
Invariant Descriptive Set Theory

1.-2.Vorlesungen

Introduction

Gao's book is a clear exposition of the major results concerning the struc-
ture of the class of analytic equivalence relations on the reals under Borel
reducibility. As isomorphism on the countable models of a sentence of Lω1ω is
an analytic equivalence relation, this theory has important connections with
in�nitary model theory. But even beyond isomorphism of countable models
there are important classi�cation problems which can also be studied in this
way, such as notions of equivalence for metric spaces, homeomorphisms of
the unit square, unitary operators, complex manifolds, knots and indecom-
posable continua.

In this course I have a rather speci�c goal, which is to see which aspects
of the classical theory of Gao's book can be extended from the Baire space
ωω to generalised Baire space κκ, where κ is a regular uncountable cardinal.
(We make the additional assumption that κ<κ has size κ, which is necessary
for a good notion of Borel set for κκ.) As a result, I will not emphasize certain
concepts, such as that of a Polish space, which are central to the classical
theory but clearly have no analogue for κκ as there are no metrics on such
a space. On the other hand a few of the basic results about Baire category
extend nicely. Sometimes an important result from the classical theory is only
consistent for generalised Baire space (such as the Burgess dichotomy), and
sometimes it is just false (such as the Glimm-E�ros dichotomy). Nevertheless
I will prove a number of results that do not generalise for the sake of gaining a
better understanding of the di�erences between the classical and generalised
theories.

Baire Category

Let κ be an in�nite cardinal satisfying κ<κ = κ. We allow the case κ = ω.
The Baire space κκ consists of functions η : κ→ κ using basic open sets

Uσ = {η | η extends σ}

where σ belongs to κ<κ (i.e., σ is a function froms some ordinal less than κ
into κ). We can think of the points in κκ as the co�nal branches through the
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tree obtained by ordering the elements of κ<κ by extension. A point worth
noting is that only if κ is ω or inaccessible will the levels of this tree have size
less than κ; for example, if κ = ω1 (and CH holds) then the in�nite levels of
this tree have size ω1.

The Borel sets for κκ are obtained by closing the basic open sets under
complements and unions of size κ. Note that this class contains all open sets,
thanks to the assumption κ<κ = κ. (Indeed without this assumption, open
sets need not be Borel.)

A subset of κκ is nowhere dense if its closure contains no nonempty open
set and is meager if it is the union of κ-many nowhere dense sets. It has the
Baire property (or property of Baire) if its symmetric di�erence from some
open set is meager.

The entire space is not meager, thanks to:

Theorem 1 (Baire Category Theorem) The intersection of κ-many open
dense sets is dense.

Proof. Suppose that Di, i < κ are open dense and let Uσ be a basic open set.
Build a κ-sequence σ = σ0 ⊆ σ1 ⊆ · · · where Uσi+1

is contained in Di and
σλ = ∪i<λσi for limit λ < κ. This is possible as each Di is open dense. Then
η = ∪i<κσi belongs to each Di. 2

Theorem 2 Borel sets have the Baire property.

Proof. It su�ces to show that the collection of sets which have the Baire
property contains the basic open sets and is closed under complements and
size κ unions. The fact that it contains the basic open sets is trivial and as
any closed set di�ers by a meager set from its interior, it is also closed under
complements. The case of κ-unions follows from the fact that the union of
κ-many meager sets is meager. 2

Note that in L there is a ∆1
1 wellorder of the subsets of κ for uncountable

κ; from this it is easy to construct a ∆1
1 set without the property of Baire

and therefore in L there are ∆1
1 sets which are not Borel. Actually this last

fact is true in general (we prove this below).

An important result in the classical theory (I'll give a modern proof be-
low) is that analytic sets have the Baire property. This however is false for
uncountable κ:

2



Theorem 3 (Halko-Shelah) Suppose κ > ω and let X be the set of η ∈ κκ
such that η(i) = 0 for all i in some closed unbounded subset of κ: Then X
does not have the property of Baire.

Proof. Otherwise choose a basic open set Uσ on which X is either meager
or comeager (i.e. either X ∩ Uσ is meager or Uσ \ X is meager). Suppose
that it is comeager on Uσ and choose sets Di, i < κ which are open dense
subsets of Uσ with intersection contained in X. But we can build a sequence
σ = σ0 ⊆ σ1 ⊆ · · · so that Uσi+1

is contained in Di and for limit λ, σλ is an
extension of ∪i<λσi with value 1 at λ. Then the union of the σi, i < κ, clearly
does not belong to X but does belong to each Di, i < κ, contradiction. If we
instead require σλ = 0 for limit λ then we obtain something in X belonging
to each Di, verifying that X is not meager on Uσ. 2

For κ = ω we have:

Theorem 4 (a) Suppose that X ⊆ ωω is Σ1
1. Then X has the property of

Baire.
(b) It is consistent that some ∆1

2 set does not have the property of Baire.

Proof. (a) It su�ces to show that any basic open set Uσ has a basic open
subset Uτ on which X is either meager or comeager (i.e., either X ∩ Uτ is
meager or Uτ \X is meager). For given this, the union of the basic open sets
on which X is either meager or comeager is open dense and therefore has
meager complement, so X di�ers by a meager set from the union of the basic
open sets on which it is comeager.

Let M be a countable transitive model of ZFC− containing the de�ning
parameter for X. Let ϕ be a Σ1

1 formula de�ning X and suppose that g is
Cohen generic overM and belongs to Uσ. If ϕ(g) is true then it is also true in
M [g] by Σ1

1 absoluteness; then we can choose a Cohen condition τ extending
σ forcing ϕ(ġ) and any Cohen generic h overM extending τ will satis�y ϕ in
M [h] and therefore in V . But the set of reals extending τ which are Cohen
over M is comeager in Uτ and so X is comeager on Uτ . If ϕ(g) is false then
by the same argument (using just the easy direction of Σ1

1 absoluteness) we
get that X is meager on some Uτ contained in Uσ.
(b) In Gödel's model there is a ∆1

2 wellorder of the reals and using this one
can construct a ∆1

2 set without the Baire property. 2
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Notice the use of Σ1
1 absoluteness in the proof of (a) above. The reason

the proof does not generalise to κ is due to this failure of absoluteness; indeed
there could be a set in M [g] which does not contain a club in M [g] but does
in V (where M now has size κ and g is generic for κ-Cohen over M).

However for uncountable κ it is consistent that ∆1
1 sets have the Baire

property. Note that as the collection of ∆1
1 sets contains all basic open sets

and is closed under κ-unions and complements, it follows that every Borel
set is ∆1

1. As mentioned above, the converse only holds if κ equals ω:

Theorem 5 (a) (Luzin Separation) Suppose κ = ω. If X, Y are disjoint Σ1
1

sets then there is a Borel set B which contains X and is disjoint from Y .
Therefore every ∆1

1 set is Borel.
(b) Suppose that κ is uncountable. Then not every ∆1

1 set is Borel.

Proof. (a) We say that X, Y are Borel separable if the conclusion of (a) holds.
Note that if X = ∪i<κXi and Y = ∪i<κYi and Xi, Yj are Borel separable for
each i, j then X, Y are Borel separable: Just take ∪i ∩j Bij where Bij Borel
separates Xi, Yj. Write X, Y as the ranges of continuous functions f, g on the
Baire space (we assume that X, Y are nonempty). For each σ let Xσ, Yσ be
f [Uσ], g[Uσ]. Assuming that X, Y = X∅, Y∅ are not Borel separable we can
inductively de�ne x, y such that Xx|n, Yy|n are Borel inseparable for each n.
Now f(x) 6= g(y) so we can separate them with some open sets U, V . But
then by the continuity of f, g we have separated Xx|n, Yy|n by U, V for large
enough n, contradiction.
Remark: Note that the above proof breaks down for κ > ω as one cannot
claim that Xx|n, Yy|n are Borel inseparable when n is in�nite.
(b) The key point is that for uncountable κ, the wellfoundedness of a binary
relation on κ is a closed property: R is wellfounded i� R ∩ (α × α) is well-
founded for each α < κ. Now each Borel set B is coded as B(T ) where T is
a wellfounded tree of �nite sequences whose terminal nodes are labelled with
basic open sets and whose nonterminal nodes are labelled with with ∼ or ∪
(use the labels to assign a Borel set to each node of the tree; B(T ) is the
Borel set assigned to the top node). The relation η ∈ B(T ) is a ∆1

1 relation
of η and T . It follows that there is a ∆1

1 set U(η, ν) which is universal for
Borel sets in the sense that for each η, Uη is Borel and each Borel set is of
this form for some η. But then U is not Borel, else by diagonalisation, {η |
not U(η, η)} would give a contradiction. 2
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Theorem 6 Let κ be regular and assume GCH. Then after forcing with
Add(κ, κ+) (the forcing which adds κ+-many κ-Cohens), every ∆1

1 set has
the Baire property.

Proof. Let G be generic for Add(κ, κ+) and let X be ∆1
1 in V [G]. Assuming

that X is ∆1
1 with parameter in V we'll show that X has the property of

Baire; the general case follows from the fact that any subset of κ belongs
to G ∩ Add(κ, α) for some α < κ+ and Add(κ, κ+) factors as Add(κ, α) ×
Add(κ, [α, κ+)), the second component of this product being isomorphic to
Add(κ, κ+).

