
Polynomial-Time Set ReursionJoint work with Arnold Bekmann and Sam BussA entral notion in Finite omputation:Polytime funtions on �nite stringsHow an we generalise this notion to arbitrary sets? In other words:When is a funtion F : V → V omputable in �polynomial time�?Consider some standard models for polynomial-time omputation:



Polynomial-Time Set Reursion1. Turing mahinesDi�ult to write an arbitrary set on a tape.2. Fixed point logiEven for �nite strutures, this works well only if there is an ordering.Moreover, on in�nite ordered strutures, it is too powerful (it goesbeyond the hyperarithmeti).3. ShemesThis works, using the work of Bellantoni-Cook!



Bellantoni-Cook ReursionIdea behind Bellantoni-Cook reursion:De�ne funtions f (~x/~y )where ~x , ~y are �nite sequenes of �nite (binary) strings and thevalues of f are �nite stringsThe omponents of ~x are the Normal Inputs and those of ~y theSafe InputsWhen performing primitive reursions, the �previous value� is plaedon the Safe side:f (0,~x/~y ) = g(~x/~y )f (z ∗ i ,~x/~y ) = hi (z ,~x/~y , f (z ,~x/~y )), i = 0 or 1



Bellantoni-Cook ReursionWhen omposing, one is areful not to allow safe inputs to beopied onto the normal side:f (~x/~y ) = h(k(~x/−)/l(~x/~y))Net e�et: the depth of reursions performed are bounded not bythe values obtained but by the sizes of the inputsOn normal inputs one gets exatly the polynomial-time omputablefuntionsOn safe inputs string-length is inreased by only a onstant amount



Bellantoni-Cook ReursionA few examples (illustrated with numbers, not strings):The suessor funtion S(x/y , z) = z + 1 is in the lassAddition A(x/y) = x + y is in the lass, by a primitive reursion:A(0/y) = yA(x + 1/y) = S(x/y ,A(x/y)) = A(x/y) + 1A∗(x , y/z) = A(y/z) = y + z is also in the lassThen multipliation M(x , y/−) = x × y is in the lass, by a seondprimitive reursion on x:M(0, y/−) = 0M(x + 1, y/−) = A∗(x , y/M(x , y/−)) = y +M(x , y/−)



Bellantoni-Cook ReursionBUT exponentiation is not in the lass!To run the previous argument for exponentiation one would needM∗(x , y/z) = M(y/z) = y × zin the lass; but we only haveM(y , z/−) (multipliation of Normal Inputs)and no funtionM(y/z) = y × z ,whih has z as a Safe Input.



The Safe-Reursive Set FuntionsWe adapt the Bellantoni-Cook idea to set theory by taking theGandy-Jensen rudimentary set funtions as basi, and then losingunder the set-theoreti analogue of Bellantoni-Cook safe reursionBasi Funtions (rudimentary set funtions)
Πm,ni (x1, . . . , xm/xm+1, . . . , xm+n) = xi (1 ≤ i ≤ m + n)Pair(−/a, b) = {a, b}Di�(−/a, b) = a \ bf (~x/~a, y) = ∪{g(~x/~a, z) | z ∈ y}Safe Reursionf (y ,~x/~a) = h(y ,~x/~a, {f (z ,~x/~y ) | z ∈ y}Safe Compositionf (~x/~a) = h(~r(~x/−)/~s(~x ,~a))



The Safe-Reursive Set FuntionsSome examples of SR set funtions:S(−/a) = a ∪ {a} is SR
[f0(−/a) = ∪{Π0,11 (−/b) | b ∈ a}f1(−/a, b) = Pair(−/a,Pair(−/b, b))S(−/a) = f0(−/f1(−/a, a))]S∗(a/b, ) = b ∪  is SR
[S∗(a/b, ) = ∪{Π0,11 (−/d) | d ∈Pair(−/Π1,22 (a/b, ),Π1,23 (a/b, ))}]
⊕(a/b) = {⊕(/b) |  ∈ a} ∪ b is SR:
⊕(a/b) = S∗(a/b, {⊕(/b) |  ∈ a})For ordinals α, β, ⊕(α/β) = β + α



The Safe-Reursive Set FuntionsIn analogy to getting multipliation from addition throughsafe-reursion, we have:
⊗(a, b/−) = ⊕(b/{⊗( , b) |  ∈ a} is SRFor ordinals α, β, ⊗(α, β/−) = β × αBut ordinal exponentiation is not SR:PropositionIf f (~x/~y) is a safe-reursive set funtion then there is a polynomialfuntion pf on ordinals suh that:rank(f (~x/~y )) ≤ max(rank(~y )) + pf (rank(~x))



