
Ideals and Generic Elementary Embeddings

1.-2.Vorlesungen

Introduction

This course is based on Matt Foreman's article in the Handbook of Set
Theory with the above title. Surely we can't cover the entire article, but I
hope to unearth the highlights. Most of the following introductory comments
are copied from Foreman's introduction.

Large cardinals are typically de�ned as critical points of elementary em-
beddings j : V → M which are �internal� to the universe V of all sets. The
word �internal� can be taken to be �de�nable with parameters�, or more gen-
erously, �amenable� in the sense that j � x belongs to V for any set x. The
idea behind generic elementary embeddings is to allow embeddings j which
are internal not necessarily to V , but to a generic extension V [G] of V . Thus
the universe in which j is internal can be larger than the domain of j.

The power of this idea is that by allowing j to be �external� to its domain
V , we have the possibility that the critical point of j is small, perhaps even
ω1, something not possible with traditional large cardinal embeddings. As we
will see, this has many interesting applications.

Important parameters for traditional large cardinal embeddings j : V →
m with critical point κ are the sizes of the ordinals j(κ+n), n �nite, and
closure properties of M . For generic elementary embeddings we have a third
parameter, namely the nature of the forcing that gives rise to the model V [G]
to which j is internal.

Basic Facts

We review some facts about Boolean algebras. Recall that these are struc-
tures B = (B,∧,∨,¬, 0, 1) which are isomorphic to a �eld of subsets of some
set Z with ∧,∨, 0, 1 corresponding to ∩,∪, ∅, Z and ¬ corresponding to com-
plement within Z. In a Boolean algebra B we write b0 ≤ b1 for b0 ∧ b1 = b0.

A Boolean algebra B is κ-complete i� any subset X of B of size < κ has a
least upper bound, denoted

∑
X. Equivalently, every such X has a greatest
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lower bound, denoted by
∏
X. In forcing terms,

∑
X forces the generic to

intersect X:
∑
X  Ġ ∩X 6= ∅. B is complete i� it is κ-complete for all κ.

A homomorphism from the Boolean algebra B to the Boolean algebra C
is a function that preserves ∧,∨,¬ (but not necessarily 0, 1). It is κ-complete
i� it also preserves least upper bounds and greatest lower bounds of sets of
size < κ.

A partial order P = (P,≤) is separative i� whenever p, q belong to P and
p � q, there is some r ≤ p which is incompatible with q. If P is not separative
then forcing with P is equivalent to forcing with its separative quotient, the
separative partial order obtained by factoring P by the equivalence relation:
p ∼ q i� the elements of P compatible with p are the same as those compatible
with q. And if P is separative then it is isomorphic to a dense subset of (the
nonzero elements of) a unique complete Boolean algebra, which we denote
by B(P) (even when P is not separative and is replaced by its separative
quotient).

Let B be a Boolean algebra. A nonempty subset I of B is an ideal on B
i� it is closed under �nite joins and ≤. Its dual �lter is Ĭ = {¬A | A ∈ I}.
For any S ⊆ B the ideal generated by S is denoted by S̄. An ideal is proper
i� it does not contain 1. We assume that all of our ideals are proper. A prime
ideal is a maximal, proper ideal and its dual is called an ultra�lter.

In case B is a the Boolean algebra of all subsets of some set Z, instead of
ideal on B we say ideal over Z. We assume then that the ideal is nonprincipal,
which means that all singletons {z} for z in Z belong to it.

An ideal I is κ-complete i� it is closed under joins of size < κ. For ω1-
complete we also write countably complete or σ-additive. The completeness
of I, denoted comp(I), is the least κ such that I is not κ+-complete. This is
a regular cardinal.

Assume now that I is an ideal over Z.

If Y is a subset of Z, then we say that I concentrates on Y i� Y belongs
to the dual �lter Ĭ. I is uniform i� it contains all subsets of Z of cardinality
less than card(Z).
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We are often interested in the quotient Boolean algebra P(Z)/I, whose
elements are the equivalence classes of subsets of Z under the equivalence
relation S ∼I T i� S4T ∈ I. The equivalence class of S is denoted [S]I . If I
is κ-complete then so is P(Z)/I.

I+ denote the I-positive sets, i.e., the subsets of Z not belonging to I.
For S in I∗, we let I � S denote the ideal I ∩P(S). If I is κ-complete then so
is I � S. More generally, if S ⊆ T are I-positive then comp(I � S) is at least
comp(I � T ): If (Ai | i < κ) belong to I � S where κ is less than comp(I � T )
then the Ai's also belong to I � T and therefore have union in I � T ; of course
this union also belongs to P(S) and therefore to I � S.

We can think of this as an ideal over Z by identifying it with the ideal
generated by it together with the set Z \ S. The quotient of P(Z) mod this
ideal is isomorphic to P(S)/I ∩ P(S).

I is atomless i� P(Z)/I contains no atoms. This means that each set not
in I can be split into two disjoint sets also not in I.

For a property ϕ, we say that I is nowhere ϕ i� I � S fails to satisfy ϕ
for each I-positive set S.

The saturation of I, denoted sat(I), is the least κ so that P(Z)/I has the
κ-cc, i.e., all antichains are of size < κ. I is λ-saturated i� sat(I) ≤ λ. This
is always a regular cardinal.

Generic Ultrapowers

Suppose that I is an ideal over Z. Then forcing over V with the positive
elements of P(Z)/I produces an ultra�lter G on P(Z)/I with the following
property: If ([Sj]I | j ∈ J) is a maximal antichain in V below some element
[S]I of G, then [Sj]I belongs to G for some j ∈ J . If P(Z)/I is complete
then this is equivalent to saying that if [Tj]I belongs to G for each j ∈ J
then

∏
j[Tj]I also belongs to G. Instead of working with equivalence classes

mod I we could also work directly with P(Z) \ I, producing an ultra�lter on
P(Z)V , which we identify with G.

Now form the �generic ultrapower� by taking functions f : Z → V which
belong to V and say that two such functions f, g are equivalent i� {z ∈
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Z | f(z) = g(z)} belongs to G. We write [f ] for the equivalence class of
f and introduce the �membership relation E of the ultrapower� by [f ]E[g]
i� {z ∈ Z | f(z) ∈ g(z)} belongs to G. In this way we obtain a structure
(V Z/G,E) with an elementary embedding

j : V → V Z/G

that is de�nable in V [G] via j(x) = [cx], where cx denotes the constant
function on Z with value x.

Lemma 1 Suppose that I is an ideal over Z, let G ⊆ P(Z)/I be generic and
j : V → V Z/G the associated generic elementary embedding. Let id denote
the identity function on Z. Then:

1. For A ⊆ Z, A belongs to G i� [id]Ej(A), where E is the membership
relation of the ultrapower.
2. For all g : Z → V in V , [g] = j(g)([id]).

This follows from the Lo± theorem, because [id]Ej(A) means that {z ∈
Z | z ∈ A} belongs to G, i.e., A belongs to G. Also as for any z ∈ Z,
g(z) = g(id(z)), it follows that [g] equals j(g)([id]).

Now we turn to the question of well-foundedness for V Z/G. We say that
I is precipitous i� V Z/G is well-founded for all generic G.

If V Z/G is well-founded then we can replace it by its transitive collapse
M , which is a submodel of V [G]. We also think of j : V → V Z/G as an
embedding from V to M via this identi�cation. If g : Z → V belongs to V
then we denote the unique element of M corresponding to [g] by [g]M . The
embedding j : V → M , if not the identity, must move some ordinal, as it
must move the least rank of a set which is moved. As usual, the least ordinal
moved is called the critical point, denoted crit(j).

3.-4.Vorlesungen

Proposition 2 Let I be precipitous, G ⊆ P(Z)/I generic and j : V →M ⊆
V [G] the associated embedding. Then j is not the identity and crit(j) is the
largest κ such that there is an S ∈ G with comp(I � S) = κ.

4



Proof. Recall that if S ⊆ T are I-positive then comp(I � S) ≥ comp(I � T ).
Also note that if κ = comp(I � T ) and T is the union of κ-many sets
(Aα | α < κ) from I, then in fact comp(I � S) = comp(I � T ) for all I-
positive S ⊆ T : De�ne Bα = Aα ∩ S and note that the union of the Bα's
is all of S. Let us say that an I-positive T is I-exact i� T is the union of
comp(I � T )-many sets in I.

