
Cardinal Characteristics in the Uncountable

1.-2.Vorlesungen

Introduction

The study of cardinal characteristics of the continuum is now a vast sub-
ject. Its focus is on the relationships among a wide array of naturally de�ned
uncountable cardinal numbers that are at most 2ℵ0 , the size of the continu-
um. Some examples (which are de�ned below and whose generalisations play
an important role in this course) are the dominating number d, the bound-
ing number b, the almost disjointness number a, the splitting number s, the
tower number t and the pseudo-intersection number p. These are de�ned in
terms of the existence of certain families of subsets of ω or of functions from
ω to ω with speci�c properties.

The main tool in the study of cardinal characteristics of the continuum is
the method of iterated forcing, especially the theory of proper countable sup-
port iterations and its variants. The study of higher cardinal characteristics
provides a rich set of problems which demand a generalisation of the theory
of properness to iterations with uncountable support.

Questions

For a �xed cardinal characteristic κ 7→ χ(κ) we have the following general
questions:

(a) (Basic question) For which κ, λ can we force χ(κ) = λ (preserving cardi-
nals)?
(b) (Global behaviour) For which de�nable cardinal-valued functions F de-
�ned on the class of all regular cardinals can we force χ(κ) = F (κ) for all
regular κ (preserving cardinals)?
(c) (Large cardinal context) Can we have χ(κ) > κ+ for a measurable κ? If
so, what is the consistency strength of this inequality?
(d) (Internal consistency) Once some global result as in (b) above is achieved,
can it also be shown to hold in some inner model, assuming the existence
of large cardinals? If so, what large cardinals are needed for this internal
consistency?
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(e) (Transfer of open questions from the classical setting) Can the basic ques-
tion be answered for χ(κ) for some uncountable κ when the answer is not
known for the case κ = ω?

Of course it is often important to consider the above questions not just
for a single cardinal characteristic, but for several of them simultaneously,
revealing relationships among them.

We turn now to some speci�c examples.

The characteristic c(κ) = 2κ

The most familiar characteristic meaures the size of the powerset of κ.
Recall the basic results about this dating from the time of the ancient Greeks:

Theorem 1 (Solovay) Assume GCH, κ regular and cof(λ) > κ. Then we
can force 2κ = λ, preserving co�nalities.

Proof. Use Add(κ, λ), the forcing to add λ subsets of κ. Conditions are partial
functions f : κ×λ→ 2 of size less than κ, ordered by extension. The forcing
is κ-closed and adds at least λ-many subsets of κ. Co�nalities are preserved
thanks to the κ+-cc:

Lemma 2 Suppose that A is an antichain in P = Add(κ, λ). Then A has
size at most κ.

Proof of Lemma. We can assume that A is maximal. Let M be a su�ciently
elementary submodel of the universe which contains A as an element, is
κ-closed and has size κ. Then A ∩ M is also a maximal antichain, as the
restriction p ∩ M of any condition p to M is an element of M which is
compatible with an element of A ∩M , and this element of A ∩M is also
compatible with p. 2 (Lemma)

So P has the κ+-cc and co�nalities are preserved. And any subset of κ added
by P has a name which is nice, i.e. of the form {(α, p) | p ∈ Aα} where
the Aα's are antichains, and using the fact that cof(λ) > κ there are only λ-
many such names in the ground model. It follows that P adds exactly λ-many
subsets of κ. 2

Easton went global:
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Theorem 3 (Easton) Assume GCH and suppose that F : Reg → Card is
a de�nable function, where Reg denotes the class of in�nite regular car-
dinals and Card denotes the class of arbitrary in�nite cardinals. Suppose
that cof(F (κ)) > κ for each κ and F is nondecreasing. Then we can force
2κ = F (κ) for all regular κ, preserving co�nalities.

Proof. We use the Easton product
∏E

κ Add(κ, F (κ)), which consists of all
conditions p in

∏
κAdd(κ, F (κ)) such that {κ | p(κ) 6= ∅} has bounded inter-

section with each inaccessible cardinal. The key point is that for any regular
γ the Easton product factors as

∏E
κ≥γ+ Add(κ, F (κ)) ×

∏E
κ≤γ Add(κ, F (κ)),

the �rst factor is γ+-closed and the second factor is γ+-cc (even after adding
a generic for the �rst factor). The proof of the γ+-cc for the second factor
is just like the proof that Add(γ, λ) is γ+-cc for any λ. Given this it follows
that for any regular γ if an ordinal has co�nality at least γ+ in the ground
model then it still does after forcing with the Easton product; this is enough
to conclude that co�nalities are preserved.

One also has to worry that the forcing relation is de�nable (something
not automatic for class forcing), i.e. that the class of (p, σ, τ) such that p
forces σ ∈ τ and the class of (p, σ, τ) such that p forces σ = τ are both
L-de�nable classes. But this is easy because p forces σ ∈ τ or σ = τ in P i�
p � γ forces this in P � γ, where γ is greater than the ranks of σ, τ , by the
factoring property.

The rest follows as in the proof of the previous theorem. 2

Do we really need to use the Easton product
∏E

κ Add(κ, F (κ)) instead
of the full product

∏
κAdd(κ, F (κ))? The following shows that there are

problems even with the full product
∏

κAdd(κ, 1). A cardinal κ is Mahlo if
it is inaccessible and {α < κ | α is inaccessible} is stationary in κ.

Theorem 4 Suppose G is P-generic over L where P denotes the full product∏
κAdd(κ, 1) of κ-Cohen forcings for regular κ. Suppose that κ is L-regular.

Then (κ+)L[G] = (κ+)L i� κ is not Mahlo in L.

Proof. Let G = (G(β) | β regular) be P -generic. For each α < κ consider
Aα ⊆ κ de�ned by: β ∈ Aα ←→ α ∈ G(β).

Claim. Suppose κ is Mahlo. Then {Aα | α < κ} ⊆ L but for no γ < (κ+)L

do we have {Aα | α < κ} ⊆ Lγ.
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Proof of Claim. For any α < κ and condition p, we can extend p to q so that
α < β < κ, β regular −→ p(β) has length greater than α. Thus Aα is forced
to belong to L.

Given γ < (κ+)L and a condition p, de�ne f(β) = length (p(β)) for regular
β < κ. As κ is Mahlo, f has stationary domain and hence by Fodor's Theorem
we may choose α < κ such that length (p(β)) is less than α for stationary
many regular β < κ. Then p can be extended so that Aα is guaranteed to be
distinct from the κ-many subsets of κ in Lγ. 2 (Claim)

Thus κ+ is collapsed if κ is Mahlo. If κ is a successor cardinal then κ+

is not collapsed as we can factor P as P(≥ κ+) × P(≤ κ) where the �rst
factor is κ+-closed and the second is κ+-cc. so assume that κ is a non-Mahlo
limit cardinal and choose a CUB C ⊆ κ consisting of cardinals which are
not inaccessible. Suppose that 〈Dα | α ∈ C〉 is a de�nable sequence of dense
classes. Given p we can successively extend p(≥ α+), α ∈ C so that {q ≤ p |
q, p agree ≥ α+, q ∈ Dα} is predense ≤ p. There is no di�culty in obtaining a
condition at a limit stage less than κ precisely because conditions are trivial
at limit points of C. Thus we have shown that P(< κ)×P(> κ) preserves κ+

as κ-many dense classes can be simultaneously reduced to predense subsets
of size < κ. Finally P ' P(< κ)× P(> κ)× P(κ) and P(κ) preserves κ+ as it
has size κ. 2

Remark. Co�nality-preservation does hold for the thin product, de�ned like
the full product but with the requirement that for inaccessible κ, {α < κ |
p(α) 6= ∅} is nonstationary in κ. It also holds for the full product of the
κ-Cohen forcings for successor cardinals κ.

Now we turn to the large cardinal result, in its original form due to Silver.

Theorem 5 (Silver) Assume GCH and κ supercompact. Then we can force
2κ > κ+ keeping κ measurable and preserving co�naliities.

Proof. The strategy of the proof is to start with j : V → M that witnesses
the κ++-supercompactness of κ and then lift j to an embedding j∗ : V [G]→
M [G∗] where G is generic for a forcing P which adds κ++-many subsets of κ.

But if we use the Easton product, as in Easton's theorem, then we have
a problem lifting j, as if A is generic over V for Add(κ, 1) (and the Easton
product will add many such A's), then j∗(A) should be generic over M for
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Add(j(κ), 1)M , but this is impossible as j∗(A) ∩ κ = A does not belong to
M .

3.-4.Vorlesungen

So instead we use the reverse Easton iteration of the Add(α, α++) forcings
for regular α ≤ κ and for technical reasons we in fact restrict to inaccessible
α ≤ κ. This is the iteration (Pγ, Qγ) | γ ≤ κ) where Qγ is trivial unless γ is
inaccessible, in which case Qγ is a Pγ-name for Add(γ, γ++). When de�ning
Pγ we take direct limits for regular γ and inverse limits otherwise (the e�ect of
this is to ensure Easton support). The facts that this reverse Easton iteration
P preserves co�nalities and kills the GCH at κ are established in a way that
is very similar to the Easton product case.

It remains to show that κ is still measurable if it was originally super-
compact. Let j : V →M witness κ++-supercompactness (i.e. κ is the critical
point andM is closed under κ++-sequences) and suppose that G is P-generic.
We claim that we can lift j to j∗ : V [G] → M [G∗] where G∗ is generic over
M for M 's version P∗ of the reverse Easton iteration P. It's enough to �nd
such a G∗ so that j[G] ⊆ G∗, for then we obtain a lifting by de�ning j∗(σG)
to be j(σ)G

∗
. We assume that j : V →M is given by an ultrapower, i.e. that

every element of M is of the form j(f)(j[κ++]) for some f in V with domain
[κ++]<κ = Pκκ

++.

