Isomorphism Relations, Sommersemester 2008
1.-2.Vorlesungen
Analytic equivalence relations

This course will focus on definable equivalence relations which arise na-
turally in model theory. They form a special case of analytic equivalence
relations on a Polish space, which I now describe briefly.

A Polish space is a complete, separable, metrizable space. The best ex-
ample is Baire space w*, consisting of all w-sequences of natural numbers
with topology generated by the clopen sets. Other examples are the reals,
the Cantor space 2. The Borel sets of a Polish space are the elements of the
least o-algebra generated by the open sets of the space. A function between
Polish spaces is Borel iff the preimage under the function of each Borel set
is Borel. The analytic sets are the continuous images of Borel sets, i.e., sets
of the form f[A] where A is a Borel subset of some Polish space and f is a
continous map between Polish spaces. Equivalently, a subset A of a Polish
space X is analytic iff for some Polish space Y and Borel subset B of X XY,
A is the projection of B, i.e., {x | Jy(z,y) € B}.

If X is a Polish space then so is X" (with the product topology) for
each n; thus we may talk about analytic n-ary relations on Polish spaces. In
particular, an equivalence relation R on a Polish space X is analytic iff it is
an analytic subset of X x X.

There are a number of interesting results about general analytic equiva-
lence relations (on Polish spaces), some of which I will discuss in this course.
But my main focus is on a smaller class:

Orbit equivalence relations

If G is a group and X a set then an action of Gon X isamapa: GxX —
X, usually written a(g,z) =g -x, such that e-x =x and g- (h-x) = gh - x.

A topological group is a group (G,-,e) together with a topology on G
such that (z,y) — zy~! is continuous from G? to G. A Polish group is a
topological group whose topology is Polish. An action of GG on a topological



space X is continuous iff it is continuous as a map from G x X to X. A
Polish action is a continuous action of a Polish group on a Polish space.

Examples of Polish groups

Countable groups with the discrete topology

(R, +)

The torus (R/Z,+)

(Z¥,+) (the Cantor group)

Lie groups, like GL(n,C), U(n)

The unitary group U(H) where H is an infinite-dimensional Hilbert space
(i.e., the infinite-dimensional analog of U(n)

The group of homeomorphisms of a compact metrizable space X
The group of isometries of a complete, separable metric space
(X, +) where X is a separable Banach space

S+, the permutation group of N

Ezxamples of Polish actions

Polish groups act on themselves: g - x = gz (left action), g -z = xg~! (right
action), g - ¥ = grg~! (conjugation).

If GG is a group of permutations of X then G acts on X in the obvious way:
g-z=g(x).

U(n) acts on nxn matrices by conjugation. The infinitary analog is the action
of U(H) on L(H) where the latter is the set of bounded linear operators on
the Hilbert space H. (But L(H) is not obviously Polish.)
Measure-preserving transformations of a Polish space, equipped with a Borel
measure (ergodic theory).

A group action a : G x X — X induces an orbit equivalence relation:
rE.y iff 3g € G(g - x = y).
The equivalence classes of F, are called the orbits.

A (proper) subclass of the analytic equivalence relations are the orbit
equivalence relations arising from Polish actions.

Logic equivalence relations (LER’s)

Of central interest in this course are the orbit equivalence relations indu-
ced by a continuous action of the permutation group of N, called S.,. These



actions are called the logic actions, and the resulting equivalence relations
we call the logic equivalence relations for reasons we now describe.

Let £ denote a relational first-order language with relation symbols R;,
1 € I, where [ is nonempty and countable and R; is n;-ary. Denote by X,
the space [, 2V, which is homeomorphic to Cantor space. We can view X,
as the space of countably infinite structures for £ by identifying x = (z;);es
with the structure A, = (N, R7");c; where for 2 € N™, R**(s) holds iff
x;(z) = 1. The logic action of Sy, on X is defined by setting J.(g,z) = y iff
g is an isomorphism of A, onto A,. The associated orbit equivalence relation
is the isomorphism relation ~, on L-structures with universe V.

More generally, consider a sentence ¢ of L., (for example, the conjunc-
tion of a first-order theory in the language £). Let Mod(y) denote the set of
L-structures with universe N which satisfy ¢. Then Mod(y) is a Borel sub-
set of X, and ~/ restricted to Mod(y) is an analytic equivalence relation on
the Borel set Mod(p). A logic equivalence relation (LER) is an equivalence
relation of this form, i.e., the isomorphism relation restricted to Mod(y) for
a sentence @ in L., for some countable relational language £. Thus an LER
is the restriction to an invariant Borel set of a continuous action of S, It
can be shown that any Polish action restricted to an invariant Borel set B is
in fact a continuous action on B for a topology refining the topology that B
inherits as a subspace. Thus any LER is in fact the orbit equivalence relation
of a continuous action of S, on a Polish space. Conversely, it can be shown
that any continuous action of S, on a Polish space is “equivalent” (in a sense
made precise below) to an LER.

Borel reducibility

How do we compare equivalence relations? If | F' are equivalence rela-
tions on Polish spaces X, Y then we write

E<p F

iff there is a Borel reduction from E to F), i.e., a Borel function f: X — Y
so that for any xg,z; in X:

.’L'UE.TI iff f(l'o)Ff(l’l)

We write ~p for (<p and >p) and <p for (<p and #p).
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There are <g-complete LER’s, to which all LER’s are Borel-reducible
(examples below). A <pg-complete LER is necessarily analytic and not Borel.
I next describe a <p-cofinal hierarchy of Borel LER’s, together with some

examples that occur at particular levels of this hierarchy. The hierarchy looks
like this:

0<1l< - <w<R<E<E,<F<F3< --<F,<--(a<w)
1. Borel-equivalent to w.

Finite linear orderings

2. Borel-equivalent to R

Orderings of type w with a unary predicate

Smooth = Borel-reducible to R.

3. Ey = equality mod finite on subsets of w

Subgroups of (@, +)

4. F,, = <p-largest countable Borel equivalence relation
Countable = has countably many equivalence classes.
Fact: Any countable Borel equivalence relation is an LER.

Locally-finite, connected graphs
Finitely-generated groups
Fields of finite transcendence degree over ()

5. F,

cFyy iff {z, | n € w} ={y, | n € W}

cFyy iff {{(xy)n | n € w} | m € w} = same for y
etc.

Each Borel LER is Borel-reducible to some F,
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Equivalent to Fy:

locally-finite graphs
Archimedean totally-ordered Abelian groups with a distinguished positive
element

6. Beyond Borel

<p-complete LER’s: graphs, trees, fields, groups, linear orderings, Boolean
algebras

Abelian groups: Invariants are elements of 2<“* (Ulm invariants). Not known
to be complete.

Abelian p-groups: Not complete.
7. Beyond LER’s

Hjorth: An orbit equivalence relation is reducible to an LER iff it is not
“turbulent”.