Now observe that any I-positive T has an I-exact subset S: Let (Aα |
α < κ) be sets in I � T with union not in I � T , where κ = comp(I � T ).
Then the union S of the Aα's is an I-positive subset of T and comp(I � S)
is at least κ, as S is a subset of T , and is at most κ, as S is the union of
κ-many sets in I � S. If follows that S is I-exact.

So by genericity, there is an I-exact element T of G. Also note that
κ = comp(I � T ) is the largest possible value of comp(I � S) for S in G, as
G is a �lter. Let (Aα | α < κ) be sets in I with union T .

De�ne F : Z → κ by sending z in T to the least α such that z belongs to
Aα and z not in T to 0. Then j(α) < [F ] for each α < κ because α < F (z)
for I-almost all z for each such α, and [F ] < j(κ) because F (z) < κ for all z.
So j has a critical point and crit(j) = γ is at most κ. But now choose S ⊆ T
in G and F ′ in V so that S forces [F ′] = γ = crit(j). Then F ′(z) < γ for
I-almost all z ∈ S so we may assume that this is the case for all z ∈ S. For
α < γ let Bα be {z ∈ S | F ′(z) < α}; then each Bα belongs to I � S but
the union of the Bα's is all of S. It follows that comp(I � S) = κ is at most
γ = crit(j), as desired. 2

Remarks. (a) Note that the above proof shows that the critical point of j is
comp(I � S) for any I-exact S in G. (b) It follows from the Proposition that
any precipitous ideal I is countably complete: Otherwise let S be the union
of countably many sets in I which does not belong to I and let G be generic
containing S. Then by the previous, the critical point of j would be ω, which
is impossible.

We next present a combinatorial equivalent of precipitousness. For a par-
tial order P , a tree of maximal antichains is a sequence (An | n ∈ ω) of
maximal antichains of P such that An+1 re�nes An, i.e., each element of
An+1 extends an element of An. A branch through such a tree is a descend-
ing sequence (pn | n ∈ ω) such that pn belongs to An for each n.
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In the following we identify elements a of P(Z) with their equivalence
classes [a]I in P(Z)/I.

Proposition 3 I is precipitous i� for any I-positive set S and any tree of
maximal antichains (An | n ∈ ω) below S there is a branch (an | n ∈ ω)
through this tree such that

⋂
n an 6= ∅.

Proof. Suppose that I is precipitous and (An | n ∈ ω) is a tree of maximal
antichains below the I-positive set S. Let G be generic below S and j : V →
M the associated embedding. Since the An's are maximal antichains, for each
n there is an in An belonging to G, i.e., [id]I belongs to j(an). Thus the tree

{(a∗0, . . . , a∗k) | a∗i ∈ j(Ai), [id]I ∈ a∗i , [a∗i+1]j(I) ≤ [a∗i ]j(I) for all i}

has an in�nite branch. Therefore it has an in�nite branch inM . SoM satis�es
that there is a sequence (a∗n | n ∈ ω) with a∗n ∈ j(An) so that

⋂
n a
∗
n 6= ∅; the

statement of the Proposition then follows by elementarity.

Now suppose that I is not precipitous. Choose an I-positive S and names
Ḟn so that S forces Ḟn : Z → V belongs to V and [Ḟn+1]E[Ḟn] for all n,
where as usual E denotes the membership relation of the ultrapower. Now
build a tree of antichains An so that each a in An forces Ḟn � a to be a
particular function fan in V and if an+1 ∈ An+1 is a subset of an ∈ An then
f
an+1

n+1 (z) ∈ fann (z) for all z in an+1. Then this tree has no in�nite branch with
nonempty intersection, as if z belonged to the intersection we would get an
in�nite descending ∈-chain (fann (z) | n ∈ ω). 2

Precipitousness also has a game-theoretic characterisation: Players I and
II alternate moves, resulting in an ω-sequence S0 ⊇ A1 ⊇ · · · of I-positive
sets. Player II wins if the intersection of the Sn's is nonempty. Then I is
precipitous i� Player I does not have a winning strategy. This is not hard to
see, as strategies for Player I correspond to trees of antichains.

The Disjointing Property

An ideal I over Z has the disjointing property i� every antichain in
P(Z)/I has a pairwise disjoint set of representativies.

Proposition 4 If I is κ+-saturated and κ-complete then I has the disjointing
property.
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Proof. If (Sα | α < λ) forms an antichain, then replace Sα by Tα = Sα \⋃
β<α Sβ. By κ

+-saturation, λ is at most κ and therefore by κ-completeness,
Tα di�ers from Sα only by a set in I. 2

5.-6.Vorlesungen

An easy consequence of the disjointing property is the following:

Proposition 5 Suppose that I has the disjointing property and suppose that
P = the positive elements of P(Z)/I forces that ḟ is a function in V with
domain Z. Then there is g : Z → V in V such that P forces [ḟ ] = [g].

Proof. Let (Sα | α < λ) be an antichain in P such that for each α, Sα forces
ḟ = gα for some particular gα : Z → V in V . By the disjointing property we
can assume that the Sα's are disjoint subsets of Z. Now de�ne g(z) = gα(z)
if z belongs to Sα, g(z) = 0 if z belongs to no Sα. Then each Sα forces ḟ to
equal g on a set in the generic, so we are done. 2

The disjoint property is important for the following reason:

Proposition 6 Suppose that I is countably complete and has the disjointing
property. Then I is precipitous and if j : V → M ⊆ V [G] is the generic
ultrapower given by the P(Z)/I-generic G, then Mκ ∩ V [G] ⊆ M , where
κ = crit(j).

Proof. For the precipitousness it su�ces to show that for any I-positive set
S and any tree of maximal antichains (An | n ∈ ω) below S there is a branch
(Sn | n ∈ ω) through this tree such that

⋂
n Sn 6= ∅.

By the disjointing property, we can assume that the elements of An are
pairwise disjoint. We can also assume (without using the disjointing property
again) that An+1 strongly re�nes An in the sense that if Sn+1 belongs to An+1

then for all Sn in An, either Sn+1 is a subset of Sn or is disjoint from Sn.

As each An is a maximal antichain, the complement of ∪An belongs to
I. By the countable completeness of I, there is some z ∈ Z which belongs to
∪An for each n. Then we get the desired branch (Sn | n ∈ ω) by choosing Sn
to be the unique element of An such that z belongs to Sn.
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To prove the second conclusion, let (ẋα | α < κ) be a sequence of names
for elements of M and let S be an element of G which forces crit(j) = κ.
Using the disjointing property and Proposition 5, choose a �xed k : Z → V
in V so that S forces [k]M = κ. Again by the disjointing property we can
choose gα's in V so that S forces [gα]M = ẋα for each α < κ. Now de�ne
g : Z → V by g(z) = (gα(z) | α < k(z)); then S forces [g]M = (ẋα | α < κ):
To see this, write j((gα | α < κ)) as (g∗α | α < j(κ)) and note that g∗α = j(gα)
for α < κ. So S forces the following:

[g]M = j(g)([id]) =
(g∗α([id]) | α < j(k)([id])) =
(g∗α([id]) | α < [k]M) =
(j(gα)([id]) | α < κ) =
([gα]M | α < κ) = (ẋα | α < κ), as desired. 2

Another consequence of the disjointing property is the following.

Theorem 7 If I has the disjointing property then P(Z)/I is a complete
Boolean algebra.

Proof. If not let κ be least so that some subset B of P(Z)/I has no least
upper bound. By the leastness of κ we may assume that B can be enumerated
as (bα | α < κ) where the bα's are increasing. We can also assume that b0 = 0
and bλ is the least upper bound of the bα, α < λ, for limit λ < κ. Set
aα = bα+1 − bα for each α < κ; then the set A of the aα's form an antichain
without a least upper bound, because any least upper bound for it would
also be a least upper bound for B.

Enlarge A to a maximal antichain A ∪ C and choose disjoint representa-
tives {Aα | α < κ}∪ {Cβ | β < γ} of the elements of this maximal antichain.
Then we claim that the class of the union A of the Aα's is the least upper
bound of the classes of the Aα's: Otherwise, there is some B almost contain-
ing each Aα but not almost containing A. As A\B is I-positive it must have
I-positive intersection with some Aα or some Cβ. But as B almost contains
each Aα, A \ B is almost disjoint from each Aα, and as A is disjoint from
each Cβ so is A \B. Contradiction! 2

Normal Ideals
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Normality is a notion that applies to ideals I over Z where Z is of the
form P(X) (or a subset of this) for some set X. A function f : A → X,
where A is a subset of P(X), is regressive i� f(a) ∈ a for each a ∈ A. Then
I is normal i� whenever f : A → X is regressive and A is I-positive, there
is an I-positive B ⊆ A on which f is constant.

