
Polynomial-Time Set Re
ursionJoint work with Arnold Be
kmann and Sam BussA 
entral notion in Finite 
omputation:Polytime fun
tions on �nite stringsHow 
an we generalise this notion to arbitrary sets? In other words:When is a fun
tion F : V → V 
omputable in �polynomial time�?Consider some standard models for polynomial-time 
omputation:



Polynomial-Time Set Re
ursion1. Turing ma
hinesDi�
ult to write an arbitrary set on a tape.2. Fixed point logi
Even for �nite stru
tures, this works well only if there is an ordering.Moreover, on in�nite ordered stru
tures, it is too powerful (it goesbeyond the hyperarithmeti
).3. S
hemesThis works, using the work of Bellantoni-Cook!



Bellantoni-Cook Re
ursionIdea behind Bellantoni-Cook re
ursion:De�ne fun
tions f (~x/~y )where ~x , ~y are �nite sequen
es of �nite (binary) strings and thevalues of f are �nite stringsThe 
omponents of ~x are the Normal Inputs and those of ~y theSafe InputsWhen performing primitive re
ursions, the �previous value� is pla
edon the Safe side:f (0,~x/~y ) = g(~x/~y )f (z ∗ i ,~x/~y ) = hi (z ,~x/~y , f (z ,~x/~y )), i = 0 or 1



Bellantoni-Cook Re
ursionWhen 
omposing, one is 
areful not to allow safe inputs to be
opied onto the normal side:f (~x/~y ) = h(k(~x/−)/l(~x/~y))Net e�e
t: the depth of re
ursions performed are bounded not bythe values obtained but by the sizes of the inputsOn normal inputs one gets exa
tly the polynomial-time 
omputablefun
tionsOn safe inputs string-length is in
reased by only a 
onstant amount



Bellantoni-Cook Re
ursionA few examples (illustrated with numbers, not strings):The su

essor fun
tion S(x/y , z) = z + 1 is in the 
lassAddition A(x/y) = x + y is in the 
lass, by a primitive re
ursion:A(0/y) = yA(x + 1/y) = S(x/y ,A(x/y)) = A(x/y) + 1A∗(x , y/z) = A(y/z) = y + z is also in the 
lassThen multipli
ation M(x , y/−) = x × y is in the 
lass, by a se
ondprimitive re
ursion on x:M(0, y/−) = 0M(x + 1, y/−) = A∗(x , y/M(x , y/−)) = y +M(x , y/−)



Bellantoni-Cook Re
ursionBUT exponentiation is not in the 
lass!To run the previous argument for exponentiation one would needM∗(x , y/z) = M(y/z) = y × zin the 
lass; but we only haveM(y , z/−) (multipli
ation of Normal Inputs)and no fun
tionM(y/z) = y × z ,whi
h has z as a Safe Input.



The Safe-Re
ursive Set Fun
tionsWe adapt the Bellantoni-Cook idea to set theory by taking theGandy-Jensen rudimentary set fun
tions as basi
, and then 
losingunder the set-theoreti
 analogue of Bellantoni-Cook safe re
ursionBasi
 Fun
tions (rudimentary set fun
tions)
Πm,ni (x1, . . . , xm/xm+1, . . . , xm+n) = xi (1 ≤ i ≤ m + n)Pair(−/a, b) = {a, b}Di�(−/a, b) = a \ bf (~x/~a, y) = ∪{g(~x/~a, z) | z ∈ y}Safe Re
ursionf (y ,~x/~a) = h(y ,~x/~a, {f (z ,~x/~y ) | z ∈ y}Safe Compositionf (~x/~a) = h(~r(~x/−)/~s(~x ,~a))



The Safe-Re
ursive Set Fun
tionsSome examples of SR set fun
tions:S(−/a) = a ∪ {a} is SR
[f0(−/a) = ∪{Π0,11 (−/b) | b ∈ a}f1(−/a, b) = Pair(−/a,Pair(−/b, b))S(−/a) = f0(−/f1(−/a, a))]S∗(a/b, 
) = b ∪ 
 is SR
[S∗(a/b, 
) = ∪{Π0,11 (−/d) | d ∈Pair(−/Π1,22 (a/b, 
),Π1,23 (a/b, 
))}]
⊕(a/b) = {⊕(
/b) | 
 ∈ a} ∪ b is SR:
⊕(a/b) = S∗(a/b, {⊕(
/b) | 
 ∈ a})For ordinals α, β, ⊕(α/β) = β + α



The Safe-Re
ursive Set Fun
tionsIn analogy to getting multipli
ation from addition throughsafe-re
ursion, we have:
⊗(a, b/−) = ⊕(b/{⊗(
 , b) | 
 ∈ a} is SRFor ordinals α, β, ⊗(α, β/−) = β × αBut ordinal exponentiation is not SR:PropositionIf f (~x/~y) is a safe-re
ursive set fun
tion then there is a polynomialfun
tion pf on ordinals su
h that:rank(f (~x/~y )) ≤ max(rank(~y )) + pf (rank(~x))