Non-turbulent = invariants are given by countable structures
Examples of turbulent actions:

Conjugacy on the homeomorphism group of the unit square
Conjugacy of ergodic, measure-preserving transformations
Unitary equivalence of unitary operators

Biholomorphic equivalence of 2-dimensional complex manifolds

8. Beyond orbit equivalence relations

Ey : xFEyy iff {z, | n € w} almost equals {y, | n € w}

Composant equivalence relation for certain indecomposable continua
3.-4.Vorlesungen

More about LER’s

We now justify some of our earlier claims about LER’s, and prove some
additional ones. Recall that the LE’s are those analytic equivalence relations



(on a Borel subset of a Polish space) which arise as the isomorphism relation
restricted to models of some sentence of L,,,. We describe how these arise
from group actions of S, the Polish group of permutations of N. Suppose
that £ = {R;}ics is a countable relational language where R; is m;-ary. We
write Mod for [[,., P(N™), the space of L-structures with universe N. The
logic action j, of S, on Mod, is defined as follows: If x = {z;},c; € Mod,
and g € S, then j-(g,7) = {y;}ier € Mod,, where

(k1y .o km,) € 2 = (g(k1), ..o, g(kmy)) € s

for all i € I and (ky,...,ky,) € N™. Then (Modg,j.) is a Polish S.-
action and we denote the resulting orbit equivalence relation by ~,. If GG is
a subgroup of S, then the orbit equivalence relation of j restricted to G is
denoted by ~¢.

A set M C Mod, is invariant iff it is closed under isomorphism. Let
L., denote the infinitary language which results by closing the first-order
language £ under countable conjunctions and disjunctions (of sets of formulas
whose free variables are contained within some fixed finite set). If x belongs
to Mod, then x F ¢(iy,. .., 1,) has the obvious meaning, where ¢ is a formula
of £,,, and 41,...,1, belong to V.

Theorem 1 A set M C Mod, is invariant and Borel iff for some sentence
0 of Lojw, M ={x € Mod; | x E p}.

Corollary 2 The LER’s are exactly the restrictions to invariant Borel sets
of the orbit equivalence relation induced by the logic action jo, for some
countable relational language L.

Proof of Theorem 1. Suppose that M is the set of models of some sen-
tence. Then M is obviously invariant. To see that M is Borel, we show that
for any formula ¢(vo,...,v,—1) and (ig,...,%,—1) € N™, the set of x such
that x F ¢(ig,...,i,—1) is Borel. If ¢ is atomic then this set is clopen. The
connective cases are immediate, as the collection of Borel sets is closed under
complement and countable unions and intersections. Finally, suppose that
©(vo, -+, V1) is Yu,¥(vo, ..., v,); by induction, the set B; of x such that
x EY(ig,...,i,_1,1) is Borel for each i € N. It follows that the set of x such
that © F (i, ...,i,—1) is Borel, as this set is the intersection of the Borel
sets B;.



For the other direction, let M be invariant and Borel and set By = {g €
Se | 8 C g} for any injective s € N<“. Each B is clopen. For A C S, write
sl A(g) iff the set By N A is co-meager in B.

Claim 1. M = {zx € Mod, | O IF g7 -z € M}, i.e., M consists of those
such that the set of g € Sy, with ¢g7! - 2 € M is co-meager in S..

Claim 2. For any Borel M C Mod, and any n there is a formula ¢}, (v, . .., v,—1)
of L, such that for every x € Mod, and every injective s € N", we have:
T E oY (s, s 80 1) iff sIEgTt -2 e M.

The Theorem clearly follows from these two claims. Claim 1 is clear, as
if x belongs to M then g~! -z belongs to x for every g € S, and conversely,
if x does not belong to M, then ¢! - x belongs to M for no g € S..

Claim 2 is proved by induction on the Borel rank of M. For simplicity
assume that £ has just one binary relation R. If M is of the form {z € N? |
(k,l) € x} then if k, [ are less than n take ¢4, (vo, ..., v,—1) to be R(vg, v;) and
otherwise take ¢%,(vo,...,v,_1) to be any contradiction. If ©%, (v, ..., v,_1)
is defined then take ¢” ,,(vo,...,v,_1) to be:

Nisn (If (o, ..., up—1) is an injective sequence extending (vo, ..., v,-1) then

~ golj“\é,(uo, ey U—1))-

(This works because ~ M is co-meager below s iff the complement of M is
not co-meager below any extension of s.) Finally, if M is the intersection of
M;, j € N then take ¢} (vo, ..., vn-1) to be A; @5y (vo, ..., 0n1). O

Definition 3 An equivalence relation (on a Borel subset of a Polish space) is
classifiable by countable structures iff it is Borel-reducible to the isomorphism
relation ~, on the countable structures for a countable language L.

LER’s are obtained by restricting the logic action j, to an invariant Borel
sett B. Such a relation is trivially Borel-reducible to ~,, via the identity
restricted to B.

We can also restrict j, by replacing S, by one of its closed subgroups G.

The resulting equivalence relation ~¢ is expressed by: z ~% y iff z and y are

isomorphic via a permutation in G.



Theorem 4 The equivalence relation ~% induced by a closed subgroup G of
Seo 18 classifiable by countable structures.

Proof. For any z € Mod, define Aut, = {g € Sy | g - = z}, the group of
automorphisms of x.

Lemma 5 The closed subgroups of Sy, are exactly the automorphism groups
of countable structures for a countable language.

Proof of Lemma 5. Clearly each automorphism group is a closed subgroup.
For the other direction, let G be a closed subgroup of S... Let I,, be the set
of G-orbits on N", i.e., the set of equivalence classes of elements of N" under
s~ tiff t = gos for some g € G. I, is a countable subset of P(N"). Let [
be the union of the I,,’s, for any ¢ € I,, let R; be an n-ary relation symbol
and let £ be the resulting language. Now define x € Mod, as follows: For
i € I, v E Ri(ko, ... ,kn_1)iff (ko,...,kn,_1) belongs to i. Then G = Aut,,
using the fact that G is closed. O (Lemma 5)

Now to show that ~¢ is classifiable by countable structures for a closed
subgroup G of S, write G as Aut, for some countable structure y for a
language £’ disjoint from £. The map = — (z,y) is then a Borel reduction
of ﬁg to >~ rus! - O

5.-6.Vorlesungen
Theorem 6 The equivalence classes of any LER are Borel.

Proof. We use “Scott analysis”. Let A, B be structures for a countable rela-
tional language £ and let @, b be finite sequences from the universes of A, B
of the same length. We define the relation (A,a) ~ (B,b) by induction on
a as follows:

(A, a) ~° (B,b) iff a, b satisfy the same atomic formulas in A, B, respectively.
(A, a) ~T (B, b) iff for any c there is a d such that (A, a,c) ~* (B,b,d) and

conversely, for any d there is a c such that (A, a,c) ~* (B,b,d).
For limit \, (A,a) ~* (B,b) iff (A,a) ~* (B,b) for all a < \.

For a countable A, the least ordinal a such that (A, a) ~* (A, b) implies
(A,a) ~>T1 (A, b) for all a, b is called the Scott rank of A, denoted sr(A).