V and M have the same Add(κ, κ++) so we can take G∗ to equal G
up to and including stage κ. On the interval [κ+, j(κ)) we have only κ+++-
many dense sets (they are all represented by functions f from Pκκ

++ to the
powerset of Vκ), the forcing in this interval is κ+++- closed and M is closed
under κ++- sequences; it follows that we can build G∗ on this interval inside
V [G]. We can do the same at stage j(κ) but we have to worry that G∗(j(κ))
contains the j∗-image of G(κ); but the forcing Add(κ, κ++) has only κ++-
many conditions so using the closure of M under κ++-sequences we can �nd
a single �master� condition in the forcing at stage j(κ) which ensures that
the generic will obey this requirement. So we have succeeded in building the
desired G∗ and the proof is complete. 2

Remark. In fact supercompactness is preserved in the previous theorem, as
the above argument works with κ++ replaced by any regular cardinal greater
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then κ+. In fact with a little more work (�partial master conditions�), it can
be shown that even κ+- supercompactness is su�cient.

Internal consistency

A statement is internally consistent if it holds in an inner model, assuming
the existence of large cardinals. Typically to prove the internal consistency
of a statement from large cardinals one forces the statement to hold over a
suitable inner model and then shows that it is possible to construct a generic
for that forcing.

Theorem 6 (with Ondrejovi¢) Suppose that 0# exists. Then there is an in-
ner model in which GCH fails at all regular cardinals.

Proof. To prove his result, Easton forced over a model of GCH with the Eas-
ton product of Add(α, α++), α regular, to obtain a (class-) generic extension
where GCH fails at all regulars. As in Silver's theorem, the Easton product
cannot be used here:

Lemma 7 Suppose that 0# exists and let κ denote ωV1 . Then there is no
generic over L for Add(κ, 1), i.e. no κ-Cohen set over L.

Proof of Lemma. The proof will work when κ is any indiscernible of uncount-
able V -co�nality. For any limit indiscernible i, any constructible subset A of
i can be written as t(α, i,~j) where t is an L-de�nable function, α < i and ~j
is a �nite increasing sequence of indiscernibles greater than i (the choice of
~j does not matter as long as it has the right length). Suppose that G were
κ-Cohen over L. Then for any L-de�nable t and any β < κ there is a con-
dition p in G which meets all dense sets of the form t(α, κ,~j) for α < β, as
the collection of such dense sets is constructible of size less than κ. So build
a sequence of conditions p0, p1, . . . in G and indiscernibles α0 < α1 < · · · < κ
such that pn+1 has length less than αn+1 and meets all dense sets of the form
tn(α, κ,~j) for α < αn. If p is the limit of the pn's then p is a condition which
meets all dense sets of the form t(α, κ,~j) for some α < αω = the sup of the
αn's. But then p meets every constructible dense set D for αω-Cohen forcing,
as any such D is of the form t(α, αω,~j) = t(α, κ,~j) ∩ (P � αω) for some t,
some α < αω and indiscernibles ~j greater than κ. Therefore p is αω-generic
over L. But this contradicts the fact that p is a condition in Add(κ, 1) and
therefore constructible. 2
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So instead we use the reverse Easton iteration; however, as Add(α, α++)∗
Add(α+, α+++) collapses α++, we in fact need a reverse Easton iteration of
ω-products ∏

n

Add(ωn, ωn+2) ∗
∏
n

Add(ωω+n+1, ωω+n+3) ∗ · · · .

To build a generic G for this forcing P, we build a generic G(≤ i) for P(≤ i),
the �rst i+ 1 stages of this iteration, by induction on the indiscernible i. To
handle limit indiscernibles of uncountable co�nality we need to ensure the
coherence property: πij[G(≤ i)] ⊆ G(≤ j) for indiscernibles i < j, where
πij : L→ L has critical point i and sends i to j. The key inductive step is to
ensure that πii∗ [G(≤ i)] ⊆ G(≤ i∗), where i∗ is the least indiscernible greater
than the indiscernible i. This is equivalent to requiring G(< i) ⊆ G(< i∗)
and π∗ii∗ [G(i)] ⊆ G(i∗), where π∗ii∗ : L[G(< i)] → L[G(< i∗)] is the canonical
extension of πii∗ : L→ L.

It is not di�cult to construct in ω steps a P(≤ i∗)-generic G′(≤ i∗) such
that G′(< i∗) includes G(< i). The key step is to modify G′(i∗) to a G(i∗)
which contains π∗ii∗ [G(i)]. The latter modi�cation is performed by changing
values of G′(i∗) on the range of π∗ii∗ to make it agree with π∗ii∗ [G(i)]. A key
lemma states that if x belongs to L and has L-cardinality at most i∗ then
x ∩ Range(πii∗) belongs to L and has L-cardinality at most i. This enables
us to verify the genericity of the modi�ed G′(i∗), using the homogeneity of
the forcing Add(i∗, (i∗)++). 2

5.-6.Vorlesungen

The characteristics b(κ) and d(κ)

We consider the partial order of eventual dominance for functions f :
κ → κ. We write f ≤∗ g i� f(α) ≤ g(α) for su�ciently large α < κ. A
family of functions B is unbounded if there is no g such that f ≤∗ g for all
f ∈ B and is dominating if for every g there is f ∈ B such that g ≤∗ f . The
characteristics b(κ) and d(κ) are the least sizes of unbounded and dominating
families, respectively.

Lemma 8 Assume as usual that κ is regular. Then:
(a) κ+ ≤ b(κ) and b(κ) is regular.
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(b) b(κ) ≤ cof(d(κ)).
(c) d(κ) ≤ 2κ.
(d) cof(2κ) > κ.

Proof. (a) Given functions (fi | i < κ) we can (eventually) dominate them all
by f where f(i) = supj<i fj(i). So b(κ) is greater than κ. If B is unbounded
of size b(κ) and cof(b(κ)) = γ < b(κ) then write B as the union of smaller
subsets Bi, i < γ and for each i < γ choose fi which dominates all functions
in Bi and f which dominates each fi; it follows that f dominates all of B,
contradiction.
(b) If D is dominating of size d(κ) then write D as the union of smaller Di,
i < cof(d(κ)) and for each i choose fi not dominated by Di; then the set of
fi's is unbounded.
(c) is trivial and (d) is König's theorem. 2

Theorem 9 (Cummings-Shelah) Assume GCH and κ regular. Let β, δ and
µ be cardinals such that β is regular, cof(µ) > κ and κ+ ≤ β ≤ cof(δ), δ ≤
µ. Then in a co�nality-preserving forcing extension we have (b(κ), d(κ), 2κ)
equals (β, δ, µ).

To prove this we choose a wellfounded partial order P = P(β, δ, µ) of
size µ with b(P) = β and d(P) = δ (where b(P) and d(P) are de�ned for
partial orders P in the obvious way) and then force a co�nal embedding from
P(β, δ, µ) into (κκ,≤∗) preserving b(P) and d(P).

We obtain P(β, δ, µ) as follows. First de�ne P0 to be [δ]<β ordered by
x ≤ y i� x ⊆ y. Then {{α} | α < β} is unbounded and as β is regular, any
set of size less than β is bounded. Also our hypotheses that GCH holds and
δ has co�nality at least β imply that the entire partial order has size δ and it
is easy to see that no set of size less than δ is dominating. So b(P0) = β and
d(P0) = δ, as desired. Now P0 is not wellfounded but to �x that simply choose
a wellfounded, co�nal suborder Q, by enumerating elements (qi | i < λ) of P0
so that no qi is below any of the earlier qj's until a co�nal set is reached; as
qi < qj implies i < j this co�nal set Q is wellfounded. And it is easy to check
that b, d don't change when passing to a co�nal subset. Finally to guarantee
a partial order of size µ, stick a copy of (µ,<) at the bottom.

So what is left to show is the following.
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Lemma 10 (Main Lemma) Assume GCH, κ regular and R a wellfounded
partial order with b(R) ≥ κ+. Then there is a co�nality-preserving forcing
D(κ,R) which preserves b(R) and d(R) and forces that R can be co�nally
embedded into (κκ,≤∗).

To prove this we use a nonlinear iteration of Hechler forcing D(κ). A
condition in D(κ) is a pair (s, F ) where s : |s| → κ for some |s| < κ and
F : κ→ κ. Conditions are ordered by: (s, F ) ≤ (t, G) i�:

s extends t
F (α) ≥ G(α) for all α < κ
s(α) ≥ G(α) for |t| ≤ α < |s| .

The e�ect of D(κ) is to add a generic function g : κ → κ such that f ≤∗ g
for all f : κ→ κ in V . Clearly D(κ) is κ-closed and κ+-cc.

Now we prove the Main Lemma. Let R be wellfounded with b(R) ≥ κ+.
Let R+ denote R with one new element at the top of R and by induction on
a ∈ R+ we de�ne a forcing Pa. For any a ∈ R+ let Ra denote {b ∈ R | b <R+

a}. Then the conditions in Pa will be functions with domain contained in Ra
and it will be the case that b <R+ a and p ∈ Pa implies p � Rb ∈ Pb. To ease
notation we denote <R+ simply by <.

Suppose that Pb is de�ned for b < a. Then p is a condition in Pa i�:

(i) p is a function whose domain is a size < κ subset of Ra.
(ii) For b in the domain of p, p(b) is of the form (t, Ḟ ) where t : |t| → κ for
some |t| < κ and Ḟ is a Pb-name such that Pb 
 Ḟ : κ→ κ.