Normality can also be phrased in terms of diagonal intersections or unions.
If (Ax | x ∈ X) is a collection of subsets of Z then the diagonal union
5(Ax | x ∈ X) is the set of z such that z belongs to Ax for some x ∈ z; the
diagonal intersection 4(Ax | x ∈ X) is the set of z such that z belongs to
Ax for all x ∈ z. Then I is normal i� it is closed under diagonal unions i� its
dual �lter Ĭ is closed under diagonal intersections.

If I is a normal ideal over a subset of P(X) and f is a function from X to
X then I-almost all A ⊆ X are closed under f , provided I is also �ne, i.e.,
for each x ∈ X, I-almost all A contain x as an element. For, if A were not
closed under f for an I-positive set of A's, we could choose a regressive g so
that f(g(A)) /∈ A for all such A and then by normality get a single value z
so that f(z) /∈ A for an I-positive set of A's. But this contradicts �neness.

If I is countably complete we can generalise the previous to countably
many functions of any positive arity. Thus:

Proposition 8 I is a countably complete, normal and �ne ideal over a subset
of P(X) and for each i ∈ ω, fi is a function from Xni to X for some �nite
ni, then A is closed under each fi for I-almost all A.

Sums in P(Z)/I when I is a normal, �ne ideal on Z (and Z is a subset
of P(X) for some X) can be described in terms of diagonal unions.

Proposition 9 Suppose that I is a normal, �ne ideal over Z ⊆ X and Ax
is subset of Z for each x in X. Then the least upper bound in P(Z)/I of the
classes of the Ax's is the class of 5(Ax | x ∈ X).

Proof. For x ∈ X we know by �neness that x belongs to A for I-almost
all A; so for I-almost all A, if A belongs to to Ax then A also belongs to
5(Ax | x ∈ X), by the de�nition of diagonal union. In other words, Ax is
I-almost contained in 5(Ax | x ∈ X) for each x. For the converse it su�ces
to show that if B is I-positive and contained in 5(Ax | x ∈ X) then B ∩Ax
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is I-positive for some x. For each B in B choose x(B) ∈ B so that B belongs
to Ax(B). Apply normality to �x x(B) = x for an I-positive set of B's in B.
Thus B ∩ Ax is I-positive, as desired. 2

Recall that κ+-saturated and κ-complete ideals have the disjointing prop-
erty; in the case of normal ideals there is a su�cient condition which does
not assume any completeness.

Proposition 10 Suppose that I is a normal, �ne ideal over Z ⊆ P(X) and
I is card(X)+-saturated. Then I has the disjointing property.

Proof. If A is an antichain then by the hypothesis we can assume that A
is of the form {[Ax] | x ∈ X0} where X0 is a subset of X. By �neness we
can also assume that x belongs to each element of Ax for each x ∈ X0. For
each distinct pair x, y in X0 choose a set Cx,y in Ĭ = the �lter dual to I so
that Ax ∩ Ay ∩ Cx,y is empty. Then C = {z | z ∈ Cx,y for all x, y ∈ z} also
belongs to Ĭ, by normality. Now we can disjointify the Ax's by replacing Ax
with Ax ∩ C for each x ∈ X0. 2

Note that the disjointing property for an ideal over Z ⊆ P(X) immedi-

ately gives card(Z)+-saturation and therefore (2card(X))+-saturation.

7.-8.Vorlesungen

Recall that the generic ultrapower via a countably complete ideal with
the disjointing property is closed under κ-sequences, where κ is the critical
point of the associated generic embedding. If we also assume normality then
we get even more closure.

Theorem 11 Suppose that I is a normal, �ne, precipitous ideal over Z ⊆
P(X), let λ be the cardinality of X and suppose that G ⊆ P(Z)/I is generic.
Let j : V → M be the associated embedding. Then P(λ) ∩ V ⊆ M . If in
addition I has the disjointing property then Mλ ∩ V [G] ⊆M .

Proof. We can assume that X = λ.

Claim. Let I be a normal �ne ideal on Z ⊆ P(X) and G, j : V → M as
above. Then [id] = j[λ] (id �represents� j[λ]).

10



Proof of Claim. By �neness, for each α < λ, {z | α ∈ z} belongs to the
�lter dual to I. So for each α < λ, [id]Ej({z | α ∈ z}) and of course
j({z | α ∈ z}) = {z | j(α) ∈ z}; i.e., j(α)E[id] for each α < λ. Conversely,
if [f ]E[id] then A = {z | f(z) ∈ z} belongs to G; by normality it is dense
below A to force that for some α < λ, {z | f(z) = α} belongs to the generic.
So by the genericity of G, [f ] = [cα] = j(α) for some α < λ (where cα is the
constant function with value α). 2 (Claim)

To prove the Theorem, suppose that A is a subset of λ in V . Consider the
function fA(z) = A ∩ z. Then [fA] = j(fA)([id]) = j(fA)(j[λ]) = j(A) ∩ j[λ].
As A can be easily recovered from j(A)∩ j[λ] and j[λ] and these both belong
to M , it follows that A belongs to M .

Assume now that I has the disjointing property. Let (ȧα | α < λ) be a
sequence of names of elements of M . Use the disjointing property to obtain
functions G = (gα | α < λ) such that [gα] = ȧα is forced. Write j(G) as
(j(g)α | α < j(λ)). Now de�ne g : Z → V by g(z) = (gα(z) | α ∈ z). Then
[g] = j(g)(j[λ]) = (j(g)β(j[λ]) | β ∈ j[λ]). So the function that sends α < λ
to j(g)j(α)(j[λ]) = j(gα)(j[λ]) = [gα] belongs to M and is interpreted by G
to be G's interpretation of (ȧα | α < λ). 2

More general facts

We look at a limitation on the closure of the generic ultrapower M in
V [G] as well as continuity points of the embedding j : V →M associated to
the generic ultrapower.

Proposition 12 Suppose that I is an ideal over Z and j : V → M is the
embedding associated with a well-founded generic ultrapower V Z/G. Then
j[card(Z)+] does not belong to M .

Proof. If not, let a ∈ P(Z) force [f ] = j[card(Z)+]. Let a0 = {z ∈ a |
card(f(z)) > card(Z)} and a1 = {z ∈ a | card(f(z)) ≤ card(Z)}. Choose
an ordinal α < card(Z)+ which does not belong to any f(z), z ∈ a1. Now
choose a function g : a→ card(Z)+ so that g(z) = α for z ∈ a1, g is injective
on a0 and g(z) ∈ f(z) for all z ∈ a0. Now there are two cases: If a1 belongs
to G then j(α) is not E-below [f ]. If a0 belongs to G then [g] is E-below [f ]
but as g is injective, [g] 6= j(β) for β < card(Z)+. Both cases contradict our
hypothesis about f . 2
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Proposition 13 Suppose that j : V → M is a generic elementary embed-
ding. Let κ be the critical point of j and suppose that η < κ is regular, λ is
an ordinal and V, V [G] agree on which ordinals < λ have co�nality η. Then
j[λ] is η-closed in V [G] (i.e., if α < sup j[λ] is a limit point of j[λ] and has
co�nality η in V [G], then α belongs to j[λ]).

Proof. If not, then choose an ordinal α < sup j[λ] which is a limit point of
j[λ], does not belong to j[λ] and has co�nality η in V [G]. Let δ < λ be least
so that j(δ) is greater than α. As α has co�nality η in V [G] it follows that δ
also has co�nality η in V [G] and therefore co�nality η in V . But η is less than
the critical point of j so it follows that j is continuous at δ, contradiction. 2

There is a partial converse to the previous.

Proposition 14 Suppose that j : V → M is a generic elementary embed-
ding, j[λ] is η-closed in V [G] and M is closed under η-sequences in V [G].
Then V, V [G] agree on which ordinals < λ have co�nality η.