Then sr(.A) is a countable ordinal and by a back-and-forth argument, if A
and B are countable and have the same Scott rank, then for any a, b, if
(A, a) ~*"A) (B, b), then (A, a) is isomorphic to (B,b). In particular, for any
countable ordinal «, the isomorphism relation restricted to models of an £,
sentence o which have Scott rank at most « is Borel.

«

The equivalence relations ~® are closely related to the infinitary logic
L, .. For any formula ¢ of that logic, define the quantifier-rank of ¢, qr(y),
as follows:

qr(y) = 0 for atomic .

(

r(~ ) = qr(yp).
(Vo)
(

Q0

~ qr

1Y) = ar(Bog) = ar(i) + 1.

qar(A, n) = ar(V,, ¢n) = sup, ar(en).

Then (A,a) ~“ (B,b) iff (A,a) and (B,b) satisfy the same sentences of
quantifier-rank < a.

In fact, we can assign to any (A, @) and ordinal o a formula @é’a (1, ..., Tp)
(where a has length n) such that (A, a) ~* (B,b) iff B E ¢3"*(b):

go,“;l’o is the conjunction of all atomic and negatomic formulas satisfied by a

in A.
A 1 A7 A?
(IDCL or - SDEL “ /\ /\anH(EIxN-l—l)SDa,aiH /\ (an_i_l) \/a n41 SOa aO:L+1

cpa * is the conjunction of the gpj—f’a for a < A.

For any A the following sentence expresses the fact that the Scott rank of A
is at most a:

A Ny (VT )0 (@ wn) = Tl ().

Then for any countable A, a countable B is isomorphic to A iff B satisfies
the sentence gogr(A) A A7 (A) Te., the isomorphism type of A is described
by a single sentence of £, ., called the Scott sentence of A and therefore the
isomorphism type of A is Borel. O

If there is a fixed countable bound « on the Scott ranks of the countable
models of the L, ,, sentence o, then the entire isomorphism relation on coun-
table models of o is Borel, as we have seen that isomorphism restricted to



models of Scott rank at most « is Borel. By the same argument, the relation
“(A,a) is isomorphic to (B,b)” where A, B are countable models of o (and
a, b are finite sequences from A, B, respectively) is Borel.

Conversely, we have:

Theorem 7 Suppose that o is a sentence of L., where L is a countable
relational language. Suppose that the relation “(A,a) is isomorphic to (B,b)”
where A, B are countable models of o, is Borel. Then there is a countable
bound on the Scott ranks of the models of o.

Proof. We use some descriptive set theory. For any real x let A, denote the
countable structure coded by z. For simplicity, assume that the language £
can be coded recursively. Then for any z and any @, b of the same length
from A,, we have:

If (A,,a) % (A, b) then for some ordinal « less than w? such that (A,,a) =
(Aza l_))a

where wi denotes the least ordinal not recursive in z. By hypothesis, the set
B ={(x,a,b) | AF o and (A,,a) 2 (A,,b)} is Borel, and we have:

V(z,a,b) € B In(n codes an a-recursive wellordering <? and (A,,a)
(A;,b) where « is the length of <7).

Thus we have a total, IT] relation R(z,n) on B x w. By “easy uniformisation”
for I1; relations, there is a Borel function f defined on B such that R(z, f(z))
for all z in B. But then the set of <% ), v € B, is a X set of wellorderings.
The Boundedness Theorem says that there is a countable bound « on the
lengths of any X1 set of wellorderings, and therefore we have:

For models A, of o, if (A,,a) % (A,,b) then (A,,a) = (A,,b),
which implies that the Scott rank of each model A, of ¢ is at most o. O

Remark. The above proof only used the weaker hypothesis that the relation
“(A,a) ~ (A,b)” is Borel for models A of ¢. It can be shown that it is also
sufficient to assume that the relation “ A4 ~ B” is Borel.

A related result of Sami is the following:
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Theorem 8 An LER is Borel iff there is a countable bound on the Borel
ranks of its equivalence classes.

Proof. If E is an LER of Borel rank «a, then « is also a bound on the Borel
ranks of its equivalence classes. For the converse, we consider the relations:

rEy iff for all TIY E-invariant A, = belongs to A iff y belongs to A.

If o is a bound on the Borel ranks of £’s equivalence classes, then £ = E.
So it suffices to show that each E“ is I1j, for then F is both IT} and 31, and
therefore Borel.

Let U C w” x Mod (o) be a universal TI? relation (where E is the isomor-
phism relation on models of o). Define 7' C w* x Mod(o) by: (a,z) € T iff
{9 (a,g-x) € U} is comeager (where g - z is the action of S,, on Mod(0)).
It can be shown that 7" is Borel and the T, = {x | (a,x) € T}, a € w¥, are
precisely the E-invariant IT sets. Thus:

cE% iff for all 2z, (z € T, iff y € T)),

and so E is IT]. O

Remark. Tt is not in general true that if an analytic equivalence relation has
Borel equivalence classes of bounded rank then it must be Borel. Here is a
simple example due to Su Gao: Let X be Polish and consider Y = X x {0, 1}.
Fix an analytic non-Borel A C X. Consider then the equivalence relation on
Y defined by:

(x,m)E(y,n) iff (z =y € Aor (z,m) = (y,n)).

Its equivalence classes are {z} x {0,1}, if x € A, and {(z,n)}, if z ¢ A. It
follows that = € A iff (z,0)E(z,1), and so E is not Borel. Every E-class has
at most two elements!

7.-8.Vorlesungen

Theorem 9 There is a complete LER, i.e., an LER which is largest among
LER’s under Borel-reducibility. An example is the isomorphism relation for
binary relations on N.
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Proof. If £ is the relational language with infinitely-many n-place relations
for each positive n, then the isomorphism relation on L-structures is clearly
complete, as any LER reduces to it via the identity.

To prove the second statement, let HF (V') denote the set of all hereditarily
finite sets over the set N, where N is viewed as a set of atoms (i.e., elements
of N have no elements), and let € denote the membership relation for HF (V).
Also let ~gp ) be the isomorphism relation for binary relations on the set

HF(N). It suffices to show that any ~, is Borel-reducible to ~HF )"

Define an action of S, on HF(N) by: g -n = g(n), g {a1,...,a,} =
{9 -ai,...,q-a,}. Then for any fixed g € Sy, the map a — ¢ -a is an
e-isomorphism of HF (V).

Lemma 10 Suppose that X,Y are e-transitive subsets of HF(N), the sets
N\ X, N\Y are infinite and ¢ | X ~HEN € ['Y. Then there is f € Sy
such thatY = f- X ={f-s|se X}.