We show that any basic open set Uσ contains a basic open subset Uτ
on which X is either meager or comeager. Let ϕ, ψ be Σ1

1 formulas (with
parameter in V ) de�ning X and the complement of X, respectively. We
may assume that G(0), the �rst κ-Cohen added by G, extends σ (if not,
then change it below the length of σ so that it does). Suppose that G(0)
satis�es ϕ. Note that V [G] is an extension of V [G(0)] via the κ-closed forcing
Add(κ, [1, κ+)). We claim that V [G(0)] is Σ1

1 elementary in V [G] and therefore
ϕ(G(0)) holds in V [G(0)]: Indeed, suppose that ϕ is Σ1

1 with parameter in
V [G(0)] and let T be a tree in V [G(0)] on κ × κ such that co�nal branches
through T correspond to pairs (x,w) where w witnesses that ϕ(x) holds.
Suppose that ḃ is an Add(κ, [1, κ+))-name for a branch through T ; then
we can build a branch through T in V [G(0)] by forming a κ-sequence of
conditions p0 ≥ p1 ≥ · · · deciding initial segments of ḃ. So if ϕ has a solution
in V [G] it also has one in V [G(0)].

Now let τ be a κ-Cohen condition extending σ which forces ϕ(ġ) where
ġ denotes the κ-Cohen generic. Let M be a transitive model of ZFC− of size
κ which contains all bounded subsets of κ such that τ forces ϕ(ġ) in M . The
subsets of κ which are κ-Cohen over M form a comeager set on Uτ and if x
is κ-Cohen over M extending τ then M [x] and therefore V [G] satis�es ϕ(x).
We have shown that X is comeager on Uτ . If G(0) satis�es ψ, the Σ1

1 formula
that de�nes the complement of X, then we have shown that X is meager on
Uτ . 2

3.-4.Vorlesungen

Two useful facts concering Baire category do generalise nicely from classi-
cal Baire space to the generalised setting: the Kuratowski-Ulam and Mycielski
theorems. As usual let κ denote an in�nite cardinal such that κ<κ = κ.
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Theorem 7 (Kuratowski-Ulam) Let X denote the generalised Baire space
κκ and suppose that A ⊆ X ×X has the Baire property. For each x ∈ X let
Ax denote {y | (x, y) ∈ A}. Then:
(a) {x | Ax has the Baire Property} is comeager.
(b) A is meager i� {x | Ax is meager} is comeager (it follows that A is
comeager i� {x | Ax is comeager} is comeager).

Proof. First suppose that A is open dense and we show that Ax is open dense
for comeager-many x. Clearly Ax is open for each x, so we just have to show
that Ax is dense for comeager-many x. Let (Vi | i < κ) be a basis for the
topology on X. Then for each i, Ui = {x | (x, y) ∈ A for some y ∈ Vi} is
dense open since if W is nonempty and open, A ∩ (W × Vi) is nonempty by
the density of A. Thus for x ∈ ∩iUi, Ax ∩ Vi is nonempty for each i, i.e. Ax
is dense. So we have shown that Ax is dense for all x in a comeager set.

It follows that if A is meager then Ax is meager for comeager-many x,
which is the direction → of (b). To prove (a), suppose that A has the Baire
property and choose an open U and meager M so that A = U4M . Then
for each x, Ax = Ux4Mx and Mx is meager for comeager-many x. It follows
that Ax has the Baire property for comeager-many x, which is (a).

Finally we verify the direction← of (b). Suppose that A has the property
of Baire and is not meager; we show that {x | Ax is not meager} is not
meager. Write A = U4M where U is a nonempty open set andM is meager.
U contains V0×V1 where V0, V1 are nonempty open sets. For x in V1, ifMx is
meager then Ax = Ux4Mx is comeager on a nonempty open set and therefore
not meager. As Mx is meager for comeager-many x, it follows that the set
of x such that Ax is not meager is comeager on a nonempty open set and
therefore not meager. 2

A subtree T of κ<κ is perfect if the limit of any increasing sequence of
nodes of T of length less than κ is also a node of T (T is κ-closed) and every
node of T has a splitting extension in T . T is Sacks-perfect if in addition the
limit of any increasing sequence of splitting nodes of T of length less than κ
is a splitting node of T . A subset of κκ is perfect (Sacks-perfect) if it consists
of the κ-branches through a perfect (Sacks-perfect) subtree T of κ<κ.

Theorem 8 (Mycielski) Assume that κ is regular and either ♦κ holds, κ
is inaccessible or κ = ω. Suppose that E is a meager binary relation on
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generalised Baire space κκ. Then there is a Sacks-perfect set A such that
E(x, y) fails for all distinct x, y in A.

Corollary 9 Assume GCH, κ is regular and κ 6= ω1. Then the conclusion
of the above Theorem holds.

Proof. Write E as the union of an increasing κ-sequence E0 ⊆ E1 ⊆ · · · of
nowhere dense sets. For each η ∈ κ<κ let U(η) denote the basic open set
determined by η, i.e. {x ∈ κκ | η ⊆ x}.

First suppose that κ is inaccessible or ω. We build the α-th level Tα of T
by induction on α. For α = 0, T0 has just the single node ∅ and for limit α,
Tα consists of all limits of branches through the levels Tβ, β < α.

Suppose that α = β + 1. Then we list all pairs (s ∗ i, t ∗ j) where s, t are
on level β, i, j are 0 or 1 and s ∗ i 6= t ∗ j. As κ is inaccessible or ω there are
fewer than κ such pairs. Now choose such a pair (s ∗ i, t ∗ j) and �nd (s ∗ i)1

extending s ∗ i and (t ∗ j)1 extending t ∗ j so that U((s ∗ i)1) × U((t ∗ j)1)
is disjoint from Eβ. This is possible as Eβ is nowhere dense. Then choose
another pair and do the same, repeating this for all pairs and resulting in
sequences (s ∗ i)1 ⊆ (s ∗ i)2 ⊆ · · · for each s ∗ i. Let (s ∗ i)∞ be the limit of
this sequence and take level Tα to consist of all of these (s ∗ i)∞'s.

The result is that if x, y are κ-branches through T and extend distinct
nodes on level β + 1 of T then (x, y) does not belong to Eβ and therefore
(x, y) does not belong E as β can be chosen to be arbitarily large.

Now suppose that ♦κ holds. Fix a ♦κ sequence (Dβ | β < κ) that guesses
pairs (x, y) in κκ, i.e., for such pair, {β | Dβ = (x|β, y|β)} is stationary in
κ. Now repeat the above construction except at stage β + 1 only treat the
four pairs (d0 ∗ i, d1 ∗ j) if Dβ = (d0, d1) and d0, d1 belong to Tβ, guaranteeing
that if (x, y) extends (d0, d1) then (x, y) does not belong to Eβ. Other nodes
s on level β are simply extended to s ∗ 0 and s ∗ 1 on level β + 1. The ♦κ
sequence guarantees that if x, y are distinct branches through the resulting
Sacks-perfect tree then (x, y) does not belong to Eβ for any β and therefore
does not belong to E. 2

Other forms of regularity
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The Baire property is just one example of a regularity property for sub-
sets of generalised Baire space. We consider now other such properties, each
associated to a �κ-arboreal� forcing in the way that the Baire property is
associated to κ-Cohen forcing.

A forcing P is κ-arboreal i� it is a κ-closed suborder of the set of subtrees
of κ<κ ordered by inclusion.

Examples of κ-arboreal forcings:
κ-Cohen. These are subtrees of 2<κ consisting of a stem and all nodes above
it.
κ-Sacks. These are κ-closed subtrees of 2<κ with the property that every
node has a splitting extension and the limit of splitting nodes is a splitting
node.
κ-Miller. These are κ-closed subtrees of the tree of increasing sequences in
κ<κ with the property that every node can be extended to a club-splitting
node and the limit of club-splitting nodes is club-splitting. We also require
continuous club-splitting, which means that if s is a limit of club-spltting
nodes then the club witnessing club-splitting for s is the intersection of the
clubs witnessing club-splitting for the club-splitting proper initial segments of
s (this is useful in the study of regularity properties and in the large cardinal
context).
κ-Laver. These are κ-Miller trees with the property that every node beyond
some �xed node (the stem) is club-splitting.

The above examples were presented assuming that κ is uncountable; for
κ = ω take �club� to just be �in�nite�.

To de�ne �P-regularity� for the above forcing notions P we proceed as
follows. A set A is strictly P-null if every tree T ∈ P has a subtree in P ,
none of whose κ-branches belongs to A. And A is P-null if it is the union
of κ-many strictly P-null sets. Then A is P-regular (or P-measurable) if any
tree T ∈ P has a subtree S ∈ P such that either all κ-branches through S,
with a P-null set of exceptions, belong to A or all κ-branches through S,
with a P-null set of exceptions, belong to the complement of A.

5.-6.Vorlesungen

Proposition 10 A set is κ-Cohen measurable i� it has the property of Baire.
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Proof. Let P denote κ-Cohen forcing. First note that a set is strictly P-null
i� it is nowhere dense and therefore is P-null i� it is meager. Now if A is
P-measurable it follows that every basic open set has a basic open subset on
which A is either meager or comeager. Thus if U is the union of the basic
open sets on which A is meager or comeager and U0 is the union of the basic
open sets on which A is comeager, it follows that A di�ers from U0 by a
meager set, as the complement of U is nowhere dense. So A has the property
of Baire.

Conversely, if A = U4M with U open and M meager, then to verify
that A is P-measurable it su�ces to show that U is P-measurable. But this
is clear, as any basic open set not disjoint from U has a basic open subset
that is completely contained in U . 2

Now let P be any of the above κ-arboreal forcings.

Proposition 11 Any Borel set is P-measurable.

Proof.We may assume that P is not κ-Cohen, as in that case P-measurability
is the same as the property of Baire and we know that all Borel sets have the
property of Baire. So assume that P is one of the other examples. We �rst
treat the κ-Sacks and κ-Miller forcings.

