Ideals and Generic Elementary Embeddings
1.-2.Vorlesungen
Introduction

This course is based on Matt Foreman’s article in the Handbook of Set
Theory with the above title. Surely we can’t cover the entire article, but I
hope to unearth the highlights. Most of the following introductory comments
are copied from Foreman’s introduction.

Large cardinals are typically defined as critical points of elementary em-
beddings 7 : V' — M which are “internal” to the universe V' of all sets. The
word “internal” can be taken to be “definable with parameters”, or more gen-
erously, “amenable” in the sense that j [ z belongs to V' for any set x. The
idea behind generic elementary embeddings is to allow embeddings j which
are internal not necessarily to V', but to a generic extension V[G] of V. Thus
the universe in which 7 is internal can be larger than the domain of ;.

The power of this idea is that by allowing j to be “external” to its domain
V', we have the possibility that the critical point of j is small, perhaps even
w1, something not possible with traditional large cardinal embeddings. As we
will see, this has many interesting applications.

Important parameters for traditional large cardinal embeddings j : V —
m with critical point x are the sizes of the ordinals j(k*™), n finite, and
closure properties of M. For generic elementary embeddings we have a third
parameter, namely the nature of the forcing that gives rise to the model V|G|
to which j is internal.

Basic Facts

We review some facts about Boolean algebras. Recall that these are struc-
tures B = (B, A, V,—,0,1) which are isomorphic to a field of subsets of some
set Z with A, V, 0,1 corresponding to N, U, D, Z and — corresponding to com-
plement within Z. In a Boolean algebra B we write by < by for by A by = by.

A Boolean algebra B is k-complete iff any subset X of B of size < k has a
least upper bound, denoted > X. Equivalently, every such X has a greatest



lower bound, denoted by [T X. In forcing terms, ) X forces the generic to
intersect X: > X IF GNX # (. B is complete iff it is k-complete for all k.

A homomorphism from the Boolean algebra B to the Boolean algebra C
is a function that preserves A, V, = (but not necessarily 0, 1). It is k-complete
iff it also preserves least upper bounds and greatest lower bounds of sets of
size < K.

A partial order P = (P, <) is separative iff whenever p, g belong to P and
p £ g, there is some 7 < p which is incompatible with ¢. If P is not separative
then forcing with P is equivalent to forcing with its separative quotient, the
separative partial order obtained by factoring P by the equivalence relation:
p ~ q iff the elements of P compatible with p are the same as those compatible
with ¢. And if P is separative then it is isomorphic to a dense subset of (the
nonzero elements of) a unique complete Boolean algebra, which we denote
by B(P) (even when P is not separative and is replaced by its separative
quotient).

Let B be a Boolean algebra. A nonempty subset I of B is an ideal on B
iff it is closed under finite joins and <. Tts dual filter is [ = {~A | A € I}.
For any S C B the ideal generated by S is denoted by S. An ideal is proper
iff it does not contain 1. We assume that all of our ideals are proper. A prime
itdeal is a maximal, proper ideal and its dual is called an wultrafilter.

In case B is a the Boolean algebra of all subsets of some set Z, instead of
tdeal on B we say ideal over Z. We assume then that the ideal is nonprincipal,
which means that all singletons {z} for z in Z belong to it.

An ideal [ is k-complete iff it is closed under joins of size < k. For w;-
complete we also write countably complete or o-additive. The completeness
of I, denoted comp(I), is the least x such that I is not k*-complete. This is
a regular cardinal.

Assume now that [ is an ideal over Z.

IfYisa subset of Z, then we say that I concentrates on Y iff Y belongs
to the dual filter I. I is uniform iff it contains all subsets of Z of cardinality
less than card(Z).



We are often interested in the quotient Boolean algebra P(Z)/I, whose
elements are the equivalence classes of subsets of Z under the equivalence
relation S ~; T iff SAT € I. The equivalence class of S is denoted [S];. If 1
is k-complete then so is P(Z)/I.

I'™ denote the I-positive sets, i.e., the subsets of Z not belonging to I.
For Sin I*, we let I | S denote the ideal I NP(S). If I is k-complete then so
is I | S. More generally, if S C T are [-positive then comp(/ [ ) is at least
comp( | T): If (A; | i < k) belong to I | S where k is less than comp(/ [ T')
then the A;’s also belong to I | T and therefore have union in I [ T'; of course
this union also belongs to P(S) and therefore to I [ S.

We can think of this as an ideal over Z by identifying it with the ideal
generated by it together with the set Z \ S. The quotient of P(Z) mod this
ideal is isomorphic to P(S)/I NP(S).

I is atomless iff P(Z)/I contains no atoms. This means that each set not
in I can be split into two disjoint sets also not in [.

For a property ¢, we say that I is nowhere ¢ iff I | S fails to satisfy ¢
for each I-positive set S.

The saturation of I, denoted sat([), is the least x so that P(Z)/I has the
Kk-cc, 1.e., all antichains are of size < k. [ is A-saturated iff sat(/) < A. This
is always a regular cardinal.

Generic Ultrapowers

Suppose that [ is an ideal over Z. Then forcing over V' with the positive
elements of P(Z)/I produces an ultrafilter G on P(Z)/I with the following
property: If ([S;]; | j € J) is a maximal antichain in V' below some element
[S]; of G, then [S;]; belongs to G for some j € J. If P(Z)/I is complete
then this is equivalent to saying that if [7}]; belongs to G for each j € J
then [[,[7}]r also belongs to G. Instead of working with equivalence classes
mod I we could also work directly with P(Z)\ I, producing an ultrafilter on
P(Z)V, which we identify with G.

Now form the “generic ultrapower” by taking functions f : Z — V which
belong to V' and say that two such functions f, g are equivalent iff {2z €



Z | f(z) = g(2)} belongs to G. We write [f] for the equivalence class of
f and introduce the “membership relation E of the ultrapower” by [f]E[g]
iff {z € Z | f(2) € g(=)} belongs to G. In this way we obtain a structure
(VZ/G, E) with an elementary embedding

j:V=VZQ

that is definable in V[G] via j(x) = [c;], where ¢, denotes the constant
function on Z with value z.

Lemma 1 Suppose that I is an ideal over Z, let G C P(Z)/I be generic and
j:V = VZ/G the associated generic elementary embedding. Let id denote
the identity function on Z. Then:

1. For A C Z, A belongs to G iff [id|Ej(A), where E is the membership
relation of the ultrapower.
2. Forallg:Z —V inV, [g] = j(9)([id]).

This follows from the Lo$ theorem, because [id|Ej(A) means that {z €
Z | z € A} belongs to G, i.e., A belongs to G. Also as for any z € Z,
g(z) = g(id(z)), it follows that [g] equals j(g)([id]).

Now we turn to the question of well-foundedness for V7 /G. We say that
I is precipitous iff VZ /G is well-founded for all generic G.

If VZ/G is well-founded then we can replace it by its transitive collapse
M, which is a submodel of V[G]. We also think of j : V — VZ/G as an
embedding from V' to M via this identification. If g : Z — V belongs to V'
then we denote the unique element of M corresponding to [g] by [g]*. The
embedding 7 : V — M, if not the identity, must move some ordinal, as it
must move the least rank of a set which is moved. As usual, the least ordinal
moved is called the critical point, denoted crit(7).

3.-4.Vorlesungen

Proposition 2 Let I be precipitous, G C P(Z)/I generic and j : V — M C
V[G] the associated embedding. Then j is not the identity and crit(j) is the
largest k such that there is an S € G with comp(I | S) = k.