Proof. 1t follows from the hypothesis € [ X ~HF(y) € 'Y that there is an
e-isomorphism 7 from X onto Y. Then 7 restricted to X N N is a bijection
from Xqg = X NN onto Yy = Y N N and therefore there is f € S, such that
f agrees with m on X,. Then we have f-s = m(s) for any s € X. O (Lemma
10)

Now to prove Theorem 9, we first show that ~¢(,, is Borel-reducible to
~HF () for any m, where G(m) is the language with a single m-ary relation
symbol. For each z in Modg(m)y = P(N™) set ©(z) = {#(s) | s € x}, where
6((i1,...,im)) = the transitive closure under € of {(2i,...,2i,,)}. It follows
from the lemma that x is isomorphic to y iff € [ ©(z) is isomorphic to € [ O(y).
Thus ~¢(m) is Borel-reducible to ~HF (-

Finally we must show that ~, is Borel-reducible to ~HF (v) where L'
is the language with infinitely-many binary relation symbols. In this case
Mod, = P(NZ)N and we can assume that every x € Mod, has the form
r = {z,}n>1 with z, C (N \ {0})? for all n. Let ©(z) be {s,(k,) | n > 1
and (k,l) € x,} for any such z, where

sn(k; 1) = TC({{---{(k,D}---},0}),

where there are n + 2 pairs of braces and TC, denotes e-transitive closure.
Then O is a continuous reduction of ~,/ to ~HF (- O
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Theorem 11 (R, =) is the <g-smallest Borel LER with uncountably-many
equivalence classes.

Vaught’s Congjecture. (R, =) is the <p-smallest LER with uncountably-many
equivalence classes.

To prove Theorem 11, we first study the topology generated by the non-
empty lightface analytic (X1) sets.

The Gandy-Harrington Topology

Definition 12 Suppose that F is a family of sets in a topological space.
Then a subfamily D of F is dense in F iff every element of F contains
an element of D as a subset. We say that F is Polish-like iff there exists
a collection {D,, | n € w} of dense subfamilies of F such that (), F, is
nonempty whenever Fy O Fy D ... 1s a decreasing sequence of sets in F such
that {F), | n € w} intersects each D,

Lemma 13 The collection F of nonempty 31 subets of Baire space is Polish-
like.

Proof. Let X denote Baire space. For any P C X x X define proj P = {z |
JyP(xz,y)}. f P C X x X and s,t € N<“ then set Py = {(xz,y) € P|sCx
and ¢t C y}. Let D(P, s,t) be the collection fo all nonempty X1 sets X such
that either X Nproj Py is empty or X C P, 1.; for some i, j. Let (D,, | n € w)
be an enumeration of all D(P, s,t) where P C X x X is II}. Then each D, is
a dense subfamily of F.

Now consider a decreasing sequence X, 2 X; D --- of nonempty %!
sets such that {X, | n € w} intersects each D,; we show that () X, is
nonempty. Say that X is positive iff X,, C X for some n. For each n fix a
19 set P* C X x X such that X,, = proj P". For any s,t € N<“  if proj P"
is positive, then there is a unique ¢ and some j such that proj P"s it %
is also positive. It follows that there is a unique z = z,, € X and some
Y = yn € & such that proj Py}, ., is positive for each k. As P" is closed, we
have P"(x,y) and therefore z, = x € X,,. But z,, = z,, for each m,n, as if
both P,; and )y are positive, then either s C s’ or s’ C 5. O

The topology generated by the (lightface) 3i sets is called the Gandy-
Harrington topology. It is not metrizable, but does satisfy the Baire category
theorem.
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Proof of Theorem 11. In fact we show that (R, =) is Borel-reducible to any
1] equivalence relation with uncountably many equivalence classes. Let F
be a II} equivalence relation (on Baire space); for simplicity, we assume that
FE is in fact lightface I1}, as the proof below easily relativises to a parameter.
A set X is pairwise E-equivalent iff any two elements of X are E-equivalent
to each other.

If every = belongs to a Al pairwise E-equivalent set, then of course F has
at most countably many equivalence classes. So we assume that this is not
the case and let H be the nonempty set of x which do not belong to a A}
pairwise E-equivalent set.

Lemma 14 H is X{ and has no nonempty 1, pairwise E-equivalent subset.

Proof. Let (W, | e € I) be a nice II] enumeration of the A7 sets; i.e., the W.’s
are the Al sets and the relation {(x,¢) | e € I and x € W,} is the restriction
to X x I of a 3{ relation, where I is IT}. Then x belongs to H iff for all e, if
x belongs to W, then there are y, 2z € W, which are E-inequivalent. As E is
[0}, it follows that H is X].

If X is a nonempty pairwise E-equivalent X} set then B =, y[z]p is a
I} E-equivalence class and X is a subset of B. By the Separation Theorem
for 3] sets, there is a Al set C' such that X C C C B. Then by the definition
of H, C is disjoint from H, and therefore X is not a subset of H. O

Now let M be a countable elementary submodel of H(w;), the collection
of hereditarily countable sets. Then M satisfies ZF'C' minus the powerset
axiom. Let P € M be the forcing whose conditions are (codes for) nonempty
Y1 sets under inclusion, and let G C P be P-generic over M. Then by Lemma
13, the intersection of the ¥{ sets (coded) in G is nonempty. Let z¢ be the
unique real in this intersection. Such a real is said to be P-generic over M.

Now consider the forcing P? = P x P. If G is P?-generic over M then
the intersection of the X x Y for (X,Y) € G is a pair of reals z§, z§. Let
To, 1 be names for these reals.

Lemma 15 The condition H x H in P? forces that i is E-inequivalent to
Tq.
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Proof. If not, then choose a condition X x Y C H x H which forces zoFE1;.
Now if xg, 1 are any P-generic reals in X, there is a P-generic real y in Y
such that both pairs (z¢,y) and (x,,y) are P?-generic; it follows that z, and
x1 are F-equivalent.

Now consider the forcing P, consisting of all nonempty ¥} subsets of
X x X. If G is P,-generic then the intersection of the sets in G is a pair
(20, 1) of reals in X such that both zy and x; are P-generic and therefore
by the above are E-equivalent. But if G contains the condition (X x X)\ E
(which by Lemma 33 is nonempty), then the resulting x¢, 21 cannot be FE-
equivalent as the pair (xg, z1) belongs to the complement of £, contradiction.
O

Now to finish the proof of Theorem 11, build a perfect set A of reals
in H such that any distinct pair from A is P2-generic. Then by Lemma 15,
distinct reals in A are E-inequivalent, and therefore we have a Borel reduction
of (R,=) to £. O

9.-10.Vorlesungen
We next take a closer look at the the Borel LER'’s.

Definition 16 If E is an equivalence relation on a Polish space X then
E* is the equivalence relation on the Polish space X defined by: xEty iff
{lx(n)]g | n € N} = {[ly(n)]g | n € N}. If E; is an equivalence relation
on X; for each i € I then \/,.; E; is the disjoint union of the E;’s, i.e., the
equivalence relation on J,c {i} x X; defined by (i,x) ~ (j,y) iff i = j and
xFE;y. Define the relations F,,, a < wy as follows: Fy s equality on Baire
space, Fo 1 = FF, and F\ =\ _, F,, for countable limit ordinals \.

a? a<A

Theorem 17 An LER is Borel iff it is Borel-reducible to some F,, a < wy.

Proof. Clearly each F, is a Borel equivalence relation, so it follows that any
LER Borel-reducible to some F,, must also be Borel.