Note that the collection of P-measurable sets if obviously closed under
complements, so it su�ces to show that it is closed under κ-unions and that
basic open sets are P-measurable. For the basic open sets, note that for each
of the above examples of arboreal forcings P , if T belongs to P then so does
T (η) for each node η of T (where T (η) consists of all nodes in T which are
compatible with η). Now if η is an arbitrary element of κ<κ, determining the
basic open set U(η), and T belongs to P then either η belongs to T , in which
case T (η) is a strengthening of T whose κ-branches are all contained in U(η),
or η does not belong to T , in which case no κ-branch of T belongs to U(η).
So U(η) is P-measurable.

Suppose that A is the union of Ai, i < κ and we know that each Ai is
P-measurable. Given T ∈ P and i < κ we can strengthen T to Ti so that
either almost all κ-branches of Ti belong to Ai or almost all κ-branches of Ti
do not belong to Ai, where �almost all� refers to a P-null set of exceptions. If
the former occurs for some i then almost all κ-branches of Ti also belong to
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A so we are done. Otherwise we want to strengthen T to T ∗ so that almost
no κ-branch of T ∗ belongs to any Ai. Of course we can do this for fewer than
κ-many Ai's using the κ-closure of the forcing P ; to handle κ-many Ai's we
use the fusion property. This is expressed as follows: There are partial orders
≤i on P which re�ne the standard ordering on P such that

(a) i ≤ j, T ∗ ≤j T implies T ∗ ≤i T .
(b) If (Ti | i < λ), λ ≤ κ, belong to P and for all i ≤ j < λ, Tj ≤i Ti then
there is T ≤i Ti for all i < λ.
(c) Suppose that T belongs to P and D is a set of extensions of T which is
dense below T . Then for each i < κ there are T ∗ ≤i T and d ⊆ D of size at
most κ such that each κ-branch through T ∗ is also a κ-branch through some
element of d.

Now recall that we are given T such that for each i, the set of T ∗ such that
almost no κ-branch through T ∗ belongs to Ai is open dense below T . Now
use fusion to build a sequence (Ti | i < κ) such that i ≤ j → Tj ≤i Ti and
each κ-branch through Ti+1 is a κ-branch through one of κ-many extensions
of Ti, almost none of whose κ-branches belong to Ai. If T

∗ is a lower bound
to the sequence of Ti's then almost no κ-branch of T ∗ belongs to any Ai, so
we have veri�ed the P-measurability of A, the union of the Ai's.

We next verify the fusion property for the κ-Sacks and κ-Miller forcings.

κ-Sacks:
If T is a condition then let fT : 2<κ → T be the natural order-preserving
bijection between the full tree 2<κ and the set of splitting nodes of T . Then
de�ne T ∗ ≤i T i� fT ∗(s) = fT (s) for all s ∈ 2<κ of length at most i. Then
property (a) is clear. Note that for limit i, this is the same as requiring this
just for s of length less than i, as the limit of spltting nodes is a splitting node;
this gives property (b). For (c), for each s ∈ 2<κ of length i and j ∈ {0, 1}
we choose Ts∗j ≤ T (fT (s) ∗ j) in D, let d be the set of such Ts∗j's and let T ∗

the the union of the Ts∗j's. As κ
<κ = κ, there are only κ-many such s ∗ j's.

κ-Miller:
If T is a condition then let fT : κ<κ↑ → T be the natural order-preserving
bijection between the full tree κ<κ↑ and the set of splitting nodes of T . De�ne
T ∗ ≤i T i� fT ∗(s) = fT (s) for all s ∈ 2<κ such that s(α) ≤ i for all α < |s|.
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Property (a) is clear and property (b) follows using (diagonal) intersections
when λ equals κ. (c) is veri�ed as for κ-Sacks.

For κ-Laver we need to consider pure extensions. If T ∗ ≤ T are κ-Laver
conditions then we write T ∗ ≤∗ T , T ∗ is a pure extension of T , i� T ∗ ≤ T
and T ∗ has the same stem as T . A set D is purely dense if any T has a pure
extension in D and is purely dense below T if any extension of T has a pure
extension in D.

A set A is strictly purely Laver-null if any T has a pure extension T ∗

such that [T ∗] is disjoint from A. A is purely Laver-null if it is the κ-union
of strictly purely dense sets. And A is purely Laver-measurable if any T has
a pure extension T ∗ such that [T ∗] is either contained in or disjoint from A
modulo the ideal of purely Laver-null sets.

We will show that any Borel set is purely Laver-measurable. As the ideal
of purely Laver-null sets is contained in the ideal of Laver-null sets this implies
that any Borel set is Laver-measurable in the ordinary sense.

Clearly the collection of purely Laver-measurable sets is closed under
complements. And basic open sets are purely Laver-measurable: For any η
and T , if η is contained in the stem of T then [T ] ⊆ U(η); otherwise we can
form a pure extension of T whose κ-branches are incompatible with η and
hence do not belong to U(η).

To handle κ-unions we need Pure Fusion.

Pure Fusion for κ-Laver. There are partial orders ≤i on P which re�ne the
order ≤∗ of pure extension such that

(a) i ≤ j, T ∗ ≤j T implies T ∗ ≤i T .
(b) If (Ti | i < λ), λ ≤ κ, belong to P and for all i ≤ j < λ, Tj ≤i Ti then
there is T ≤i Ti for all i < λ.
(c) Suppose that T belongs to P and D is a set of extensions of T which is
purely dense below T . Then for each i < κ there are T ∗ ≤i T and d ⊆ D of
size at most κ such that each κ-branch through T ∗ is also a κ-branch through
some element of d.

Pure Fusion implies that the κ-union of purely Laver-measurable sets is pure-
ly Laver-measurable. And κ-Laver satis�es Pure Fusion: As for κ-Miller, if T

11



is a condition then let fT : κ<κ↑ → T be the natural order-preserving bijec-
tion between the full tree κ<κ↑ and the set of splitting nodes of T , and de�ne
T ∗ ≤i T i� fT ∗(s) = fT (s) for all s ∈ 2<κ such that s(α) ≤ i for all α < |s|.
Property (a) is clear and property (b) follows using (diagonal) intersections
when λ equals κ. Property (c) can be handled as in the case of κ-Miller, using
the fact that D is purely dense. 2

Remark 1. Using fusion the above arguments show that any P-null set is in
fact strictly P-null for the cases of κ-Sacks and κ-Miller and any purely Laver-
null set is strictly purely Laver-null in the case of κ-Laver. Therefore in the
caes of κ-Sacks and κ-Miller, P-measurability can be more simply expressed
by: A is P-measurable i� any T in P has a subtree T ∗ in P such that [T ∗]
is either contained in or disjoint from A. And pure Laver-measurability just
says that any κ-Laver tree T has a pure extension T ∗ such that [T ∗] is either
contained in or disjoint from A.

Question. Does Laver-measurability imply Pure Laver-measurability?

Remark 2. (Yurii) Note that κ-Laver is κ+-cc as any two conditions with the
same stem are compatible. It then follows, as in the case of κ-Cohen, that A
is Laver-measurable i� A4O is Laver-meager for some set O which is Laver-
open, i.e., the union of sets of the form [T ], T a κ-Laver tree. Given this,
the fact that the collection of Laver-measurable sets is closed under κ-unions
follows easily, as in the case of κ-Cohen forcing.

7.-8.Vorlesungen

Theorem 12 Not every Σ1
1 set is P-measurable.

Proof. First we verify this for κ-Sacks. Let A consist of all x ∈ 2κ such that
{i | x(i) = 0} contains a club. Suppose that T is a κ-Sacks tree. Then there
are κ-branches of T in A and also κ-branches of T in the complement of
A: For the former simply choose a κ-branch x through T as the union of
splitting nodes si of T of lengths αi such that for each i, si+1(αi) = 0; this is
possible as the limit of splitting nodes of T is also a splitting node of T . For
the latter do the same, but with si+1(αi) = 1 for limit i.

To handle the other cases we prove the following general fact, patterned
after work of Brendle-Löwe, Khomskii and Laguzzi.
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Lemma 13 Let Γ be a pointclass closed under continuous pre-images (like
∆1
n, Σ1

n or Π1
n). Let Γ(P) be the statement that every set in Γ is P-measurable.

Then:

Γ(κ-Cohen)→ Γ(κ-Miller)
Γ(κ-Laver)→ Γ(κ-Miller)
Γ(κ-Miller)→ Γ(κ-Sacks).

Proof of Lemma. For the �rst implication, �rst note the following:

Fact 1. Γ(κ-Cohen) (= Γ(2<κ-Cohen)) implies Γ(κ<κ↑ -Cohen).

Proof of Fact 1. Note that there is D ⊆ 2κ which is the κ-intersection of open
dense subsets of 2κ (and therefore comeager) such that D is homeomorphic
to κκ↑ . We may choose D to consist of all x ∈ 2κ such that x(i) = 1 for
co�nally many i < κ; the homeomorphism sends x to y ∈ κκ↑ where x =

0y(0) ∗ 1 ∗ 0y(1) ∗ · · ·. If A ⊆ κκ↑ belongs to Γ then the κ<κ↑ -measurability of A
follows from that of its pre-image under this homeomorphism, which in turn
follows from Γ(κ-Cohen), as D is comeager in 2κ. 2 (Fact 1 )

Now let A belong to Γ and let T be a κ-Miller tree. Under the assumption
Γ(κ-Cohen) we want to �nd a κ-Miller subtree of T , all of whose κ-branches
belong to A or all of whose κ-branches belong to the complement of A.

