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KGRC)

Reals = Baire space “w, with the natural topology
Basic open sets: N; = {f | f extends s}, s : n — w for some finite n

If E and F are Borel equivalence relations on the reals then
E is Borel reducible to F, written E <g F, iff
For some Borel function f: x E y iff f(x) F f(y)

<pg is reflexive and transitive
E =p F iff E <g F and F <g E (equivalence relation)
[E]g = the equivalence class of E under =g

Object of study: B = Degrees of Borel equivalence relations under
Borel reducibility
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Work of Silver and of Harrington-Kechris-Louveau identifies an
interesting initial segment of B:

Theorem

B has an initial segment

1<2<---<w<R<E

where:

n = Borel equivalence relations with exactly n classes

w = Borel equivalence relations with exactly Wy classes

R is (“w,=) (equality on reals)

Ey is the equivalence relation xEgy iff x(n) = y(n) for all but
finitely many n

In fact: Any Borel equivalence relation is Borel equivalent to one of
the above or lies strictly above Ey under Borel reducibility.
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Question: What happens if we replace “Borel” by “Lightface Borel"?
Write “Hyp” for “Lightface Borel” (= Al). Then we define:

If E and F are Hyp equivalence relations on the reals then
E is Hyp reducible to F, written E <y F, iff
For some Hyp function f: x E y iff f(x) F f(y)

<y is reflexive and transitive
E =y Fiff E<y F and F <y E (equivalence relation)

[E]n = the equivalence class of E under =g

Object of study: H = Degrees of Hyp equivalence relations under
Hyp reducibility

There are some surprises!
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Again we have degrees
<2< <w<R<E
defined as follows:

n is represented by xE"y iff x(0) = y(0) < n—1or
x(0),y(0) = n—1

w is represented by xE“y iff x(0) = y(0)

R, Eg are as before:

xRy ff x =y

xEqy iff x(n) = y(n) for all but finitely many n

Proposition

There are Hyp equivalence relations strictly between 1 and 2!
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Explanation:

Let E be a Hyp equivalence relation. Recall that the H-degree n is
represented by the equivalence relation E” where:

xE™y iff x(0) = y(0) < n—1or x(0),y(0) >n—1

Fact 1. E" is Hyp reducible to E iff at least n distinct
E-equivalence classes contain Hyp reals

Proof. Suppose that E” Hyp reduces to E via the Hyp function 7.
Each of the n equivalence classes of E” contains a Hyp real; let
Xg,- .-, Xn—1 be Hyp, pairwise E"-inequivalent reals. Then the reals
f(x;), i < n, are Hyp, pairwise E-inequivalent reals.

Conversely, if yo,...,ys—1 are Hyp, pairwise E-inequivalent reals
then send the E™-equivalence class of x; to the real y;; this is a Hyp
reduction of E” to E. O
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Fact 2. E is Hyp reducible to E? iff E has at most 2 equivalence
classes.

Proof. If E is Hyp reducible to E? then E has at most 2
equivalence classes because E2 has only 2 equivalence classes.
Conversely, suppose that the equivalence classes of E are Ay and
A1. We may assume that Ag has a Hyp element x. Then Aq is Hyp
as it consists of those reals E-equivalent to x and A; is Hyp as it
consists of those reals not E-equivalent to x. Now we can reduce E
to E? by choosing E?-inequivalent Hyp reals yg, y1 and sending the
elements of Ap to yo and the elements of A; to yy. O

So to get a Hyp equivalence relation between 1 and 2 we need only
find one with two equivalence classes but with all Hyp reals in just
one class. This follows from a classical fact from Hyp theory:
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Fact 3. There are nonempty Hyp sets of reals which contain no Hyp
element.

Proof. Let A be the set of non-Hyp reals. Then A is ¥} and
therefore the projection of a M subset P of Reals x Reals. P is
nonempty. A Hyp real h = (ho, h1) in P would give a Hyp real hg in
A, contradiction. [J

In a moment we will ask the harder question: Are there
incomparable degrees between 1 and 27

But first we consider what happens between 1 and 3
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Let E be a Hyp equivalence relation. We have seen:

E" is Hyp reducible to E iff E has at least n equivalence classes
containing Hyp reals

E is Hyp reducible to E? iff E has at most 2 equivalence classes

Can we replace 2 by n in this last statement?