Extension of conditions is de�ned by p ≤ q i�:

(iii) The domain of p contains the domain of q.
(iv) Suppose q(b) = (t, Ḣ) and p(b) = (s, Ġ); then s extends t and p � Rb 
Pb
|t| ≤ α < |s| → s(α) ≥ Ḣ(α).
(v) p � Rb 
Pb Ġ(α) ≥ Ḣ(α) for each α < κ.

The desired forcing D(κ,R) is Pa where a is the new element at the top
of R+. It is clear that D(κ,R) is κ-closed. Also D(κ,R) is κ+-cc, as any set
X of conditions of size greater than κ contains a subset Y of size κ+ such
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that the domains of the conditions in Y form a ∆-system with some root r;
then we can choose Z ⊆ Y , also of size κ+, so that p(b) = (sb, Ḟp(b)) for all b
in r, where sb is independent of the choice of p. But then any two conditions
in Z are compatible, so X could not have been an antichain.

Also note that just as for linear iterations, b < a implies that the function
p 7→ p � Rb is a projection from Pa onto Pb. In particular any sentence
mentioning only Pb-names which is forced by p � Rb in Pb is also forced by p
in Pa.

Let G be D(κ,R)-generic and for each a ∈ R let fGa be the union of the
�rst coordinates of the p(a) for p ∈ G. We claim that a 7→ fGa is a co�nal
embedding from R into the (κκ,≤∗) of V [G].

Claim 1. If a < b then fGa <∗ fGb .

Proof. Given any condition p we can extend p to q so that q(b) = (s, Ḟ ) where
Ḟ is a Pb-name for a function which strictly dominates the canonical Pb-name
for fGa . Then q forces that f

G
b strictly dominates fGa on a �nal segment. 2

Claim 2. If a ≮ b then fGa ≮∗ fGb .

Proof. We may assume a � b. Let p be a condition, α0 < κ and choose
α < κ to be larger than α0 as well as the domain of p(a)0, where p(a)0
is the �rst component of p(a). Obtain an extension q of p by extending
p � (Rb ∪ {b}) so that q(b)0 has length greater than α (if necessary). Then
as a � b, q(a)0 = p(a)0 and is therefore unde�ned at α. Then extend q to r
so that r(a)0 takes a value at α which is greater than q(b)0(α). So we have
shown that for each α0 < κ it is dense for p to force fGa (α) > fGb (α) for some
α > α0 and therefore fGa ≮∗ fGb . 2

Claim 3. In V [G] the functions fGa , a ∈ R, are co�nal in (κκ,≤∗).

Proof. Let f : κ → κ belong to V [G]. Then by the κ+-cc there is X ⊆ R of
size κ such that f has a name which only mentions conditions with domain
contained in X. As we have assumed that b(R) is greater than κ we may
choose a ∈ R which is an upper bound of X, from which it follows that f ,
which has a Pa-name, is dominated by fGa . 2
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Finally, note that by the κ+-cc, every set of ordinals in V [G] of size less
than β = b(R) is covered by a set of ordinals of size less than β, as we have
assumed that β is greater than κ. From this it follows that b(R) = b(R)V [G].
Similarly, with β replaced by δ = d(R), we obtain d(R) = d(R)V [G]. 2

7.-8.Vorlesungen

Global Cummings-Shelah

We have shown that the triple (b(κ), d(κ), 2κ) for a regular κ can be
anything that follows the basic rules: κ < b(κ) ≤ cof(d(κ)), d(κ) ≤ 2κ and
b(κ) regular, cof(2κ) > κ. Cummings-Shelah also gave a global version of this
result:

Theorem 11 Assume GCH and suppose that κ 7→ (β(κ), δ(κ), µ(κ)) obeys
the basic rules for each regular κ and in addition κ 7→ µ(κ) is nonde-
creasing. Then there is a co�nality-preserving forcing extension in which
(b(κ), d(κ), 2κ) = (β(κ), δ(κ), µ(κ)) for all regular κ.

This is harder than it looks. The obvious approach is to use an Easton
product of forcings to arrange (b(κ), d(κ), 2κ) = (β(κ), δ(κ), µ(κ)) for the
di�erent κ's. But this does not give the desired result at κ when the Easton
product restricted to κ is not κ-cc, i.e., when κ is either the successor of a
singular or is a non-Mahlo inaccessible. One can show in these cases that
the Easton product restricted to κ adds κ+-many κ-Cohen sets, forcing the
bounding number at κ to be κ+. (In the other cases, i.e. κ equal to ω, the
successor of a regular or Mahlo, we do get the desired result because a κ-cc
forcing of size at most 2κ will not a�ect the values of b(κ), d(κ) and 2κ.) And
we can't use the full reverse Easton iteration as that may collapse cardinals.

To solve this problem, Cummings-Shelah used a thinned-out reverse Eas-
ton iteration due to Magidor-Shelah called the tail iteration. To illustrate
this, suppose that λ is singular, we have de�ned the iteration Pλ below λ and
we want to de�ne Pλ ∗ Q to ensure the right values of (b(λ+), d(λ+), 2λ

+
).

The naive thing is to de�ne the non-linear Hechler iteration Q as before, by
de�ning Qa for a ∈ R+ = R ∪ {top} by induction on a to consist of partial
functions q with domain a size at most λ subset of Ra such that for each b,
q(b) = (s, Ḟ ) where s : |s| → λ+ for some |s| < λ+ and Ḟ is a Qb-name for a
function from λ+ to λ+. As before this will add a function gb which dominates
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all functions in V Qb for each b, but in fact we need to dominate all functions
in V Pλ∗Qb . So it is tempting to simply allow Ḟ to be a Pλ ∗Qb-name; but for
this to make sense we also need allow s to come from V Pλ , which may force
us to collapse cardinals.

The solution is to arrange inductively that for each α < λ, the forcing
Pλ is equivalent to a product Pα+1 × Pα � (α + 1, λ) for each α < λ where
Pα � (α + 1, λ) is an α+-closed iteration. Then instead of taking all V Pλ∗Qb-
names Ḟ we only take those which are symmetric, which means that Ḟ is
forced to be equal to a Pα � (α + 1, λ)-name for each α < λ. We then have:

Lemma 12 For b < a in R+, any function from λ+ to λ+ in V Pλ∗Qb is
dominated by the generic function ga added by Qa over V Pλ.

Proof. It su�ces to show that any function added by Pλ ∗ Qb is dominated
by one with a symmetric name. Suppose that Ḟ is an arbitary name. Now
for each regular α < λ we can factor Pλ ∗Qb as (Pα+1 × Pα � (α+ 1, λ)) ∗Qb

and thereby regard Ḟ as a Pα+1-name in V P
α�(α+1,λ)∗Qb . De�ne:

Gα(β) = sup{γ | p 
 Ḟ (β) = γ for some p ∈ Pα+1}.

and regard this as a Pλ ∗Qb-name. Finally, de�ne the symmetric name Ġ by
Ġ(β) = supα<λGα(β). 2

The rest of the proof that we get the right values of b(λ+), d(λ+) and
2λ

+
is now as before. The inaccessible cases are handled similarly, also using

symmetric names.

b(κ), d(κ), c(κ) and large cardinals

Using a technique of Laver we can easily arrange to realise any allowable
values of b(κ), d(κ) and c(κ) preserving supercompactness.

Lemma 13 (Laver function) Suppose that κ is supercompact. Then there is
a function f : κ→ Vκ such that for every set x and every cardinal λ ≥ κ such
that x ∈ Hλ+ there is a j : V → M with critical point κ such that j(κ) > λ,
Mλ ⊆M and j(f)(κ) = x.
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Proof. Assume that the result fails. For each f : κ → Vκ let λf be the least
cardinal λ ≥ κ such that for some x ∈ Hλ+ , (λ, x) witnesses that f is not a
Laver function for κ, i.e. j(f)(κ) 6= x for every j : V →M with critical point
κ such that j(κ) > λ and Mλ ⊆M . Let ν be greater than all of the λf 's and
let j : V →M witness the ν-supercompactness of κ.

Inductively de�ne f : κ→ Vκ as follows: If f � α is not a Laver function
for α then let λ be least so that (λ, x) witnesses this for some x ∈ Hλ+ and
choose f(α) to be such an x; otherwise set f(α) = 0.

Now consider x = j(f)(κ). By the de�nition of f and the elementarity of
j, (λMf , x) witnesses the failure of f to be a Laver function inM . AsMν ⊆M ,
λMf = λf and (λf , x) also witnesses the failure of f to be a Laver function in
V . This is a contradiction, as j(κ) > λf and j(f)(κ) = x. 2

Theorem 14 (Laver preparation) Assume GCH and κ supercompact. Then
in a set-forcing extension, GCH holds at and above κ and κ is supercompact
in any further κ-directed closed forcing extension.

Proof. Let f : κ → Vκ be a Laver function. We say that an inaccessible
α < κ is closed under f if the range of f on α is contained in Vα. Perform
a reverse Easton iteration P of length κ where at each inaccessible stage α
closed under f , one chooses Pα+1 = Pα ∗Qα where Qα is the Pα-name f(α) in
case this is a name for an α-directed closed forcimg; Qα is trivial otherwise.
Let G be P-generic. We claim that κ is supercompact after forcing over
V [G] with any κ-directed closed forcing. To see this, suppose that P forces
that Q̇ is κ-directed closed and let λ be any regular cardinal big enough
so that Q̇ belongs to H(λ+). As f is a Laver function we can choose a
λ-supercompactness embedding j : V → M with critical point κ so that
j(f)(κ) = Q̇. We may assume that j is given by an ultrapower, which means
that M = {j(g)(j[λ]) | g : [λ]<κ → V , g ∈ V }. Let H be Q̇G-generic
over V [G]; we show that j can be lifted to a λ-supercompactness embedding
j∗ : V [G ∗H]→M [G∗ ∗H∗] in V [G ∗H].