To prove the converse, we again use Scott analysis. By induction on a <
w; we define equivalence relations =% on P(N?) (= binary relations on N)
for s,t € N<“ of the same length as follows:
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A=}, Biff A(si, 5;) < B(ti, ;) for i, j < length s = length 7.
A =2 Biff VICEIZ(A = sk, txl B) and Vlﬂk(A = skl )

—st

A=) Biff A=% B for all a < A, A limit.

By a back-and-forth argument, A ~ B (more precisely, (N, A) ~ (N, B)) iff
A = B for all o < wy.

Lemma 18 Suppose that P is a ¥} set of pairs (A, B) where A, B are binary
relations on N and suppose that P is unbounded in the sense that for each
a < wy, P contains a pair (A, B) such that A =§; B. Then P contains a pair
(A, B) such that A ~ B.

Proof of Lemma. Let I be a continuous map from NV onto P. For u € N<¥
let P, be {F(a) | v C a}. There is a smallest ng such that P, is still
unbounded. Let ky = 0. Then there is [y such that P, is still unbounded
“over (ko), (lo)” in the sense that for each oo < wy, Py, contains a pair (A4, B)
such that A = ko). (lo) B. Tterating this, we can produce numbers n,,, kp,, ln
such that both (k,, | m € w) and (l,,, | m € w) are permutations of N and
for any m, the set P, . »,.) is unbounded over (Ko, ..., kn), (lo,--.,ln). Let

,,,,,

a be (n,, |m € N) and F(a) = (A, B) € P.
Then the permutation f(k,,) = [, witnesses A ~ B. O (Lemma 18)

Now suppose that E is a Borel LER. Then E is Borel-reducible to ~ on
binary relations; let © be a Borel reduction. Then {(O(z),O(y)) |~ xEy} is
a Y] set and does not intersect ~. It follows from the lemma that for some
a < wi, © reduces £ to =j;. Thus to finish the proof we only need the
following:

Lemma 19 Let = denote =, for any a < wi. Then = is Borel-reducible
to some Fpg.

Proof of Lemma. We show that each =¢, is Borel-reducible to some Fj3. The
relations =% have countably-many clopen equivalence classes, and hence are
Borel-reducible to Fy, which we can take to be equality on N. For each «,
the function (s, A) — {(s x k,A) | k € N} is a Borel reduction of =~*!
to (=*)*. For limit A < wy, write A as the limit of an increasing sequence
(A\n | n € W); then (s, A) — {(m,s, A) | m € N} is a Borel reduction of =*

to (V,.en =Mt O
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Remark. It is also not difficult to show that each F, is an LER. This is
because the collection of LER’s is closed under the operations * and \/, ..

Note that Vaught’s conjecture would follow from Silver’s theorem if we
could show that each LER is either Borel or complete, as any complete LER
has continuum-many equivalence classes. Unfortunately:

Theorem 20 There is an LER which is neither Borel nor complete.

To prove this we take an excursion into the theory of Abelian torsion
groups, i.e., Abelian groups (G, +) with the property that for every g € G
there is n € N such that g+ g+ --- + ¢ (n times) equals 0. The following
lemmas show that ~ 4,4, the isomorphism relation on these groups, serves as
a witness to our theorem.

Lemma 21 (Ulm invariants) There is an “absolute reduction” of =~ to
equality on N<“1.

We can take “absolutely reducible” to mean: some formula defines a re-
duction which works in any transitive model of (enough) set theory.

Lemma 22 Not every LER is absolutely reducible to equality on N<*!.
Lemma 23 ~ 4, is complete analytic as a binary relation.

Lemmas 21 and 24 imply that ~ 4, is not complete as an LER and Lemma
23 implies that it is not Borel.

Proof of Lemma 21. Any Abelian torsion group G can be written as a direct
sum Zp G, where p varies over primes and G, is a p-group (i.e., for each
there is an n such that p" -z = x4+ 2z + --- + x (p" times) equals 0. If G is
a p-group then G in turn can be written as G, & G4 where G, is divisible
(i.e., for each z there is y such that p-y = z) and G, is reduced (i.e., G,
has no divisible subgroups other than {0}). Now G is just a direct sum of
copies of Z(p>), the group of p"-th complex roots of unity, n > 0. So to
classify Abelian torsion groups, it suffices to classify reduced p-groups, for
the various primes p.

Fix a prime p. For any countable P-group G, pG denotes {p-x | x € G}.
Then define:
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°G =G
PTG = p(p*G)
PG =Ny PG, A limit.

Then p*G (= p*G for sufficiently large «) is the divisible part G, of G; of
course if G is reduced then p>G = {0}. The least a such that p®G = p*™'G
is called the length of G, written [(G).

For @ < I(G) we associate a cardinal number Ug(a), called the a-th
Ulm invariant of G. To define this, note that every element of p®G/p*™'G
has order p, and therefore this quotient can be regarded as a vector space
over Z,, the field with p elements, with some dimension. We let Ug () be
this dimension, which is an element of {1,2,... 00}. For a > [(G), we set
Ug(a) = 0.

Ulm’s Theorem. If G and H are reduced p-groups then G and H are isomor-
phic iff they have the same Ulm invariants, i.e., iff Us(a) = Ug(«) for every
Q.

Lemma 21 now follows: Associate to each countable Abelian torsion group
G its sequence of Ulm invariants, together with a 0 or 1, indicating whether
or not GG is reduced. This association is an absolute reduction of ~,, to
equality on N<«1. O

Proof of Lemma 23. It is a result of hyperarithmetic theory that there is
a Borel map L +— L* from linear orders of w to itself, such that L is a
wellordering iff L* is a wellordering iff L* + L* is not isomorphic to L*. To
each linear ordering L associate the tree 77, consisting of finite descending
L-sequences.

Now via a construction of Feferman, further associate to each tree 1" of
finite sequences from N an Abelian 2-group G7. The generators of G are g,
s € T, subject to the following relations:

For s of length greater than 1, gs + gs = g~ (where s~ is the immediate
predecessor of s in T').
For s of length 1, g5 + gs = 0.
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Then it is not hard to see that if 7" is a well-founded tree of rank «, then
the Ulm rank of G is approximately «. In particular, if 7" is another well-
founded tree whose rank is much bigger than «, then Gy and G+ are not
isomorphic. So we have that for any linear ordering L:

L is not a wellordering iff
L* is not a wellordering iff
L* + L* is isomorphic to L* iff
T+ is isomorphic to T« iff

Gr,. is isomorphic to Gr,. .-

The last equivalence holds because if L* is a wellordering of length «a, then
the rank of 77+, 1« is twice that of T7«. So we have Borel-reduced the set of
wellorderings of V, a complete analytic set, to the isomorphism relation for
Abelian 2-groups. O

11.-12.Vorlesungen
Lemma 24 Not every LER is absolutely reducible to equality on N<*1.