Fact 4. E is Hyp reducible to E" iff E has at most n equivalence
classes and each equivalence class is Hyp.

Proof. Each equivalence class of E” is Hyp. If f is a Hyp function
reducing E to E" then each equivalence class of E is the preimage
of a Hyp set under a Hyp function, hence is Hyp. Conversely, if E
has at most n classes and each class is Hyp, then we obtain a Hyp
reduction of E to E” by assigning E"-inequivalent Hyp reals to the
different classes of E. O
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Can a Hyp equivalence relation with 3 equivalence classes have a
non-Hyp equivalence class? Fortunately, the answer is NO.

Suppose that E is a Hyp equivalence relation with countably many
classes. Then each equivalence class of E is Hyp.

Proof Sketch. The Silver dichotomy states that every Borel (or even
boldface M}) equivalence relation has either countably many classes
or a perfect set of equivalence classes (i.e., R is Borel reducible to
it). Harrington's proof of this shows: If E is a Hyp equivalence
relation with countably many classes, then every real belongs to a
Hyp subset of some equivalence class.
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Now let C be the set of codes for Hyp subsets of an equivalence
class; then Cis I'I%. Consider the relation

R = {(x,c) | c belongs to C and x belongs to H(c), the Hyp set
coded by c}

Then R is M} and can be uniformised by a M} function F. As the
values of F are numbers, F is Hyp and by ¥1 Separation we can
choose a Hyp D C C, D containing Range(F). Now define an
equivalence relation E* on D by:

doE*dy iff H(dy) E H(d1), i.e., H(do) and H(d1) are subsets of the
same E-equivalence class

Then both E* and its complement are M1, so £* is Hyp. And E
Hyp reduces to E* via x — F(x). But E* is just a Hyp relation on
a Hyp set of numbers, so each of its equivalence classes is Hyp. It
follows that also each equivalence class of E is Hyp. [J
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Corollary

Let E be a Hyp equivalence relation. Then E is Hyp reducible to n
iff it has at most n equivalence classes. And E is Hyp reducible to
w iff E has countably many equivalence classes.

There are Hyp equivalence relations between 1 and 3 which are
incomparable with 2: Take one with 3 classes, one of which
contains all Hyp reals.

There are Hyp equivalence relations strictly between 2 and 3: Take
one with 3 classes, only two of which contain Hyp reals.

Similarly, for any 0 < ng < m finite, there are Hyp equivalence
relations which are strictly above ng, strictly below n; and
incomparable with all n for n between ng and ny.
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Now we discuss the more difficult question: Are there incomparable
Hyp equivalence relations between 1 and 27 To answer this we
prove:

Theorem

There exists Hyp sets of reals A, B such that for no Hyp function F
do we have F[A] C B or F[B] C A.

Given this Theorem, define E4 to be the equivalence relation with
equivalence classes A and ~ A (the complement of A); define Eg
similarly. Note that the sets A, B contain no Hyp reals, else there
would be a constant Hyp function F mapping one of them into the
other. So a Hyp reduction of E4 to Eg would have to send the
elements of ~ A (which contains Hyp reals) to elements of ~ B,
and therefore the elements of A to elements of B, contradicting the
Theorem. Similarly with A and B switched.
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Theorem

There exists Hyp sets of reals A, B such that for no Hyp function F
do we have F[A] C B or F[B] C A.

Proof Sketch. First we quote a result of Harrington. For reals a, b
and a recursive ordinal o we say that a is a-below b iff a is
recursive in the a-jump of b.

Fact. For any recursive ordinal o there are MY singletons a, b such
that a is not a-below b and b is not a-below a.
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Now using Barwise Compactness, find a nonstandard w-model M of
ZF~ in which are there are MY singletons a, b such that for all
recursive «, a is not a-below b and b is not a-below a (i.e., a and
b are Hyp incomparable).

Let a, b be the unique solutions in M to the MY formulas g, ¢1,
respectively.

The desired sets A, B are {x | ¢o(x)} and {x | p1(x)}.