We describe how to �nd G∗ ∗H∗. At stage κ we must choose G∗(κ) to be
j(f)(κ)G = Q̇G-generic so we take G∗(κ) to be H. Between stages κ and j(κ)
we can build G∗(κ, j(κ)) in V [G ∗H] as the forcing in this interval has only
card([λ]

<κ
Vκ) = λ+-many maximal antichains, is λ+-closed and M [G ∗H] is

closed under λ-sequences in V [G∗H]. We can also build a generic H∗ at stage
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j(κ) but have to in addition ensure that H∗ contains j′[H], the pointwise
image of H under the lifting j′ : V [G] → M [G∗] of j. Here we invoke the
κ-directed closure of the forcing Q̇G which yields the j(κ)-directed closure of
the forcing at stage j(κ). We need only note that that j′[H] is an element
of M [G∗] by λ-supercompactness and is a directed set of size less than j(κ),
enabling us to choose a �master condition� q∗ below all conditions in j′[H];
by choosing H∗ to contain q∗ as an element we ensure that it contains j′[H]
as a subset, �nishing the proof. 2

Remark. �κ-directed closed� cannot be replaced by �κ-closed� in the above
as the natural κ-closed forcing that adds a κ-Kurepa tree destroys the mea-
surability of κ.

9.-10.Vorlesungen

Returning to the cardinal charcteristics b(κ), d(κ) and c(κ) we now obtain:

Corollary 15 Suppose that GCH holds, κ is supercompact and κ < β ≤
cof(δ) ≤ δ ≤ µ with β regular and cof(µ) > κ. Then there is a forcing
extension preserving co�nalities ≥ κ in which κ remains supercompact and
(b(κ), d(κ), c(κ)) equals (β, δ, µ).

Proof. First force as in Laver preparation; this will preserve co�nalities ≥ κ
and the GCH ≥ κ. Then apply the Cummings-Shelah forcing. As the latter
is κ-directed closed, the supercompactness is preserved. 2

Remark. �Preserving co�nalities ≥ κ� can be replaced by �preserving all co-
�nalities� in the previous result. To see this, prepare as before using the
Laver function f but only force at an inaccessible stage α < κ if f(α) is
a Cummings-Shelah forcing to control b(α), d(α) and c(α). This will pre-
serve co�nalities and be a su�cient preparation to ensure that forcing with
Cummings-Shelah at κ will preserve supercompactness.

We now ask: Do we really need supercompactness to control the above
characteristics at a measurable? It is known that more than a measurable
is needed to violate GCH at a measurable; a degree of �hypermeasurabil-
ity� is required. Suppose that κ ≤ λ are cardinals. We say that κ is λ-
hypermeasurable if it is the critical point of j : V → M where H(λ) ⊆ M .
If GCH holds, κ is λ-hypermeasurable and λ > κ+ is regular then we can
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force 2κ = λ without changing co�nalities and keeping κ measurable (this is
nearly optimal). Can we also control the above characteristics from hyper-
measurability assumptions?

We begin with separating d(κ) from c(κ) for a measurable κ.

Theorem 16 Assume GCH, κ+ < λ, λ regular and κ λ-hypermeasurable.
Then in a co�nality-preserving forcing extension, d(κ) = κ+ and 2κ = λ.

Proof. We will use a variant of κ-Sacks forcing to increase 2κ. The advantage
of κ-Sacks over κ-Cohen is that it is κκ bounding, i.e. any function f : κ→ κ
that it adds is dominated by such a function in the ground model.

For inaccessible α let Sacks(α) denote the following forcing. A condition
is a subset T of 2<α (= the set of functions from an ordinal less than α into
2) such that:

1. s ∈ T , t ⊆ s→ t ∈ T .
2. Each s ∈ T has a proper extension in T .
3. If s0 ⊆ s1 ⊆ · · · is a sequence in T of length less than α then the union of
the si's belongs to T .
4. Let Split(T ) denote the set of s in T such that both s ∗ 0 and s ∗ 1 belong
to T . Then for some (unique) closed, unbounded C(T ) ⊆ α, Split(T ) = {s ∈
T | length(s) ∈ C(T )}.

Extension is de�ned by S ≤ T i� S is a subset of T . For i < α, the i-
th splitting level of T , Spliti(T ), is the set of s in T of length αi, where
α0 < α1 < · · · is the increasing enumeration of C(T ). Sacks(α) is an α-
closed forcing of size α+. This forcing also preserves α+, as it obeys the
following α-fusion property. For β < α we write S ≤β T i� S ≤ T and
Spliti(S) = Spliti(T ) for i < β.

α-fusion: Suppose that T0 ≥ T1 ≥ · · · is a descending sequence in Sacks(α)
of length α and suppose in addition that Ti+1 ≤i Ti for each i less than α.
Then the intersection of the Ti, i < α, is a condition in Sacks(α).

α-fusion implies that α+ is preserved, as given a condition T0 and a name
ḟ : α → Ord, one can build a sequence as in the hypothesis of α-fusion
so that Ti forces ḟ(i) to belong to a set of size at most 2i = i+; then the
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intersection of the Ti's forces that the range of ḟ is covered by a set of size α.
From this we can conclude that Sacks(α) preserves α+ and is αα-bounding.

Now consider the e�ect of κ-Sacks forcing on large cardinals. Assume
GCH and let j : V → M be an elementary embedding with critical point κ
and for the sake of illustration assume that j is just a measure ultrapower
embedding. Now as we have seen before we cannot just force to add a new
subset A of κ whose proper initial segments are in V and expect to lift the
embedding j; indeed if j∗ were such a lifting then j∗(A) has a proper initial
segment not in M , namely A, and therefore by elementarity A must have
a proper initial segment not in V . So if we want Sacks(κ) to preserve the
measurability of κ then we have to �prepare� by �rst forcing with Sacks(α)
for measure-one many α < κ.

So consider the reverse Easton iteration P = (Pα,Qα) | α ≤ κ) were at
inaccessible stages α ≤ κ one forces with Qα = Sacks(α). Let G be P-generic
and we show that j : V → M can be lifted in V [G] to j∗ : V [G] → M [G∗]
where G∗ is j(P) = P∗-generic overM . As P and P∗ agree upto and including
stage κ we can take G∗(≤ κ) to equal G(≤ κ). Between κ and j(κ) we need
to hit card(j(κ)) = κ+-many maximal antichains for a κ+-closed forcing in
a model closed under κ-sequences; this is easy. So we have G∗(< j(κ)). The
remaining question is: how do we de�ne the generic G∗(j(κ)) for Sacks(j(κ))
(in the sense of the model M [G∗(< j(κ))]) so as to contain each condition
j∗(T ) where T is a κ-Sacks tree in G(κ)?

Actually there are exactly two choices for G∗(j(κ)). Recall that the splt-
ting levels of a κ-Sacks tree T form a club Split(T ) in κ. And by a density
argument, these clubs can be arbitrarily thin, i.e. any club in κ will contain
some C(T ), T ∈ G(κ), as a subset. It follows that if we intersect the trees
j∗(T ) for T ∈ G(κ) then we get a tree whose only splitting levels lie in the
intersection of the j(C), C a club in κ.

Lemma 17 The intersection of the j(C) for C a club in κ consists of just
the single ordinal κ.

Proof. Any ordinal γ < j(κ) is of the form j(f)(κ) where f : κ → κ. Let C
be the set of closure points of f . Then if γ is greater than κ, as γ is not a
closure point of j(f) it follows that γ does not belong to j(C). If γ is less
than κ then γ does not belong to the club C of ordinals between γ and κ nor
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to j(C). Finally, κ does belong to j(C) for any club C in κ as it is the sup
of C = j(C) ∩ κ and therefore a limit point of j(C). 2

So we see that the trees j∗(T ) for T in G(κ) intersect to a tuning fork,
i.e. the union of two co�nal branches through 2<j(κ) which split at κ. It can
be shown that each of these two branches b0.b1 is Sacks(j(κ))-generic over
M [G∗(< j(κ))] and therefore we get two liftings of j∗ : V [G(< κ)]→M [G∗(<
j(κ))] to j∗∗ : V [G(≤ κ)] → M [G∗(≤ j(κ))], obtained by choosing G∗(j(κ))
to be the generic consisting of all j(κ)-Sacks trees having bi as a branch for
i = 0, 1.

Tuning forks are nice, but sometimes a bit distracting, especially when
considering products or iterations of Sacks(κ), so we introduce a variant
Sacks∗(κ) which reduces the two possible choices of lifting to just one.

For inaccessible α a condition in Sacks∗(α) is a subset T of 2<α such that:

1. s ∈ T , t ⊆ s→ t ∈ T .
2. Each s ∈ T has a proper extension in T .
3. If s0 ⊆ s1 ⊆ · · · is a sequence in T of length less than α then the union of
the si's belongs to T .
4. Let Split(T ) denote the set of s in T such that both s ∗ 0 and s ∗ 1 belong
to T . Then for some (unique) closed, unbounded C(T ) ⊆ α, Split(T ) = {s ∈
T | length(s) ∈ C(T ) and length(s) is singular}.