Proof. If not, let µ be the least counterexample. Then µ is V -regular, else
cof V (µ) would be a smaller counterexample. So j(µ) is regular inM . As j[λ]
is η-closed, it follows that j is continuous at µ and therefore the co�nality of
j(µ) in V [G] is η. As M is closed under η-sequences in V [G] it follows that
j(µ) has co�nality η in M and therefore as j(µ) is regular in M , we have
j(µ) = η. But this contradicts the fact that η is less than µ. 2

Canonical functions

Suppose that I is a normal, �ne countably complete ideal over Z ⊆ P(λ).
We de�ne functions (fα | α < λ+) such that fα is forced to represent α in
the generic ultrapower for each α < λ+.

First de�ne fα for α < λ by

fα(z) = ot (z ∩ α).

Then to de�ne fα for α at least λ choose a bijection g : λ→ α and inductively
de�ne

fα(z) = sup{fg(η)(z) + 1 | η ∈ z}.
Note that if g1, g2 are any two bijections from λ onto α then {g1(η) | η ∈ z} =
{g2(η) | η ∈ z} for a set of z in the �lter dual to I, by the normality of I;
it follows that fα is well-de�ned modulo I. The fα's are called the canonical
functions for normal ideals on Z ⊆ P(λ).
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Proposition 15 Let G be generic for P(Z)/I where Z ⊆ P(X) and X has
cardinality λ. Suppose that I is normal, �ne and countably complete. Then
(λ+)V is included in the well-founded part of V Z/G and for each α < (λ+)V ,
[fα]G = α.

Proof. We may assume that X equals λ. We have seen that if j : V → V Z/G
is the canonical embedding, then [id]G = j[λ]. So V Z/G is a model of ZFC
which contains a well-founded set of ordertype λ. It follows that the ordinals
of V Z/G have an initial segment of ordertype λ.

We show that in fact that the ordinals of V Z/G are well-founded up to
λ+: Let (fα | α < λ+) be the canonical functions. Then:

1. For α < β < λ+, {z ∈ P(λ) | fα(z) < fβ(z)} belongs to the �lter dual to
I.
2. For any normal ideal I and α < λ+, if h(z) < fα(z) for an I-positive
set A of z, then there is an I-positive subset B of A and β < α such that
h(z) = fβ(z) for z in B.

So for generic G ⊆ P(Z)/I, the [fα]G, α < λ+ form a well-ordered initial
segment of the ordinals of V Z/G or ordertype λ+. 2

Example. Let M be a well-founded model of V = L and suppose that G ⊆
(P(ω1)/NSω1)M is generic over M and let N be the generic ultrapower. By
the above, N is well-founded up to ωM2 . Moreover ωM1 is countable in N . So a
bijection between ω and ωM1 appears at some ordinal level of the L-hierarchy
of N ; this level must be beyond the �rst ωM2 ordinals of N . If we de�ne
f : ω1 → ω1 in M by f(α) = the least β such that α is countable in Lβ then
[f ]G = j(f)([id]) = j(f)(ωM1 ) is greater than the �rst ωM2 ordinals of N and
therefore for any δ < ωM2 , f(α) > fδ(α) for a set of α in G. As G is arbitrary,
it follows that f dominates each fδ on a closed unbounded set of α's. (This
last fact can however be shown quite easily without generic ultrapowers.)

9.-10.Vorlesungen

Ideals and Changing Co�nalities

Large cardinals can be used to change co�nalities in interesting ways,
using Prikry-style forcings. Generic ultrapowers provide another way of doing
this, with dramatic e�ects.
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Lemma 16 Suppose that I is a normal, �ne, precipitous ideal over Pκλ (=
[λ]<κ, the set of subsets of λ of size less than κ). Let G ⊆ P(Pκλ)/I be
generic and j : V →M the resulting embedding. Then:

1. Suppose that µ, ν are less than κ and let A be the set of z ∈ Pκλ such that:
z ∩ κ ∈ κ,
card(z) = card(z ∩ κ),
cof (z ∩ κ) = µ and
cof (sup(z)) = ν.
Then if A belongs to G we have the following inM : µ, ν are regular, card(λ) =
card(κ), cof (κ) = µ and cof (λ) = ν.

2. Suppose that κ = ρ+, ρ a cardinal, and let B be the collection of z ∈ Pκλ
such that:
z ∩ κ ∈ κ,
card(z) = card(z ∩ κ) and
cof (z ∩ κ) = cof (sup(z)) 6= cof (ρ).
Then if B belongs to G, both ρ and cof (ρ) remain cardinals in M and the
following hold in M : card(λ) = card(κ) = ρ, cof (λ) = cof (κ) and cof (λ) 6=
cof (ρ).

Moreover, if I is κ+-saturated then the conclusions of 1 and 2 above hold
with M replaced by V [G].

Proof. We �rst show that j is the identity below κ. By �neness, {z | β ∈ z}
belongs to G for each β < κ. And by hypothesis {z | z∩κ ∈ κ} also belongs to
G, so {z | β ⊆ z} belongs to G for each β < κ. Recall that j[λ] is represented
by id so we can apply �o± to conclude that j(β) ⊆ [id] = j[λ] for β < κ. So
the critical point of j is at least β for each β < κ.

In fact the critical point of j equals κ: Otherwise κ = j(κ) ⊆ j[λ] = [id]
so by �o± {z | κ ⊆ z} belongs to G; but this contradicts the hypothesis that
{z | z ∩ κ ∈ κ} belongs to G.

To prove 1: As κ is the critical point of j, then µ, ν, which are regular
in V and less than κ, must also be regular in M . As id represents j[λ] and
j[λ] ∩ j(κ) = κ, it follows from the hypothesis card(z) = card(z ∩ κ) for
z ∈ A that card(λ) = card(j[λ]) = card([id]) = card([id]∩j(κ)) = card(j[λ]∩
j(κ)) = card(κ) in M . Also in M , cof (κ) = cof (j[λ] ∩ j(κ)) = j(µ), as by
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hypothesis {z | cof (z∩κ) = µ} belongs to G. As j(µ) = µ we get cof (κ) = µ
inM . Finally, inM we have cof (λ) = cof (sup(j[λ]) = j(ν), as by hypothesis
{z | cof (sup(z)) = ν} belongs to G; as j(ν) = ν we get cof (λ) = ν in M .

To prove 2: Again ρ, cof (ρ) are cardinals in M because they are less
than the critical point of j. The hypothesis that {z | card(z) = card(z ∩ κ)}
belongs to G gives that card(λ) = card(κ) inM . But as κ is the critical point,
it follows that κ = ρ+ < j(ρ+) = (ρ+)M and therefore κ has cardinality ρ in
M . Similarly, the hypothesis that {z | cof (z ∩ κ) = cof (sup(z)) 6= cof (ρ)}
belongs to G gives that in M , cof (j[λ] ∩ κ) = cof (sup(j[λ]) 6= cof (j(ρ));
but this says cof (κ) = cof (λ) 6= cof (ρ).

Finally, if I is λ+-saturated thenM and V [G] have the same λ-sequences,
so we can replace M by V [G] in the above conclusions. 2

Examples of Ideals

Natural Examples

Some interesting examples of ideals can be de�ned explicitly. The ideal
of bounded subsets of a regular cardinal is an example of such an ideal.
This ideal is never precipitous: Suppose that G ⊆ P(κ)/I is generic where I
denotes this ideal. By a density argument, there exists a sequence (Yn | n ∈ ω)
of sets in G such that for all n and all α < κ, the α-th element of Yn+1 is
greater than the α-the element of Yn. Then de�ne fn : Yn → κ by fn(β) = α
where β is the α-th element of Yn; we have that fn+1(β) < fn(β) for all β,
n. So ([fn]G | n ∈ ω) is a descending sequence of ordinals in the generic
ultrapower.

More generally, consider Iκλ = the smallest κ-complete, �ne ideal on Pκλ.
This is the ideal dual to the �lter Fκλ = {X ⊆ Pκλ | For some a ∈ Pκλ, X
contains all supersets of a}. We'll show that neither is this ideal precipitous.

De�nition. Let I be a countably complete, non-atomic ideal over a set Z.
Then π(I) is the least cardinality of an I-positive set and γ(I) is the least
cardinality of a set that generates I by taking subsets.

For example, suppose that I = Iκλ = {X ⊆ Pκλ | For some a ∈ Pκλ, X
does not contain any superset of a}. Then X ⊆ Pκλ is I-positive i� every
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a ∈ Pκλ can be covered by (i.e., is a subset of) an element ofX. It follows that
π(I) is the least cardinality of a subset of Pκλ which covers every element
of Pκλ. Also, if every a ∈ Pκλ can be covered by an element of X then I is
generated from {Xa | a ∈ X} where Xa = {b | b does not cover a}, by taking
subsets, so γ(I) ≤ π(I). The other direction π(I) ≤ γ(I) is true in general:
Suppose that J ⊆ I generates I by taking subsets. For A in J choose zA in
Z \ A. Then the set T of the zA's is I-positive as otherwise there would be
an A ∈ J such that T ⊆ A.