Let ϕ be the natural order-preserving bijection between the full tree κ<κ↑
(of increasing < κ-sequences through κ) and the splitting nodes of T . Also
let ϕ∗ denote the induced homeomorphism between κκ↑ and [T ], the set of
κ-branches through T . Let A′ be (ϕ∗)−1[A], which belongs to Γ as by as-
sumption Γ is closed under continuous pre-images. Apply Γ(κ-Cohen) to get
a basic open set U(η) such that A′ is either meager or comeager on U(η).
Without loss of generality assume the latter. Now build a κ-Miller tree S ′

such that [S ′] is contained in U(η) ∩A′: assume that A′ ∩ U(η) contains the
intersection of Ui, i < κ, where each Ui is open dense on U(η) and ensure
that any x ∈ κκ extending a node on the i-th spitting level of S ′ belongs to
Ui. We can also require that splitting nodes µ of S ′ are full-splitting, in the
sense that if µ ∗ α belongs to S ′ for all α < κ. Then ϕ[S ′] consists of the
splitting nodes of a κ-Miller tree S contained in T with the property that [S]
is contained in A.

For the second implication, note that like κ-Cohen forcing, κ-Laver forcing
is κ+-cc and we can form a topology, which we call the Laver topology, whose
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basic open sets are of the form [T ] for T a κ-Laver tree. Then in analogy to
κ-Cohen forcing we have:

Fact 2. A is κ-Laver measurable i� A is of the form O4M where O is open
in the Laver topology and M is meager in the Laver topology.

Proof of Fact 2. Note that strictly Laver-null is the same as nowhere dense
in the Laver topology and Laver-null is the same as meager in the Laver
topology. So if A is Laver-measurable it follows that D = the set of κ-Laver
trees T such that A is either meager or comeager on [T ] is open dense in
κ-Laver forcing. Let X be a maximal antichain contained in D. Then the
union O∗ of the [T ] for T in X is open dense in the Laver topology. Let O
be the union of the [T ] for T in X where A is comeager on [T ]. Then as X
has size at most κ, A di�ers from O by a meager set. Conversely, it su�ces
to show that open sets in the Laver topology are κ-Laver measurable. But
if O is Laver-open and T is a κ-Laver tree then [T ] ∩ O is either empty or
contains [S] for some κ-Laver tree S, so O is κ-Laver measurable. 2 (Fact 2 )

Now we use Fact 2 to prove the third implication, by imitating the ar-
gument used for the second implication. Let A belong to Γ and let T be a
κ-Miller tree. Under the assumption Γ(κ-Laver) we want to �nd a κ-Miller
subtree of T , all of whose κ-branches belong to A or all of whose κ-branches
belong to the complement of A.

We �collapse� T into a κ-Laver tree T ′ as follows: De�ne a function ψ
from the splitting nodes of T to nodes of the full tree κ<κ↑ by induction as
follows. If η is a splitting node of T which is not the limit of splitting nodes
of T then write η as η0 ∗ α ∗ η1 where η0 is the longest splitting node of T
properly contained in η (or ∅ if η is the least splitting node of T ) and set
ψ(η) = ψ(η0) ∗ α. If η is a limit of splitting nodes of T then set ψ(η) = the
union of the ψ(η0) for η0 a splitting node of T properly contained in η. Let ϕ
be the inverse of ψ, mapping the κ-Laver tree T ′ onto the splitting nodes of
T , and let ϕ∗ be the induced homeomorphism between [T ′] and [T ], the sets
of κ-branches of T ′ and T , respectively.

Now let A′ be (ϕ∗)−1[A], which belongs to Γ as by assumption Γ is closed
under continuous pre-images. Apply Γ(κ-Laver) to get a κ-Laver subtree of
T ′ such that A′ is either Laver-meager or Laver-comeager on [T ]. Without
loss of generality assume the latter. Now build a κ-Miller tree S ′ such that
[S ′] is contained in [T ] ∩ A′: assume that A′ ∩ [T ] contains the intersection
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of Ui, i < κ, where each Ui is Laver-open dense on [T ] and ensure that any
x ∈ κκ extending a node on the i-th spitting level of S ′ belongs to Ui. Then
ϕ[S ′] consists of the splitting nodes of a κ-Miller tree S contained in T with
the property that [S] is contained in A.

9.-10.Vorlesungen

For the third implication, let A belong to Γ and let T be a κ-Sacks tree.
Under the assumption Γ(κ-Miller) we want to �nd a κ-Sacks subtree S of T
such that [S] is either contained in or disjoint from A. De�ne an injection ϕ0

from the full tree κ<κ↑ into 2<κ as follows:

ϕ0(∅) = ∅
ϕ0(η) = (

⋃
α<|η| ϕ0(η|α)), if |η| = the length of η is a limit ordinal

ϕ0(η ∗ α) = ϕ0(η) ∗ 0α−|η| ∗ 1, where 0β denotes a β-sequence of 0's.

And let ϕ∗0 be the injection from κκ↑ into 2κ induced by ϕ0. Also let ψ be
the natural bijection between 2<κ and the splitting nodes of T and ψ∗ the
induced bijection between 2κ and [T ]. De�ne ϕ = ψ ◦ ϕ0 and ϕ∗ = ψ∗ ◦ ϕ∗0.

As ϕ∗ is continuous, A′ = (ϕ∗)−1[A] belongs to Γ. Apply Γ(κ-Miller) to
obtain a κ-Miller tree S ′ such that [S ′] is either contained in or disjoint from
A′. Thin S ′ to guarantee that if η is a splitting node of S ′ then the length |η|
of η is the sup of its range and η ∗ |η| belongs to S ′. Then ϕ[S ′] = S generates
a κ-Sacks subtree S of T such that [S] is either contained in or disjoint from
A. 2 (Lemma)

Using the Lemma, we conclude that Σ1
1 measurability fails for κ-Miller,

κ-Cohen and κ-Laver. 2

We have seen that ∆1
1(κ-Cohen) is consistent, from which it follows by

the above Lemma that ∆1
1(κ-Miller) and ∆1

1(κ-Sacks) are consistent. What
about ∆1

1(κ-Laver)? Again we can imitate the proof for the κ-Cohen case.
First we need a lemma.

Lemma 14 LetM be a transitive model of ZFC− containing κ and all bound-
ed subsets of κ which is elementary in H(κ+). Then x ∈ κκ is κ-Laver generic
over M i� x belongs to every Borel set coded in M which is open dense in
the Laver topology of M (equivalently, open dense in the Laver topology of
V ).
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Proof. Of course when we say that x is κ-Laver generic overM we mean that
Gx = {T ∈M | T is a κ-Laver tree ofM and x ∈ [T ]} is κ-Laver generic over
M in the strict sense. If this holds and B is a Borel set coded in M which
is open dense in the Laver topology of M then the set of T in M such that
M � [T ] ⊆ B is open dense in the κ-Laver forcing of M and therefore there
is such a T in Gx; by the elementarity of M in H(κ+), V � [T ] ⊆ B and
therefore as x belongs to [T ] it also belongs to B. Conversely, suppose that
x belongs to every Borel set coded in M which is open dense in the Laver
topology of M and that D ∈ M is open dense on the κ-Laver forcing of M .
Let X ∈M be a maximal antichain contained in D; then X has size at most
κ and B = the union of the [T ] for T in X is a Borel set coded in M which
is open dense in the κ-Laver topology of M . By hypothesis x belongs to B
and therefore to some [T ] where T belongs to X; so Gx meets D. 2

Theorem 15 Let κ be regular and assume GCH. Then after forcing with
Laver(κ, κ+) (the iteration of κ+-many κ-Laver forcings with support of size
< κ), every ∆1

1 set is κ-Laver measurable.

Proof. Note that the forcing Laver(κ, κ+) is κ+-cc; this follows using a ∆-
system argument and the fact that κ-Laver forcing is both κ-closed and
κ-centered.

Let G be generic for Laver(κ, κ+) and let X be ∆1
1 in V [G]. We'll show

that X is κ-Laver measurable in V [G], i.e., any κ-Laver tree T contains a
κ-Laver subtree S such that [S] is either contained in or disjoint from X mod-
ulo a Laver-null set. Without loss of generality we assume that the de�ning
parameter for X and the tree T belong to V (otherwise factor over V [G|α]
for some large enough α < κ+). Let ϕ, ψ be Σ1

1 formulas (with parameters in
V ) de�ning X and the complement of X, respectively.

Let M be a transitive elementary submodel of H(κ+)V of size κ which
contains all bounded subsets of κ and T . Then by the κ+-cc of Laver(κ, κ+),
M [G] is elementary in H(κ+)V [G] = H(κ+)V [G]. If α is M ∩κ+ then M [G] =
M [G|α]; we may assume that G(α), the κ-Laver generic added by G at stage
α, belongs to [T ], as it is dense to force this for someM . Note thatG(α) is also
κ-Laver generic over M [G|α] as this model is Σ1 elementary in H(κ+)V [G|α]
(and the property of being a maximal antichain is Π1). Without loss of gener-
ality assume that ϕ(G(α)) holds in V [G] and therefore also in V [G|α][G(α)]
(as the former is a κ-closed forcing extension of the latter).

16



Now let S be a κ-Laver condition in M [G|α] extending T which forces
ϕ(ġ) where ġ denotes the κ-Laver generic. Now using the Lemma, the set of
x ∈ κκ↑ which are Laver-generic over M [G|α] is Laver-comeager in V [G] as it
is the intersection of κ-many Borel sets, each of which is open dense in the
Laver topology ofM [G|α] and therefore in the Laver topology of V [G]. And if
x is a κ-branch through S which is Laver-generic overM [G|α] thenM [G|α][x]
and therefore V [G] satis�es ϕ(x). We have shown that [S] is contained in X
modulo a Laver-null set and therefore X is Laver-measurable in V [G]. 2

11.-12.Vorlesungen

Borel Reducibility

If E and F are equivalence relations on κκ then we say that E is Borel
reducible to F , written E ≤B F , if there is a Borel function f such that for
all x, y: E(x, y) i� F (f(x), f(y)). The relation ≤B is re�exive and transtive
and we write ≡B for the equivalence relation it induces.

