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Reals = Baire space ωω, with the natural topology

Basic open sets: Ns = {f | f extends s}, s : n → ω for some �nite n

If E and F are Borel equivalence relations on the reals then

E is Borel reducible to F , written E ≤B F , i�

For some Borel function f : x E y i� f (x) F f (y)

≤B is re�exive and transitive

E ≡B F i� E ≤B F and F ≤B E (equivalence relation)

[E ]B = the equivalence class of E under ≡B

Object of study: B = Degrees of Borel equivalence relations under

Borel reducibility
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Work of Silver and of Harrington-Kechris-Louveau identi�es an

interesting initial segment of B:

Theorem

B has an initial segment

1 < 2 < · · · < ω < R < E0

where:

n = Borel equivalence relations with exactly n classes

ω = Borel equivalence relations with exactly ℵ0 classes

R is (ωω, =) (equality on reals)

E0 is the equivalence relation xE0y i� x(n) = y(n) for all but

�nitely many n

In fact: Any Borel equivalence relation is Borel equivalent to one of

the above or lies strictly above E0 under Borel reducibility.
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Question: What happens if we replace �Borel� by �Lightface Borel�?

Write �Hyp� for �Lightface Borel� (= ∆1

1
). Then we de�ne:

If E and F are Hyp equivalence relations on the reals then

E is Hyp reducible to F , written E ≤H F , i�

For some Hyp function f : x E y i� f (x) F f (y)

≤H is re�exive and transitive

E ≡H F i� E ≤H F and F ≤H E (equivalence relation)

[E ]H = the equivalence class of E under ≡H

Object of study: H = Degrees of Hyp equivalence relations under

Hyp reducibility

There are some surprises!
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Again we have degrees

1 < 2 < · · · < ω < R < E0

de�ned as follows:

n is represented by xEny i� x(0) = y(0) < n − 1 or

x(0), y(0) ≥ n − 1

ω is represented by xEωy i� x(0) = y(0)
R , E0 are as before:

xRy i� x = y

xE0y i� x(n) = y(n) for all but �nitely many n

Proposition

There are Hyp equivalence relations strictly between 1 and 2!
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Explanation:

Let E be a Hyp equivalence relation. Recall that the H-degree n is

represented by the equivalence relation En where:

xEny i� x(0) = y(0) < n − 1 or x(0), y(0) ≥ n − 1

Fact 1. En is Hyp reducible to E i� at least n distinct

E -equivalence classes contain Hyp reals

Proof. Suppose that En Hyp reduces to E via the Hyp function f .

Each of the n equivalence classes of En contains a Hyp real; let

x0, . . . , xn−1 be Hyp, pairwise En-inequivalent reals. Then the reals

f (xi ), i < n, are Hyp, pairwise E -inequivalent reals.

Conversely, if y0, . . . , yn−1 are Hyp, pairwise E -inequivalent reals

then send the En-equivalence class of xi to the real yi ; this is a Hyp

reduction of En to E . �
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Fact 2. E is Hyp reducible to E 2 i� E has at most 2 equivalence

classes.

Proof. If E is Hyp reducible to E 2 then E has at most 2

equivalence classes because E 2 has only 2 equivalence classes.

Conversely, suppose that the equivalence classes of E are A0 and

A1. We may assume that A0 has a Hyp element x . Then A0 is Hyp

as it consists of those reals E -equivalent to x and A1 is Hyp as it

consists of those reals not E -equivalent to x . Now we can reduce E

to E 2 by choosing E 2-inequivalent Hyp reals y0, y1 and sending the

elements of A0 to y0 and the elements of A1 to y1. �

So to get a Hyp equivalence relation between 1 and 2 we need only

�nd one with two equivalence classes but with all Hyp reals in just

one class. This follows from a classical fact from Hyp theory:
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Fact 3. There are nonempty Hyp sets of reals which contain no Hyp

element.

Proof. Let A be the set of non-Hyp reals. Then A is Σ1

1
and

therefore the projection of a Π0

1
subset P of Reals × Reals. P is

nonempty. A Hyp real h = (h0, h1) in P would give a Hyp real h0 in

A, contradiction. �

In a moment we will ask the harder question: Are there

incomparable degrees between 1 and 2?

But �rst we consider what happens between 1 and 3
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Let E be a Hyp equivalence relation. We have seen:

En is Hyp reducible to E i� E has at least n equivalence classes

containing Hyp reals

E is Hyp reducible to E 2 i� E has at most 2 equivalence classes

Can we replace 2 by n in this last statement?