Proof. An example is FEy, equality mod finite for subsets of w. Suppose that
F were an absolute reduction from Ey to N<“, or equivalently, to countable
sets of countable ordinals. Let M be a countable transitive model of enough
set theory. Add a Cohen real g over M, and consider the Ey-equivalence class
[g] of g. Then F([g]) is a countable set of countable ordinals in M|g], by the
absoluteness of the reduction F'. But by the homogeneity of Cohen forcing,
the statement “a belongs to F([g])” is decided by the empty condition of
Cohen forcing for each countable ordinal a of M[g] and therefore F([g]) is
in fact independent of the choice of the Cohen real g. But there are distinct
Cohen reals gy, g1 with [go] unequal to [¢1], contradicting the fact that F is
a reduction. O

Theorem 25 There is a size continuum antichain in the ordering of counta-
ble Borel equivalence relations (and therefore in the ordering of LER’s) under
Borel-reducibility.

Embeddability relations: Logic Quasi-Orders (LQO’s)

A quasi-order is a reflexive, transitive relation. If R is a quasi-order then
the equivalence relation derived from R is given by zEy iff (xRy and yRx).
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A logic quasi-order, or LQQO, is the restriction of the quasi-order of embed-
dability to the countable models of a sentence of L., (for some countable
language £).

First observe the following.
Theorem 26 There is a <g-complete analytic quasi-order.

Proof. Let W, be an analytic subset of (2+)3 which is universal for analy-
tic subsets of (2¥)?, i.e., any analytic subset of (2¢)? is of the form {(y, 2) |
(x,y,2) € Wy} for some z. Define Wy by: (21, 20)Wi(y1,40) iff (z1 = 11 A
(1, 22,92) € W), and let W, be the least reflexive and transitive relation
containing Wj. Then W, is a complete analytic quasi-order: Clearly it is an
analytic quasi-order, as analytic relations are closed under existential quan-
tification over reals. If R is any analytic quasi-order on 2* with Wy-code z,
then

yi1Rys < (z,y1)Wa(z, y2),
and therefore the map y — (z,y) reduces R to W,. O

Theorem 27 Let E be an analytic equivalence relation on a Polish space
X. Then E is <g-complete as an analytic equivalence relation iff E is the

equivalence relation =g deriwed from a <g-complete analytic quasi-order R
on X.

Proof. Suppose that R is a complete analytic quasi-order. If F'is an analytic
equivalence relation on a Polish space, then F' is in particular a quasi-order
and therefore is Borel-reducible to R. But then the same reduction shows
that F' also Borel-reduces to =g, which is therefore a complete analytic equi-
valence relation.

Conversely, suppose that E is a complete analytic equivalence relation
on X and let Ry be a complete analytic quasi-order on 2. Let f : 2¥ — X
be a Borel reduction of =p,, the equivalence relation derived from Ry, to E.
Define:
zRy < xFyV Jadb(zE f(a) NyEf(b) A aRgb).

Then R is analytic and contains E. Let X, be {z | Ja(zEf(a))} and X; =
X \ Xo. Note that for z,y € Xy with 2(R \ E)y and any a,b with zF f(a)
and yE f(b), one must have aRyb, since f reduces =g, to E. Also points in
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Xo, X7 are R-unrelated and R and E agree on X;. It follows that R is indeed
a quasi-order, =p equals E and f is a reduction of Ry to R, so that R is
complete. O

Recall that no LER is complete as an analytic equivalence relation. Ho-
wever for LQO’s we have:

Theorem 28 There is an LQO which is complete as an analytic quasi-order
(and therefore there is a bi-embeddability relation which is complete as an
analytic equivalence relation).

Proof. First we introduce a particular complete analytic quasi-order <,,..,
and then use it to show that a certain LQO is also complete.

If s, are finite sequences from w of the same length, then we write s <
iff s(i) < t(7) for all ¢ < |s| and s + t for the sequence of length |s| whose
value at ¢ is s(i) 4 ¢(i). For any set X, a tree on X is a subset of X<“ closed
under restriction. If 7" is a tree on X X w then we say that T is normal iff
whenever (u, s) belongs to T" and s < t then (u,t) belongs to T. For s € w<¥
set T(s) = {u € X< | |u| = |s| A (u,s) € T}. Thus for normal 7' we have
s<t—T(s) CT(t).

A function f : w<¥ — w<¥ is Lipschitz iff f preserves both length and
extension.

Definition 29 Let T be the space of normal trees on 2 X w, with its natural
Polish topology. Define <,,q. on T by:

S <maz T < 3 Lipschitz f : w= — w<* Vs € w= S(s) C T(f(s)).

This is a strong way of saying that the projection of S is included in the
projection of T.

13.Vorlesung

<,naz 18 an analytic quasi-order on 7. To prove that it is complete, we
use the following “normal form” result for analytic quasi-orders on 2“.
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Lemma 30 Let R be an analytic quasi-order on 2¥. Then there is a tree S
on 2 X 2 X w such that:

(i) R is the projection of S, i.e., xRy iff for some z, (x|n,y|n, z|n) € S for
all n.

(i1) S is normal, i.e., if (u,v,s) belongs to S and s <t then (u,v,t) belongs
to S.

(111) If u € 2<% and s € w<¥ have the same length, then (u,u,s) belongs to
S.

() If (u,v,s) and (v,w,t) belong to S then so does (u,w,s +t).

Proof. Start with any tree T on 2 x 2 X w with R the projection of 7. If we
set 71 = {(u,v,t) | 3s < t(u,v,s) € Ty} then T; is normal and we have that
R is also the projection of 7. Also, if we let T be T7 U {(u, u, s) | |u| = |s|}
then T, satisfies (i),(ii) and (iii).

Finally we define S by: (0,0,0) € S and for k,n € w, u,v € 2F, s € Wk,
i,j €2 (uxi,v*jnxs)€Siff Jug,uy,...,uy € 2%(ug =uAu, =vAVl <
n(up, upgr, ) € To). (Soif n =0, (u*xi,v*7,0xs) €S iff u=v.)

Then S works: Clearly it is a tree. To check (i), note first that if (x,y, a) is
a branch through 75 then (z,y, 1xa) is a branch through S. So R is a subset of
the projection of S. Conversely, suppose that (z,y,n*a) is a branch through
S.Ifn=0,z=yand (z,y) € R. If n > 0 we get for each k sequences
(uF)i<n in 2% with uf = 2|k, ul = y|k and for i < n, (uf,uf |, alk) € Ty. By
the compactness of 2¥; we can find a subsequence (k;) and for i < n elements
z; of 2% such that ufl — z;, as | — oo. But then for i < n, (z;, z;41,0a) is a
branch through 75, hence z;Rz;.1. As 2o = x and z, = y, by transitivity we
get xRy, as desired.

To check (ii), let (u,v,s) € S and ¢t > s. The case of (0,0,0) is trivial.
So suppose u = u' *i, v = v xj, s =nxs and t = m*xt', with n < m
and s’ < t'. As Ty is normal we also have (u,v,n xt') € S, with the same
witnesses (u;);<,. Also, using property (iii) of 75 we can repeat the witness
up (m — n) times to get witneses for (u,v,m xt') € S, as desired.

(iii) follows from (ii) and the fact that if |u| = |s| and s(0) = O then
(u,u,s) €S.