We will begin by focusing on Borel reducibility between Borel equivalence
relations. For such relations E,F with at most κ-many equivalence classes
the notion is rather trivial: E ≡B F i� E and F have the same number of
equivalence classes. This is because if E and F have the same number of
classes we may choose sets XE and XF of the same size selecting one element
from each equivalence class of E, F respectively and then extend any bijection
between XE and XF to a Borel reduction of E to F (and similarly obtain a
Borel reduction of F to E).

So the �rst nontrivial question to ask is whether there is a Borel equiv-
alence relation which is minimal with respect to Borel reducibility among
those with more than κ equivalence classes.

Theorem 16 (Silver's Dichotomy) Suppose that κ equals ω and E is a Borel
equivalence relation with uncountably many classes. Then id ≤B E, where id
is the equivalence relation of equality on ωω.

The most popular proof proof of Silver's dichotomy makes heavy use of
the Gandy-Harrington topology, which I'll now introduce.

The basic open sets of the Gandy-Harrington topology are the lightface
Σ1

1 sets. These sets form a basis for the topology which is therefore second
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countable. The Gandy-Harrington topology re�nes the usual topology on
Baire space and is Hausdor�.

But the Gandy-Harrington topology is not Polish (i.e. not induced by a
complete metric):

Proposition 17 The Gandy-Harrington topology is not regular, i.e., points
cannot in general be separated from closed sets using open sets.

Proof. Let X be lightface Π1
1 but not Borel. For each basic open set disjoint

from X choose, if possible, an open set U disjoint from it which contains X.
If the topology were regular then the union of the basic open sets for which
such a U exists would be the complement of X and therefore X would be
the intersection of countably many open sets. But any open set is boldface
Σ1

1 and therefore we now have that X is boldface Σ1
1, contradiction. 2

The Gandy-Harrington topology does however contain an open dense
subspace that is Polish. A real x is low if it computes only computable
ordinals, i.e., ωck1 (x) = ωck1 . The set of low reals is a lightface Σ1

1 set and
therefore open in the Gandy-Harrington topology (x is low i� for all e, if
{e}x is a wellorder then {e}x is isomorphic to {f} for some f). The fact that
it is dense is equivalent to:

Theorem 18 (Gandy Basis Theorem) Suppose that A is a nonempty light-
face Σ1

1 set. Then A has a low element.

Proof Sketch. Let CWT denote the set of indices for computable wellfounded
trees. Now write A as x ∈ A i� T (x) is not wellfounded, where T is a
computable tree on ω×ω. If A is nonempty then A has an element computable
in CWT.

But now consider A∗ = {(x, y) | x ∈ A and y is not Hyp in x}. If A
is nonempty Σ1

1 then so is A∗. Choose (x, y) in A∗ which is computable in
CWT. As y is not Hyp in x it follows that CWT is not Hyp in x. But then x
is low, else we can choose e so that {e}x is a wellorder of length ωck1 and then
{f} is a wellfounded tree i� {f} is a tree whose rank is less than {e}x, giving
a Σ1

1 de�nition of CWT; this contradicts the fact that CWT is not Hyp (i.e.
not ∆1

1) in x. 2

To show that Xlow, the restriction of the Gandy-Harrington topology to
the low reals, is Polish, we need:
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Lemma 19 If x is low then for any lightface Σ1
1 set A either x belongs to A

or x belongs to a lightface ∆1
1 set disjoint from A.

Proof. Write y ∈ A i� T (y) is not wellfounded, where T is a computable tree
on ω × ω. If x does not belong to A then T (x) is wellfounded; let α be the
rank of T (x). As x is low, α is computable and we can take B to consist of
those y such that T (y) has rank α. 2

Corollary 20 Xlow has a basis of clopen sets and is therefore regular.

Choquet gave a topological characterisation of Polish spaces. For a topo-
logical space X the strong Choquet game GX is the two-person game where
Player I choose pairs (xi, Ui) at even stages and Player II chooses sets Vi at
odd stages where xi ∈ Vi ⊆ Ui and Ui+1 ⊆ Vi for each i. Player II wins if
the intersection of the Ui's (= the intersection of the Vi's) is nonempty. The
space X is strong Choquet i� Player II has a winning strategy in GX .

Theorem 21 (Choquet) A topological space is Polish i� it is second count-
able, regular and strong Choquet.

We have seen that Xlow is second countable and regular; so to see that
it is Polish we just need:

Theorem 22 Xlow is strong Choquet.

Proof. It su�ces to show that the full Gandy-Harrington topology is strong
Choquet, as Xlow is an open subset in that topology. We describe a winning
strategy for Player II in the gameGX whereX is the entire space ωω, endowed
with the Gandy-Harrington topology.

Let (x0, U0) be the �rst move by Player I. Choose a lightface Σ1
1 subset

A0 of U0 containing x0 and write A0 as the projection of a computable tree
T0. We can choose y0 so that (x0, y0) ∈ [T0]. For any pair (s, t) in a tree T
on ω× ω we let T(s,t) denote the subtree of T consisting of those pairs (s′, t′)
in T where s′ is compatible with s and t′ is compatible with t. Now Player
II's response V0 to Player I's �rst move is the projection of (T0)(s0,t00) where

s0 = x0|1 and t00 = y0|1. Then x0 ∈ V0 ⊆ U0 so the rules of the game are
obeyed.
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Let Player I's next move be (x1, U1). Then as x1 belongs to V0 we can
choose y′0 with (x1, y

′
0) ∈ [(T0)(s0,t00)]. Set s1 = x1|2 and t01 = y′0|2. Then

s0 ⊆ s1 and t00 ⊆ t01. Also choose a lightface Σ1
1 set A1 with x1 ∈ A1 ⊆ U1,

a computable tree T1 which projects to A1 and y1 such that (x1, y1) belongs
to [T1]. Note that s0 ⊆ x1 so if we set t10 = y1|1 we have that x1 is in the
projection of (T1)(s0,t10). Player II now plays V1 = the projection of (T0)(s1,t01)

∩ the projection of (T1)(s0,t10). We have x1 ∈ V1 ⊆ A1 ⊆ U1.

We continue in this way, producing a sequence of plays (xi, Ui) and Vi
together with computable trees Tn and sequences s0 ⊆ s1 ⊆ · · · and tn0 ⊆
tn1 ⊆ · · · such that:

1. xn ∈ An = the projection of Tn, An ⊆ Un.
2. sn has length n+ 1 and sn ⊆ xn.
3. (sk, t

n
k) ∈ Tn.

4. Vn is the intersection of the projections of the trees (T0)(sn,t0n), (T1)(sn−1,t1n−1) · · · (Tn)(s0,tn0 ).

Now let x be the union of the sn's and yn the union of the tnk 's. Then (x, yn)
belongs to [Tn] for each n and therefore x belongs to An = the projection of
Tn for each n. 2

13.Vorlesung

We now have a clear strategy to prove Silver's Dichotomy. Suppose that
E is a Borel equivalence relation with uncountably many classes. We assume
that E is e�ectively Borel (i.e. lightface ∆1

1), else we can relativise to a param-
eter. Let τ denote the Gandy-Harrington topology. We will �nd a nonempty
Σ1

1 set V such that E is meager on V ×V in the product topology τ×τ . Now
by Gandy Basis, U = V ∩Xlow is a nonempty open set in Xlow on which E
is meager. But then applying Mycielski's theorem to the Polish space Xlow,
there is a continuous f : 2ω → Xlow witnessing that id continuously reduces
to E, with the standard topology on 2ω and the Gandy-Harrington topology
on Xlow. Note that this reduction is also continuous as a function from 2ω to
ωω with the standard topology on both 2ω and ωω, as the Gandy-Harrington
topology on ωω re�nes the standard topology.

So the Silver Dichotomy reduces to:
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Main Claim. Suppose that E is a lightface ∆1
1 equivalence relation on Baire

space ωω with uncountably many classes. Then E is meager in V × V in the
topology τ × τ , for some nonempty lightface Σ1

1 set V .

Proof. The desired set V is:

{x | There is no lightface ∆1
1 set U with x ∈ U ⊆ [x]E}

where [x]E denotes the E-equivalence class of x. Note that V is nonempty, else
E would have only countably many equivalence classes. Also V is lightface
Σ1

1 as:

x /∈ V i� there exists a code c for a lightface ∆1
1 set Dc such that x ∈ Dc and

∀y(y ∈ Dc → xEy)

and as the set of codes of lightface ∆1
1 sets is a Π1

1 set of numbers, this gives
a lightface Π1

1 de�nition of the complement of V . We must show that E is
meager on V × V for the topology τ × τ , where τ is the Gandy-Harrington
topology.

Claim 1. If x belongs to V then there is no lightface Σ1
1 set U such that

x ∈ U ⊆ [x]E.

Proof of Claim 1. Otherwise note that [x]E is lightface Π1
1: yEx i� ∀z(z ∈

U → yEz). Now apply the Separation Theorem for Σ1
1 sets to get a lightface

∆1
1 set D with U ⊆ D ⊆ [x]E, contradicting the fact that x belongs to V . 2

(Claim 1 )

Next note that as E is ∆1
1, it has the Baire property in the topology τ×τ :

E is the result of applying the Suslin operation to sets which are closed in
the usual product topology and therefore to sets which are closed in τ × τ ;
but the collection of sets with the Baire property is closed under the Suslin
operation in any topological space and therefore E has the Baire property in
τ × τ .