Extension is de�ned as before: S ≤ T i� S is a subset of T . Thus the di�erence
between Sacks(α) and Sacks∗(α) (= �Sacks(α) with singular splitting�) is that
the splitting levels are the singular elements of some club, One still has α-
closure and fusion, and the forcing is αα-bounding. But when performing
the lifting argument, the intersection of the j(κ)-trees j∗(T ) for T a κ-tree
in G(κ) is now a single co�nal branch through 2<j(κ) as κ is regular and
therefore there is no splitting at level κ.

Now we outline the proof of Theorem 16. For inaccessible α let Sacks∗(α, α++)
denote the product of α++ copies of Sacks∗(α) with size α support. Thus a

condition is a sequence ~T = 〈T (i) | i < α++〉 whose support Supp(~T ) = {i |
T (i) 6= 2<α} has size at most α, ordered componentwise. This forcing is again
α-closed, and preserves α+ via a suitable version of α-fusion, which we now
describe. For β < α and X ⊆ α++ of size less than α, we write ~T0 ≤β,X ~T1
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i� ~T0 ≤ ~T1 (i.e., T0(i) ≤ T1(i) for each i < α++) and in addition, for i in X,
T0(i) ≤β T1(i).

Generalised α-fusion: Suppose that ~T0 ≥ ~T1 ≥ · · · is a descending sequence
in Sacks∗(α, α++) of length α and suppose in addition that ~Ti+1 ≤i,Xi ~Ti for
each i less than α, where the Xi's form an increasing sequence of subsets
of α++ of size less than α whose union is the union of the supports of the
~Ti's. Then the ~Ti's have a lower bound in Sacks∗(α, α++) (obtained by taking
intersections at each component, using α-fusion).

Again this implies that α+ is preserved, as given a condition ~T0 and a name
ḟ : α → Ord one can build a sequence as in the hypothesis of generalised
α-fusion so that ~Ti forces ḟ(i) to belong to a set of size at most (2i)γ < α

for some γ < α; then a lower bound of the ~Ti's forces that the range of ḟ is
covered by a set in the ground model of size at most α. This also shows that
the forcing is αα-bounding.

Using the GCH at α, a ∆ system argument shows that Sacks∗(α, α++) is
α++-cc and therefore preserves α++.

11.-12.Vorlesungen

Now force over our ground model V with the reverse Easton iteration of
Sacks∗(α, α++) for α inaccessible, α ≤ κ. Let G denote the generic for the
�rst κ stages of this iteration and g the generic for the κ-th stage. Thus g is
generic over V [G] for Sacks∗(κ, κ++) as de�ned in V [G].

We would like to �nd a suitable generic over M for M 's version of the
above iteration. As M contains H(κ++)V , the �rst κ+ 1 stages of the M and
V iterations are the same, so we may use G ∗ g as our generic over M for the
�rst κ+ 1 stages of the M -iteration. Next we want a generic H over M [G][g]
for the M -iteration between κ and j(κ); given this we obtain a lifting of
j : V →M to an embedding j∗ : V [G]→M [G][g][H]. In the case of lifting a
measure ultrapower after an iteration of Sacks(α) for α ≤ κ we built such an
H using the fact that the forcing for which it must be generic had κ+-many
maximal antichains and was κ+-closed in a model closed under κ-sequences;
in the present context the collections of antichains we need to hit is the κ+-
union of sets in M [G][g], the forcing is κ+++-closed and M [G][g] is closed
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under κ-sequences in V [G][g]. So again it is easy to build the desired generic
H inside V [G][g].

The last step is to �nd a generic h overM [G][g][H] for the j(κ)-th stage of
theM -iteration, where we force with the Sacks∗(j(κ), j(κ++)) ofM [G][g][H].
As g is a set of conditions in Sacks∗(κ, κ++) of V [G], j∗[g] consists of a set of
conditions in Sacks(j(κ), j(κ++)) of M [G][g][H]. Below is the �tuning fork�
picture we would get if we had used ordinary Sacks(α) instead of Sacks∗(α):

Lemma 18 For α < j(κ++) let t be the intersection of the trees j∗(p)(α), p
in g. If α belongs to the range of j, then t is a (κ, j(κ))-tuning fork, i.e., a
subtree of 2<j(κ) which is the union of two co�nal branches which split at κ.
If α does not belong to the range of j, then t consists of exactly one co�nal
branch through 2<j(κ).

But as we have used Sacks∗(α), our lemma simpli�es to:

Lemma 19 For α < j(κ++) let t be the intersection of the trees j∗(p)(α), p
in g. Then t consists of exactly one co�nal branch x(α) through 2<j(κ).

The �nal step is to verify that these co�nal branches yield a generic:

Lemma 20 Let h consist of all conditions p in Sacks(j(κ), j(κ++)) ofM [G][g][H]
such that for each α < j(κ++), x(α) is contained in p(α). Then h is generic
for Sacks∗(j(κ), j(κ++)) of M [G][g][H] over M [G][g][H] and contains j∗[g].

Thus we can lift the embedding j∗ : V [G]→M [G][g][H] to an embedding
j∗∗ : V [G][g] → M [G][g][H][h], and this lifting is de�nable in V [G][g]. So
V [G][g] is a model where κ is measurable and the GCH fails at κ. Moreover
as Sacks∗(κ, κ++) is κκ-bounding, we have d(κ) = κ+ in this model. 2

Pushing up d(κ) at a measurable κ

So far we have seen that with Sacks forcing at κ we can enlarge 2κ for
a measurable κ without increasing d(κ). We next show that we can enlarge
both d(κ) and 2κ simultaneously.

Theorem 21 Assume GCH. Suppose that κ++ ≤ µ with µ regular and κ µ-
hypermeasurable. Then without changing co�nalities we can force d(κ) = κ++

and 2κ = µ keeping κ measurable.
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To prove this we use an iteration of a suitable form of κ-Miller forcing.

Let κ be inaccessible. The forcing Miller(κ) consists of < κ-closed subtrees
of the tree κ<κ↑ of increasing sequences in κ<κ with the property that every
splitting node is club-splitting, every node can be extended to a club-splitting
node and the limit of club-splitting nodes is club-splitting. We also require
continuous club-splitting, which means that if s is a limit of club-spltting
nodes then the club witnessing club-splitting for s is the intersection of the
clubs witnessing club-splitting for the club-splitting proper initial segments
of s. Conditions are ordered by inclusion.

Miller(κ) is κ-closed. For any condition p we let Split(p) be the set of
nodes in p which split in p. There is a natural bijection πp between Split(p)
and the full tree κ<κ which preserves the lexicographical ordering of nodes.
For α < κ we let Splitα(p) be the inverse image of α≤α under this bijection.

The point of this de�nition of Splitα(p) is that it facilitates fusion: For q ≤ p ∈
Miller(κ) and α < κ the notation q ≤α p means that Splitα(p) = Splitα(q). A
sequence (pα | α < κ) of conditions in Miller(κ) is called a fusion sequence,
i�

(i) If α ≤ β, then pβ ≤ pα.
(ii) pα+1 ≤α pα.
(iii) pδ = ∩α<δpα for limit δ < κ.

Then we have:

Lemma 22 Let (pα | α < κ) be a fusion sequence. Then q =
⋂
α<κ pα ∈

Miller(κ) and q ≤α pα for all α < κ.

It follows from fusion that the range of any function f : κ→ Ord added
by Miller(κ) is covered by a set in the ground model of size κ and therefore
Miller(κ) preserves κ+ (and as it is κ-closed of size κ+ it preserves all co-
�nalities). But unlike Sacks(κ), Miller(κ) is not κκ-bounding: if f : κ → κ
belongs to V and p is a κ-Miller condition then using club-splitting we can
extend p to force that the generic f Ġ : κ → κ (i.e. the intersection of the
κ-Miller trees in the generic Ġ) is not everywhere dominated by f .

Next we look at the e�ect that κ-Miller forcing has on a measurable
cardinal κ. Assume GCH and that j : V → M is a measure ultrapower
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witnessing the measurability of κ. Force with the reverse Easton iteration P =
((Pα,Qα) | α ≤ κ) where at inaccessible α ≤ κ, Qα is Miller(α). Co�nalities
are preserved. We want to verify that κ remains measurable by lifting j to
j∗ : V [G]→M [G∗] where G∗ is P∗ = j(P)-generic over M .

As in the case of iterated Sacks(α), we can easily de�ne the required G∗

below stage j(κ) by copying G up to and including stage κ and building
a generic G∗(κ, j(κ)) between stages κ and j(κ). And we can also build a
generic G∗(j(κ)) at stage j(κ), but the key is to ensure that it will contain
the image of G(κ) under the lifting j′ of j to V [G(< κ)]→M [G∗(< j(κ))].

As in the Sacks∗ case we need to consider the intersection of the Miller(j(κ))-
trees j′(p) for p in the Miller(κ)-generic G(κ). Clearly this intersection con-
tains fG(κ) : κ→ κ, the κ-Miller generic function equal to the intersection of
the trees in G(κ). In the Sacks case we could then infer that the analogous
intersection also contains both fG(κ) ∗ 0 and fG(κ) ∗ 1, giving rise to a tuning
fork. In the present situation we need to know that the intersection of the
j(κ)-trees j′(p), p ∈ G(κ) contains some extension fG(κ) ∗α of fG(κ), else this
intersection will not yield a co�nal branch through j(κ)<j(κ).

But thanks to continuous club-splitting, we know that for any condition
p in Miller(κ) and any node s of j′(p) of length κ, the set of α such that s∗α
belongs to j′(p) is a club equal to the intersection of clubs of the form j′(C)
where C is a club in κ; all such j′(C) contain κ as an element and therefore
s ∗ κ belongs to j′(p). Taking p to range over G(κ) and s to be fG(κ) we see
that fG(κ) ∗ κ belongs to j′(p) for all p ∈ G(κ) and therefore the intersection
of these j′(p) does indeed contain a (unique) node of length κ+ 1.