Finally, to check (iv), let u = v *i, v = v % j, w = w' *xk, s = nx* s
and t = m = t’ satisfy (u,v,s) € S and (v,w,t) € S. By (ii) we also have
(w,v,n*(s'+t')) € S and (v,w,mx*(s'+1")) € S, as witnessed by say (u;)i<n,
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(V) j<m. But then (u;)i<p * (v;);<m is a witness that (u, w, (n+m)x*(s'+t')) €
S, as desired. O (Lemma 30)

Now we show that any analytic quasi-order R on 2“ is Borel-reducible to
<maz- Let S be the tree associated to R by the lemma and define f : 2¥ — 7T
by

fx)=5"={(u,s) € (2 xw)~“| (u,z | |ul,s) € S}.

The tree S* is normal as S is. We check that f is the desired Borel reduction.
Suppose first that S* <,,.. SY, witnessed by the Lipschitz map ¢ : w<* —
w<¥. Then the sequences ©(0%), k € w, extend each other and hence build
some a € w*. By property (iii), for all k, (z|k,0%) € S®, hence (z|k, p(0%)) €
SY. So (x,y,a) is a branch through S and by (i), zRy.

Conversely, suppose xRy and let a be such that (x,y,a) is a branch
through S. Define ¢ : w<“ — W< by ¢(s) = s+(a | |s|). The map ¢ is clearly
Lipschitz. Also, if s € 2F and u is such that (u, s) € S® we get (u,z|k,s) € S
and (z|k,y|k,a|k) € S. Hence by property (iv) of S, (u,ylk,¢(s)) € S and
(u, p(s)) € SY. So ¢ witnesses S* <,,4: SY, as desired.

14.-15.Vorlesungen

Finally we Borel-reduce <,,,, to a particular LQO, namely, the embedda-
bility relation on (countable) combinatorial trees, i.e., symmetric, irreflexive,
connected, acyclic binary relations. Fix some injection 6 of 2<“ into w such
that |s| < |t| implies §(s) < 0(t). For each T' € T we describe the combina-
torial tree Gr.

First we add, for each s € w<“\ {0} another vertex s* and put edges
between s* and s and between s* and the predecessor s~ of s. This defines a
combinatorial tree G. Then for each pair (u,s) € T we add vertices (u, s, x)
where x is either 0% or 02/(+2 x 1 x 0%, for k € w: Also, we link each (u, s, z)
to (u,s,x’) where ' is the predecessor of z (as a sequence) and link (u, s, )
to s. This completely describes the combinatorial tree Gr.

We make some simple observations about Gr. First, one can compute the
valence vy (number of neighbours) of vertices in Gr: elements in w<“ have
valence w, elements (u, s, 02(W+2) for (u,s) € T, have valence 3, and all other
vertices have valence 2. Next consider the distance dr between vertices. The
distance between vertices in w<% is even, and the distance between a vertex
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(u, s,02(W+2) and points in w<* is odd and at least 26(u) + 3 (obtained at

s).

Suppose that S <,,.. T. Then there is in fact a 1-1 Lipschitz map f :
w — w< with S(s) C T(f(s)) for s € w<“. Define an embedding of Gg
into G as follows: Send s € w<¥ to f(s) and s* to f(s)*. This defines an
embedding of G into itself. Next if (u,s) € S we have (u, f(s)) € T so we
can send (u, s, x) to (u, f(s),z). Thus Gg embeds into Gr.

Conversely, suppose that g is an embedding of G5 into G7. Then we have
vr(g(y)) > vs(y) and dr(g(y), g(z)) = ds(y,z) for all vertices y, z in the
domain of Gg. Thus ¢ must send elements in w<* to elements of w<¥, i.e.,
defines a map f : w<¥ — w<*. We claim that f witnesses S <4, T. First
we show f(0)) = 0: Consider x = ((,0,0%). It is a vertex in Gg of valence 3
and dg-distance 3 from (). So it must be sent to some vertex of valence at
least 3 in G, witih dp-distance 3 from f(0)). But there is only one possible
such vertex, namely, ((),(,0?), as points in w<* are at even distance from
f(0) and the other vertices of valence 3 are at a larger distance. This implies
that f(0) = (). Second we show that f is Lipschitz by induction on the length
of s. The first step was done above. As s * n is within distance 2 from s in
Gs, f(s*n) must be within distance 2 of f(s) in G7; it cannot be f(s)™,
which is f(s7) by induction. So it is f(s) x k for some k, so f is Lipschitz.
Finally, we show that if (u,s) € S then (u, f(s)) € T. Consider the vertex
r = (u,s,02W+2) in Gg. It must be sent by g to some vertex y in Gp of
valence at least 3 and at distance 20(u) + 3 from f(s). Again points in w<¥
are forbidden by parity, so y = (v,t,0%")*2) for some (v,t) € T. But as the
path in G joining s to x does not contain s, the path in G joining f(s) to
y does not contain f(s~) = f(s)”, and ¢ must extend f(s). But if it extends
it strictly, we get |v| > |u| and 6(v) > 6(u) so that the distance is too big. So
t = f(s) and O(v) = O(u), hence v = u and finally (u, f(s)) € T, as desired.
O

Question. Is every analytic quasi-order Borel bi-reducible to an LQO?
A remark about countable Borel equivalence relations

We show that any countable Borel equivalence relation is an LER, and
there is a <p-largest countable Borel equivalence relation, F ..
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E. is defined as follows: Given a group G and a set X, G acts on X% by
the shift action: For any g € G and F € X, (g- F)(h) = F(g~h). If X is
Polish, G is countable and X¢ is given the product topology, then this is a
Polish group action, written as E(G, X). Then E is the orbit equivalence
relation of the group action E(F,,2), where F; is the free group on two
generators.

Theorem 31 Suppose that E is a countable Borel equivalence relation on a
Polish space X.

(a) E is induced by a Polish action of a countable group on X.

(b) E is Borel-reducible to E.

Proof. (a) We assume that X is Cantor space 2V. A basic result of descriptive
set theory is that there is a sequence (f,, | n € w) of Borel maps such that
for each a € 2V, [a|g = {f.(a) | n € w}. For each n let T, be the graph of
fnand put I', = T \ U, [} The sets P, = I';, N F,;l form a partition
of E into countably many Borel relations, each of which is injective. Let
(D, | m € w) be an enumeration of all nonempty sets of the form P, \ A,
where A = {(a,a) | a € 2"} denotes the diagonal. Intersecting the sets D,),
with the rectangles of the form R, and R !, where

Rs={(a,b) | s*x0CaANnsx*x1Chb},

we reduce the general case to the case where domD,, NRange D,, = () for all
m.