So by the Kuratowski-Ulam Theorem, to show that E is τ × τ -meager on
V × V it su�ces to show that for x ∈ V , [x]E is τ -meager in V .
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Claim 2. Let τ be the Gandy-Harrington topology on X = ωω and suppose
that A is τ -comeager on U , where U is τ -open. Let τ2 denote the Gandy-
Harrington topology on X × X (τ2 is �ner than τ × τ). Then A × A is
τ2-comeager on U × U .

Proof of Claim 2. It su�ces to show that if B ⊆ X is τ -closed and τ -nowhere
dense then B × U and U × B are τ2-closed and τ2-nowhere dense. Without
loss of generality consider B × U . That it is τ2-closed is clear, as τ2 re�nes
τ × τ . If B × U contained a nonempty τ2-open set U2 then the projection
of U2 onto the �rst coordinate would be a nonempty τ -open subset of B,
contradicting the τ -nowhere density of B. 2 (Claim 2 )

Now suppose that x belongs to V and [x]E is not τ -meager in V . Then for
some nonempty open U ⊆ V , [x]E is τ -comeager on U . By Claim 2, [x]E×[x]E
is τ2-comeager on U × U . By Claim 1, (U × U) ∩ (∼ E) is a nonempty set
which is τ2-open and therefore intersects [x]E× [x]E, which is a contradiction.
2

14.-15.Vorlesungen

We have established the Silver Dichotomy for the classical Baire space: A
Borel equivalence relation on ωω with uncountably many classes has a perfect
set of classes.

However the analagous Silver Dichotomy for κκ when κ is uncountable
fails in L:

Theorem 23 Assume V = L. Then there are Borel equivalence relations
E with more than κ classes which are strictly below id with respect to Borel
reducibility.

Proof. A weak Kurepa tree on κ is a tree T of height κ with κ+ many branches
such that the α-th splitting level of T has size at most card(α) for stationary-
many α < κ.

Lemma 24 Suppose V = L and κ is regular and uncountable. Then there
exists a weak Kurepa tree on κ.
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Proof. Our tree will be a subtree of the binary tree 2<κ. For singular α < κ
let β(α) be the least limit ordinal β > α such that α is singular in Lβ.

First assume that κ is inaccessible. Then T consists of all σ ∈ 2<κ such
that:

(∗) For singular cardinals α ≤ |σ| of co�nality ω, σ|α belongs to Lβ(α).

Any node of T can be extended to nodes in T of any greater length (jus
add 0's). And any node of T of length α splits into two nodes in T of length
α+ 1 so the α-th splitting level consists of nodes of length α. It follows that
the α-th splitting level of T has size at most card(α) for α a singular cardinal
of co�nality ω.

Main Claim. T has κ+ many branches.

Proof of Main Claim. For a limit ordinal β between κ and κ+ we say that β
is critical if some subset of κ is de�nable over Lβ but not an element of Lβ.
The set of critical ordinals is co�nal in κ+ and for critical β, the Skolem hull
of κ in Lβ is all of Lβ.

Now for each critical β de�ne:

(∗) Cβ = {α < κ | The Skolem hull of α in Lβ contains no ordinals between
α and κ}.

Then Cβ is a club in κ for each critical β and moreover if β0 < β1 are
both critical then su�ciently large elements of Cβ1 are limit points of Cβ0 ;
this is because β0 is an element of the Skolem hull of α in Lβ1 for a large
enough α and therefore so is Cβ0 .

In particular the Cβ's for critical β are distinct. Now we claim that each
Cβ is a branch through T . For this we need only check that if α < κ is a
singular cardinal of co�nality ω then Cβ ∩ α belongs to Lβ(α). This is clear
if α does not belong to Cβ, for then Cβ ∩ α is bounded in α and therfore an
element of Lα. Otherwise note that Cβ ∩α is de�nable over Lβ̄+1 where Lβ̄ is
the transitive collapse of the Skolem hull of α in Lβ; as α is regular in Lβ̄ it
follows that β̄ is less than β(α) so Cβ ∩α is an element of Lβ(α), as desired.

The case of a successor cardinal κ is similar, except one can now obtain
a Kurepa tree on κ, i.e. a tree T of height κ with κ+ many branches such
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that the α-th splitting level of T has size at most card(α) for all α < κ. 2
(Lemma)

Now note that there can be no continuous injection from 2κ into [T ], the
set of κ-branches through T , because this would yield a club of α < κ such
that the α-th splitting level of T has 2α many nodes. In fact there cannot
be such an injection which is Borel, as any Borel function is continuous on a
comeager set and any comeager set contains a copy of 2κ.

Finally de�ne xETy i� x, y are not branches through T or x = y. Then
ET is a Borel equivalence relation with κ+ classes yet id cannot Borel reduce
to ET for the reasons given above. And ET is Borel reducible to id via the
reduction that sends each branch of T to itself and the non-branches of T to
some �xed non-branch of T . 2

Remark. Vadim and I have improved this to get (assuming V = L) 2κ Borel
Reducibility Degrees below id as well as Borel equivalence relations which
are incomparable with id with respect to Borel reducibility.

One might hope that if a Borel equivalence relation has not just κ+ many
classes but a large number of classes then it must have a perfect set of classes
(i.e., it must Borel reduce id). But also this can consistently fail:

Theorem 25 Let κ be regular and uncountable in L. Then in a cardinal-
preserving forcing extension of L, 2κ = κ+++ and there is a Borel equivalence
relation on κκ with exactly κ++ classes. (The same holds with κ+++, κ++

replaced by any pair of cardinals λ1 ≥ λ0 of co�nality greater than κ.)

Proof. Add a (weak) Kurepa tree T on κ with κ++ branches. The forcing
for doing this is κ-closed and κ+-cc and therefore preserves cardinals. Then
follow this by adding κ+++ many κ-Cohen sets (by a product with supports
of size less than κ). Again cardinals are preserved. But notice that the second
forcing does not add branches to T as it is κ-closed. Now (as before) take the
equivalence relation ET de�ned by xETy i� x, y are not κ branches through
T or x = y. 2

I'll return to the Silver Dichotomy later, but now turn to:

The Harrington-Kechris-Louveau Dichotomy
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In the classical case E0 is de�ned by: xE0y i� x4y is �nite. The �rst
question to resolve is: How shall we de�ne E0 on κ

κ? The next result answers
this question:

Theorem 26 For λ an in�nite cardinal ≤ κ de�ne E0,λ by xE0,λy i� x4y
has size less than λ. Then id ≤B E0,λ, E0,λ is Borel and:
(∗) E0,κ is not Borel reducible to id but E0,λ is Borel reducible to id for λ < κ.

In light of this we take E0 to be E0,κ.

Proof. To prove (∗), �rst suppose that λ is less than κ. For each α < κ use
the axiom of choice to choose a function fα : 2α → 2α such that for x, y in
2α, x4y has size less than λ i� fα(x) = fα(y). Then for x, y in 2κ, x4y has
size less than λ i� fα(x|α) = fα(y|α) for all α < κ (here we use λ < κ). So
we obtain a reduction of E0,λ to id by sending x to (fα(x) | α < κ).

The proof that E0,κ is not Borel reducible to id is just as in the classical
case: Suppose that f were a reduction and let x be su�ciently κ-Cohen (i.e.,
κ-Cohen over a transitive model of ZFC− of size κ containing the parameter
for this reduction). De�ne x̄(i) = 1−x(i) for i < κ. As ∼ xE0x̄ we can choose
σ ⊆ x, i < κ and j ∈ {0, 1} such that for su�ciently κ-Cohen y, f(y)(i) = j
if y extends σ and f(y)(i) = 1− j if y extends σ̄. But y = σ̄ ∗ (x above σ̄) is
E0 equivalent to x yet f(y) 6= f(x), contradiction. 2

Unfortunately the Harrington-Kechris-Louveau Dichotomy is provably
false for κκ, κ uncountable:

Theorem 27 There is a Borel equivalence relation E ′0 which is strictly above
id and strictly below E0 with respect to Borel reducibility.

Proof. We de�ne E ′0 on 2κ as follows:

xE ′0y i�
xE0y and {i < κ | x(i) 6= y(i)} is a �nite union of intervals.

i. id ≤B E ′0 ≤B E0.
For the �rst reduction use f(x) = the set of codes for proper initial segments
of x; then x = y → f(x)E ′0f(y) and x 6= y →∼ f(x)E0f(y)→∼ f(x)E ′0f(y).
For the second reduction: for each α < κ choose fα : 2α → 2α such that for
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x, y ∈ 2α, {i < κ | x(i) 6= y(i)} is a �nite union of intervals i� fα(x) = fα(y)
and for x ∈ 2κ de�ne f(x) = the set of codes for the pairs (fα(x|α), x(α)),
α < κ; then xE ′0y → f(x)E0f(y) and ∼ xE ′0y →∼ f(x)E0f(y).

ii. E ′0 �B id.
Otherwise let M be a transitive model of ZFC− of size κ containing all
bounded subsets of κ as well as a code for the Borel reduction f . Let x ∈ 2κ

be κ-Cohen generic overM and de�ne x̄(i) = 1−x(i) for each i < κ. Then as
∼ xE0x̄ there is α < κ such that f(x) 6= f(y) whenever y is κ-Cohen generic
overM and extends x̄|α. But then f(x) 6= f((x̄|α)∗ (x|[α, κ))), contradicting
xE ′0((x̄|α) ∗ (x|[α, κ))).

iii. E0 �B E
′
0.