Proof. Recall that if S C T are [-positive then comp(I [ S) > comp(I [ 7).
Also note that if Kk = comp(/ | T) and T is the union of x-many sets
(As | @ < k) from I, then in fact comp(! [ S) = comp(I [ T) for all I-
positive S C T Define B, = A, NS and note that the union of the B,’s
is all of S. Let us say that an [-positive T is [-ezact iff T" is the union of
comp(! [ T')-many sets in [.

Now observe that any [-positive T" has an I-exact subset S: Let (A4, |
a < k) be sets in [ [ T with union not in I | T, where k = comp(I | T).
Then the union S of the A,’s is an [-positive subset of 7" and comp(/ [ 5)
is at least k, as S is a subset of T, and is at most x, as S is the union of
r-many sets in I | S. If follows that S is I-exact.

So by genericity, there is an [-exact element T of G. Also note that
k = comp(l | T) is the largest possible value of comp(I [ S) for S in G, as
G is a filter. Let (A, | @ < k) be sets in [ with union 7'

Define F': Z — k by sending z in T to the least « such that z belongs to
A, and z not in T to 0. Then j(a) < [F] for each a < K because o < F(2)
for I-almost all z for each such «, and [F| < j(k) because F(z) < k for all z.
So j has a critical point and crit(j) = v is at most k. But now choose S C T
in G and F’ in V so that S forces [F'] = v = crit(j). Then F'(z) < v for
I-almost all z € S so we may assume that this is the case for all z € S. For
a < vlet B, be {z € S| F'(2) < a}; then each B, belongs to I | S but
the union of the B,’s is all of S. It follows that comp(I [ S) = k is at most
v = crit(j), as desired. O

Remarks. (a) Note that the above proof shows that the critical point of j is
comp(I [ S) for any [-exact S in G. (b) It follows from the Proposition that
any precipitous ideal I is countably complete: Otherwise let S be the union
of countably many sets in I which does not belong to I and let G be generic
containing S. Then by the previous, the critical point of 7 would be w, which
is impossible.

We next present a combinatorial equivalent of precipitousness. For a par-
tial order P, a tree of mazimal antichains is a sequence (A, | n € w) of
maximal antichains of P such that A,,; refines A,, i.e., each element of
A1 extends an element of A,,. A branch through such a tree is a descend-
ing sequence (p, | n € w) such that p, belongs to A,, for each n.
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In the following we identify elements a of P(Z) with their equivalence
classes [a]; in P(Z)/I.

Proposition 3 [ is precipitous iff for any [-positive set S and any tree of
mazimal antichains (A, | n € w) below S there is a branch (a, | n € w)
through this tree such that (), a, # 0.

Proof. Suppose that [ is precipitous and (A, | n € w) is a tree of maximal
antichains below the I-positive set S. Let G be generic below S and j: V —
M the associated embedding. Since the A,’s are maximal antichains, for each
n there is a, in A,, belonging to G, i.e., [id]; belongs to j(a,). Thus the tree

{(CLS, s 7a2) | a;'k S ](Al)v [1d]1 S GZZ [a;'kJrl]j([) < [a:]j(f) for all Z}

has an infinite branch. Therefore it has an infinite branch in M. So M satisfies
that there is a sequence (a} | n € w) with a}, € j(A,) so that (), a}, # 0; the
statement of the Proposition then follows by elementarity.

Now suppose that I is not precipitous. Choose an I-positive S and names

E, so that S forces F, : Z — V belongs to V and [F,,;1|E[F,] for all n,
where as usual £ denotes the membership relation of the ultrapower. Now
build a tree of antichains A, so that each a in A, forces F, [ a to be a
particular function f¢ in V and if a,,+1 € A, 41 is a subset of a,, € A, then
[t (2) € fon(z) for all z in ay4q. Then this tree has no infinite branch with

nonempty intersection, as if z belonged to the intersection we would get an
infinite descending €-chain (f(2) | n € w). O

Precipitousness also has a game-theoretic characterisation: Players I and
1] alternate moves, resulting in an w-sequence Sy O A; D --- of I-positive
sets. Player II wins if the intersection of the S,’s is nonempty. Then I is
precipitous iff Player I does not have a winning strategy. This is not hard to
see, as strategies for Player [ correspond to trees of antichains.

The Disjointing Property

An ideal I over Z has the disjointing property iff every antichain in
P(Z)/I has a pairwise disjoint set of representativies.

Proposition 4 If I is k™ -saturated and k-complete then I has the disjointing
property.



Proof. If (S, | @ < A) forms an antichain, then replace S, by T, = S, \
U5<a Ss. By kT-saturation, A is at most x and therefore by k-completeness,
T, differs from S, only by a set in [. O

5.-6.Vorlesungen
An easy consequence of the disjointing property is the following:

Proposition 5 Suppose that I has the disjointing property and suppose that
P = the positive elements of P(Z)/1 forces that f is a function in V with
domain Z. Then there is g : Z — V in' V such that P forces [f] = [g].

Proof. Let (S, | @ < A) be an antichain in P such that for each «, S, forces
f = g, for some particular g, : Z — V in V. By the disjointing property we
can assume that the S,’s are disjoint subsets of Z. Now define g(z) = g.(2)
if z belongs to Sa, g(z) = 0 if z belongs to no S,. Then each S, forces f to
equal g on a set in the generic, so we are done. O

The disjoint property is important for the following reason:

Proposition 6 Suppose that I is countably complete and has the disjointing
property. Then I is precipitous and if j -V — M C V[G] is the generic
ultrapower given by the P(Z)/I-generic G, then M" N V[G] C M, where
Kk = crit(j).

Proof. For the precipitousness it suffices to show that for any [-positive set
S and any tree of maximal antichains (A, | n € w) below S there is a branch
(Sn | n € w) through this tree such that (), S, # 0.

By the disjointing property, we can assume that the elements of A, are
pairwise disjoint. We can also assume (without using the disjointing property
again) that A, strongly refines A,, in the sense that if S, ;1 belongs to A, 1
then for all S,, in A,,, either S, ;1 is a subset of S, or is disjoint from S,,.

As each A, is a maximal antichain, the complement of UA, belongs to
I. By the countable completeness of I, there is some z € Z which belongs to
UA,, for each n. Then we get the desired branch (S, | n € w) by choosing S,
to be the unique element of A, such that z belongs to .S,,.



To prove the second conclusion, let (&, | @ < k) be a sequence of names
for elements of M and let S be an element of G which forces crit(j) = k.
Using the disjointing property and Proposition 5, choose a fixed k: Z — V
in V so that S forces [k] = k. Again by the disjointing property we can
choose g,’s in V so that S forces [g.|Y = i, for each a < k. Now define
g:7Z =V by g(z) = (ga(2) | @ < k(2)); then S forces [g|V = (&4 | @ < K):
To see this, write j((ga | @ < K)) as (g7 | @ < j(k)) and note that g} = j(ga)
for @ < k. So S forces the following:

9] = j(g)([id]) =

(g5([id]) | o < ji(R)([id])) =

(9 ([id]) | o < [K]*) =

(7(9a)((id]) | o < k) =

([9a]M | @ < K) = (&4 | @ < K), as desired. O

Another consequence of the disjointing property is the following.

Theorem 7 If I has the disjointing property then P(Z)/1 is a complete
Boolean algebra.