So we conclude that π(Iκλ) = γ(Iκλ).

Theorem 17 If π(I) = γ(I) then I is not precipitous.

Proof. First we prove:

Claim. Let κ = π(I). For all I-positive sets X and injective f : X → κ there
is an I-positive Y ⊆ X and injective g : Y → κ such that g(y) < f(y) for all
y ∈ Y .

Proof of Claim. Suppose that {Xα | α < κ} generates I by taking subsets
and inductively choose yα ∈ X \ (Xα ∪ f−1[α + 1] ∪ {yβ | β < α}). This
is possible as X is I-positive but neither the Xα's nor sets of size < κ are
I-positive. Let Y be {yα | α < κ} and g(yα) = α. Then Y is I-positive as
it is not a subset of any Xα and g(yα) < f(yα) as yα does not belong to
f−1[α + 1]. 2 (Claim)

Note that by a similar argument to the above, any I-positive set contains
an I-positive subset of size κ. Now using the Claim, build maximal antichains
An ⊆ P(Z)/I such that:

1. An+1 re�nes An.
2. For each X ∈ An we have an injective fX : X → κ.
3. IfXn+1 ∈ An+1,Xn ∈ An andXn+1 ⊆ Xn then for all y ∈ Xn+1, fXn+1(y) <
fXn(y).

Clearly there is no branch (Xn | n ∈ ω) through the An's with ∩nXn

nonempty, so I is not precipitous. 2

11.-12.Vorlesungen
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The nonstationary ideal

We take an algebra on a setX to be a structure of the formA = (X, fn)n∈ω
where the fn is an n-ary function from X to X. For such an algebra A we
de�ne CA to be the set of z ⊆ X which are closed under the fn's. The resulting
sets CA are the strongly closed unbounded sets and the �lter they generate is
the strongly closed unbounded �lter over Z = P(X). The ideal dual to this
�lter is the strongly nonstationary ideal and a set is weakly stationary if it is
positive for this ideal.

Lemma 18 The �lter of strongly closed unbounded sets is �ne and normal.

Proof. Fineness is clear, as for any x ∈ X we can consider the algebra A =
(X, f) where f is unary with constant value x; then CA consists only of
subsets of X which have x as an element, and therefore {z | x ∈ z} belongs
to the �lter generated by the CA's.

Suppose that F : A→ X is regressive, where A is positive for the strongly
nonstationary ideal I, i.e., A is weakly stationary. If F is not constant on
an I-positive subset of A then for each x ∈ X we can choose an algebra
A(x) = (X, fxn )n∈ω so that F (z) 6= x for all z in A ∩ CA(x). But now de�ne
the algebra A = (X, fn)n∈ω by: fn+1(x, x1, . . . , xn) = fxn (x1, . . . , xn). As A
is weakly stationary we can choose z ∈ A closed under the fn's. It follows
that z is closed under the fxn 's for each x in z and therefore z belongs to
A(x) for all x in z. But this gives a contradiction to the choice of A(x) when
x = F (z). 2

Note that any weakly stationary subset of P(X) contains elements which
are countable. Now there are other notions of closed unbounded �lter and
stationary set for which this is not the case; we show that they can be ob-
tained from the strongly closed unbounded �lter and weakly stationary sets
by restricting to an appropriate weakly stationary set.

For example, suppose X = κ, a regular uncountable cardinal. Consider
the set A = {x ⊆ κ | x ∩ κ ∈ κ}; A is weakly stationary. And the stan-
dard closed unbounded �lter on κ is obtained as the �lter of strongly closed
unbounded sets restricted to the set A.

17



More generally, consider Pκλ, where κ ≤ λ are cardinals and κ is regular
and uncountable. We say that D ⊆ Pκλ is closed i� it is closed under directed
unions of size less than κ and is unbounded i� it is co�nal in Pκλ under
inclusion. Then we have:

Theorem 19 The �lter generated by the closed unbounded subsets of Pκλ is
the same as that generated by the strongly closed unbounded �lter on P(λ)
together with the set {z | z ∩ κ ∈ κ}.

Proof. First note that any strongly closed unbounded subset of Pκλ is both
closed and unbounded in the above sense. Also the set {z ∈ Pκλ | z ∩ κ ∈ κ}
is closed and unbounded. So it only remains to show that if D ⊆ Pκλ is
closed and unbounded then there exists a function F : λ<ω → λ such that
any z ∈ Pκλ closed under F and satisfying z ∩ κ ∈ κ belongs to D.

First note the following: If B is a structure for a countable language whose
universe contains λ as a subset, then there is a function F : λ<ω → λ with
the property that if z ∈ Pκλ is closed under F , then z is the intersection with
λ of an elementary submodel of B of size less than κ. This is because we can
assume that B has Skolem functions gn, n ∈ ω, where gn is n-ary and then
we set F (α1, . . . , αn) = gn(α1, . . . , αn) if the latter belongs to λ, 0 otherwise.

Now to prove the theorem, choose B to be a structure of the form (H(θ),∈
, D, . . .) for some large θ, where . . . denotes a sequence of Skolem functions
and de�ne F from B as above. Suppose that z ∈ Pκλ is closed under F and
z ∩ κ ∈ κ. Then z = N ∩ λ for some elementary submodel N of B of size
less than κ and as N ∩ κ ∈ κ it follows that x ⊆ N for any x ∈ N ∩ Pκλ. It
follows that z = N ∩ λ is precisely the union of the elements of N ∩D and
therefore z belongs to D. 2

Proposition 20 The ideal of strongly nonstationary subsets of Z = P(X)
is the smallest �ne, normal ideal on Z.

Proof. Let I be a �ne, normal ideal on Z. If B is strongly nonstationary
but does not belong to I then choose an algebra (X, fn)n∈ω under which the
elements of B are not closed and de�ne a regressive function F on B by
sending z ∈ B to an n-tuple from z whose value under fn does not belong
to z. By the normality of I we get an I-positive set of z not containing
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fn(x1, . . . , xn) for some �xed n and (x1, . . . , xn), contradicting the �neness of
I. 2

Other exaamples of natural ideals include the meager and null ideals, the
approachability ideals, the club guessing ideals, the diamond ideals, the uni-
formisation ideals and the weakly compact ideals. For these ideals there are
interesting questions of properness, normality, saturation and precipitous-
ness, not all of which have been thoroughly investigated.

CHANGE OF TOPIC!!!

I couldn't make sense out of Foreman's article past the above point. So I
decided to switch topics:

Large cardinals and Combinatorial Principles

I look at the extent to which some well-known combinatorial principles
can tolerate large cardinal hypotheses. We assume GCH throughout. The
combinatorial principles that I have in mind are:

(a) 2α and its variants.
(b) Various forms of Stationary Re�ection at α.
(c) ♦α and its variants.

The large cardinals I have in mind are:

Large cardinals of �Strong� type: κ is the critical point of j : V →M
where j is
α-strong: H(α) ⊆M
Superstrong: H(j(κ)) ⊆M
n-Superstrong: H(jn(κ)) ⊆M
ω-Superstrong: H(jω(κ)) ⊆M
(H(jω(κ)+) ⊆M is inconsistent!)

�Subcompact� Large cardinals:
κ is α-Subcompact i� for each A ⊆ H(α) there are κ̄ < κ, ᾱ ≤ α, Ā ⊆ H(ᾱ)
and an elementary π : (H(ᾱ), Ā)→ (H(α), A) with critical point κ̄, sending
κ̄ to κ.

About 2

As far as forcing 2 to hold we have the following limitation:
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Theorem 21 (Jensen) Suppose that κ is subcompact (i.e., κ+ subcompact).
Then 2κ fails.

More generally:

Theorem 22 Suppose that κ is α+ subcompact, κ ≤ α. Then 2α fails.

Proof. Suppose that ~C = (Cβ | β < α+) were a 2α sequence and apply α+

subcompactness to the predicate ~C: The result is

π : (H(ᾱ+), ~̄C)→ (H(α+), ~C)

with critical point κ̄, where π sends κ̄ to κ.

Claim. There is π as above where ᾱ is less than α.

