generic over L. Our strategy for proving Theorem 2 comes from the following observation. **Proposition 3.** If R is a real strictly generic over L then for some L-amenable A, Sat(L[R]) is definable from R, A, where Sat denotes the Satisfaction relation. **Proof.** Suppose that A, G witness that R is strictly generic over L. Let G be P-generic over $\langle L, A \rangle$, P definable over $\langle L, A \rangle$, $R \in L[G]$, G definable over $\langle L[R], A \rangle$. Also assume that $\langle L[H], A, H \rangle \models ZFC + (A, H)$ -replacement for all P-generic H. The latter implies that the Truth and Definability Lemmas hold for P-forcing, by a result of M. Stanley (See Friedman[95]). Then we have: $L[R] \models \varphi$ iff $\exists p \in G(p \Vdash \varphi)$ ¹Research supported by NSF Contract # 92-05530. holds in $L[\sigma]$) where σ is a P-name for R and therefore $\operatorname{Sat}(L[R])$ is definable from R, $\operatorname{Sat}(L,A)$. As A is L-amenable and $O^{\#}$ exists, $\operatorname{Sat}(L,A)$ is also L-amenable. \dashv **Remarks** (a) Sat(L[R]) could be replaced by $Sat(\langle L[R], A \rangle)$ in Proposition 3, however we have no need here for this stronger conclusion. (b) A real violating the conclusion of Proposition 3 was constructed in Friedman [94], however the real constructed there was not generic over L. Thus to prove Theorem 2 it will suffice to find a generic $R \in L[O^{\#}]$ such that for each L-amenable A, Sat(L[R]) is not definable (with parameters) over $\langle L[R], A \rangle$. First we do this not with a real R but with a generic class S, and afterwards indicate how to obtain R by coding S. We produce S using the Reverse Easton iteration $P = \langle P_{\alpha} | \alpha \leq \infty \rangle$, defined as follows. P_0 =trivial forcing and for limit $\lambda \leq \infty$, Easton support is used to define P_{λ} (as a direct limit for λ regular, inverse limit otherwise). For singular α , $P_{\alpha+1} = P_{\alpha} * Q(\alpha)$ where $Q(\alpha)$ is the trivial forcing and finally for regular α , $P_{\alpha+1} = P_{\alpha} * Q(\alpha)$ where $Q(\alpha)$ is defined as follows: let $\langle b_{\gamma} | \gamma < \alpha \rangle$ be the L-least partition of the odd ordinals $\langle \alpha$ into α -many disjoint pieces of size α and we take a condition in $Q(\alpha)$ to be $p = \langle p(0), p(1), \ldots \rangle$ where for some $\alpha(p) < \alpha$, $p(n) : \alpha(p) \longrightarrow 2$ for each n. Extension is defined by: $p \leq q$ iff $\alpha(p) \geq \alpha(q)$, p(n) extends q(n) for each n and $q(n+1)(\gamma) = 1$, $\delta \in b_{\gamma} \cap [\alpha(q), \alpha(p)) \longrightarrow p(n)(\delta) = 0$. Thus if G is $Q(\alpha)$ -generic and $S_n = \bigcup \{p(n) | p \in G\}$ then $S_{n+1}(\gamma) = 1$ iff $S_n(\delta) = 0$ for sufficiently large $\delta \in b_{\gamma}$. Now we build a special P-generic $G(\leq \infty)$, definably over $L[O^{\#}]$. The desired generic but not strictly generic class is $S_0 = \bigcup \{p(0) | p \in G(\infty)\}$. We define $G(\leq i_{\alpha})$ by induction on $A \in \text{ORD}$, where $\langle i_{\alpha} | \alpha \in \text{ORD} \rangle$ is the increasing enumeration of $I \cup \{0\}$, I = Silver Indiscernibles. $G(\leq i_0)$ is trivial and for limit $\lambda \leq \infty$, $G(< i_{\lambda}) = \bigcup \{G(< i_{\alpha}) | \alpha < \lambda\}$, $G(i_{\lambda}) = \bigcup \{G(i_{2\alpha}) | \alpha < \lambda\}$ (where $i_{\infty} = \infty$). Suppose that $G(\leq i_{\lambda})$ is defined, λ limit or 0, and we wish to define $G(\leq i_{\lambda+n})$ for $0 < n < \omega$. If n is even and $G(\leq i_{\lambda+n})$ has been defined then we define $G(\leq i_{\lambda+n+1})$ as follows: $G(< i_{\lambda+n+1})$ is the $L[O^{\#}]$ -least generic extending $G(\leq i_{\lambda+n})$. To define $G(i_{\lambda+n+1})$ first form the condition $p \in Q(i_{\lambda+n+1})$ defined by: $\alpha(p) = i_{\lambda+n} + 1$, $p(m) \upharpoonright i_{\lambda+n} = G(i_{\lambda+n})(m) = \bigcup \{q(m)|q \in G(i_{\lambda+n})\}$ for all $m, p(m)(i_{\lambda+n}) = 1$ iff m > n. Then $G(i_{\lambda+n+1})$ is the $L[O^{\#}]$ -least $Q(i_{\lambda+n+1})$ -generic (over $L[G(< i_{\lambda+n+1})])$ containing the condition p. If n is odd and $G(\leq i_{\lambda+n})$ has been defined then we define $G(\leq i_{\lambda+n+1})$ as follows: $G(< i_{\lambda+n+1})$ is the $L[O^{\#}]$ -least generic extending $G(\leq i_{\lambda+n})$. To define $G(i_{\lambda+n+1})$, first form the condition $p \in Q(i_{\lambda+n+1})$ by: $\alpha(p) = i_{\lambda+n}$, $p(m)(\gamma) = G(i_{\lambda+n})(m)(\gamma)$ for $\gamma \neq i_{\lambda+n-1}$ and $p(m)(i_{\lambda+n-1}) = 0$ for all m. Then $G(i_{\lambda+n+1})$ is the $L[O^{\#}]$ -least $Q(i_{\lambda+n+1})$ -generic (over $L[G(< i_{\lambda+n+1})]$) containing the condition p. This completes the definition of $G(\leq \infty)$. Now for each $i \in I \cup \{\infty\}$ and $n \in \omega$ let $S_n(i) = \bigcup \{p(n) | p \in G(i)\}$ and $S(i) = S_0(i)$, $S = S(\infty)$. We now proceed to show that S is not strictly-generic over L. **Definition.** For $X \subseteq \text{ORD}$, $\alpha \in \text{ORD}$ and $n \in \omega$ we say that α is $X - \Sigma_n$ stable if $\langle L_{\alpha}[X], X \cap \alpha \rangle$ is Σ_n -elementary in $\langle L[X], X \rangle$. α is X-stable if α is $X - \Sigma_n$ stable for all n. **Lemma 4.** For λ limit or 0, n even, $I_{\lambda+n+1}$ is not S-stable. **Proof.** Let $i = i_{\lambda+n}$ and $j = i_{\lambda+n+1}$. Note that $S_m(j)$ is defined from S(j) just as $S_m(\infty)$ is defined from $S(\infty) = S$. But $S(j) = S \cap j$ and for M > n, $S_m(j) \neq S_m(\infty)$ since $i \in S_m(j)$, $i \notin S_m(\infty)$. So j is not S-stable. \dashv **Lemma 5.** For L-amenable $A \subseteq \text{ORD}$, $i_{\lambda+n+1}$ is $(S,A) - \Sigma_n$ stable for sufficiently large limit λ , all $n \in \omega$. **Proof.** Let $i = i_{\lambda+n+1}$ where λ is large enough to guarantee that i is A-stable. For $p \in P_{i+1} = P_i * Q(i)$ and $m \in \omega$, we let $(p)_m$ be obtained from p by redefining $p(i)(\bar{m}) = \phi$ for $\bar{m} > m$ and otherwise leaving p unchanged. **Claim.** Suppose φ is Π_m relative to S(i), B where $B \subseteq i$, $B \in L$. If $p \in P_{i+1}$, $p \Vdash \varphi$ then $(p)_m \Vdash \varphi$. **Proof of Claim.** By induction on $m \ge 1$. For m = 1, if the conclusion failed then we could choose $q \le (p)_1$, $q(< i) \Vdash \sim \varphi$ holds of q(0), B; then clearly $(q)_0 \Vdash \sim \varphi$, $(q)_0$ is compatible with p, which contradicts the hypothesis that $p \Vdash \varphi$. Given the result for m, if the conclusion failed for m + 1 then we could choose $q \le (p)_{m+1}$, $q \Vdash \sim \varphi$. Now write $\sim \varphi$ as $\exists x \psi, \psi \Pi_m$ and we see that by induction we may assume that $(q)_m \Vdash \psi(\hat{x})$ for some x. But $(q)_m, p$ are compatible and $p \Vdash \sim \exists x \psi$, contradiction. \dashv (Claim.) Now we prove the lemma. Suppose φ is Π_n and true of $(S(i), A \cap i)$. Choose $p \in G(\leq i), p \Vdash \varphi$. Then by the Claim, $(p)_n \Vdash \varphi$. As i is A-stable, $(p)_n \Vdash \varphi$ in $P(\leq \infty)$. By construction $(p)_n$ belongs to $G(\leq \infty)$, in the sense that $(p)_n (< i) \in G(< i) \subseteq G(< \infty)$ and $(p)_n(i) \in G(\infty)$. So φ is true of (S, A). \dashv **Theorem 6.