Proof. If not let x be least so that some subset B of P(Z)/I has no least
upper bound. By the leastness of £ we may assume that B can be enumerated
as (by | @ < k) where the b,’s are increasing. We can also assume that by = 0
and by is the least upper bound of the b,, a < A, for limit A < k. Set
(o = boy1 — by for each a < k; then the set A of the a,’s form an antichain
without a least upper bound, because any least upper bound for it would
also be a least upper bound for B.

Enlarge A to a maximal antichain .4 U C and choose disjoint representa-
tives {A, | @ <k} U{Cjs | B < v} of the elements of this maximal antichain.
Then we claim that the class of the union A of the A,’s is the least upper
bound of the classes of the A,’s: Otherwise, there is some B almost contain-
ing each A, but not almost containing A. As A\ B is [-positive it must have
I-positive intersection with some A, or some C3. But as B almost contains
each A,, A\ B is almost disjoint from each A,, and as A is disjoint from
each Cp so is A\ B. Contradiction! O

Normal Ideals



Normality is a notion that applies to ideals I over Z where Z is of the
form P(X) (or a subset of this) for some set X. A function f : A — X,
where A is a subset of P(X), is regressive iff f(a) € a for each a € A. Then
I is normal iff whenever f : A — X is regressive and A is [-positive, there
is an [-positive B C A on which f is constant.

Normality can also be phrased in terms of diagonal intersections or unions.
If (A, | € X) is a collection of subsets of Z then the diagonal union
V(A; | x € X) is the set of z such that z belongs to A, for some = € z; the
diagonal intersection AN(A, | x € X) is the set of z such that z belongs to
A, for all x € z. Then [ is normal iff it is closed under diagonal unions iff its
dual filter [ is closed under diagonal intersections.

If I is a normal ideal over a subset of P(X) and f is a function from X to
X then I-almost all A C X are closed under f, provided I is also fine, i.e.,
for each x € X, I-almost all A contain x as an element. For, if A were not
closed under f for an I-positive set of A’s, we could choose a regressive g so
that f(g(A)) ¢ A for all such A and then by normality get a single value z
so that f(z) ¢ A for an I-positive set of A’s. But this contradicts fineness.

If I is countably complete we can generalise the previous to countably
many functions of any positive arity. Thus:

Proposition 8 I is a countably complete, normal and fine ideal over a subset
of P(X) and for each i € w, f; is a function from X™ to X for some finite
n;, then A is closed under each f; for I-almost all A.

Sums in P(Z)/I when [ is a normal, fine ideal on Z (and Z is a subset
of P(X) for some X) can be described in terms of diagonal unions.

Proposition 9 Suppose that I is a normal, fine ideal over Z C X and A,
is subset of Z for each x in X. Then the least upper bound in P(Z)/I of the
classes of the A,’s is the class of \v(A, | v € X).

Proof. For x € X we know by fineness that x belongs to A for [-almost
all A; so for I-almost all A, if A belongs to to A, then A also belongs to
V(A; | € X), by the definition of diagonal union. In other words, A, is
I-almost contained in 7(A, | z € X) for each z. For the converse it suffices
to show that if B is [-positive and contained in v/(A, | © € X) then BN A,
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is I-positive for some z. For each B in B choose x(B) € B so that B belongs
to Aup). Apply normality to fix x(B) = x for an I-positive set of B’s in B.
Thus BN A, is I-positive, as desired. O

Recall that x*-saturated and k-complete ideals have the disjointing prop-
erty; in the case of normal ideals there is a sufficient condition which does
not assume any completeness.

Proposition 10 Suppose that I is a normal, fine ideal over Z C P(X) and
I is card(X)*-saturated. Then I has the disjointing property.

Proof. If A is an antichain then by the hypothesis we can assume that A
is of the form {[A,] | * € X} where X is a subset of X. By fineness we
can also assume that x belongs to each element of A, for each x € X. For
each distinct pair z,y in X, choose a set C,, in I = the filter dual to I so
that A, N A, NC,, is empty. Then C = {z | z € C,, for all z,y € 2} also
belongs to I , by normality. Now we can disjointify the A,’s by replacing A,
with A, N C for each x € X,. O

Note that the disjointing property for an ideal over Z C P(X) immedi-

2C&1“d(X)>

ately gives card(Z)"-saturation and therefore ( *-saturation.

7.-8.Vorlesungen

Recall that the generic ultrapower via a countably complete ideal with
the disjointing property is closed under k-sequences, where « is the critical
point of the associated generic embedding. If we also assume normality then
we get even more closure.

Theorem 11 Suppose that I is a normal, fine, precipitous ideal over Z C
P(X), let X be the cardinality of X and suppose that G C P(Z)/1 is generic.
Let j : V. — M be the associated embedding. Then P(A\) NV C M. If in
addition I has the disjointing property then MA NV [G] C M.

Proof. We can assume that X = \.

Claim. Let I be a normal fine ideal on Z C P(X) and G, j : V — M as
above. Then [id] = j[A] (id “represents” j[A]).

10



Proof of Claim. By fineness, for each « < A\, {z | @ € z} belongs to the
filter dual to I. So for each a < A, [ild]Ej({z | @ € z}) and of course
j{z | ae€z}) ={z]jla) € z}; ie., j(a)E[id] for each a < \. Conversely,
if [f]E[id] then A = {z | f(2) € z} belongs to G; by normality it is dense
below A to force that for some av < A, {2z | f(z) = a} belongs to the generic.
So by the genericity of G, [f] = [ca] = j(a) for some o < A (where ¢, is the
constant function with value «). O (Claim)

To prove the Theorem, suppose that A is a subset of A in V. Consider the
function fa(z) = AN z. Then [fa] = 7(fa)([id]) = 7(fa)(G[A]) = 7(A) N F[A].
As A can be easily recovered from j(A)Nj[A] and j[A] and these both belong
to M, it follows that A belongs to M.

Assume now that I has the disjointing property. Let (d, | @ < A) be a
sequence of names of elements of M. Use the disjointing property to obtain
functions G = (g | @ < A) such that [g,] = a, is forced. Write j(G) as
(7(9)a | @ < J(A)). Now define g : Z — V by g(2) = (9a(2) | @ € z). Then
lg] = 7(9)(GIA]) = (J(9)s(F[A]) | B € j[A]). So the function that sends a < A
to 7(9) i) (J[A]) = 7(9a)(4[A]) = [ga] belongs to M and is interpreted by G
to be G’s interpretation of (a, | @ < A). O

More general facts

We look at a limitation on the closure of the generic ultrapower M in
V[G] as well as continuity points of the embedding j : V' — M associated to
the generic ultrapower.

Proposition 12 Suppose that I is an ideal over Z and j : V. — M 1is the
embedding associated with a well-founded generic ultrapower VZ/G. Then
Jleard(Z)*] does not belong to M.

Proof. If not, let a € P(Z) force [f] = jlcard(Z)T]. Let ay = {z € a |
card(f(z)) > card(Z)} and ay = {z € a | card(f(z)) < card(Z)}. Choose
an ordinal o < card(Z)" which does not belong to any f(z), z € a;. Now
choose a function g : a — card(Z)" so that g(z) = « for z € ay, g is injective
on ag and g(z) € f(z) for all z € ap. Now there are two cases: If a; belongs
to G then j(a) is not E-below [f]. If ag belongs to G then [g] is E-below [f]
but as g is injective, [g] # j(B) for § < card(Z)*. Both cases contradict our
hypothesis about f. O

11



Proposition 13 Suppose that j : V. — M is a generic elementary embed-
ding. Let k be the critical point of j and suppose that n < k is regular, \ is
an ordinal and V,V[G] agree on which ordinals < X\ have cofinality n. Then
J[A] is m-closed in V[G] (i.e., if a < supj[A] is a limit point of j[\] and has
cofinality n in V|G|, then a belongs to j[A]).