Fact 4. E is Hyp reducible to En i� E has at most n equivalence

classes and each equivalence class is Hyp.

Proof. Each equivalence class of En is Hyp. If f is a Hyp function

reducing E to En then each equivalence class of E is the preimage

of a Hyp set under a Hyp function, hence is Hyp. Conversely, if E

has at most n classes and each class is Hyp, then we obtain a Hyp

reduction of E to En by assigning En-inequivalent Hyp reals to the

di�erent classes of E . �
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Can a Hyp equivalence relation with 3 equivalence classes have a

non-Hyp equivalence class? Fortunately, the answer is NO.

Lemma

Suppose that E is a Hyp equivalence relation with countably many

classes. Then each equivalence class of E is Hyp.

Proof Sketch. The Silver dichotomy states that every Borel (or even

boldface Π1

1
) equivalence relation has either countably many classes

or a perfect set of equivalence classes (i.e., R is Borel reducible to

it). Harrington's proof of this shows: If E is a Hyp equivalence

relation with countably many classes, then every real belongs to a

Hyp subset of some equivalence class.
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Now let C be the set of codes for Hyp subsets of an equivalence

class; then C is Π1

1
. Consider the relation

R = {(x , c) | c belongs to C and x belongs to H(c), the Hyp set

coded by c}
Then R is Π1

1
and can be uniformised by a Π1

1
function F . As the

values of F are numbers, F is Hyp and by Σ1

1
Separation we can

choose a Hyp D ⊆ C , D containing Range(F ). Now de�ne an

equivalence relation E ∗ on D by:

d0E
∗d1 i� H(d0) E H(d1), i.e., H(d0) and H(d1) are subsets of the

same E -equivalence class

Then both E ∗ and its complement are Π1

1
, so E ∗ is Hyp. And E

Hyp reduces to E ∗ via x 7→ F (x). But E ∗ is just a Hyp relation on

a Hyp set of numbers, so each of its equivalence classes is Hyp. It

follows that also each equivalence class of E is Hyp. �
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Corollary

Let E be a Hyp equivalence relation. Then E is Hyp reducible to n

i� it has at most n equivalence classes. And E is Hyp reducible to

ω i� E has countably many equivalence classes.

There are Hyp equivalence relations between 1 and 3 which are

incomparable with 2: Take one with 3 classes, one of which

contains all Hyp reals.

There are Hyp equivalence relations strictly between 2 and 3: Take

one with 3 classes, only two of which contain Hyp reals.

Similarly, for any 0 < n0 < n1 �nite, there are Hyp equivalence

relations which are strictly above n0, strictly below n1 and

incomparable with all n for n between n0 and n1.
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Now we discuss the more di�cult question: Are there incomparable

Hyp equivalence relations between 1 and 2? To answer this we

prove:

Theorem

There exists Hyp sets of reals A,B such that for no Hyp function F

do we have F [A] ⊆ B or F [B] ⊆ A.

Given this Theorem, de�ne EA to be the equivalence relation with

equivalence classes A and ∼ A (the complement of A); de�ne EB
similarly. Note that the sets A,B contain no Hyp reals, else there

would be a constant Hyp function F mapping one of them into the

other. So a Hyp reduction of EA to EB would have to send the

elements of ∼ A (which contains Hyp reals) to elements of ∼ B ,

and therefore the elements of A to elements of B , contradicting the

Theorem. Similarly with A and B switched.
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Theorem

There exists Hyp sets of reals A,B such that for no Hyp function F

do we have F [A] ⊆ B or F [B] ⊆ A.

Proof Sketch. First we quote a result of Harrington. For reals a, b
and a recursive ordinal α we say that a is α-below b i� a is

recursive in the α-jump of b.

Fact. For any recursive ordinal α there are Π0

1
singletons a, b such

that a is not α-below b and b is not α-below a.
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Now using Barwise Compactness, �nd a nonstandard ω-model M of

ZF− in which are there are Π0

1
singletons a, b such that for all

recursive α, a is not α-below b and b is not α-below a (i.e., a and

b are Hyp incomparable).

Let a, b be the unique solutions in M to the Π0

1
formulas ϕ0, ϕ1,

respectively.