** S is generic, but not strictly generic, over L. **Proof.** By Proposition 3 (which also holds for classes), if S were strictly generic over L then for some L-amenable A we would have that $\operatorname{Sat}\langle L[S], S\rangle$ would be definable over $\langle L[S], S, A\rangle$. But then for some n, all sufficiently large $(S, A) - \Sigma_n$ stables would be S-stable, in contradiction to Lemmas 4.5. \dashv To prove Theorem 2 we must show that an S as in Theorem 6 can be coded by a real R in such a way as to preserve the properties stated in lemmas 4,5. We must first refine the above construction: **Theorem 7.** Let $\langle A(i)|i \in I \rangle$ be a sequence such that A(i) is a constructible subset of i for each $i \in I$. Then there exists S obeying Lemmas 4,5 such that in addition, A(i) is definable over $\langle L_i[S], S \cap i \rangle$ for $i \in \text{Odd}(I) = \{i_{\lambda+n}|\lambda \text{ limit or } 0, n \text{ odd}\}$. **Proof.** We use a slightly different Reverse Easton iteration: $Q(\alpha)$ specifies $n(\alpha) \leq \omega$ and if $n(\alpha) < \omega$, it also specifies a constructible $A(\alpha) \subseteq \alpha$; then conditions and extension are as before, except we now require that if $n(\alpha) < \omega$ then for p to extend q, we must have $p(n(\alpha))(2\beta + 2) = 1$ iff $\beta \in A(\alpha)$, for $2\beta + 2 \in [\alpha(q), \alpha(p))$. Then if $n(\alpha) < \omega$, the $Q(\alpha)$ -generic will code $A(\alpha)$ definably (though the complexity of the definition increases with $n(\alpha) < \omega$). Now in the construction of $G(\leq i_{\alpha})$, $\alpha \leq \infty$ we proceed as before, with the following additional specifications: $n(i_{\lambda+n}) = n$ for odd n and $n(i_{\lambda+n}) = \omega$ for even n (λ limit or 0). And for odd n we specify $A(i_{\lambda+n})$ to be the A(i), $i = i_{\lambda+n}$ as given in the hypothesis of the Theorem. Lemma 4 holds as before; we need a new argument for Lemma 5. Note that for $i \in \text{Odd}(I)$ it is no longer the case that $P(< i) \Vdash Q(i) = Q(\infty) \cap L_i[G(< i)]$. Let $Q^*(i)$ denote $Q(\infty) \cap L_i[G(< i)]$, i.e., the forcing Q(i) where n(i) has been specified as ω . Define $(p)_m$ as before for $p \in P(\leq i)$. **Claim.** Suppose $m \le n+1$, n is even, $i = i_{\lambda+n+1}$ (λ limit or 0) and φ is Π_m relative to S(i), B with parameters, where $B \subseteq i$, $B \in L$. If $p \in P(\le i)$ (where n(i) = n+1) then $p \Vdash \varphi$ in $P(\le i)$ iff $(p)_m \Vdash \varphi$ in $P^*(\le i) = P(< i) * Q^*(i)$ iff $p \Vdash \varphi$ in $P^*(\le i)$. **Proof.