Proof. If not, then choose an ordinal o < sup j[\] which is a limit point of
J[A], does not belong to j[A] and has cofinality 1 in V[G]. Let 6 < A be least
so that j(J) is greater than a. As « has cofinality n in V[G] it follows that 0
also has cofinality n in V[G] and therefore cofinality 7 in V. But 7 is less than
the critical point of j so it follows that j is continuous at §, contradiction. O

There is a partial converse to the previous.

Proposition 14 Suppose that j : V — M 1is a generic elementary embed-
ding, j[A] is n-closed in V|G] and M is closed under n-sequences in V|[G].
Then V,V[G] agree on which ordinals < X have cofinality n.

Proof. 1f not, let u be the least counterexample. Then p is V-regular, else
cof V(1) would be a smaller counterexample. So j(y) is regular in M. As j[\]
is m-closed, it follows that j is continuous at p and therefore the cofinality of
j(u) in V[G] is n. As M is closed under n-sequences in V[G] it follows that
j(u) has cofinality n in M and therefore as j(u) is regular in M, we have
j(u) = n. But this contradicts the fact that 7 is less than p. O

Canonical functions

Suppose that [ is a normal, fine countably complete ideal over Z C P(\).
We define functions (f, | @ < AT) such that f, is forced to represent « in
the generic ultrapower for each a@ < ™.

First define f, for a < A by
fa(z) =0t (zNa).
Then to define f,, for « at least A choose a bijection g : A — « and inductively
define
fa(2) = sup{fom(2) + 1 [n € z}.
Note that if g, g2 are any two bijections from X onto « then {g;(n) | n € 2} =
{g2(n) | n € z} for a set of z in the filter dual to I, by the normality of I;

it follows that f, is well-defined modulo I. The f,’s are called the canonical
functions for normal ideals on Z C P(A).
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Proposition 15 Let G be generic for P(Z)/I where Z C P(X) and X has
cardinality \. Suppose that I is normal, fine and countably complete. Then
(AT)Y is included in the well-founded part of VZ /G and for each o < (AT)Y,

[fa]G = Q.

Proof. We may assume that X equals \. We have seen that if j : V — VZ/G
is the canonical embedding, then [id]“ = j[\]. So VZ/G is a model of ZFC
which contains a well-founded set of ordertype . It follows that the ordinals
of VZ /G have an initial segment of ordertype \.

We show that in fact that the ordinals of V7 /G are well-founded up to
AT: Let (fo | @ < AT) be the canonical functions. Then:

1. For a < 8 < AT, {z € P(\) | fa(2) < f3(2)} belongs to the filter dual to
1.

2. For any normal ideal / and a < A*, if h(z) < fa(z) for an I-positive
set A of z, then there is an [-positive subset B of A and § < « such that
h(z) = f3(2) for z in B.

So for generic G C P(Z)/I, the [f,]% a < AT form a well-ordered initial
segment of the ordinals of VZ /G or ordertype AT. O

Example. Let M be a well-founded model of V' = L and suppose that G C
(P(w1)/NS,, )M is generic over M and let N be the generic ultrapower. By
the above, N is well-founded up to wyf. Moreover wi? is countable in N. So a
bijection between w and w}! appears at some ordinal level of the L-hierarchy
of N; this level must be beyond the first w)’ ordinals of N. If we define
friw = win M by f(a) = the least 8 such that « is countable in Lg then
[f1¢ = 5(F)([id]) = j(f)(w) is greater than the first w)’ ordinals of N and
therefore for any § < w)!, f(a) > f5(a) for a set of o in G. As G is arbitrary,
it follows that f dominates each fs on a closed unbounded set of a’s. (This

last fact can however be shown quite easily without generic ultrapowers.)
9.-10.Vorlesungen
Ideals and Changing Cofinalities

Large cardinals can be used to change cofinalities in interesting ways,
using Prikry-style forcings. Generic ultrapowers provide another way of doing
this, with dramatic effects.
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Lemma 16 Suppose that I is a normal, fine, precipitous ideal over P\ (=
[A]<", the set of subsets of A of size less than k). Let G C P(PA)/I be
generic and j : V. — M the resulting embedding. Then:

1. Suppose that p, v are less than k and let A be the set of z € P\ such that:
ZNKERK,

card(z) = card(z N k),

cof (zNK) = p and

cof (sup(z)) = v.

Then if A belongs to G we have the following in M : u, v are reqular, card(\) =
card(k), cof (k) = p and cof (A) = v.

2. Suppose that k = p™, p a cardinal, and let B be the collection of z € P\
such that:

ZNKE K,

card(z) = card(z N k) and

cof (2N k) = cof (sup(z)) # cof (p).

Then if B belongs to G, both p and cof (p) remain cardinals in M and the
following hold in M: card(\) = card(k) = p, cof (\) = cof (k) and cof (\) #
cof (p).

Moreover, if I is kt-saturated then the conclusions of 1 and 2 above hold

with M replaced by V[G].

Proof. We first show that j is the identity below k. By fineness, {z | § € z}
belongs to G for each § < k. And by hypothesis {z | 2Nk € k} also belongs to
G, s0 {z | B C z} belongs to G for each § < k. Recall that j[\] is represented
by id so we can apply Lo$ to conclude that j(8) C [id] = j[)] for § < k. So

the critical point of j is at least 3 for each § < k.

In fact the critical point of j equals k: Otherwise k = j(k) C j[A] = [id]
so by Los {z | k C z} belongs to G; but this contradicts the hypothesis that
{z| 2Nk € K} belongs to G.

To prove 1: As k is the critical point of j, then u,v, which are regular
in V' and less than k, must also be regular in M. As id represents j[\| and
J[A] N j(k) = k, it follows from the hypothesis card(z) = card(z N k) for
z € A that card(\) = card(j[A]) = card([id]) = card([id]Nj(k)) = card(j[A]N
j(k)) = card(k) in M. Also in M, cof (k) = cof (A Nj(k)) = j(u), as by
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hypothesis {z | cof (2zNk) = u} belongs to G. As j(u) = p we get cof (k) = p
in M. Finally, in M we have cof (A) = cof (sup(j[A]) = j(v), as by hypothesis
{z | cof (sup(z)) = v} belongs to G; as j(v) = v we get cof (\) = v in M.

To prove 2: Again p,cof (p) are cardinals in M because they are less
than the critical point of j. The hypothesis that {z | card(z) = card(z N k)}
belongs to G gives that card(\) = card(x) in M. But as & is the critical point,
it follows that k = p™ < j(p™) = (p™)™ and therefore x has cardinality p in
M. Similarly, the hypothesis that {z | cof (2 N k) = cof (sup(z)) # cof (p)}
belongs to G gives that in M, cof (j[A] N k) = cof (sup(j[A]) # cof (j(p));
but this says cof (k) = cof (\) # cof (p).