Given the Claim, let λ be the supremum of π[ᾱ+]. Then λ has co�nal-
ity ᾱ+ < α+. Let D be the intersection Lim (Cλ) ∩ Range (π). Note that
Lim (Cλ) is club in λ, Range (π) is ω-club in λ and therefore D is co�nal in
λ. By coherence, if β0 < β1 belong to Lim (Cλ) then ot(Cβ0) < ot(Cβ1) and
therefore ot is an injective function from D into α. But the range of ot on
D is contained in Range (π) and therefore Range (π) ∩ α has cardinality at
least ᾱ+, the co�nality of λ. This is impossible, because Range (π)∩α = π[ᾱ]
has ordertype ᾱ.

Proof of Claim. Let f : [α]ω → α be ω-Jónsson for α, that is, for any subset
X of α of cardinality α, the range of f on [X]ω is all of α. Such functions were
shown to exist for all α by Erd®s and Hajnal. Note that f is a subset of Hα+ ,
so there will be an elementary embedding π : (Hᾱ+ , Ā, f̄) → (Hα+ , A, f)
witnessing the α+-subcompactness of κ for A and f . We claim that this
π, when considered as a function from (Hᾱ+ , Ā) to (Hα+ , A), satis�es the
requirements of the Claim, namely that ᾱ < α. The proof is exactly as in
Kunen's proof that there can be no nontrivial elementary embedding from
Vλ+2 to Vλ+2: Suppose ᾱ were to equal α. Then since card(j“ᾱ) = ᾱ we
would have f“[j“ᾱ]ω = α, and so there would be some s ∈ [j“ᾱ]ω such that
f(s) = κ̄. But now since ω < κ̄, s is of the form j(t) for some t ∈ [ᾱ]ω. By
elementarity, j(f̄(t)) = f(j(t)), so κ̄ is in the range of j, contradiction. 2

13.-14.Vorlesungen

The proof of the above Claim can be used to show:

20



Proposition 23 Suppose that κ is α+-subcompact. Then for each A ⊆ H(α+)
there is π : (H(ᾱ+), Ā) → (H(α+), A) with critical point κ̄, sending κ̄ to κ,
where ᾱ is less than κ.

Proof. We may assume that A ⊆ H(α+) codes an ω-Jónsson function for
α in the sense that such a function is de�nable over (H(α+), A). Let ᾱ be
least so that there exists π : (H(ᾱ+), Ā)→ (H(α+), A) with critical point κ̄,
sending κ̄ to κ. The claim is that ᾱ is less than κ. If not, then apply the ᾱ+-
subcompactness of κ to get τ : (H(¯̄α+), ¯̄A)→ (H(ᾱ+), Ā) with critical point
¯̄κ strictly between κ̄ and κ. Then the composition π ◦ τ from (H(¯̄α+), ¯̄A) to
(H(α+), A) is elementary and has critical point κ̄, sending κ̄ to κ. So π ◦ τ
witnesses the α+-subcompactness of κ for A and therefore ¯̄α equals ᾱ, by
the choice of ᾱ. But by the proof of the Claim of the previous proof, this is
impossible. 2

The result about 2α failing due to subcompactness is optimal in the
following sense:

Theorem 24 Let I = {α | κ is α+-subcompact for some κ ≤ α}. Then there
is a co�nality-preserving P so that for P -generic G:
1. I = IV [G].
2. ω-superstrongs are preserved.
3. 2α holds in V [G] for all α /∈ I.

Proof. The partial order P will be a reverse Easton forcing iteration. At stage
α for α a cardinal not in I, we force with the usual size α+ (thanks to the
GCH), < α+-strategically closed partial order Sα due to Jensen to obtain
�α, which uses initial segments of the generic �α sequence as conditions.
At all other stages we take the trivial forcing. Thus, the iteration preserves
co�nalities, and �α holds in V [G] for all α /∈ IV . It therefore only remains
to show that forcing with P preserves the α-subcompactness of any κ that is
α-subcompact in V , and that ω-superstrongs are preserved.

So suppose κ is α-subcompact in V . By the de�nition of I, the forcing is
trivial on the interval [κ, α). Also, the tail of the iteration starting at stage α
is < α+-strategically closed since each iterand is. Hence, no new subsets of α
are added by this part of the forcing. We wish to consider arbitrary subsets
of H(α) in the generic extension. By the GCH it su�ces to consider names
for subsets of α. Moreover, we may take these names σ to be Pκ-names,
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where Pκ denotes the κ-stage iteration that is the initial part of P up to κ.
In particular, σ can be taken to be a subset of H(α).

Applying the α-subcompactness of κ in V , let

π : (H(ᾱ), σ̄)→ (H(α), σ)

be elementary, with critical point κ̄ taken by π to κ. We wish to lift π to an
elementary embedding π′ : (H(ᾱ)V [G], σ̄G) → (H(α)V [G], σG). Now κ̄ is < ᾱ-
subcompact if α is a limit cardinal and β̄-subcompact if ᾱ = β̄+, so in either
case P is trivial on the interval [κ̄, ᾱ). Furthermore, even if the forcing iterand
at stage ᾱ is non-trivial, it will be < ᾱ+-strategically closed, and hence adds
no new sets to H(ᾱ). Indeed the tail of the forcing from stage ᾱ on is < ᾱ+-
strategically closed. Therefore H(ᾱ)V [G] = H(ᾱ)V [Gκ̄], so combining this with
H(α)V [G] = H(α)V [Gκ] our goal becomes to lift π to

π′ : (H(ᾱ)V [Gκ̄], σ̄Gκ̄)→ (H(α)V [Gκ], σGκ),

for which it su�ces by the usual (Silver) argument to show that π[Gκ̄] ⊆ Gκ.
But π is the identity below κ̄, so this is immediate.

To show that ω-superstrongs are preserved we again use Silver's method
of lifting embeddings. Let κ be ω-superstrong, let j : V → M witness this,
let λ be the supremum of the jn(κ)'s and suppose we have chosen j in such a
way that every element ofM is of the form j(f)(a) for some a in H(λ) and f
with domain H(λ). It follows from ω-superstrength that κ is α-subcompact
for every α < λ, that is, < λ-subcompact. Thus, our forcing P is trivial
between κ and λ. Also, since the de�nition of I ∩H(λ) is absolute for models
containing H(λ), j(PVλ ) = PMλ = PVλ (hence the �non-trivial support� of P will
also be bounded below κ). Below λ, therefore, we may just take the generic
for M to be the generic for V , Gλ, and we get a lift j′ of j from V [Gλ] to
M [Gλ].

We claim that for the tail of the forcing, the pointwise image of the tail
of the generic for V , j′[Gλ], generates a generic �lter for M , by the λ+-
distributivity of this tail forcing. Indeed this is standard for preservation
results about ω-superstrongs. To be explicit: every element of M [Gλ] is of
the form σGλ for some σ = j(f)(a) with a ∈ H(λ). Suppose D is a a dense
class in the tail of forcing iteration, de�ned inM [Gλ] as {p | ψ(p, d)} for some
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parameter d = j(f)(a)Gλ with a ∈ H(λ). Since the tail Pλ of the forcing is
< λ+-strategically closed and |H(λ)| = λ, it is dense for q ∈ Pλ to extend an
element of Dx = {p | ψ(p, f(x)Gλ)} whenever x ∈ H(λ) and Dx is dense in
Pλ. We may therefore take such a q lying in Gλ, and by elementarity have
that j(q) extends D. That is, j′[Gλ] indeed generates a generic �lter over M
for (Pλ)M . 2

Stationary re�ection

For regular κ > λ, SR(κ, λ) is the statement that for every stationary
subset S of κ ∩ Cof(λ) there is a γ < κ such that S ∩ γ is stationary in γ.
Note that �α refutes SR(α+, λ) for every λ ≤ α: the function ξ 7→ ot (Cξ)
from (α+ r α + 1) ∩ Cof(λ) to α + 1 is regressive, and so is constant on a
stationary set S. But now if S ∩ γ is stationary in γ, then a pair of distinct
elements of S ∩ lim(Cγ) can be found, violating coherence.

For any cardinal α, we say that a cardinal κ ≤ α is α+-stationary sub-
compact i� for each A ⊆ H(α+) and stationary S ⊆ α+ there are κ̄ < κ,
ᾱ ≤ α, Ā, S̄ and embedding π : (H(ᾱ+), Ā, S̄) → (H(α+), A, S) sending its
critical point to κ such that S̄ is stationary in ᾱ+.