** As in the proof of the corresponding Claim in the proof of Lemma 5. If m = 1 and $p \Vdash \varphi$ in $P(\leq i)$, then if the conclusion failed, we could choose $q \leq (p)_1$ in $P^*(\leq i)$, $q \Vdash \sim \varphi$; then (we can assume) $(q)_0 \Vdash \sim \varphi$ in $P(\leq i)$, but $(q)_0$ and p are compatible. The other implications are clear, as $P(\leq i) \subseteq P^*(\leq i)$. Given the result for $m \leq n$, $\varphi \sqcap_{m+1}$ and $p \Vdash \varphi$ in $P(\leq i)$, if the conclusion failed we could choose $q \leq (p)_{m+1}$ in $P^*(\leq i)$, $q \Vdash \sim \varphi$ (indeed, $q \Vdash \sim \psi(x)$ some x, where $\varphi = \forall x \psi, \psi \Sigma_m$); then $q \Vdash \sim \varphi$ in $P(\leq i)$, $(q)_m \Vdash \sim \varphi$ in $P(\leq i)$, $(q)_m \Vdash \sim \varphi$ in $P(\leq i)$ by induction. But $(q)_m$, p are compatible in $P(\leq i)$, using the fact that $m \leq n$ and $q \leq (p)_{m+1}$, contradiction. And again the other implications follow, as $P(\leq i) \subseteq P^*(\leq i)$. \dashv (Claim.) Now the proof of Lemma 5 proceeds as before, using the new version of the Claim. \dashv The choice of $\langle A(i)|i \in I \rangle$ that we have in mind comes from the next Proposition. **Proposition 8.** For each n let $A_n = \{\alpha | \text{ For } i < j_1 < \ldots < j_n \text{ in } I, \alpha < i, (\alpha, j_1 \ldots j_n) \text{ and } (i, j_1 \ldots j_n) \text{ satisfy the same formulas in } L \text{ with parameters } < \alpha \}.$ Then any L-amenaable A is Δ_1 -definable over $\langle L, A_n \rangle$ for some n. **Proof.** For each $i \in I, A \cap L_i$ belongs to L and hence is of the form $t(i)(\vec{j_0}(i), i, \vec{\infty}(n(i)))$ where t(i) is a Δ_0 -Skolem term for L, $\vec{j_0}(i)$ is a finite sequence of indiscernibles < i and $\vec{\infty}(n(i))$ is any sequence of indiscernibles > i of length $n(i) \in \omega$. By Fodor's Theorem and indiscernibility we can assume that $t(i) = t, \vec{j_0}(i) = \vec{j_0}$ and n(i) = n are independent of i. To see that A is Δ_1 -definable over $\langle L, A_{n+1} \rangle$ it suffices to show that for $\vec{i} < \vec{j}$ increasing sequences from A_{n+1} of length n+1, \vec{i} and \vec{j} satisfy the same formulas in L with parameters $< \min(\vec{i})$. But by definition, for $\alpha < \min(\vec{i})$ and $$\vec{i} = \{i_0, \dots, i_n\}, \vec{j} = \{j_0, \dots, j_n\} \text{ we get: } L \models \varphi(\alpha, j_0 \dots j_n) \longleftrightarrow \varphi(\alpha, i_0, j_1 \dots j_n) \longleftrightarrow \varphi(\alpha, i_0, i_1, j_2 \dots j_n) \longleftrightarrow \varphi(\alpha, i_0, \dots, i_n). \dashv$$ Now for $i \in I$ write $i = i_{\lambda+n}, \lambda$ limit or $0, n \in \omega$ and let $A(i) = A_n \cap i$. Thus by Theorem 7 there is S obeying Lemmas 4,5 such that $A_n \cap i$ is definable over $\langle L_i[S], S \cap i \rangle$ for $i = i_{\lambda+n+1}, n$ even. **Proof of Theorem 2** First observe that as in Friedman [85], we may build $G(\leq \infty)$ to satisfy Theorem 7 for the preceding choice of $\langle A(i)|i \in I \rangle$ and in addition preserve the indiscernibility of Lim I. Then by the technique of Beller-Jensen-Welch [82], Theorem 0.2 we may code $(G(<\infty), S)$ by a real R, where $S = G_0(\infty)$. The resulting R obeys Lemma 4 because S is definable from R; to obtain Lemma 5 for R we must modify the coding of $(G(<\infty), S)$ by R in the following way: for inaccessible κ we require that any coding condition with κ in its domain reduce any dense $D \subseteq P^{<\kappa} = \{q | \alpha(q) < \kappa\}$ strictly below κ , when D is definable over $\langle L_{\kappa}[G(<\infty), S], G(<\kappa), S \cap \kappa \rangle$. This extra requirement does not interfere with the proofs of extendibility, distributivity