Now as in the Sacks case we can argue that there are no splits in the
intersection of the j′(p), p ∈ G(κ), and this intersection is a single branch
through j(κ)<j(κ) of length j(κ). Indeed this branch is Miller(j(κ))-generic
over M [G∗(< j(κ))].

13.-14.Vorlesungen

κ-Miller products

Recall κ-Miller forcing for an inaccessible κ: Miller(κ) consists of < κ-
closed subtrees of the tree κ<κ↑ of increasing sequences in κ<κ with the prop-
erty that every splitting node is club-splitting, every node can be extended
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to a club-splitting node and the limit of club-splitting nodes is club-splitting.
We also require continuous club-splitting, which means that if s is a limit
of club-spltting nodes then the club witnessing club-splitting for s is the in-
tersection of the clubs witnessing club-splitting for the club-splitting proper
initial segments of s. Conditions are ordered by inclusion.

Miller(κ) is κ-closed and there is a suitable form of κ-fusion: For any
condition p we let Split(p) be the set of nodes in p which split in p. There is a
natural bijection πp between Split(p) and the full tree κ

<κ which preserves the
lexicographical ordering of nodes. For α < κ we let Splitα(p) be the inverse
image of α≤α under this bijection. For q ≤ p ∈ Miller(κ) and α < κ the
notation q ≤α p means that Splitα(p) = Splitα(q). A sequence (pα | α < κ) of
conditions in Miller(κ) is a fusion sequence i� it is decreasing, continuous at
limits and pα+1 ≤α pα for each α < κ. Fusion sequences have greatest lower
bounds.

It follows from fusion that Miller(κ) preserves κ+ (and indeed all co�nal-
ities, assuming GCH in the ground model). Unlike Sacks(κ), Miller(κ) is not
κκ-bounding. Thus our strategy to push up d(κ) at a measurable κ will be
to use a κ-support product of κ-Miller forcings. (We use κ-Miller instead of
κ-Cohen to facilitate the preservation of measurability.)

At �rst this seems a bad idea, as it is known that when κ equals ω, the
full support product of ω-many ω-Miller = Miller forcings collapses ω1. In
fact, this product includes the full support product of ω-many Cohen forcings
and:

Proposition 23 The full support product of ω-many Cohen forcings collaps-
es the continuum to ω.

Proof. Think of the Cohens as functions from ω to ω and write the generic as
(f0.f1, . . .). Then for each �nite k consider the function gk which at argument
n takes the value fn(fn−1(. . . (f1(f0(k))) . . .)) and de�ne hk : ω → 2 by
hk(n) = 1 i� gk(n) is even. Then any ground model function from ω to 2 is
equal to some hk. 2

However:

Proposition 24 Assume GCH at κ and let κ be (uncountable and) inac-
cessible. Then the full support product of κ-many κ-Cohen forcings preserves
co�nalities.
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Proof. It su�ces to show that κ+ is preserved. Let P be the fully-supported
product of κ-many κ-Cohen forcings and let P0 be the < κ-supported product
of κ-many κ-Cohen forcings. Let p be a condition in P which forces that ḟ
is a function from κ into Ord.

Write q ≤α p i� q ≤ p and q = p on the �rst α components, i.e., if
p = (p(i)|i < κ), q = (q(i)|i < κ) then q(i) = p(i) for all i < α. Obviously
we have fusion for these relations: If ~p = (pi|i < κ) is a fusion sequence
(i < j → pj ≤ pi, pi+1 ≤i pi for all i and glb's are taken at limits) then ~p has
a greatest lower bound.

Now build a fusion sequence ~p == (pi|i < κ) as follows. p0 = p and if pi
is de�ned then consider all all conditions s in P0 with support contained in
i× i. There are fewer than κ-many such s by the inaccessibility of κ. Choose
pi+1 ≤i pi so that for each j < i and each such s, if s is compatible with pi
then s has an extension s∗ with support contained in i×κ, such that s∗∪pi+1

forces a value for ḟ(j). This easy to do using < κ closure.

Let p∗ be the result of the fusion. We claim that for any j < κ, p∗ forces
that ḟ(j) takes one of the values that appeared in the above construction
(there are only κ-many such values). Indeed, suppose that q extends p∗ and
forces a value for ḟ(j). Choose i < κ so that j is less than i and s = q � i has
support contained in i× i. This is possible as κ is uncountable. Clearly s is
compatible with pi so s has an extension s∗ with support contained in i× κ
such that s∗ ∪ pi+1 forces a value for ḟ(j), one of the values that appeared in
the above construction. But s∗ ∪ pi+1 is compatible with q so the value that
q forces for ḟ(j) must be the same as the value forced by s∗ ∪ pi+1. 2

Remark. It is not hard to see that the above argument works for any un-
countable κ provided ♦κ holds (for then at stage i we need only consider a
single s with support contained in i×i). It follows that under GCH the result
holds for all uncountable κ with the possible exception of ω1 when ♦ fails.

Thus in fact there is no obvious obstruction to co�nality-preservation
for a κ-supported κ-Miller product for an (uncountable) inaccessinle κ and
indeed:
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Proposition 25 Assume GCH at κ and above. Let κ be inaccessible and
δ a cardinal of co�nality greater than κ. Then the κ-support product of δ-
many copies of κ-Miller forcing preserves co�nalities and forces b(κ) = κ+ ≤
d(κ) = δ = 2κ.

Proof. By a ∆-system argument, the forcing has the κ++-cc so for co�nality-
preservation one only needs to check that κ+ is preserved. But any function
f : κ→ Ord is added by a size κ subproduct of the full product and therefore
it is su�cient to verify that the full support product of κ-many copies if κ-
Miller forcing preserves κ+. The proof of this is similar to the proof that the
iteration preserves κ+, making use of clubs as in the proof of the previous
proposition. An easy counting argument yields 2κ = δ.

Suppose that F is a family of fewer than δ functions from κ to κ in the
generic extension V [G]. The F belongs to V [G0] for some restriction of G
to fewer than δ of its components; let i be a component missing from G0.
The G(i) is κ-Miller generic over V [G0] and therefore not dominated by any
function in V [G0]; it follows that F is not dominating, so d(κ) = δ. It is
also known that a κ-Miller product does not add a dominating function and
therefore the functions of the ground model witness that b(κ) = κ+. 2

Finally, by combining the proofs of large cardinal preservation for (prod-
ucts of) κ-Sacks and κ-Miller forcing, we obtain:

Theorem 26 Assume GCH. Suppose that κ is µ-hypermeasurable and κ <
δ ≤ µ with δ and µ cardinals of co�nality greater than κ. Then without
changing co�nalities we can force κ+ = b(κ) ≤ d(κ) = δ and 2κ = µ keeping
κ measurable.

Proof. Let j : V → M witness the µ-hypermeasurability of κ. First assume
that for some functions f0, f1 : κ→ κ we have j(f0)(κ) = δ and j(f1)(κ) = µ
(we will show later how to arrange this). Now prepare with a reverse Easton
iteration where at inaccessible stage α < κ we force with (α-Miller)f0(α)× (α-
Sacks)f1(α), both products with size α support. At stage κ we then force with
(κ-Miller)δ × (κ-Sacks)µ. The fact that j can be lifted to V [G] where G is
generic is proved by combining the analogous proofs for the κ-Sacks and κ-
Miller forcings. Note that j(f0)(κ) = δ and j(f1)(κ) = µ guarantee that the
forcing on the M -side at stage κ is the same as the forcing on the V -side at
stage κ.
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As we have forced with a κ-Sacks product of size µ we get 2κ = µ. Write
the (κ-Miller)δ × (κ-Sacks)µ-generic G as G0 × G1. Then any function from
κ to κ in V [G] is dominated by one in V [G0], using fusion for the product
together with the fact that (κ-Sacks)µ is κκ-bounding. It follows that in V [G],
d(κ) ≤ δ and by the argument of Proposition 25 we get d(κ) = δ.

Finally to arrange for the existence of the functions f0, f1 �rst perform a
reverse Easton iteration where at inaccessible stage α ≤ κ one adds a pair of
α-Cohen functions from α to α. It is easy to lift the embedding and moreover
we can choose the generic functions j∗(f0), j

∗(f1) at stage j(κ) on theM -side
to take the values δ, µ respectively at κ, as desired. 2

Pushing up b(κ) keeping κ measurable without invoking supercompact-
ness is di�cult and it may be that core model theory implies that more than
hypermeasurability is required.

On the almost disjointness number at κ

For a regular cardinal κ, a(κ) denotes the least size of a maximal almost
disjoint family of subsets of κ, where we always assume that our families
have size at least κ, their elements have size κ and �almost disjoint� means
disjoint with fewer than κ exceptions. Clearly κ+ ≤ a(κ) ≤ 2κ.

Proposition 27 b(κ) ≤ a(κ).

Proof. Using a bijection between κ × κ and κ we can choose a MAD family
(Ai | i < a(κ)) of almost disjoint subsets of κ × κ. Moreover we can assune
that the Ai for i < κ are disjoint with union all of κ×κ; then with a suitable
permutation of κ× κ we can arrange that Ai is just the i-th column {i} × κ
for i < κ.