Note that in the previous de�nition the set A can be coded into the
stationary set S and therefore can be omitted from the de�nition. We will
use this fact in the proofs below.

Since H(β+) is correct for stationarity of subsets of β, we have that if
κ < β+ < α and κ is α-subcompact, then κ is β+-stationary subcompact,
and moreover if π : (H(ᾱ), Ā) → (H(α), A) is an embedding with critical
point κ̄ witnessing the α-subcompactness of κ for some A ⊆ H(α), then for
all β̄+ < ᾱ, κ̄ is β̄+-stationary subcompact.

This strengthened subcompactness notion is su�cient to obtain station-
ary re�ection.

Proposition 25 If there exists some κ ≤ α such that κ is α+-stationary
subcompact, then SR(α+, ω) holds.

Proof. Suppose κ ≤ α is α+-stationary subcompact, let S be a stationary
subset of α+ ∩ Cof(ω), and let π : (H(ᾱ+), S̄) → (H(α+), S) with critical
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point κ̄ and S̄ stationary in ᾱ+ witness α+-subcompactness of κ for S. We
may assume that ᾱ is less than α. Let λ = sup(π[ᾱ+]); we claim that S ∩ λ
is stationary in λ. The pointwise image of ᾱ+ in α+ is countably closed and
unbounded in λ, so for any club C ⊆ λ, C ∩ π[ᾱ+] is also countably closed and
unbounded in λ. Therefore, π−1C is countably closed and unbounded in ᾱ+,
and hence has nonempty intersection with S̄. But now taking ξ ∈ S̄ ∩ π−1C,
we have π(ξ) ∈ S ∩ C, and so S ∩ λ is stationary. 2

Again, we have a complementary result under the GCH.

Theorem 26 Suppose the GCH holds. Let I = {α | ∃κ ≤ α(κ is α+-subcompact)}
be as before, and similarly let

J = {α | ∃κ ≤ α(κ is α+-stationary subcompact)} ⊆ I.

Then there is a co�nality-preserving partial order P such that for any P-
generic G the following hold.

1. IV [G] = I and JV [G] = J .

2. SR(α+, ω) fails in V [G] for all α /∈ J .

3. �α holds in V [G] for all α /∈ I.

4. ω-superstrongs are preserved.

15.-16.Vorlesungen

Theorem 27 Suppose the GCH holds. Let I = {α | ∃κ ≤ α(κ is α+-subcompact)}
be as before, and similarly let

J = {α | ∃κ ≤ α(κ is α+-stationary subcompact)} ⊆ I.

Then there is a co�nality-preserving partial order P such that for any P-
generic G the following hold.

1. IV [G] = I and JV [G] = J .

2. SR(α+, ω) fails in V [G] for all α /∈ J .

3. �α holds in V [G] for all α /∈ I.

24



4. ω-superstrongs are preserved.

Proof. Again P will be a reverse Easton iteration. At stage α for α ∈ J , we
take the trivial forcing. For α ∈ I r J , we take the forcing Rα that adds a
non-re�ecting stationary set to α+ ∩ Cof(ω) by initial segments; this forcing
is α+-strategically closed and (by the GCH) of size α+. For α /∈ I, we take
a three stage iteration, �rst forcing with Rα. Next, we force with the partial
order CRα that makes the generic stationary set from Rα non-stationary by
shooting a club through its complement. Third, we force to make �α hold
with Sα. The two stage iteration Rα∗ĊRα is < α+-strategically closed, as is Sα,
so Rα ∗ ĊRα ∗ Ṡα is < α+-strategically closed. It also has a dense subset of size
α+. Thus, our reverse Easton iteration will indeed preserve co�nalities. We
will denote by Pβ the iteration below stage β and by Gβ the corresponding
generic; for κ inaccessible, Pκ is a direct limit, so we can and will identify Pκ
with

⋃
γ<κ Pγ.

It only remains to show that the classes I and J are preserved by the
forcing. We show that if β belongs to J and κ ≤ β is any β+-stationary
subcompact in V then κ remains β+-stationary subcompact in the generic
extension V [G]. Also, if β belongs to I \ J and κ ≤ β is the least β+-
subcompact in V then κ remains β+-subcompact in V [G]. These facts su�ce
to show that I and J are preserved, as 2β will hold in V [G] for β /∈ I and
SR(β+, ω) will fail in V [G] for β /∈ J .

If β belongs to J and κ is β+-stationary subcompact, then the forcing
is trivial at stages from κ up to and including β, and is < β++-strategically
closed from stage β+ onward, so no new subsets of H(β+) are added after
stage κ. Thus, to show that β+-stationary subcompactness is preserved, it
su�ces to show that for any condition p and any Pκ-name σ forced by p � κ to
be a stationary subset of β+, there is an extension q of p forcing the existence
of an embedding from (H(β̄+)V [G], σ̄G) to (H(β+)V [G], σG) witnessing the
β+-stationary subcompactness of κ for σG in V [G]. As σ is forced by p �
κ to be stationary in β+ and Pκ is only of cardinality κ, there is some q
extending p and some S ∈ V stationary in β+ such that q � κ  S ⊆ σ.
In V let π : (H(β̄+), q̄, S̄, σ̄) → (H(β+), q � κ, S, σ) with critical point κ̄
and S̄ stationary in β̄+ witness the β+-stationary subcompactness of κ for
(q � κ, S, σ). Then q̄ = q � κ since the latter is bounded below κ, and
q � κ forces S̄ to be a stationary subset of σ̄. Now by Silver's lifting of
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embeddings method, q forces π to lift to an elementary embedding π∗ :
(H(β̄+)V [Gκ̄], σ̄Gκ̄) → (H(β+)V [Gκ], σGκ), since π[Gκ̄] = Gκ̄ ⊆ Gκ. That is,
we have π∗ : (H(β̄+)V [G], σ̄G) → (H(β+)V [G], σG) with σ̄G stationary, as
required.

If β belongs to I \ J and κ is β+-subcompact then the forcing is trivial
on [κ, β), is Rβ at stage β, and is < β++-strategically closed thereafter. Let
κ be the least β+-subcompact and for κ̄ < κ choose A(κ̄) ⊆ β+ so that κ̄
is not β+-subcompact with respect to the predicate A(κ̄); this is possible as
κ is the least β+-subcompact and any subset of H(β+) can be coded by a
subset of β+. Let A be the join of the A(κ̄)'s: A = {(κ̄, γ) | γ ∈ A(κ̄)}.

Now suppose that p forces the Pβ+1-name σ to be a subset of β+. Note
that p � β + 1 is comprised of p � κ, a Pκ-condition that is thus bounded
below κ, and a name ṗ(β) for an Rβ-condition. Take π : (H(β̄+), p̄, σ̄, Ā) →
(H(β+), p � β + 1, σ, A) witnessing the β+-subcompactness of κ for (p �
β+1, σ, A) with κ̄ = (the critical point of π) least, and β̄ least for this choice
of κ̄.

Claim. β̄ does not belong to I.

We must show that no ¯̄κ ≤ β̄ is β̄+-subcompact. If ¯̄κ is less than κ̄ then
¯̄κ cannot be β̄+-subcompact for the predicate Ā(¯̄κ), else by composing with
the map π we would get the β+-subcompactness of ¯̄κ for the predicate A(¯̄κ)
(¯̄κ is not moved by π). If ¯̄κ equals κ̄ then it cannot be β̄+-subcompact for
the predicate (p, σ, A), else by composing with π we would contradict the
leastness of κ̄. Finally, if ¯̄κ lies in the interval (κ̄, β̄] then by composing with
π we contradict the leastness of β̄. This proves the Claim.

Now κ̄ is γ̄+-stationary subcompact for γ̄ < β̄, so the forcing is trivial on
[κ̄, β̄), is Rβ̄ ∗ ĊRβ̄ ∗ Ṡβ̄ at stage β̄, and is < β̄++-strategically closed thereafter.