for the coding conditions (see Friedman [96]). Now to obtain Lemma 5 for R argue as follows: Given L-amenable A, choose n and λ large enough so that A is Δ_1 -definable from A_n with parameters $< i_{\lambda}$. Then $i_{\lambda+n+1}$ is $(G(<\infty), S, A) - \Sigma_n$ stable. And also $A \cap i_{\lambda+n+1}$ is definable over $\langle L_i[G(< i), S \cap i], G(< i), S \cap i \rangle$ where $i = i_{\lambda+n+1}$. Thus if φ is Π_n and true of $G(< i), S \cap i, A \cap i$ then φ is forced by some coding condition $p \in P^{< i}$ (p in the generic determined by R) and hence by the $(G(<\infty), S, A) - \Sigma_n$ stability of i, we get that φ is true of $G(<\infty), S, A$. \exists We built R as in Theorem 2 by perturbing the indiscernibles. However with extra care we can in fact obtain indiscernible preservation. **Theorem 9.** There is a real $R \in L[O^{\#}]$ such that R is generic but not strictly generic over L, L-cofinalities equal L[R]-cofinalities and $I^{R} = I$. **Proof.** Instead of using the $i_{\lambda+n}, n \in \omega$ (λ limit or 0) use the $i_{\alpha}^{n}, n \in \omega$ where $i_{\alpha}^{n} = \text{least}$ element of A_{n} greater than i_{α} . Thus $\bigcup\{i_{\alpha}^{n}|n\in\omega\} = i_{\alpha+1}$ and as above we can construct S to preserve indiscernibles and L-cofinalities and satisfy that no i_{α}^{n}, n odd is S-stable, i_{α}^{n+1} is $(S, A) - \Sigma_{n}$ stable for large enough α, n (given any L-amenable A) and $A_{n} \cap i_{\alpha}^{n+1}$ is definable over $\langle L_{i}[S], S \cap i \rangle$ for $i = i_{\alpha}^{n+1}, n$ even. Then code $(G(<\infty), S)$ by a real, preserving indiscernibles and cofinalities, requiring as before that for inaccessible κ , any coding condition with κ in its domain reduces dense $D \subseteq p^{<\kappa}$ strictly below κ , when D is definable over $\langle L_{\kappa}[G(<\kappa), S \cap \kappa], G(<\kappa), S \cap \kappa \rangle$. Then for any L-amenable A, i_{α}^{n+1} will be $(R, A) - \Sigma_{n}$ stable for sufficiently large α, n . This implies as before that R is not strictly generic. \dashv **Remark 1.** A similar argument shows: For any $n \in \omega$ there is a real $R \in L[O^{\#}]$ which is strictly generic over L, yet G is not $\Sigma_n \langle L[R], R, A \rangle$ whenever $R \in L[G], G$ literally generic over $\langle L, A \rangle$. Thus there is a strict hierarchy within strict genericity, given by the level of definability of the literally generic G from the strictly generic real. **Remark 2.** The nongeneric real R constructed in Friedman [94] is strictly generic over some L[S] wher $R \notin L[S]$. The same is true of the real R constructed here to satisfy Theorem 2. This leads to: **Questions** (a) Is there a real $R \in L[O^{\#}]$, R not strictly generic over any L[S], $R \notin L[S]$? (b) Suppose R is strictly generic over L[S], S generic over L. Then is R generic over L? ## References Beller-Jensen-Welch [82] Coding the Universe, Cambridge University Press. Friedman [85] An Immune Partition of the Ordinals, in *Recursion Theory Week*, Springer Lecture Notes 1141, pp. 141-147. Friedman [94] The Genericity Conjecture, Journal of Symbolic Logic, Vol.59, No.2, pp. 606-614. Friedman [95] Fine Structure and Class Forcing, preliminary book draft. Friedman [96] Coding without Fine Structure, to appear. Jech [78] Set Theory, Academic Press. Department of Mathematics M.I.T. Cambridge, MA 02139