The desired sets A,B are {x | ϕ0(x)} and {x | ϕ1(x)}.
If F were a Hyp function mapping A into B , then it would send a

to an element F (a) of B ∩M; but then F (a) must equal b and

therefore b is Hyp in a, contradicting the choice of a, b. �
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For the remainder of this talk, �x A,B as in the Theorem: There is

no Hyp function F such that F [A] ⊆ B or F [B] ⊆ A.

Using A,B we can easily get incomparable Hyp equivalence

relations between n and n + 1 for any �nite n, by considering

EA,EB where the equivalence classes of EA are A together with a

split of ∼ A into n classes, each of which contains a Hyp real

(similarly for EB).

We now consider Hyp equivalence relations with in�nitely many

equivalence classes.
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Recall the Silver and Harrington-Kechris-Louveau dichotomies:

Theorem

(a) (Silver) A Borel equivalence relation is either Borel reducible to

ω or Borel reduces R.

(b) (H-K-L) A Borel equivalence relation is either Borel reducible to

R or Borel reduces E0.

How e�ective are these results? Harrington's proof of (a) and the

original proof of (b) show:

Theorem

(a) A Hyp equivalence relation is either Hyp reducible to ω or Borel

reduces R.

(b) A Hyp equivalence relation is either Hyp reducible to R or Borel

reduces E0.
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Our sets A,B can be used to show that the Silver and

Harrington-Kechris-Louveau dichotomies are not fully e�ective:

Theorem

(a) There are incomparable Hyp equivalence relations between ω
and R.

(b) There are incomparable Hyp equivalence relations between R

and E0.
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Proof Sketch. (a) Consider the relations

EA(x , y) i� (x ∈ A and x = y) or (x , y /∈ A and x(0) = y(0))

EB : The same, with A replaced by B

Now Eω Hyp reduces to EA by n 7→ (n, 0, 0, ...).
Also EA Hyp reduces to R via the map G (x) = x for x ∈ A,

G (x) = (x(0), 0, 0, ...) for x /∈ A (same for B)

There is no Hyp reduction of EA to EB :

If F were such a reduction then let C be F−1[∼ B]. As ∼ B is Hyp,

C is also Hyp and therefore A ∩ C is also Hyp. But A ∩ C must be

countable as F is a reduction. So if A ∩ C were nonempty it would

have a Hyp element, contradicting the fact that A has no Hyp

element. Therefore F maps A into B , which is impossible by the

choice of A,B . By symmetry, there is no Hyp reduction of EB to

EA.
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(b) Now we de�ne EA on R × R by:

(x , y)EA(x ′, y ′) i� x = x ′ and either x /∈ A or (x ∈ A and yE0y
′)

EB : Same, with A replaced by B

We need two Facts:

1. If h : R → R is Baire measurable and constant on E0 classes

then h is constant on a comeagre set.

2. If B ⊆ R2 is Hyp then so is {x | {y | (x , y) ∈ B} is comeagre}.
Now suppose that F were a Hyp reduction of EA to EB . Let

π(x , y) = x for all x and de�ne h : R → R by: h(x) = z i�

{y | π(F (x , y)) = z} is comeagre.

Using 1 and 2, h is a total Hyp function. We claim that h[A] ⊆ B ,

contradicting the choice of A,B : Assume x ∈ A. Then for

comeagre-many y , π(F (x , y)) = h(x). So if h(x) /∈ B then F maps

more than one EA class into a single EB class, contradiction. By

symmetry there is no Hyp reduction of EB to EA. �
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Final remarks and questions:

Theorem

(a) For each �nite n there are Hyp equivalence relations above n

but incomparable with ω.
(b) If a Hyp equivalence relation is above each �nite n then it is

also above ω.

Questions:

1. If a Hyp equivalence relation is Borel reducible to E0 must it also

be Hyp reducible to E0? (This is true for �nite n, ω, R .)
2. E1 is the equivalence relation on Rω de�ned by ~xE1~y i�
~x(n) = ~y(n) for almost all n. Are there Hyp incomparable Hyp

equivalence relations between E0 and E1? Kechris-Louveau showed

that there are no Borel equivalence relations between E0 and E1 in

the sense of Borel reducibility.
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3. Are there any nodes other than 1? I.e., is there a Hyp equivalence

relation with more than one equivalence class which is comparable

with all Hyp equivalence relations under Hyp reducibility?

4. Is there a minimal degree? Are there incomparables above each

degree?

There is also a jump operation, which requires further study.

THANK YOU!