As in the previous argument choose a reduction f , a transitive model M
and x ∈ 2κ which is κ-Cohen over M . Choose α0 so that for some ordinal
i0 < α0, f(x)(i0) 6= f(y)(i0) whenever y is κ-Cohen over M and extends
x̄|α0; this is possible as ∼ xE0x̄ and therefore ∼ f(x)E ′0f(x̄). Then choose
α1 > α0 so that for some ordinal i1 ∈ [α0, α1), f(x)(i1) = f(y)(i1) whenever
y is κ-Cohen over M and extends (x̄|α) ∗ (x|[α0, α1)); this is possible as
xE0((x̄|α) ∗ (x|[α0, κ))) and therefore f(x)E ′0f((x̄|α) ∗ (x|[α0, κ))). After ω
steps we obtain ∼ f(x)E ′0f(y) whenever y is κ-Cohen over M and extends
(x̄|α0)∗(x|[α0, α1))∗(x̄|[α1, α2))∗· · ·, contradicting the fact that there is such
a y which is E0 equivalent to x. 2

In summary: Even for Borel equivalence relations, the Silver Dichoto-
my can consistently fail and the Harrington-Kechris-Louveau Dichotomy is
provably false.

But there is still some hope for the Harrington-Kechris-Louveau Dichoto-
my. Recall that we found a Borel equivalence relation E ′0 strictly between id
and E0 with respect to Borel reducibility.

Question. Suppose that a Borel equivalence relation E is not Borel reducible
to id. Then is E ′0 Borel reducible to E?

This seems unlikely. But so far it has not been ruled out as a possible
valid generalisation of the Harrington-Kechris-Louveau Dichotomy for κκ.

16..-17.Vorlesungen

Regarding the Silver Dichotomy, �rst consider one more negative result:
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Theorem 28 There is a ∆1
1 equivalence relation with κ+ classes but no per-

fect set of classes. So the Silver Dichotomy provably fails for ∆1
1.

Proof. The relation is xEranky i� x, y do not code wellorders or x, y code
wellorders of the same length. This has exactly κ+ classes and is ∆1

1. Suppose

T were a perfect tree whose distinct κ-branches are Erank-inequivalent. Now
let x be a generic branch through T (treating T as a version of κ-Cohen
forcing) and let p ∈ T be a condition forcing that x codes a wellorder of some
rank α < κ+. Then any su�ciently generic branch through T extending p
codes a wellorder of rank α, which contradicts the fact that there are distinct
such branches in V . 2

So a �rst step toward obtaining the consistency of Silver's Dichotomy for
κκ is the following.

Theorem 29 The relation Erank of the previous theorem is not Borel.

Proof. For α < κ let Lα denote the forcing to Lévy collapse α to κ (using
conditions of size less than κ). If g is Lα-generic then g∗ denotes the subset
of κ de�ned by i ∈ g∗ i� g((i)0) ≤ g((i)1) where i 7→ ((i)0, (i)1) is a bijection
between κ and κ× κ.

By induction on Borel rank we show that if B is Borel then there is a
club C in κ+ such that:

(∗) For α ≤ β in C and (p0, p1) a condition in Lα×Lα, (p0, p1) Lα×Lα-forces
that (g∗0, g

∗
1) belongs to B i� it Lα × Lβ forces that (g∗0, g

∗
1) belongs to B.

If B is a basic open set then we may take C to consist of all ordinals
greater than κ in κ+: If B is U(σ0)×U(σ1) then (p0, p1) ∈ L−α×Lβ forces
(g∗0, g

∗
1) ∈ B exactly if (p∗0, p

∗
1) extends (σ0, sigma1) where p∗i is the set of i

such that (i)0, (i)1 are in the domain of p0 and p0(((i)0) ≤ p0((i)1); this is
independent of the pair α, β. Inductively, suppose that B is the intersection
of Borel sets Bi, i < κ, of smaller Borel rank. By intersecting clubs obtained
by applying (∗) to the Bi's we obtain a club C ensuring the desired conclusion
for B, as (p0, p1) forces (g∗0, g

∗
1) ∈ B i� for each i < κ it forces (g∗0, g

∗
1) ∈ Bi.

Finally if B is the complement of the Borel set B0 then by induction we
have a club C0 such that for α ≤ β in C0 and (p0, p1) ∈ Lα × Lα, (p0, p1)
Lα×Lα-forces (g∗0, g

∗
1) ∈ B0 i� it Lα×Lβ-forces this. Now thin out the club
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C0 to a club C so that for α in C, if (p0, p1) in Lα×Lα and there is some β in
C0 and some (q0, q1) in Lα ×Lβ below (p0, p1) which Lα ×Lβ-forces (g∗0, g

∗
1)

in B0 then there is such a (q0, q1) in Lα×Lα. Then for α ≤ β in this thinner
club, (p0, p1) Lα×Lα-forces (g∗0, g

∗
1) in B i� none of its extensions in Lα×Lα

forces (g∗0, g
∗
1) in B0 i� none of its extensions in Lα×Lβ forces (g∗0, g

∗
1) in B0

i� (p0, p1) Lα × Lβ-forces (g∗0, g
∗
1) in B, completing the induction.

It follows that Erank is not Borel, as otherwise we have g∗0E
rankg∗1 where

g0, g1 are su�ciently generic for Lα × Lβ with α < β. 2

Now using an analogous argument we have:

Theorem 30 Suppose that 0# exists, κ is regular in L and λ is the κ+ of
V . Then after forcing over L with the Lévy collapse turning λ into κ+, the
Silver Dichotomy holds for κκ.

Proof Sketch. Suppose that E is a Borel equivalence relation in the Lévy
collapse extension with parameter in L and that p is a Lévy collapse con-
dition forcing that the Lévy collapse names (σα | α < λ) are pairwise E-
inequivalent. We may assume that the E-equivalence class of σα does not
depend on the choice of Lévy collapse generic containing p; otherwise the
class of σα would be di�erent for two Lévy collapse generics which are mu-
tually generic and then we can build a perfect set of classes by building a
perfect tree of mutual generics.

Let I be a �nal segment of the Silver indiscernibles between κ and λ
such that p belongs to Li for i in I. For i < j in I let πij be an elementary
embedding from L to L with critical point i, sending i to j. Also for each
α < λ let f(α) denote the L-rank of the name σα; as f is constructible, f(i)
is less than the least Silver indiscernible greater than i for su�ciently large
i ∈ I; we assume that this holds for all i ∈ I. For each α < λ let Lα denote
the Lévy collapse to κ just of the ordinals up to and including α.

Now in analogy to the previous proof, show by induction on the Borel
rank of E that there is a club C contained in I such that for i ≤ j in C
and (p0, p1) ≤ (p, p) in Lf(i) × Lf(i), (p0, p1) Lf(i) × Lf(i)-forces σ

ġ0
i Eσ

ġ1
i i�

(p0, πij(p1)) Lf(i) × Lf(j)-forces σ
ġ0
i Eσ

ġ1
j . But (p0, p1) does Lf(i) × Lf(i)-force

σġ0i Eσ
ġ1
i as the class of σi is independent of the choice of Lf(i)-generic; it
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follows that for i < j in C some condition below (p, p) forces σiEσj, contra-
dicting our assumption that σi, σj are forced to be pairwise E-inequivalent.
2

18.-19.Vorlesungen

I'll now discuss some recent work regarding the analogue of the countable
Borel equivalence relations for κκ, i.e., those Borel equivalence relations whose
classes have size at most κ.

An orbit equivalence relation is one induced by a Borel action of a Polish
group G: xEy i� g · x = y for some g ∈ G. Two important facts about
countable equivalence relations in the clasical setting are:

E∞. Among orbit equivalence relations induced by a Borel action of a count-
able discrete group, there is one of maximum complexity, called E∞.

Feldman-Moore. In fact any countable Borel equivalence relation is the orbit
equivalence relation induced by a Borel action of a countable discrete group.

The �rst of these facts holds true for κκ, but in a surprising way:

Theorem 31 If E is the orbit equivalence relation of a Borel action of a
discrete group of size at most κ on a Borel subset of 2κ then E is Borel
reducible to E0.

Proof Sketch. The shift action of a discrete group G of size κ on its power
set P(G) is de�ned by:

g ·X = {g · h | h ∈ X}.

P(G) is topologised to be homeomorphic to 2κ and the action is a continuous
action. Let E(G) denote the orbit equivalence relation resulting from this
action. Also let E(G)κ denote the orbit equivalence relation induced by the
action of G on P(G)κ de�ned by g · (Xi | i < κ) = (g ·Xi | i < κ).

Now let Fκ denote the free group on κ generators. We show that E(Fκ)
is Borel reducible to E0. The key observation is that Fα has cardinality less
than κ for α < κ (this fails when κ equals ω). For each α < κ �x a wellorder
<α of {g ·X | g ∈ Fα and X ⊆ Fα}; the latter has size at most κ.
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Now to reduce E(Fκ) to E0, map X ⊆ Fκ to the sequence f(X) =
(f(X)α | α < κ) where f(X)α = the <α-least element of {gα · (X ∩ Fα) |
gα ∈ Fα}. If X, Y are equivalent under shift then f(X)α = f(Y )α for α large
enough so that for some g ∈ Fα, g ·X = Y . Conversely, if f(X)α = f(Y )α for
large enough α then by Fodor we can �x some g ∈ Fκ such that g · (X ∩α) =
g · (Y ∩ α) for a co�nal set of α's and therefore g ·X = Y . This veri�es that
we have a continuous reduction of E(Fκ) to E0.

Finally, to prove the Theorem we show that any orbit equivalence relation
E given by a Borel action of a discrete group G of size κ on a Borel set X is
Borel reducible to E(Fκ)

κ. This su�ces, as an argument similar to the one
given in the previous paragraph shows that not only E(Fκ), but also E(Fκ)

κ

is Borel reducible to E0.