Now for each j ≥ κ there is a function fj so that the intersection of Aj
with Ai = the i-th column is contained in {i} × fj(i). If a(κ) were less than
b(κ) then we could choose an f eventually dominating each fj; but then the
graph of f is almost disjoint from each Ai, contradicting maximality. 2

In the case κ = ω, a < d is possible: Kunen showed that it holds after
adding ℵ2 (or more) Cohen reals. Shelah obtained the consistency of d < a
but in his model d is greater than ω1. This led Roitman to ask if ω1 = d < a
is possible and this was recently veri�ed by Mildenberger.
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Surprisingly:

Theorem 28 (Blass-Hyttinen-Zhang) For uncountable κ, if d(κ) equals κ+

then so does a(κ).

15.-16.Vorlesungen

Proof. The assumption d(κ) = κ+ implies that we can choose a <∗-increasing
and co�nal sequence (fi | i < κ+) of increasing functions from κ→ κ where
<∗ denotes strict dominance on a �nal segment.

We build a family (Si | i < κ+) of subsets of κ by induction on i, using
the fi's; our desired MAD family will consist of the Si for i < κ together
with the unbounded Si for i of co�nality ω. To facilitate the construction we
use bijections Gi : κ→ i for i ∈ (κ, κ+) as well as a club-guessing sequence:

Fact. We can assign co�nal ω-sequences Ci to i ∈ (κ, κ+) of co�nality ω such
that for any club C in κ+ there is some i with Ci ⊆ C.

Let the Si for i < κ partition κ into unbounded pieces. For i ∈ (κ, κ+) of
co�nality ω we proceed as follows. Let Di be the club of α < κ such that for
each j ∈ Ci, the range of Gj on α equals the intersection of j with the range
of Gi on α. Then we take Si to consist of all γ < κ such that for j < i if γ is
greater than fi applied to the least element of Di greater than G

−1
i (j) then

γ does not belong to Sj. Clearly Si is almost disjoint from each Sj, j < i; we
need to show that the unbounded Si's form a maximal AD family.

Suppose that there were an unbounded subset X of κ which is almost
disjoint from each Si. De�ne a continuous sequence κ = α0 < α1 < · · · of
length κ+ as follows. If αj is de�ned then for β < κ let hj+1(β) be the sup of
X ∩ SGαj (β) and choose αj+1 to be a co�nality ω ordinal greater than αj so
that hj+1 <

∗ fαj+1
.

Apply club-guessing to the club C consisting of the αj's to obtain a co-
�nality ω ordinal α such that Cα ⊆ C. We now shrink X. First remove all
elements which belong to Sα. Next �x a δ < κ such that whenever αi belongs
to Cα, fα strictly dominates hi+1 everywhere above δ. Then for each β in Cα
remove all elements of X that belong to some Sj with j < β and G−1β (j) < δ.
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We have removed only fewer than κ elements from X; let γ be an element of
X that remains.

Since γ remains, it does not belong to Sα. So for some j < α we have
γ ∈ Sj and fα applied to the least element of Dα greater than G−1α (j) is less
than γ.

Fix an i such that j < αi ∈ Cα. Since j < αi and γ ∈ Sj, the fact that γ
remains implies that G−1αi (j) ≥ δ. By the choice of δ we get hi+1(G

−1
αi

(j)) <
fα(G−1αi (j)). And by de�nition of hi+1, hi+1(G

−1
αi

(j)) is at least all elements
of X ∩ Sj and in particular at least γ; so γ < fα(G−1αi (j)). On the other
hand, because γ does not belong to Sα, we know that fα applied to the least
element of Dα greater than G−1α (j) is less than γ. As fα is increasing, the
least element β of Dα greater than G−1α (j) is less than G−1αi (j). So β is an
element of Dα such that G−1α (j) is smaller than β but G−1αi (j) is greater than
β; this contradicts the de�nition of Dα. 2

As mentioned earlier, Kunen showed that a < d is possible: the proof
generalises nicely to all regular κ.

Theorem 29 Assume GCH and let κ be regular, µ a cardinal of co�nality
greater than κ. Then after adding µ-many κ-Cohen reals (via a product with
supports of size < κ) one has a(κ) = κ+ ≤ µ = d(κ) = 2κ.

Proof. The fact that µ = d(κ) = 2κ in the extension is standard and uses the
fact that κ-Cohen forcing is not κκ-bounding. And to show that a(κ) = κ+

in the extension it su�ces to build a MAD family F of subsets of κ in V that
stays maximal after adding just one κ-Cohen set, as any subset of κ added
by a κ-Cohen product is added by a single κ-Cohen forcing. We say that F
is κ-Cohen indestructible.

We build F = {Ai | i < κ+} inductively. Let (σi | κ ≤ i < κ+) be a list
of all nice κ-Cohen names for subsets of κ. Let {Ai | i < κ} be any partition
of κ into disjoint unbounded pieces. Suppose that Aj has been de�ned for
j < i where κ ≤ i and we now de�ne Ai. Let ((pk, jk, αk) | k < κ) enumerate
all triples (p, j, α) where p is a κ-Cohen condition, j is less than i and α is
less than κ. For each k < κ, if pk forces that σi is bounded or has unbounded
intersection with Ajl for some l < k then ignore k. Otherwise choose an
extension of pk which forces a speci�c bound on all of the σi ∩ Ajl , l < k
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and a speci�c ordinal βk which is greater than αk as well as this bound to
belong to σi; put βk into Ai. Note that βk does not belong to Ajl for l < k
and therefore Ai = {βk | k < κ} is almost disjoint from each Aj, j < i.

We now verify that F is MAD after adding a κ-Cohen set. Suppose that σ
is a nice κ-Cohen name for a subset of κ and p is a condition forcing that σ is
unbounded but almost disjoint from each Ai, i < κ+. Choose i so that σ = σi.
Then when forming Ai we considered triples of the form (q, j, α) where q is a
κ-Cohen condition, j is less than i and α is less than κ. In case q extends p,
q does not force that σ = σi is bounded or has unbounded intersection with
Aj, so we ensured that q had an extension forcing a speci�c ordinal greater
than α to belong to σ, which we then put into Ai. Thus for each α < κ it
is dense below p to force that an ordinal greater than α belongs to σ ∩ Ai,
which by genericity means that p forces that σ has unbounded intersection
with Ai, contradiction. 2

Remark. Assuming GCH it is also possible to construct MAD families at
κ which stay maximal after forcing with a κ-Sacks product (of any size).
However when κ is uncountable this follows from the Blass-Hyttinen-Zhang
theorem, as a κ-Sacks product is κκ-bounding.

17.-18.Vorlesungen

The ultra�lter number u(κ)

An ultra�lter on a regular κ is uniform if all of its elements have size κ.
The characteristic u(κ) is the smallest size of a base for a uniform ultra�lter
on κ.

Theorem 30 (Garti-Shelah) Assume GCH, κ is supercompact and cof(γ) >
κ. Then in a co�nality-preserving forcing extension, u(κ) = κ+ and 2κ = γ.

Proof. κ-Mathias �lter forcing M(κ, F ) for a �lter F on κ is de�ned as follows:
Conditions are pairs (s,X) where s is a bounded subset of κ and X belongs
to F ; (t, Y ) ≤ (s,X) i� t end-extends s, Y is contained in X and t \ s is
contained in X. This forcing is κ-closed and κ+-cc. We will only use it in
case F is in fact a uniform and normal ultra�lter on κ.

Now perform an iteration (Pi, Qi) | i < γ+) where at stage i, Qi is the
sum of all forcings M(κ, U) for U a normal uniform ultra�lter on κ. (The
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supercompactness of κ will enable us to ensure that there are such ultra�lters
at each stage i < γ+.) The sum means that a condition is either trivial at i or
chooses an ultra�lter Ui as well as a condition in the associatedM(κ, Ui). The
generic will provide M(κ, Ui)-generics xi for �generically chosen� ultra�lters
Ui. We require that the choices of ultra�lters Ui are made with supports of size
less than γ+ and that the choices of conditions in the associated M(κ, Ui)'s
are made with supports of size less than κ. For α < γ+ it is dense in Pα
to specify the Ui for all i < α and below any condition in this dense set
the forcing Pα is an iteration with supports of size less than κ of κ-centered
forcings and therefore κ+-cc. As P (and each Pα) is κ-directed closed it follows
that Pα preserves co�nalities.

Lemma 31 Suppose that p ∈ P = Pγ+ forces that U̇ is an ultra�lter on κ.

Then for some α < γ+ there is an extension q of p forcing that U̇α (the
canonical name for the ultra�lter chosen by the generic at stage α) is the
intersection of U̇ with the model V [Ġα]. Even more, we can ensure that q
forces this for a set S of α < γ+ of ordertype κ+ and that the intersection of
U̇ with the model V [ĠsupS] belongs to this model.

