Polynomial-Time Set Recursion

Joint work with Arnold Beckmann and Sam Buss
A central notion in Finite computation:
Polytime functions on finite strings
How can we generalise this notion to arbitrary sets? In other words:
When is a function F : V — V computable in “polynomial time”?

Consider some standard models for polynomial-time computation:



Polynomial-Time Set Recursion

1. Turing machines
Difficult to write an arbitrary set on a tape.
2. Fixed point logic

Even for finite structures, this works well only if there is an ordering.
Moreover, on infinite ordered structures, it is too powerful (it goes
beyond the hyperarithmetic).

3. Schemes

This works, using the work of Bellantoni-Cook!



Bellantoni-Cook Recursion

Idea behind Bellantoni-Cook recursion:
Define functions
f(%/¥)

where X, y are finite sequences of finite (binary) strings and the
values of f are finite strings

The components of X are the Normal Inputs and those of y the
Safe Inputs

When performing primitive recursions, the “previous value” is placed
on the Safe side:

£(0,%/y) = &(X/¥)
f(zxi,X/y) = hi(z,X/y,f(z,X/y)), i=00r1



Bellantoni-Cook Recursion

When composing, one is careful not to allow safe inputs to be
copied onto the normal side:

F(X/y) = h(k(x/=)/1(X/¥))

Net effect: the depth of recursions performed are bounded not by
the values obtained but by the sizes of the inputs

On normal inputs one gets exactly the polynomial-time computable
functions

On safe inputs string-length is increased by only a constant amount



Bellantoni-Cook Recursion

A few examples (illustrated with numbers, not strings):
The successor function S(x/y,z) = z+ 1 is in the class
Addition A(x/y) = x + y is in the class, by a primitive recursion:

A(0/y) =y
A(x +1/y) = S(x/y,Alx/y)) = Alx/y) + 1

A*(x,y/z) = A(y/z) = y + z is also in the class

Then multiplication M(x,y/—) = x X y is in the class, by a second
primitive recursion on x:

M(Ov.y/_) =0
M(x+1,y/=) = A*(x,y/M(x,y/=)) =y + M(x,y/—)



Bellantoni-Cook Recursion

BUT exponentiation is not in the class!

To run the previous argument for exponentiation one would need
M*(x,y/z) = M(y/z) =y x z

in the class; but we only have

M(y,z/—) (multiplication of Normal Inputs)

and no function

M(y/z) =y x z,

which has z as a Safe Input.



The Safe-Recursive Set Functions

We adapt the Bellantoni-Cook idea to set theory by taking the
Gandy-Jensen rudimentary set functions as basic, and then closing
under the set-theoretic analogue of Bellantoni-Cook safe recursion

Basic Functions (rudimentary set functions)

N7 (X1, - oo Xm/Xmt1s - - s Xman) = xi (1 <7< m+ n)
Pair(—/a, b) = {a, b}

Diff(—/a,b) = a\ b

f(x/a,y) =U{g(x/3,2z) | z € y}

Safe Recursion
f(y,x/a) = h(y,X/3,{f(z,X/¥) | z € y}

Safe Composition

f(x/a) = h(F(x/—)/5(X, d))



The Safe-Recursive Set Functions

Some examples of SR set functions:

S(~/a) =aU{a} is SR

[fo(~/a) = UMY (—/b) | b € a}
fi(~/a,b) = Pair(~/a, Pair(~/b, b))
S(— ) = hl/fi(/2.2)

S*(a/b,c) = bUcis SR

[S*(a/b,c) = U{Ny*(=/d) | d €
Pair(—/M;*(a/b, ¢). M3 (a/b, ¢))}]
®(a/b) = {®(c/b) | c € a} Ubis SR:

®(a/b) = S*(a/b,{®(c/b) | c € a})
For ordinals o, 5, ®(a/B8) = B+ «



The Safe-Recursive Set Functions

In analogy to getting multiplication from addition through
safe-recursion, we have:

®(a,b/—) = ®(b/{®(c,b) | c € a} is SR
For ordinals «, 3, ®(«, 8/—) =B X «

But ordinal exponentiation is not SR:

Proposition

If f(X/y) is a safe-recursive set function then there is a polynomial
function pr on ordinals such that:

rank(f(X/y)) < max(rank(y)) + pr(rank(X))



The Safe-Recursive Set Functions

How powerful are the SR (safe-recursive) functions?