The Safe-Re
ursive Set Fun
tions
How powerful are the SR (safe-re
ursive) fun
tions?Following Jensen, de�ne:SR-
losure(A) = least SR-
losed B ⊇ AFor transitive T , SR(T ) = SR-
losure(T ∪ {T})We have:



The Safe-Re
ursive Set Fun
tionsTheoremFor transitive T , SR(T ) = LTrank(T )ω , where LT is the L-hierar
hyrelativised to T .SR(T ) ⊇ LTrank(T )ω :
~x 7→ max(rank(~x)) is SRUsing ⊕,⊗:
~x 7→ max(rank(~x))n is SR for any �nite n
~x 7→ f (~x) is SR if f (~x) results from a rudimentary re
ursion oflength max(rank(~x))n for some �nite nJensen: There is a rudimentary S su
h that for ea
h α, JTα resultsby starting with T and iterating S (ω × α)-many timesSo SR(T ) 
ontains JTα for α < rank(T )ω and therefore 
ontainsJTrank(T )ω = LTrank(T )ω



The Safe-Re
ursive Set Fun
tionsConversely, SR(T ) ⊆ LTrank(T )ω :Re
all: For safe re
ursive f (~x/~y ),rank(f (~x/~y )) ≤ max(rank(~y )) + pf (rank(~x))This also holds with �rank� repla
ed by �LT -rank�.So LTrank(T )ω is 
losed under SR fun
tions.So we 
on
lude: SR(T ) = LTrank(T )ω for transitive T



Chara
terisation of Safe-Re
ursive Set Fun
tionsSimilarly we have a 
hara
terisation of SR fun
tions in terms ofde�nability. For any ~x let TC(~x) be the transitive 
losure of ~x .The fun
tion ~x 7→ TC(~x) is SR. Also de�ne:SR(~x) = SR(TC(~x)) = LTC(~x)rank(~x)ωSRn(~x) = LTC(~x)rank(~x)n for �nite nTheoremSuppose that f (~x/−) is SR. Then for some Σ1 formula ϕ and some�nite n we have: f (~x ,−) = y i� SRn(~x) � ϕ(~x , y).Conversely, any fun
tion so de�ned is SR.



The SR Hierar
hyAnalog of Jensen's J-hierar
hy:SR1 = HF, the 
olle
tion of hereditarily �nite setsSRα+1 = SR(SRα) for α > 0SRλ =
⋃

α<λ SRα for limit λCorollaryFor every α, SR1+α = Lω1+ω×α .Lω ⊆ Lωω ⊆ L
ω(ω2) ⊆ L

ω(ω3) ⊆ · · ·



Safe-Re
ursion on Restri
ted InputsBinary strings of length ωIf ~x is a �nite sequen
e of binary ω-strings then of 
ourse rank(~x) isless than ω + ω so we simply have SR(~x) = Lωω [~x ].Thus the SR fun
tions on ω-strings look like:f (~x ,−) = y i� Lωn [~x ] � ϕ(~x)where ϕ is Σ1 and n is �nite.These fun
tions 
oin
ide with those 
omputable by an in�nite-timeTuring ma
hine in time ωn for some �nite n, and were 
onsideredby Deolalikar, Hamkins, S
hindler, Wel
h and others.



Safe-Re
ursion on Restri
ted InputsFinite stringsThere are many ways to 
ode �nite strings as setsA natural 
oding:
#(i ∗ s) = the ordered pair (i ,#(s)) = {{i}, {i ,#(s)}}Theorem(Be
kmann-Buss) With the above 
oding, the SR fun
tions on �nitestrings are exa
tly those in the Berman 
lass STA(∗,Exp,Poly) offun
tions whi
h are 
omputable by an alternating Turing ma
hinerunning in exponential time with polynomially many alternations.Interestingly, a similar 
lass arises as the 
omplexity of the�rst-order theory of the reals with + and < (STA(∗,Exp, Linear))



A Parallel-Ma
hine ModelA ma
hine model for Safe Re
ursion is possible, using pro
essorsrunning in parallel:To ea
h set x asso
iate a pro
essor Mx , whi
h 
omputes in ordinalstages. Mαx = the value 
omputed by Mx at stage αThe 
omputation is determined by a rudimentary fun
tion h asfollows:Mαx = h({(y , β,Mβy ) | y ∈ x , β ≤ α} ∪ {(x , β,Mβx ) | β < α})The ma
hine M spe
i�es both h and a �nite n; the fun
tion
omputed by M is given by:f (x) = Mrank(x)nx for ea
h xFa
t: The safe re
ursive set fun
tions are exa
tly those 
omputableby some ma
hine as above