Finally, if I is A*-saturated then M and V[G] have the same A-sequences,
so we can replace M by V[G] in the above conclusions. O

Examples of Ideals
Natural Examples

Some interesting examples of ideals can be defined explicitly. The ideal
of bounded subsets of a regular cardinal is an example of such an ideal.
This ideal is never precipitous: Suppose that G C P(k)/I is generic where [
denotes this ideal. By a density argument, there exists a sequence (Y,, | n € w)
of sets in G such that for all n and all o < &, the a-th element of Y, is
greater than the a-the element of Y,,. Then define f,, : Y,, — k by f.(8) = «
where [ is the a-th element of Y,,; we have that f,,1(8) < fn.(5) for all S,
n. So ([fu]¢ | n € w) is a descending sequence of ordinals in the generic
ultrapower.

More generally, consider I, A = the smallest k-complete, fine ideal on P, .
This is the ideal dual to the filter F,A = {X C P\ | For some a € P\, X
contains all supersets of a}. We’ll show that neither is this ideal precipitous.

Definition. Let I be a countably complete, non-atomic ideal over a set Z.
Then w([) is the least cardinality of an [-positive set and ~(I) is the least
cardinality of a set that generates I by taking subsets.

For example, suppose that I = I,A = {X C P\ | For some a € P\, X
does not contain any superset of a}. Then X C P, is [-positive iff every
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a € P, can be covered by (i.e., is a subset of) an element of X. It follows that
m(I) is the least cardinality of a subset of P,A which covers every element
of P, \. Also, if every a € P, )\ can be covered by an element of X then [ is
generated from {X, | a € X} where X, = {b | b does not cover a}, by taking
subsets, so y(I) < w(I). The other direction 7(I) < ~(I) is true in general:
Suppose that J C [ generates I by taking subsets. For A in J choose z4 in
Z \ A. Then the set T of the z4’s is I-positive as otherwise there would be
an A € J such that T' C A.

So we conclude that m(I,\) = y(I\).
Theorem 17 If (1) = ~v(I) then I is not precipitous.
Proof. First we prove:

Claim. Let k = m(I). For all I-positive sets X and injective f : X — & there
is an [-positive Y C X and injective g : Y — & such that g(y) < f(y) for all
yey.

Proof of Claim. Suppose that {X, | & < k} generates I by taking subsets
and inductively choose y, € X \ (Xo U f~a+1]U{ys | 8 < a}). This
is possible as X is I-positive but neither the X,’s nor sets of size < k are
I-positive. Let Y be {y, | @ < k} and ¢(y,) = . Then Y is [-positive as
it is not a subset of any X, and ¢(y.) < f(¥a) as y, does not belong to
fa+1]. O (Claim)

Note that by a similar argument to the above, any I-positive set contains
an [-positive subset of size k. Now using the Claim, build maximal antichains
A, CP(Z)/I such that:

1. A, refines A,,.
2. For each X € A,, we have an injective fx : X — k.
3.1 X1 € Ay, Xy € Ay and X, € X, thenforally € X, 44, fx,.,, (y) <

Ix. ().

Clearly there is no branch (X, | n € w) through the A,’s with N, X,
nonempty, so [ is not precipitous. O

11.-12.Vorlesungen
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The nonstationary ideal

We take an algebra on a set X to be a structure of the form A = (X, f,,)new
where the f, is an n-ary function from X to X. For such an algebra A we
define C'4 to be the set of z C X which are closed under the f,,’s. The resulting
sets C'y are the strongly closed unbounded sets and the filter they generate is
the strongly closed unbounded filter over Z = P(X). The ideal dual to this
filter is the strongly nonstationary ideal and a set is weakly stationary if it is
positive for this ideal.

Lemma 18 The filter of strongly closed unbounded sets is fine and normal.

Proof. Fineness is clear, as for any x € X we can consider the algebra A =
(X, f) where f is unary with constant value x; then C4 consists only of
subsets of X which have x as an element, and therefore {z | z € z} belongs
to the filter generated by the C'y’s.

Suppose that F': A — X is regressive, where A is positive for the strongly
nonstationary ideal I, i.e., A is weakly stationary. If F' is not constant on
an [-positive subset of A then for each x € X we can choose an algebra
A(z) = (X, f¥)new so that F(z) # x for all z in AN Cy(,). But now define
the algebra A = (X, fu)new bY: fonr(z, 21, 20) = f5(21,...,2,). As A
is weakly stationary we can choose z € A closed under the f,’s. It follows
that z is closed under the f’s for each x in z and therefore z belongs to
A(x) for all z in z. But this gives a contradiction to the choice of A(x) when
r=F(z). O

Note that any weakly stationary subset of P(X) contains elements which
are countable. Now there are other notions of closed unbounded filter and
stationary set for which this is not the case; we show that they can be ob-
tained from the strongly closed unbounded filter and weakly stationary sets
by restricting to an appropriate weakly stationary set.

For example, suppose X = k, a regular uncountable cardinal. Consider
the set A = {z C k| x Nk € K}; A is weakly stationary. And the stan-
dard closed unbounded filter on « is obtained as the filter of strongly closed
unbounded sets restricted to the set A.
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More generally, consider P, A, where k < A are cardinals and & is regular
and uncountable. We say that D C P\ is closed iff it is closed under directed
unions of size less than « and is unbounded iff it is cofinal in P,\ under
inclusion. Then we have:

Theorem 19 The filter generated by the closed unbounded subsets of P\ is
the same as that generated by the strongly closed unbounded filter on P()\)
together with the set {z | z Nk € K}.

Proof. First note that any strongly closed unbounded subset of P\ is both
closed and unbounded in the above sense. Also the set {z € P,A | 2Nk € K}
is closed and unbounded. So it only remains to show that if D C P\ is
closed and unbounded then there exists a function F' : A< — X such that
any z € P, closed under F' and satisfying z N x € k belongs to D.

First note the following: If B is a structure for a countable language whose
universe contains A as a subset, then there is a function F' : A<¥ — X\ with
the property that if z € P, is closed under F, then z is the intersection with
A of an elementary submodel of B of size less than x. This is because we can
assume that B has Skolem functions g,, n € w, where g, is n-ary and then
we set F'(aq,...,a,) = gu(aq,...,a,) if the latter belongs to A, 0 otherwise.

Now to prove the theorem, choose B to be a structure of the form (H(#), €
,D,...) for some large 0, where ... denotes a sequence of Skolem functions
and define F' from B as above. Suppose that z € P,\ is closed under F' and
2Nk € k. Then z = N N A for some elementary submodel N of B of size
less than x and as N Nk € kit follows that z C N for any z € NN P\ It
follows that z = N N A is precisely the union of the elements of N N D and
therefore z belongs to D. O

Proposition 20 The ideal of strongly nonstationary subsets of Z = P(X)
is the smallest fine, normal ideal on Z.

Proof. Let I be a fine, normal ideal on Z. If B is strongly nonstationary
but does not belong to I then choose an algebra (X, f,,)ne, under which the
elements of B are not closed and define a regressive function ' on B by
sending z € B to an n-tuple from z whose value under f, does not belong
to z. By the normality of I we get an [-positive set of z not containing

18



fulxy, ..., x,) for some fixed n and (x1,...,x,), contradicting the fineness of
1.0

Other exaamples of natural ideals include the meager and null ideals, the
approachability ideals, the club guessing ideals, the diamond ideals, the uni-
formisation ideals and the weakly compact ideals. For these ideals there are
interesting questions of properness, normality, saturation and precipitous-
ness, not all of which have been thoroughly investigated.

CHANGE OF TOPIC!!