The Safe-Reursive Set Funtions
How powerful are the SR (safe-reursive) funtions?Following Jensen, de�ne:SR-losure(A) = least SR-losed B ⊇ AFor transitive T , SR(T ) = SR-losure(T ∪ {T})We have:



The Safe-Reursive Set FuntionsTheoremFor transitive T , SR(T ) = LTrank(T )ω , where LT is the L-hierarhyrelativised to T .SR(T ) ⊇ LTrank(T )ω :
~x 7→ max(rank(~x)) is SRUsing ⊕,⊗:
~x 7→ max(rank(~x))n is SR for any �nite n
~x 7→ f (~x) is SR if f (~x) results from a rudimentary reursion oflength max(rank(~x))n for some �nite nJensen: There is a rudimentary S suh that for eah α, JTα resultsby starting with T and iterating S (ω × α)-many timesSo SR(T ) ontains JTα for α < rank(T )ω and therefore ontainsJTrank(T )ω = LTrank(T )ω



The Safe-Reursive Set FuntionsConversely, SR(T ) ⊆ LTrank(T )ω :Reall: For safe reursive f (~x/~y ),rank(f (~x/~y )) ≤ max(rank(~y )) + pf (rank(~x))This also holds with �rank� replaed by �LT -rank�.So LTrank(T )ω is losed under SR funtions.So we onlude: SR(T ) = LTrank(T )ω for transitive T



Charaterisation of Safe-Reursive Set FuntionsSimilarly we have a haraterisation of SR funtions in terms ofde�nability. For any ~x let TC(~x) be the transitive losure of ~x .The funtion ~x 7→ TC(~x) is SR. Also de�ne:SR(~x) = SR(TC(~x)) = LTC(~x)rank(~x)ωSRn(~x) = LTC(~x)rank(~x)n for �nite nTheoremSuppose that f (~x/−) is SR. Then for some Σ1 formula ϕ and some�nite n we have: f (~x ,−) = y i� SRn(~x) � ϕ(~x , y).Conversely, any funtion so de�ned is SR.



The SR HierarhyAnalog of Jensen's J-hierarhy:SR1 = HF, the olletion of hereditarily �nite setsSRα+1 = SR(SRα) for α > 0SRλ =
⋃

α<λ SRα for limit λCorollaryFor every α, SR1+α = Lω1+ω×α .Lω ⊆ Lωω ⊆ L
ω(ω2) ⊆ L

ω(ω3) ⊆ · · ·



Safe-Reursion on Restrited InputsBinary strings of length ωIf ~x is a �nite sequene of binary ω-strings then of ourse rank(~x) isless than ω + ω so we simply have SR(~x) = Lωω [~x ].Thus the SR funtions on ω-strings look like:f (~x ,−) = y i� Lωn [~x ] � ϕ(~x)where ϕ is Σ1 and n is �nite.These funtions oinide with those omputable by an in�nite-timeTuring mahine in time ωn for some �nite n, and were onsideredby Deolalikar, Hamkins, Shindler, Welh and others.



Safe-Reursion on Restrited InputsFinite stringsThere are many ways to ode �nite strings as setsA natural oding:
#(i ∗ s) = the ordered pair (i ,#(s)) = {{i}, {i ,#(s)}}Theorem(Bekmann-Buss) With the above oding, the SR funtions on �nitestrings are exatly those in the Berman lass STA(∗,Exp,Poly) offuntions whih are omputable by an alternating Turing mahinerunning in exponential time with polynomially many alternations.Interestingly, a similar lass arises as the omplexity of the�rst-order theory of the reals with + and < (STA(∗,Exp, Linear))



A Parallel-Mahine ModelA mahine model for Safe Reursion is possible, using proessorsrunning in parallel:To eah set x assoiate a proessor Mx , whih omputes in ordinalstages. Mαx = the value omputed by Mx at stage αThe omputation is determined by a rudimentary funtion h asfollows:Mαx = h({(y , β,Mβy ) | y ∈ x , β ≤ α} ∪ {(x , β,Mβx ) | β < α})The mahine M spei�es both h and a �nite n; the funtionomputed by M is given by:f (x) = Mrank(x)nx for eah xFat: The safe reursive set funtions are exatly those omputableby some mahine as above