If F were a Hyp function mapping A into B, then it would send a
to an element F(a) of BN M; but then F(a) must equal b and
therefore b is Hyp in a, contradicting the choice of a, b. [
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For the remainder of this talk, fix A, B as in the Theorem: There is
no Hyp function F such that F[A] C B or F[B] C A.

Using A, B we can easily get incomparable Hyp equivalence
relations between n and n + 1 for any finite n, by considering
Ea, Eg where the equivalence classes of Ej are A together with a
split of ~ A into n classes, each of which contains a Hyp real
(similarly for Eg).

We now consider Hyp equivalence relations with infinitely many
equivalence classes.
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Recall the Silver and Harrington-Kechris-Louveau dichotomies:

Theorem

(a) (Silver) A Borel equivalence relation is either Borel reducible to
w or Borel reduces R.
(b) (H-K-L) A Borel equivalence relation is either Borel reducible to
R or Borel reduces Ey.

How effective are these results? Harrington's proof of (a) and the
original proof of (b) show:

Theorem

(a) A Hyp equivalence relation is either Hyp reducible to w or Borel
reduces R.
(b) A Hyp equivalence relation is either Hyp reducible to R or Borel
reduces Ey.
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Our sets A, B can be used to show that the Silver and
Harrington-Kechris-Louveau dichotomies are not fully effective:

Theorem

(a) There are incomparable Hyp equivalence relations between w
and R.
(b) There are incomparable Hyp equivalence relations between R
and Ep.
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Proof Sketch. (a) Consider the relations

Ea(x,y) iff (x e Aand x =y) or (x,y ¢ A and x(0) = y(0))

Eg: The same, with A replaced by B

Now E“ Hyp reduces to E4 by n+— (n,0,0,...).

Also Ea Hyp reduces to R via the map G(x) = x for x € A,

G(x) = (x(0),0,0,...) for x ¢ A (same for B)

There is no Hyp reduction of E4 to Eg:

If F were such a reduction then let C be F~1[~ B]. As ~ B is Hyp,
C is also Hyp and therefore AN C is also Hyp. But AN C must be
countable as F is a reduction. So if AN C were nonempty it would
have a Hyp element, contradicting the fact that A has no Hyp
element. Therefore F maps A into B, which is impossible by the
choice of A, B. By symmetry, there is no Hyp reduction of Eg to
Ea.
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(b) Now we define E4 on R x R by:

(x,y)Ea(X',y") iff x = x’ and either x ¢ A or (x € A and yEpy')
Epg: Same, with A replaced by B

We need two Facts:

1. If h: R — R is Baire measurable and constant on Eg classes
then h is constant on a comeagre set.

2. If B C R? is Hyp then so is {x | {y | (x,y) € B} is comeagre}.
Now suppose that F were a Hyp reduction of E4 to Eg. Let
7(x,y) = x for all x and define h: R — R by: h(x) = z iff

{y | 7(F(x,y)) = z} is comeagre.

Using 1 and 2, h is a total Hyp function. We claim that h[A] C B,
contradicting the choice of A, B: Assume x € A. Then for
comeagre-many y, m(F(x,y)) = h(x). So if h(x) ¢ B then F maps
more than one E,4 class into a single Eg class, contradiction. By
symmetry there is no Hyp reduction of Eg to E4. [
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Final remarks and questions:

Theorem

(a) For each finite n there are Hyp equivalence relations above n
but incomparable with w.

(b) If a Hyp equivalence relation is above each finite n then it is
also above w.

Questions:

1. If a Hyp equivalence relation is Borel reducible to Ey must it also
be Hyp reducible to Eo? (This is true for finite n, w, R.)

2. E is the equivalence relation on R defined by XE;y iff

X(n) = y(n) for almost all n. Are there Hyp incomparable Hyp
equivalence relations between Eg and E;?7 Kechris-Louveau showed
that there are no Borel equivalence relations between Ey and Ej in
the sense of Borel reducibility.
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3. Are there any nodes other than 17 l.e., is there a Hyp equivalence
relation with more than one equivalence class which is comparable
with all Hyp equivalence relations under Hyp reducibility?

4. |s there a minimal degree? Are there incomparables above each
degree?

There is also a jump operation, which requires further study.

THANK YOU!