I couldn’t make sense out of Foreman’s article past the above point. So I
decided to switch topics:

Large cardinals and Combinatorial Principles

I look at the extent to which some well-known combinatorial principles
can tolerate large cardinal hypotheses. We assume GCH throughout. The
combinatorial principles that I have in mind are:

(a) O, and its variants.
(b) Various forms of Stationary Reflection at .
(c) o and its variants.

The large cardinals I have in mind are:

Large cardinals of “Strong” type: k is the critical point of 57 : V — M
where 7 is

a-strong: H(a) C M

Superstrong: H(j(k)) C M

n-Superstrong: H(j"(k)) C M

w-Superstrong: H(j¥(k)) C M

(H(j*(k)*T) € M is inconsistent!)

“Subcompact” Large cardinals: B

K is a-Subcompact iff for each A C H(«) there are & <k, a <a, A C H(a)
and an elementary 7 : (H(&@), A) — (H(«), A) with critical point &, sending
K to K.

About O

As far as forcing O to hold we have the following limitation:
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Theorem 21 (Jensen) Suppose that k is subcompact (i.e., kT subcompact).
Then O, fails.

More generally:
Theorem 22 Suppose that k is ot subcompact, k < a. Then O, fails.

Proof. Suppose that C = (Cs | B < a™) were a O, sequence and apply o™
subcompactness to the predicate C': The result is

m: (H(a"),C) = (H(a™),0)
with critical point kK, where 7 sends K to .
Claim. There is ™ as above where & is less than o.

Given the Claim, let A be the supremum of w[@*]. Then A has cofinal-
ity a® < a™. Let D be the intersection Lim (C)) N Range (7). Note that
Lim (C) is club in A\, Range (7) is w-club in A and therefore D is cofinal in
A. By coherence, if §y < f; belong to Lim (Cy) then ot(Cy,) < ot(Cp,) and
therefore ot is an injective function from D into a. But the range of ot on
D is contained in Range (7) and therefore Range (7) N « has cardinality at
least @™, the cofinality of A. This is impossible, because Range (7)Na = 7[a]
has ordertype a.

Proof of Claim. Let f : [a]¥ — a be w-Jonsson for «, that is, for any subset
X of a of cardinality «, the range of f on [X]¢ is all of . Such functions were
shown to exist for all o by Erdés and Hajnal. Note that f is a subset of H,+,
so there will be an elementary embedding 7 : (Ha+, A, f) — (Hu+, A, f)
witnessing the a'-subcompactness of x for A and f. We claim that this
7, when considered as a function from (Hg+, A) to (Hu+, A), satisfies the
requirements of the Claim, namely that & < a. The proof is exactly as in
Kunen’s proof that there can be no nontrivial elementary embedding from
Viie to Viyo: Suppose a were to equal a. Then since card(j“a) = a we
would have f“[j“a]¥ = «, and so there would be some s € [j“@]* such that
f(s) = k. But now since w < &, s is of the form j(¢) for some t € [a]”. By
elementarity, j(f(t)) = f(j(t)), so & is in the range of j, contradiction. O

13.-14.Vorlesungen

The proof of the above Claim can be used to show:
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Proposition 23 Suppose that r is at-subcompact. Then for each A C H(a™)
there is m : (H(at),A) — (H(a™), A) with critical point R, sending k to K,
where & 18 less than k.

Proof. We may assume that A C H(a™) codes an w-Jonsson function for
« in the sense that such a function is definable over (H(at), A). Let a be
least so that there exists 7 : (H(a™), A) — (H(a™), A) with critical point &,
sending & to k. The claim is that @ is less than k. If not, then apply the a*t-
subcompactness of x to get 7: (H(at), A) — (H(a™), A) with critical point
R strictly between & and x. Then the composition 7 o 7 from (H(a"), A) to
(H(at), A) is elementary and has critical point &, sending & to k. So mo T
witnesses the a™-subcompactness of x for A and therefore & equals @, by
the choice of @. But by the proof of the Claim of the previous proof, this is
impossible. O

The result about O, failing due to subcompactness is optimal in the
following sense:

Theorem 24 Let [ = {«a | k is aT-subcompact for some k < a}. Then there
is a cofinality-preserving P so that for P-generic G:

1.1=1vC.

2. w-superstrongs are preserved.

3. O, holds in V[G] for all a ¢ I.

Proof. The partial order IP will be a reverse Easton forcing iteration. At stage
a for a a cardinal not in I, we force with the usual size a™ (thanks to the
GCH), < a'-strategically closed partial order S, due to Jensen to obtain
(., which uses initial segments of the generic [J, sequence as conditions.
At all other stages we take the trivial forcing. Thus, the iteration preserves
cofinalities, and [, holds in V[G] for all a ¢ I"V. Tt therefore only remains
to show that forcing with IP preserves the a-subcompactness of any « that is
a-subcompact in V', and that w-superstrongs are preserved.

So suppose k is a-subcompact in V. By the definition of I, the forcing is
trivial on the interval [k, «). Also, the tail of the iteration starting at stage «
is < a-strategically closed since each iterand is. Hence, no new subsets of «
are added by this part of the forcing. We wish to consider arbitrary subsets
of H(a) in the generic extension. By the GCH it suffices to consider names
for subsets of a. Moreover, we may take these names o to be P.-names,
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where P,. denotes the k-stage iteration that is the initial part of P up to k.
In particular, o can be taken to be a subset of H(«).

Applying the a-subcompactness of x in V', let
™ (H(a),0) = (H(a),0)

be elementary, with critical point & taken by 7 to x. We wish to lift 7 to an
elementary embedding 7' : (H(a)"l,54) — (H(a)%, 04). Now & is < a-
subcompact if o is a limit cardinal and S-subcompact if @ = 5%, so in either
case P is trivial on the interval [k, @). Furthermore, even if the forcing iterand
at stage @ is non-trivial, it will be < a*-strategically closed, and hence adds
no new sets to H(@). Indeed the tail of the forcing from stage @ on is < a™-
strategically closed. Therefore H(a)V¢) = H(a)VI% so combining this with
H (o)1 = H(a)V[E] our goal becomes to lift 7 to

7T/ : (H(a)V[GR]’ 5-Gr<> — (H(Q)V[Gn]u UG,<)>

for which it suffices by the usual (Silver) argument to show that 7[Gz] C G,.
But 7 is the identity below &, so this is immediate.

To show that w-superstrongs are preserved we again use Silver’s method
of lifting embeddings. Let x be w-superstrong, let 7 : V' — M witness this,
let A be the supremum of the j"(x)’s and suppose we have chosen j in such a
way that every element of M is of the form j(f)(a) for some a in H(\) and f
with domain H(\). It follows from w-superstrength that x is a-subcompact
for every a < A, that is, < A-subcompact. Thus, our forcing P is trivial
between x and \. Also, since the definition of I N H () is absolute for models
containing H (M), j(PY) = Py =PY (hence the “non-trivial support” of PP will
also be bounded below k). Below A, therefore, we may just take the generic
for M to be the generic for V, G, and we get a lift j' of j from V[G,] to
MIG,].