Following Jensen, define:

SR-closure(A) = least SR-closed B O A
For transitive T, SR(T) = SR-closure(T U {T})

We have;



The Safe-Recursive Set Functions

Theorem

For transitive T, SR(T) = LT

rank(T)e” where LT is the L-hierarchy

relativised to T.

SR(T) 2 L;’;nk(.,-)w:

X — max(rank(X)) is SR

Using @, ®:

X > max(rank(X))" is SR for any finite n

X — f(X) is SR if f(X) results from a rudimentary recursion of
length max(rank(x))" for some finite n

Jensen: There is a rudimentary S such that for each a, JaT results
by starting with T and iterating S (w X «)-many times

So SR(T) contains JI for a < rank(T)“ and therefore contains
T _ T
Jrank(T)w - Lrank(T)w



The Safe-Recursive Set Functions

Conversely, SR(T) C L;’;nk(.,-)w:

Recall: For safe recursive f(X/¥),
rank(f(X/y)) < max(rank(y)) + pr(rank(X))

This also holds with “rank” replaced by “LT-rank”.
So LLnk(T)w is closed under SR functions.

So we conclude: SR(T) =L for transitive T

rank(T)«



Characterisation of Safe-Recursive Set Functions

Similarly we have a characterisation of SR functions in terms of
definability. For any X let TC(X) be the transitive closure of X.
The function X — TC(X) is SR. Also define:

SR(X) = SR(TC(%)) = LT¢&)

rank(X)«

SRy (X) = ngl(:(?))?),, for finite n

Theorem

Suppose that f(X/—) is SR. Then for some ¥ formula ¢ and some
finite n we have:

Conversely, any function so defined is SR.



The SR Hierarchy

Analog of Jensen’s J-hierarchy:

SR; = HF, the collection of hereditarily finite sets
SRa+1 = SR(SR,) for « >0
SR\ = Uga<y SRq for limit A

Corollary

For every a,, SRi4o = L 1twxa.

L(.d g LUJW g Lw(mz) g Lw(m?’) g e



Safe-Recursion on Restricted Inputs

Binary strings of length w

If X is a finite sequence of binary w-strings then of course rank(x) is
less than w + w so we simply have SR(X) = L« [X].
Thus the SR functions on w-strings look like:

f(%,=) =y iff Ln[X]F ©(X)
where ¢ is 1 and n is finite.

These functions coincide with those computable by an infinite-time
Turing machine in time w” for some finite n, and were considered
by Deolalikar, Hamkins, Schindler, Welch and others.



Safe-Recursion on Restricted Inputs

Finite strings
There are many ways to code finite strings as sets

A natural coding:

#(i * s) = the ordered pair (i, #(s)) = {{i},{i, #(s)}}
Theorem

(Beckmann-Buss) With the above coding, the SR functions on finite
strings are exactly those in the Berman class STA(x, Exp, Poly) of
functions which are computable by an alternating Turing machine
running in exponential time with polynomially many alternations.

Interestingly, a similar class arises as the complexity of the
first-order theory of the reals with + and < (STA(x, Exp, Linear))



A Parallel-Machine Model

A machine model for Safe Recursion is possible, using processors
running in parallel:

To each set x associate a processor My, which computes in ordinal
stages. Mg = the value computed by M, at stage «

The computation is determined by a rudimentary function h as
follows:

Mg = h({(y.8.M)) | y € x, B < a} U{(x.8. M) | B < a})
The machine M specifies both h and a f|n|te n; the function
computed by M is given by:

f(x)= ME™ )" for each x

Fact: The safe recursive set functions are exactly those computable
by some machine as above