In particular, H(β̄+) receives no new elements from stage κ̄ of the forcing
onward. Note that p̄ � κ̄ = p � κ, p̄(β̄) is a name for an Rβ̄ condition, and σ̄

is a Pβ̄ ∗ Ṙβ̄-name for a subset of β̄+. Extend p to q0 extending p̄(β̄); this
is possible as p � β = p � κ̄ so p is trivial at β̄ < β. Now, the key point is
that q0 can be extended to a condition q forcing the generic Gβ,Rβ for Rβ to
extend π[Gβ̄,Rβ̄ ], since the pointwise image of the CR

β̄
-generic veri�es that the

pointwise image of the Rβ̄-generic has union non-stationary in sup(π[β̄+]).
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Hence, q forces that π lifts to an embedding

π∗ : (H(β̄+)
V [Gβ̄,Rβ̄

]
, σ̄

Gβ̄,Rβ̄ )→ (H(β+)V [Gβ+1], σGβ+1),

But this is the same as

π∗ : (H(β̄+)V [G], σ̄G)→ (H(β+)V [G], σG),

and we are done for this case.

The preservation of ω-superstrongs is as in the previous proof. 2

17.-18.Vorlesungen

For any cardinal α, a 2α,<µ-sequence is a sequence 〈Cβ | β ∈ α+ ∩ Lim 〉
such that for every β ∈ α+ ∩ Lim :

Cβ is a set of closed unbounded subsets of β
1 ≤ |Cβ| < µ
ot (C) ≤ α for every C ∈ Cβ
For any C ∈ Cβ and γ ∈ lim(C), C ∩ γ ∈ Cγ.

We say 2α,<µ holds if there exists a 2α,<µ-sequence, and we write 2α,ν for
2α,<ν+ .

Of course, 2α,1 is simply 2α, and the strength of the statement 2α,<µ can only
decrease as µ increases. (In fact, Jensen shows that the strength can strictly
decrease as µ increases.) Weak square, denoted 2∗α, is 2α,α, and 2α,α+ is
provable in ZFC for all α.

Theorem 28 Suppose κ is α+-subcompact for some κ ≤ α. Then 2α,<cof(α)

fails.

Proof. Suppose for contradiction that C = 〈Cβ | β ∈ α+∩Lim 〉 is a 2α,<cof(α)-
sequence. We can take an α+-subcompactness embedding

π : (Hᾱ+ ,∈, C̄)→ (Hα+ ,∈, C)

with critical point some κ̄ < ᾱ+ such that π(κ̄) = κ, and ᾱ < α. Let λ be the
supremum of π[ᾱ+], let C be an arbitrary member of Cλ, and consider the
inverse image D̄ of lim(C) under π. Then D̄ is (< κ̄)-closed and unbounded
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in ᾱ+, so we may take some β̄ ∈ D̄ of co�nality di�erent from cof (ᾱ) such
that |D̄ ∩ β̄| = ᾱ. Let β denote π(β̄).

Now, for any γ̄ < β̄ in D̄, π(γ̄) ∈ C ∩ π(β̄) ∈ Cβ, so by elementarity there
is some C̄ ∈ Cβ̄ with γ̄ ∈ C̄. But there are fewer than cof (ᾱ) elements of Cβ̄,
and as cof (β̄) 6= cof (ᾱ), each of them has ordertype strictly less that ᾱ; so
|
⋃
Cβ̄| < ᾱ, and not all γ ∈ D̄ ∩ β̄ can be covered in this way. 2

If 2∗α holds then there is a 2∗α sequence (an improved square sequence,
2imp
α,α ) with the added property that for all limit β < α+, there is a C ∈ Cβ

with ot (C) = cof (β). Indeed, if we choose an arbitrary sequence 〈Dγ | γ <
α〉 such that Dγ is a club in γ of order type cof (γ), then for any 2∗α-sequence
C, we may obtain a 2imp

α,α -sequence by adding {δ ∈ C | ot (C ∩ δ) ∈ Dγ} to
Cβ for every C ∈ Cβ and γ such that ot (C) ∈ Lim (Dγ) ∪ {γ}.

Theorem 29 (GCH) Suppose κ is α+-subcompact for some κ ≤ α with
cof (α) < κ. Then 2α,α fails.

Proof. Suppose for contradiction that C is a 2imp
α,α sequence, and let

π : (Hᾱ+ ,∈, C̄)→ (Hα+ ,∈, C)

be an embedding witnessing the α+-subcompactness of κ for C. The hypothe-
sis cof (α) < κ implies that in fact cof (α) = cof (ᾱ) < κ̄. Let λ = sup(π[ᾱ+]),
and take C ∈ Cλ with ot (C) = ᾱ+ = cof (λ). Let D̄ be the preimage of
Lim C under π; it is an ω-closed unbounded subset of ᾱ+. Let ζ be the
ᾱ-th element of D̄. As π(ζ) is a limit point of C, it follows by coherence
that C ∩ π(ζ) ∈ Cπ(ζ). Now for every subset X of D̄ ∩ ζ of size less than κ̄,
π(X) = π[X] ⊆ C ∩ π(ζ) ∈ Cπ(ζ), so by elementarity, there is an element C̄X
of C̄ζ such that X ⊆ C̄X . But there are ᾱ

<κ̄ > ᾱ such subsets X of D̄∩ ζ and
only ᾱ elements of C̄ζ , so some single element of C̄ζ must cover more than
ᾱ many such X. This is impossible as each element of C̄ζ has ordertype less
than ᾱ. 2

We now sketch the proof of a result establishing the optimality of Theo-
rems 28 and 29.

Theorem 30 Let K denote {α | There is an α+-subcompact κ with cof (α) <
κ}. Then there is a co�nality and ZFC-preserving de�nable class forcing P
such that for P -generic G:
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(a) If κ is α+-subcompact in V then it remains so in V [G].
(b) 2α,cof(α) holds in V [G] for α /∈ K.
(c) ω-superstrongs are preserved.

Proof sketch. P is the reverse Easton iteration which at stages α in K does
nothing and otherwise adds a 2α,cof(α)-sequence by the following forcing:

Let cof (α) = µ and �x (αi | i < µ) an increasing sequence of regular
cardinals such that µ < α0 and supi αi = α. Conditions are of the form

p = (Cβ,i | β limit, β ≤ |p|, ip(β) ≤ i < µ),

where:

1. |p| is a limit ordinal < α+.
2. ip(β) < µ for limit β ≤ |p|.
3. If ip(β) ≤ i < µ then Cβ,i is club in β of ordertype < αi.
4. If ip(β) ≤ i < j < µ then Cβ,i ⊆ Cβ,j.
5. If ip(γ) ≤ i < µ and β is a limit point of Cγ,i then i

p(β) ≤ i and Cβ,i =
Cγ,i ∩ β.
6. If β and γ are limit ordinals with β < γ ≤ |p| then β is a limit point of
Cγ,i for su�ciently large i < µ.

Extension is de�ned by: q ≤ p i� |p| ≤ |q| and for limit β ≤ |p|, ip(β) = iq(β)
and Cp

β,i = Cq
β,i for all i with i

p(β) ≤ i < µ.

It can be veri�ed that P is < µ-directed closed, is < α-strategically closed
and adds a 2α,cof(α)-sequence. So P preserves co�nalities and ZFC, and we
get conclusion (b) of the Theorem. (The veri�cation of (c) is as in earlier
proofs.) It remains to show that instances of subcompactness are preserved.

Suppose that κ is α+-subcompact in V and p is a condition forcing that
the name σ denotes a subset of α+. We can assume that σ is in fact a Pα+1-
name as the forcing after stage α does not add subsets of α+. Applying
subcompactness to the name σ and the condition pα+1, which can be viewed
as subsets of α+, we get:

π : (H(ᾱ+), σ̄, p̄)→ (H(α+), σ, pα+1)

with critical point κ̄ and ᾱ < κ, π(κ̄) = κ. We want a condition q extending
p which forces that π can be lifted to:
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π : (H(ᾱ+)V [G], σ̄G, p̄)→ (H(α+)V [G], σG, pα+1).

For this it su�ces that q forces π[Gᾱ+1] ⊆ Gα+1.

Now the forcing Pα+1 factors as Pκ ∗ P [κ, α] where Pκ forces P [κ, α] to
be < κ-directed closed: This is because the forcing P [κ, α] is nontrivial at
stage β ∈ [κ, α] only if cof (β) ≥ κ (else β belongs to K), in which case it
is < cof (β) and therefore < κ-directed closed. It now follows that we can
extend p to q forcing π[Gᾱ] ⊆ Gα+1 as π[Gκ̄] = Gκ̄ ⊆ Gκ and by directed
closure we can form a master condition extending π[G[κ̄, ᾱ]] to ensure that
it is contained in G[κ, α]. So the α+-subcompactness of κ is preserved, as
desired. 2
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