We claim that for the tail of the forcing, the pointwise image of the tail
of the generic for V, j/[G*], generates a generic filter for M, by the \*-
distributivity of this tail forcing. Indeed this is standard for preservation
results about w-superstrongs. To be explicit: every element of M[G,] is of
the form og, for some o = j(f)(a) with a € H(X). Suppose D is a a dense
class in the tail of forcing iteration, defined in M[G,] as {p | ¥(p, d)} for some
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parameter d = j(f)(a)g, with a € H()). Since the tail P* of the forcing is
< Mt-strategically closed and |H(\)| = ), it is dense for ¢ € P* to extend an
element of D, = {p | ¥(p, f(z)g,)} whenever z € H()\) and D, is dense in
P*. We may therefore take such a ¢ lying in G*, and by elementarity have
that j(q) extends D. That is, j/[G*] indeed generates a generic filter over M
for (PMM. O

Stationary reflection

For regular k > A, SR(k, \) is the statement that for every stationary
subset S of kN Cof(\) there is a v < k such that S N~ is stationary in .
Note that O, refutes SR(a™t, \) for every A < a: the function { — ot (Ck)
from (a™ N~ a+1)N Cof(N) to a + 1 is regressive, and so is constant on a
stationary set S. But now if S N~y is stationary in v, then a pair of distinct
elements of S N1lim(C,) can be found, violating coherence.

For any cardinal o, we say that a cardinal x < « is a*-stationary sub-
compact iff for each A C H(a™) and stationary S C ot there are & < &,
a < a, A, S and embedding 7 : (H(a*),A,5) — (H(a"), A, S) sending its
critical point to k such that S is stationary in a*.

Note that in the previous definition the set A can be coded into the
stationary set S and therefore can be omitted from the definition. We will
use this fact in the proofs below.

Since H(ST) is correct for stationarity of subsets of 5, we have that if
k < Bt < a and k is a-subcompact, then k is ST -stationary subcompact,
and moreover if 7 : (H(a),A) — (H(a),A) is an embedding with critical
point % witnessing the a-subcompactness of x for some A C H(«), then for
all Bt < &, R is B -stationary subcompact.

This strengthened subcompactness notion is sufficient to obtain station-
ary reflection.

Proposition 25 If there exists some k < « such that k is o™ -stationary
subcompact, then SR(a,w) holds.

Proof. Suppose k < «a is aT-stationary subcompact, let S be a stationary
subset of a™ N Cof(w), and let 7 : (H(a™),S) — (H(a™),S) with critical
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point % and S stationary in @t witness a-subcompactness of x for S. We
may assume that @ is less than . Let A = sup(w[a™]); we claim that S N A
is stationary in A. The pointwise image of @™ in at is countably closed and
unbounded in A, so for any club C' C A, C' N w[a*] is also countably closed and
unbounded in A. Therefore, 771C' is countably closed and unbounded in a™,
and hence has nonempty intersection with S. But now taking £ € SN7~'C,
we have m(§) € SN C, and so SN\ is stationary. O

Again, we have a complementary result under the GCH.

Theorem 26 Suppose the GCH holds. Let I = {« | 3k < a(k is a-subcompact)}
be as before, and similarly let

J ={a| 3k < a(k is at-stationary subcompact)} C 1.

Then there is a cofinality-preserving partial order P such that for any IP-
generic G the following hold.

1. 1V =T and JVIE = J.
2. SR(a,w) fails in V[G] for all a ¢ J.
3. O, holds in V[G] for all o ¢ I.

4. w-superstrongs are preserved.
15.-16.Vorlesungen

Theorem 27 Suppose the GCH holds. Let I = {« | 3r < a(k is a-subcompact)}
be as before, and similarly let

J =A{a| Ik < alk is at-stationary subcompact)} C I.

Then there is a cofinality-preserving partial order P such that for any P-
generic G the following hold.

1. IV =T and JVIE = J.
2. SR(a*,w) fails in V[G] for all a ¢ J.
3. O, holds in V|G| for all o ¢ 1.
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4. w-superstrongs are preserved.

Proof. Again P will be a reverse Easton iteration. At stage o for a € J, we
take the trivial forcing. For a € I ~ J, we take the forcing R, that adds a
non-reflecting stationary set to ot N Cof(w) by initial segments; this forcing
is at-strategically closed and (by the GCH) of size a™. For o ¢ I, we take
a three stage iteration, first forcing with R,. Next, we force with the partial
order C® that makes the generic stationary set from R, non-stationary by
shooting a club through its complement. Third, we force to make [J, hold
with S,. The two stage iteration RQ*CE is < a'-strategically closed, as is S,,
so R, * @5 %Sq is < a-strategically closed. It also has a dense subset of size
at. Thus, our reverse Easton iteration will indeed preserve cofinalities. We
will denote by Pjs the iteration below stage 5 and by Gg the corresponding
generic; for k inaccessible, P, is a direct limit, so we can and will identify P,

with . . P,.

It only remains to show that the classes I and J are preserved by the
forcing. We show that if 5 belongs to J and x < [ is any ['-stationary
subcompact in V' then x remains ['-stationary subcompact in the generic
extension V[G]. Also, if § belongs to I\ J and k < [ is the least 5-
subcompact in V' then x remains S*-subcompact in V[G]. These facts suffice
to show that I and J are preserved, as Oz will hold in V[G] for 5 ¢ I and
SR(A,w) will fail in V[G] for 5 ¢ J.

If 8 belongs to J and x is S*-stationary subcompact, then the forcing
is trivial at stages from x up to and including 3, and is < g7 *-strategically
closed from stage 5+ onward, so no new subsets of H(51) are added after
stage k. Thus, to show that S*-stationary subcompactness is preserved, it
suffices to show that for any condition p and any P,.-name o forced by p | k to
be a stationary subset of 57, there is an extension ¢ of p forcing the existence
of an embedding from (H(3H)VI¢ 5%) to (H(BT)VIC, 0%) witnessing the
[+-stationary subcompactness of x for ¢“ in V[G]. As o is forced by p |
Kk to be stationary in ST and P, is only of cardinality s, there is some ¢
extending p and some S € V stationary in 8% such that ¢ | x IF S C 0.
In Vet m : (H(3),q,5,6) — (H(B"),q | x,S,0) with critical point &
and S stationary in 8T witness the S*-stationary subcompactness of x for
(¢ | k,S,0). Then § = q | k since the latter is bounded below x, and
q | r forces S to be a stationary subset of . Now by Silver’s lifting of
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embeddings method, ¢ forces m to lift to an elementary embedding 7* :
(H(BTVIGHA 56.) — (H(BH)VIC 64.), since 7[Gx] = Gx C G,. That is,
we have 7 : (H(pH)VIC %) — (H(pH)VIC, ¢%) with ¢ stationary, as
required.

If B belongs to I\ J and x is 8"-subcompact then the forcing is trivial
on [k, 3), is Rg at stage §, and is < 7 "-strategically closed thereafter. Let
k be the least S*-subcompact and for & < k choose A(k) C 7 so that &
is not ST-subcompact with respect to the predicate A(%); this is possible as
K is the least ST-subcompact and any subset of H(5%) can be coded by a
subset of 1. Let A be the join of the A(r)’s: A ={(k,v) |~ € A(R)}.

Now suppose that p forces the Ps i-name o to be a subset of 7. Note
that p | 8+ 1 is comprised of p | kK, a Pc-condition that is thus bounded
below k, and a name p(3) for an Rg-condition. Take 7 : (H(3%),p,5,A) —
(H(BT),p | 8+ 1,0,A) witnessing the St-subcompactness of x for (p |
B+1,0,A) with & = (the critical point of 7) least, and 3 least for this choice
of k.

Claim. 3 does not belong to I.