First note that E Borel reduces to E(G)κ. To see this let π : κ → 2<κ

be a bijection and de�ne F (x) = (F (x)α | α < κ) where F (x)α = {g |
g · x ∈ U(π(α))} (and where as usual U(σ) is the basic open neighbourhood
determined by σ ∈ 2<κ). It is straightforward to verify that this is a reduction.
Now note that G is a quotient of Fκ by one of its normal subgroups and
therefore we can Borel reduce E(G)κ to E(Fκ)

κ by sending (Xα | α < κ) to
(Yα | α < κ) where Yα is the pre-image of Xα under the natural projection
map of Fκ onto G. 2

The Feldman-Moore Theorem however consistently fails for κκ:

Theorem 32 Assume V = L. Then there is a Borel equivalence relation
with classes of size 2 which is Borel reducible to id but which is not the orbit
equivalence relation of any Borel action of a group of size at most κ.

Proof Sketch. Let X be the Borel set of (Σω-) Master Codes for initial seg-
ments of L of size κ. These are the subsets of κ which code the theory of a
structure (Lα, γ)γ<κ where κ ≤ α < κ+. Now enumerate X in L-increasing
order as (xα | α < κ+) and the complement of X in L-increasing order as
(yα | α < κ+). The bijection f : X →∼ X de�ned by f(xα) = yα is a Borel
function whose inverse is not Borel on any non-meager Borel set (otherwise
the value of its inverse on su�ciently κ-Cohen sets would code collapses of
arbitrarily large ordinals less than κ+).

Now de�ne an equivalence relation by E(x, y) i� x = y or y = f(x) or
x = f(y). E is not induced by a Borel action of a discrete group of size at
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most κ, else the inverse of f would be Borel on a non-meager Borel set. And
E is smooth as given x we can �rst see if x is a Master Code; if so, send x
to f(x) and if not send x to itself. 2

Questions. (1) Are all Borel equivalence relations with classes of size at most κ
Borel reducible to E0? (2) Is the Feldman-Moore Theorem for κκ consistent?

Isomorphism Relations

An important class of Σ1
1 equivalence relations is the class of isomorphism

relations. View the elements of κκ as codes for structures with universe κ (for
a language of size at most κ). An isomorphism relation is given by specifying
a sentence ϕ of the in�nitary logic Lκ+κ and de�ning:

xEϕy i� x, y do not code models of ϕ or x, y code isomorphiic models of ϕ.

We can eliminate the logic using the following result:

Theorem 33 (Vaught) X is the set of codes for models of a sentence of
Lκ+κ i� X is Borel and invariant under isomorphism (if x belongs to X and
y codes a model isomorphic to the model coded by x then y also belongs to
X).

Isomorphism relations need not be Borel and there is one of maximum
complexity, the relation of isomorphism of graphs.

In the classical setting, isomorphism relations are far from complete under
Borel reducibility within the class of Σ1

1 equivalence relations as a whole:

Proposition 34 There is a Σ1
1 equivalence relation E on reals with an equiv-

alence class which is not Borel.

Proof. Let X be a Σ1
1 set of reals which is not Borel. De�ne E by: E(x, y) i�

x, y ∈ X or x = y. Then X is an equivalence class of E. 2

Theorem 35 (Scott) For any countable structure A, the set of (codes for)
countable structures which are isomorphic to A is Borel.
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Proof. Let ϕ be the Scott sentence of A, i.e., the canonical sentence of Lω1ω

whose countable models are exactly those isomorphic toA. This set of models
is Borel, as the set of countable models of any sentence of Lω1ω is Borel. 2

It follows that isomorphism on countable structures is not complete for
Σ1

1 equivalence relations under Borel reducibility, as Borel reductions take
non-Borel equivalence classes to non-Borel equivalence classes.

In the case of κ = κ<κ uncountable, Scott's theorem fails and indeed:

Theorem 36 Assume V = L and let κ be the successor of a regular cardinal.
Then all Σ1

1 equivalence relations are Borel reducible to isomorphism.

Proof. Write κ = λ+ where λ is regular, let Q be a λ-saturated dense linear
order without endpoints and let Q0 be Q together with a least point. For any
subset S of κ let L(S) be obtained from the natural order on κ by replacing
α by Q0 if 0 < α belongs to S and by Q if α is 0 or does not belong to S.

Lemma 37 L(S) is isomorphic to L(T ) i� S4T is nonstationary in κ.

Now the key use of V = L is the following.

Lemma 38 In L, any Σ1
1 set X is Borel reducible to the collection (ideal)

of nonstationary sets in the sense that there is a Borel function f such that
x ∈ X i� f(x) is nonstationary.

Lemmas 37, 38 imply that isomorphism is complete as a set in the sense
that if X is a Σ1

1 set then for some Borel functions g, h:

x ∈ X i� g(x) ' h(y)

where the values of g, h are dense linear orders. Simply choose a Borel f
so that x ∈ X i� f(x) is nonstationary and then de�ne g(x) = L(f(x)),
h(x) = L(∅).

Proof of Lemma 37. For simplicity we'll assume that κ is ω1, so Q is the
rational order and Q0 is the rational order together with a least point. Sup-
pose L(S) is isomorphic to L(T ) via the isomorphism π. For countable α let
L(S)|α be the initial segment of L(S) obtained from the natural order on α
by replacing i < α by Q0 if 0 < i belongs to S and by Q otherwise. Then for
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club-many α, the restriction of π to L(S)|α is an isomorphism from L(S)|α
onto L(T )|α. For such α, α belongs to S i� it belongs to T , as otherwise
the restrictin of π to L(S)|α would not extend to an isomorphism from L(S)
onto L(T ). Thus S, T agree on a club and S4T is nonstationary.

Conversely, suppose that S4T is nonstationary and choose a club C on
which S, T agree. By induction on α in C build an isomorphism between
L(S)|α and L(T )|α: The base case is easy, as there is a unique countable
dense linear order without endpoints. The limit cases are trivial, as the limit
of isomorphisms is an isomorphism. For the case where α is the C-successor
to β, use the fact that S, T agree at β to conclude that the ordinal β is
replaced by the same ordering in L(S)|α and L(T )|α. 2

Proof of Lemma 38. Again for simplicity we'll assume that κ is ω1. We can
write x ∈ X i� ϕ(ω1, x) where ϕ is a Σ1 formula with a subset of ω1 as
parameter. We'll ignore that parameter.

Claim. The following are equivalent:
(a) ϕ(x) holds.
(b) The set A of those countable α for which there exists a countable limit
β such that

Lβ |= α = ω1 ∧ ϕ(α, x ∩ α))

contains a club in ω1.

Proof of Claim. If ϕ(x) holds then choose a continuous chain (Mi | i < ω1)
of elementary submodels of some large ZF− model Lθ so that x belongs to
M0 and the intersection of each Mi with ω1 is an ordinal αi less than ω1.
Let C be the set of αi's, a club in ω1. Then any α in C belongs to A by
condensation.

Conversely, if ϕ(ω1, x) fails then let C be any club in ω1 and let D be
the club of α < ω1 such that H(α) = the Skolem Hull in some large Lθ of
α together with {ω1, C} contains no ordinals in the interval [α, ω1). Let α
be the least limit point of D. Then α does not belong to A: If Lβ satis�es

ϕ(α, x∩α) then β must be greater than β̄ where H(α) = Lβ̄ is the transitive

collapse of H(α), because ϕ(α, x∩α) fails in H(α). But as D∩α is an element
of Lβ̄+2, it follows that α is singular in Lβ. Of course α does belong to C so
we have shown that A does not contain C for an arbitrary club C in ω1. 2
(Claim.)
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The Claim implies that X is Borel-reducible to the collection of subsets
of ω1 which contain a club and therefore also to its dual, the nonstationary
ideal. 2

We �nish by showing how the above argument can be extended to prove
Theorem 36, again assuming for simplicity that κ is ω1. Given a Σ1

1 equiv-
alence relation E on 2ω1 we want to produce a Borel reduction of E to
isomorphism, i.e., a Borel function f such that xEy i� f(x) is isomorphic to
f(y). The main step is to produce a Borel reduction of E to the equivalence
relation on ωω1 given by:

η ∼NS ξ i� {α < ω1 | η(α) = ξ(α)} contains a club in ω1.

Given this, we get a Borel reduction of E to dense linear orders which are
coloured with ω-many colours, using the argument of Lemma 37.

To obtain the Borel reduction of E to (ωω1 ,∼NS) we re�ne the argument
of Lemma 38 as follows. For each countable α let β(α) be the largest limit
ordinal β > α such that α is the ω1 of Lβ, if such a limit ordinal β exists. The
ordinal β(α) does exist for club-many α and in fact for any x ⊆ ω1, there
are club-many α such that β(α) exists and x ∩ α belongs to Lβ(α). Also let
ϕ be a Σ1 formula such that xEy i� ϕ(ω1, x, y); we assume that there is no
parameter in ϕ (other than ω1).

Now to each x ⊆ ω1 associate the function η
′
x that for each countable α for

which β(α) exists and x∩α belongs to Lβ(α) assigns the L-least z ⊆ α in Lβ(α)

such that �x∩α and z are E-equivalent in Lβ(α)�, i.e., Lβ(α) � ϕ(α, x∩α, z).
Then by the same argument as in the proof of Lemma 38 one has: xEy i�
η′x, η

′
y agree on a club. Finally, de�ne ηx(α) = πα ◦ η′x(α) where πα is the L-

least injection of β(α) into ω, in order to obtain the desired Borel reduction
of E to (ωω1 ,∼NS). 2

Question. Is it consistent that isomorphism is not complete for Σ1
1 equivalence

relations under Borel reduciblity?
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