Proof. Assume that p ∈ Pα0 is full, meaning that it speci�es Ui for each
i < α0. Then Pα0 � p is κ+-cc with a dense subset of size at most γ, so γ-
many Pα0 � p-names su�ce to name each subset of κ added by Pα0 � p. Each
condition has its �ultra�lter part� where Ui's are speci�ed and its �Mathias
part�, where conditions in the M(κ, Ui)'s are speci�ed. Extend p = p0 on its
ultra�lter part to a full p1 (leaving the Mathias part unchanged) so that p1
together with some Mathias part decides whether or not the �rst name σ0 for
a subset of κ belongs to U̇ . Then extend p1 on its ultra�lter part to a full p2
tö make the same decision with a Mathias part that is incompatible with the
previously chosen Mathias part. Continue extending on the ultra�lter part
deciding whether or not σ0 belongs to U̇ with an antichain of di�erent Mathias
parts until a maximal antichain is reached (after fewer than κ+ steps). If the
resulting condition is called q1 and has length (support) α1 < γ+ then the
set of conditions in Pα1 � q1 which decide whether or not σ0 belongs to U̇ is
predense in P � q1. Repeat this γ times for each possible Pα0 � p-name for
a subset of κ until reaching a q2 with the same property for all such names.
Finally, repeat all of this for Pα2 � q2-names for subsets of κ arriving at a
condition q3, for Pα3 � q3-names for subsets of κ arriving at a condition q4
and so on for κ+ steps. If q is the �nal condition of length α then for any
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Pα � q-name σ for a subset of κ the set of conditions in Pα � q which decide
whether or not σ belongs to U̇ is predense in P � q. It follows that if G = GP
is generic containing q then U̇G intersect V [Gα] is determined by Gα and
therefore is a normal ultra�lter Uα on κ in V [Gα]. Now extend q once more
to length α + 1 by choosing U̇α to be a name for Uα and q is as desired. For
the �even more� conclusion, simply repeat the above κ+ times. (The property
that U̇G intersect V [Gα] is determined by Gα is inherited at the supremum
using the fact that this supremum has co�nality greater than κ.) 2

Let j : V →M be an ultrapower embedding witnessing the γ+-supercompactness
of κ and as before we may assume that we have a function f : κ → κ such
that j(f)(κ) = γ+. Then prepare below κ with the reverse Easton iteration
Q where at inaccessible stages α closed under f , Qα is the length f(α) it-
eration of α-Mathias �lter forcings for generically chosen normal ultra�lters
on α. Then stage κ of the iteration j(Q) is the forcing P above (as de�ned
in the model V Q). Let GQ be Q-generic over V and let GP be P-generic
over V [GQ]. Then we can lift j : V → M to j∗0 : V [GQ] → M [GQ][GP][H]
where GQ ∗ GP ∗ H is generic over M for Q∗ = j(Q), and then lift again
to j∗ : V [GQ][GP] → M [GQ][GP][H][GP∗ ] where P∗ = j∗0(P). The �rst lifting
uses the fact that (by preparation) stage κ of j(Q) is indeed the forcing P,
enabling us to copy the generic GP to the M -side and that we can build the
generic H simply listing the relevant maximal antichains in a γ++-sequence
and using the γ++-closure of the forcing. The second lifting is a matter of
constructing GP∗ using a similar listing of maximal antichains but this time
starting below a (master) condition in P∗ which extends every condition of
the form j∗0(p) for p ∈ GP. The obvious choice for the master condition is
the greatest lower bound p∗0 of j

∗
0 [GP]. This condition has support j[γ+] and

for each i < γ+ chooses the �lter-name U̇∗j(i) to be j∗0(U̇i) as well as a j(κ)-
Mathias name with �rst component xi, the κ-Mathias generic added by GP at
stage i of the iteration P. However we choose the stronger master condition
p∗ de�ned as follows. For i < γ+ let GPi denote the restriction of the generic
GP to Pi.

(∗) If i < γ+ and for each A ∈ Ui there is a Pi-name σ such that A = σGPi

and a condition p ∈ GPi such that j∗0(p) forces that κ belongs to j∗0(σ), then
p∗(j(i)) is obtained from p∗0(j(i)) by replacing the �rst component xi of its
j(κ)-Mathias name by xi ∪ {κ}; otherwise p∗ is the same as p∗0.

Lemma 32 (a) p∗ as de�ned above is an extension of p∗0 therefore serves as
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a master condition.
(b) If GP ∗ is chosen to contain p∗, j∗ is the resulting lifting of j∗0 and U is
the normal ultra�lter on κ derived from j∗ then whenever Ui is contained in
U we have that xi is a member of U .

Proof. (a) For i < γ+ let p∗i be de�ned like p∗ but only replacing xj(k) by
xj(k)∪{κ} for (appropriate) k < i. We show by induction on i that p∗i extends
each j∗0(p), p ∈ GP and therefore extends p∗0. The base case and limit cases are
trivial. Suppose that the claim holds for i and we wish to verify it for i+ 1;
without loss of generality we may assume that the hypothesis of (∗) is met for
i. Let GP∗

j(i)
be any generic containing p∗i � j(i) and extend it to a generic GP∗

containing p∗i . By induction GP∗ also contains p
∗
0 and therefore yields a lifting

j∗ of j∗0 . Any p ∈ GP can be extended in GP so that the κ-Mathias condition
it speci�es at i is of the form (s, A) where s is an initial segment of xi and A
belongs to Ui. Apply (∗) at i to infer that A = σGPi where j∗0(q) for some q in
GPi forces that κ belongs to j∗0(σ). But j∗0(q) belongs to GP∗

j(i)
(as p∗0 belongs

to GP∗) and therefore κ does belong to j∗0(σ)
GP∗

j(i) = j∗(A). It follows that

the j(κ)-Mathias condition speci�ed by p∗i+1(j(i))
GP∗

j(i) with �rst component

xi ∪ {κ} does extend (xi, j
∗(A)) = (xi, j

∗
0(σ)

GP∗
j(i) ) ≤ (s, j∗0(σ)

GP∗
j(i) ). We have

shown that p∗i � j(i) forces p∗i+1(j(i)) to extend (s, j∗0(σ)) = j∗0(p)(j(i)) and
therefore p∗i+1 extends j

∗
0(p).

(b) If Ui is contained in U then then κ belongs to j∗(A) for all A ∈ Ui which
implies that the hypothesis of (∗) is satis�ed at i. It then follows that κ
belongs to j∗(xi) and therefore xi belongs to U . 2

Now we �nish the proof. To ease notation write G for GP and Gi for
GPi , the restriction of G to Pi. By the lemma there is a subset S of γ+ of
ordertype κ+ such that for i in S∪{supS}, the restriction of U , the measure
on κ derived from j∗, to the model V [Gi] belongs to V [Gi] and if i belongs
to S then this is the ultra�lter UG

i chosen by G at stage i. Moreover by our
choice of master condition the κ-Mathias generics xGi chosen by G at stages
i ∈ S belong to U . Now let α be the supremum of S and consider the model
V [Gα]. Then the restriction of U to this model is a normal ultra�lter in this
model which is generated by the xGi ∈ U for i ∈ S and therefore u(κ) is κ+

in this model. Also we may assume that α is greater than γ and therefore we
have 2κ = γ in this model as well. 2

19.Vorlesung
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The tower number t(κ)

The tower number t(κ) for a regular κ is the least length of a tower, i.e. a
sequence (Ai | i < λ) of unbounded subsets of κ such that i < j → Aj ⊆∗ Ai
and cof(λ) ≥ κ, with no pseudo-intersection, i.e. no A ⊆∗ Ai for all i < λ.

By an easy diagonalisation, t(κ) is at least κ+.

Proposition 33 t(κ) ≤ b(κ).

Proof. We just prove this for uncountable κ. Choose a <∗-increasing and <∗-
co�nal sequence (fi | i < b(κ)). For i < b(κ) let Ci be the club of ordinals
closed under fi. By thinning out (fi | i < b(κ)) we can assume that the
Ci's are ⊆∗-decreasing. If the Ci's had a pseudo-intersection A then consider
f : κ→ κ which increasingly enumerates the successor points of A. Then for
each i, fi <

∗ f as for large enough α < κ, α < f(α) is a closure point of fi and
therefore fi(α) < f(α). This contradicts the assumption that (fi | i < b(κ))
is <∗-co�nal. 2

Theorem 34 (Shelah-Spasojevi¢) Assume κ is ω or ♦κ holds. Then t(κ) is
at most the least λ such that 2κ < 2λ.

This is easy when κ is ω: Suppose κ < t = t(ω). De�ne Aσ for σ a 0, 1-
sequence of length at most κ by induction on the length of σ as follows: If
Aσ is de�ned then Aσ∗0, Aσ∗1 split Aσ into two in�nite pieces, and for σ of
limit length use the fact that this length is less than t to choose a pseudo-
intersection. We have shown that 2κ, the number of such σ's, is at most 2ω.
The proof for uncountable κ using ♦κ is harder.

Using Theorem 34 we prove:

Theorem 35 (Shelah-Spasojevi¢) Assume GCH and κ ≤ λ ≤ µ ≤ θ are
regular. Then in a co�nality-preserving extension by a κ-closed forcing, t(κ) =
λ ≤ b(κ) = µ ≤ 2κ = θ.

Proof. Begin by adding a κ-Cohen set. This forces a ♦κ sequence, which will
remain a ♦κ sequence after any further κ-closed forcing. Then add θ+ subsets
of λ using a λ-Cohen product. Now perform an iteration of length θ · µ < θ+

with < κ-support as follows:
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At stages not of the form θ · ξ, ξ < µ, towers of length less than λ are
killed; via bookkeeping, all such towers added by the iteration will be killed at
some stage, yielding t(κ) ≥ λ. To kill a tower (Ai | i < η) we use the forcing
whose conditions are pairs (a, x) where a is a bounded subset of κ and x is a
subset of η of size less than κ; (b, y) extends (a, x) i� b contains a, y contains
x and for i in x, b \ a is contained in Ai. This adds a pseudo-intersection for
(Ai | i < η) and is both κ-centered and κ-closed.

At stages of the form θ·ξ, ξ < µ, a dominating function fξ : κ→ κ is added
by κ-Hechler forcing, which is also κ-centered and κ-closed. At the end of the
iteration we have b(κ) = µ. Co�nalities are preserved by standard arguments.
Finally, note that at the end of the iteration we also have 2κ = 2η = θ for
κ ≤ η < λ as well as ♦κ, so by Theorem 34 we get t(κ) ≤ λ. 2
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