We must show that no & < § is Bt-subcompact. If % is less than & then
i cannot be Bt-subcompact for the predicate A(&), else by composing with
the map 7 we would get the S*-subcompactness of & for the predicate A(r)
(k is not moved by 7). If & equals % then it cannot be S*-subcompact for
the predicate (p,o, A), else by composing with 7 we would contradict the

leastness of k. Finally, if # lies in the interval (%, 3] then by composing with
7 we contradict the leastness of 5. This proves the Claim.

Now & is T-stationary subcompact for ¥ < 3, so the forcing is trivial on
[, ), is Rj* (Cﬂg * SB at stage 3, and is < BT+ -strategically closed thereafter.
In particular, H(BT) receives no new elements from stage & of the forcing
onward. Note that p[% = p [ &, p(3) is a name for an Rj condition, and &
is a Pj * Rg—name for a subset of 3. Extend p to g extending p(/3); this
is possible as p [ 8 = p | k so p is trivial at § < . Now, the key point is
that gy can be extended to a condition g forcing the generic Ggr, for Rs to
extend W[GB’RB], since the pointwise image of the C%—generic verifies that the

pointwise image of the Rj-generic has union non-stationary in sup(w[3+]).
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Hence, g forces that 7 lifts to an embedding
o (H(B-F)V[GB,]RB]?&GB,IRB) s (H(BT) (Gl oG,
But this is the same as
w s (H(BHY 5% — (H(51)"9,09),
and we are done for this case.
The preservation of w-superstrongs is as in the previous proof. O
17.-18.Vorlesungen

For any cardinal a, a O, -,-sequence is a sequence (Cg | f € a™ N Lim )
such that for every 8 € a™ N Lim :

Cg is a set of closed unbounded subsets of 3
1< |Col < pu

ot (C) < a for every C € Cp

For any C' € Cg and v € lim(C), C Ny € C,.

We say O, <, holds if there exists a O, <,-sequence, and we write O, , for
Da,<u+-

Of course, O, is simply O,, and the strength of the statement O, ., can only
decrease as p increases. (In fact, Jensen shows that the strength can strictly
decrease as p increases.) Weak square, denoted O}, is O, ,, and O, 4+ is
provable in ZFC for all a.

Theorem 28 Suppose k is ot -subcompact for some k < a. Then Oq <oof(a)
fails.

Proof. Suppose for contradiction that C = (Cs | 8 € a™NLim ) is a Oy ccof(a)-
sequence. We can take an a-subcompactness embedding

71 (Hg+,€,C) = (Hy, €,C)

with critical point some & < a* such that 7(k) = k, and & < . Let A be the
supremum of 7[a*], let C' be an arbitrary member of Cy, and consider the
inverse image D of lim(C') under 7. Then D is (< k)-closed and unbounded
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in a*, so we may take some 3 € D of cofinality different from cof (&) such
that |D N | = a. Let 3 denote 7(3).

Now, for any ¥ < 8 in D, n(¥) € CN7(B) € Cg, so by elementarity there
is some C' € Cz with 4 € C. But there are fewer than cof (@) elements of Cj,
and as cof (f) # cof (@), each of them has ordertype strictly less that @; so
|UC3| < @, and not all v € DN j3 can be covered in this way. O

If Of holds then there is a O% sequence (an improved square sequence,
DZ%’) with the added property that for all limit § < a, there is a C' € Cg
with ot (C) = cof (B). Indeed, if we choose an arbitrary sequence (D, | v <
a) such that D, is a club in 7 of order type cof (), then for any O -sequence
C, we may obtain a O}P-sequence by adding {§ € C' | ot (C'N4) € D,} to

Cs for every C' € Csz and 7 such that ot (C) € Lim (D,) U {7}

Theorem 29 (GCH) Suppose k is aT-subcompact for some k < « with
cof (o) < k. Then O, , fails.

Proof. Suppose for contradiction that C is a DZT‘O{’ sequence, and let
7 (Hg+,€,C) = (Hy+, €,C)

be an embedding witnessing the a*-subcompactness of x for C. The hypothe-
sis cof (o) < k implies that in fact cof («) = cof (@) < k. Let A = sup(n[a™]),
and take C' € Cy with ot (C) = a* = cof (\). Let D be the preimage of
Lim C under 7; it is an w-closed unbounded subset of a™. Let ¢ be the
a-th element of D. As 7(¢) is a limit point of C, it follows by coherence
that C' N 7(¢) € Cr(c)- Now for every subset X of D N ¢ of size less than &,
m(X) = 7[X] C CNm(¢) € Cr(e), s0 by elementarity, there is an element Cy
of Q such that X C C. But there are @<% > & such subsets X of DN ¢ and
only @ elements of C¢, so some single element of C; must cover more than
& many such X. This is impossible as each element of C; has ordertype less
than a. O

We now sketch the proof of a result establishing the optimality of Theo-
rems 28 and 29.

Theorem 30 Let K denote {a | There is an o -subcompact k with cof (o) <

k}. Then there is a cofinality and ZFC-preserving definable class forcing P
such that for P-generic G:
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(a) If k is aT-subcompact in V then it remains so in V|[G].
(b) Oacof(a) holds in VG| for a ¢ K.
(¢) w-superstrongs are preserved.

Proof sketch. P is the reverse Easton iteration which at stages a in K does
nothing and otherwise adds a O, ,()-sequence by the following forcing:

Let cof (o) = p and fix (a; | ¢ < p) an increasing sequence of regular
cardinals such that p < ag and sup, o; = a. Conditions are of the form

where:

L. |p| is a limit ordinal < at.

2. iP(5) < p for limit B < |p|.

3. If #*(B) < i < p then Cg; is club in 5 of ordertype < a;.

4. If#(f) <i < j < pthen Cg,; C Cy;.

5. If P(y) < i < p and f is a limit point of C,; then #(5) < i and Cp,; =
C,.:Np.

6. If 5 and ~ are limit ordinals with 5 < ~ < |p| then £ is a limit point of
C,,; for sufficiently large ¢ < p.

Extension is defined by: ¢ < p iff |p| < |q| and for limit 5 < |p|, i?(5) = ()
and C}, = Cf ; for all i with i"(8) <i < p.

It can be verified that P is < p-directed closed, is < a-strategically closed
and adds a O, cop(a)-sequence. So P preserves cofinalities and ZI'C, and we
get conclusion (b) of the Theorem. (The verification of (¢) is as in earlier
proofs.) It remains to show that instances of subcompactness are preserved.

Suppose that x is a-subcompact in V" and p is a condition forcing that
the name o denotes a subset of . We can assume that o is in fact a P, -
name as the forcing after stage o does not add subsets of at. Applying
subcompactness to the name o and the condition p,,1, which can be viewed
as subsets of a™, we get:

m: (H(a"),5,p) = (H(a"), 0, pat1)

with critical point & and & < &, 7(k) = k. We want a condition ¢ extending
p which forces that 7 can be lifted to:
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m: (H(@)", 6% p) = (H(a")V, 6%, pasa).
For this it suffices that ¢ forces 7[Gay1] C Gaq1.

Now the forcing P, factors as P, * P|k,a] where P, forces Pk, ] to
be < k-directed closed: This is because the forcing Pk, ] is nontrivial at
stage 0 € [k, a] only if cof (8) > k (else  belongs to K), in which case it
is < cof () and therefore < r-directed closed. It now follows that we can
extend p to ¢ forcing 7[Gs] C Gui1 as 7[Gz] = Gr C G, and by directed
closure we can form a master condition extending 7[G[R, @] to ensure that
it is contained in G[k,a]. So the a-subcompactness of k is preserved, as
desired. O
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