Now for any m define h,,(a) = b whenever either (a,b) € D,,, (a,b) €
D' or a = b ¢ domD,, U Range D,,. Then h,, is a Borel injection. Thus
(hy | m € w) is a family of Borel automorphisms of 2V such that [a]p =
{hm(a) | m € w}. This system can be expanded to a Borel action of F,, the
free group on countably-many generators, on 2V, whose induced equivalence

relation is FE.
16.Vorlesung

(b) By the above, E is Borel-reducible to R, where R is induced by a Borel
action - of F,, on 2V. The map I(a) = (¢7' - a),er, is a Borel reduction
of R to E(F,,2Y). As F,, admits an injective homomorphism into F, (send
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any a, to a"b", where a,b are the generators of F3), it follows E is Borel-
reducible E(F,,2Y). So it remains to show that E(Fy,2") is Borel-reducible
to E(Fy,2) = Ew.

First reduce E(Fy,2V) to E(Fy,22M%). Then reduce the latter to F(F, x
7,3) using the map sending (ay)ger, (a, € 22M%) to (by;)ser, jez, Where
byj = ay(j) for j # 0 and by, = 2. Now for any group G, E(G, 3) is Borel-
reducible to E(G X Z,,2) via the map sending (ay)sec (a, € {0,1,2}) to
(bgi)geG,iEZg where:

byi =0if a; =0 or (a, =1 and i = 0)
byi=1ifa,=2or (a, =1and i =1).

Thus E(Fy,2") is Borel-reducible to E(F, x Z x Zy,2). However there is an
injective homomorphism of I, X Z x Z5 onto F, and then from F,, into F5,
so E(Fy,2Y) is Borel-reducible to E(F,?2), as required. O

As we have seen that any LER with countable equivalence classes (indeed
with equivalence classes of bounded Borel rank) is Borel, we have that the
countable Borel equivalence relations are exactly the countable LER's.

Adams-Kechris constructed an antichain of size continuum in the partial
order of countable Borel equivalence relations under Borel reducibility; it
follows that there is also such an antichain within the LER’s.

The Silver dichotomy revisited

The Silver dichotomy says that if E is a Borel equivalence relation then
either £ is Borel-reducible to (w,=) or (R, =) is Borel-reducible to E. In
particular, £ has either countably many or 2% equivalence classes. Whether
or not this holds for arbitrary LER’s which are not Borel remains an open
problem. We prove here the weaker claim that if an LER has more than w;
equivalence classes then it has 2% many, a theorem of Morley.

A fragment of L, ., is a set of formulas of L, , containing all first-order
formulas and closed under subformulas, finitary connectives and quantifiers.
For a fragment F, two structures M, N for L are elementarily equivalent
over F, written M =p N, iff they satisfy the same F-sentences. A complete
F-type is a set of the form p = {p(vy,...,v,) | M E p(ay,...,a,)}, for
some L-structure M and aq,...,a, in M. We say that p is realised in M by
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ai,...,a,. For an L, sentence ¢ let S, (F,1) denote the set of F-types in
n variables realised in some model of . It is not difficult to show that if F
is a countable fragment then any F'-type realised in some model of ¢ can be
realised in a countable model.

Theorem 32 For a countable fragment F', S, (F,) is either countable or
has cardinality 2%°.

Proof. List the formulas of F' with free variables vq,...,v, as 1, po,.. ..
For any p in S,(F,1) let p* denote {k | pr € p} and let S*(F,1)) denote
{p* | p € S.(F,¢)}. Then p* belongs to S*(F,) iff there is a model M of
) with universe w such that p* = {k | M E ¢x(1,...,n)}. This gives a X}
definition of S’ (F, 1)), i.e., a definition of the form:

p* € SH(F, ) iff 3m C w((p*,m) € B)

where B is a Borel subset of P(w) x P(w). As a 3 set is either countable or
has 2™ elements; it follows that this is the case for S’ (F,1) and hence also
for S,(F,v). O (Theorem 32)

A sentence ¢ of L, is scattered iff for each n and countable fragment
F of L, the set S,,(F, 1) of F-types in n variables realised in a model of 1 is
countable. If 1 is not scattered, then ¥ must have 2%° models, as by Theorem
32, there are 2% F-types realised in some model of ¢ for some countable F,
each such F-type can be realised in some countable model of ¢ and each
countable model of ¥ can realise at most countably many F-types.

17.Vorlesung

Assume now that ¢ is scattered. Build a sequence (F, | & < w;) of coun-
table fragments as follows. Fj is the least fragment containing the sentence
1. For a limit, F,, is the union of Fj3, # < a. Given F,,, define F,;; as follows.
For each F,-type p realised in a model of ¢ let ®, be the formula /\ oep P
As F, is countable, ®, is a countable formula, and as v is scattered, there
are only countably many such formulas. Let F,, ., be the smallest fragment
containing F,, and all of the ®,, p an Fi,-type.

For a countable model M of ¢ and @ = (ai,...,a,) in M, let tp}(a)
denote the F,-type realised by a in M. As M is countable, there will be a
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countable ordinal v such that whenever @, b in M have the same length and
realise the same F.-type in M, they also realise the same F,-type in M for
all . We refer to the least such « as the height of M.

Lemma 33 Suppose that M, N are countable models of 1 with the same
height v and that M, N are F,  -elementarily equivalent (i.e., tpﬁj‘rl(@) =
tp).1(0)). Then M and N are isomorphic.

Proof. We show that if @ in M, b in N and tp}'(a) = tpﬂy\[(g) then for any
a € M there exists b € N such that tp'(a,a) = t_pfyv(b, b) and for any b € N
there exists a € M such that tpfy\/‘(a, a) = tpy(b, b). Then by a back-and-
forth construction using the countability of M, N, it follows that M and N

are isomorphic.

Given a € M let p be the F-type realised by (a,a) in M. The sentence
3w A ¢, (v, w) belongs to the fragment . By hypothesis this sentence
is true in A and therfore there exists (¢,d) in N which realises p in /. Now
¢ realises the same F.-type in N as does a in M and therefore the same
F,-type that b realises in . By hypothesis, b, ¢ realise the same F.-type
in \V. Therefore since Jw A ., »(v,w) is a formula of F’,,, satisfied in N by
¢, this formula is also satisfied in A/ by b, and therefore there is b € N such
that (b,b) realises p in N, as desired. A symmetric argument produces the
desired a € M, given b € N. O (Lemma 33)

The theorem now follows: Suppose that v is scattered. Then by Lemma
33, each countable model M of 1 is uniquely determined up to isomorphism
by thet pair (v,tp2},(0)), where v is the height of M. As there are only
countably many possibilities for tpﬁl((l)) for each v and only w; possibilities
for v, it follows that there are at most w; possible countable models of ).

The Glimm-Effros Dichotomy

Recall that in the case of the LER determined by Abelian torsion groups,
the equivalence classes are classified by countable sets of countable ordinals.
It turns out that this type of classification is quite general for LER’s to which
Ejy is not Borel-reducible. We say that an equivalence relation £ on a Polish
space X is absolutely reducible to equality on 2<“! iff there is a function
F: X — 2<“ guch that xEy iff F(x) = F/(y) and for some formular ¢ with
a real parameter, F' | M is defined by ¢ over M for any transitive model
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M of ZF~ containing that real parameter (ZF~ = ZF minus the power set
axiom).

Theorem 34 Let E be an LER (or any orbit equivalence relation induced by
a Polish group action on a Polish space). Then ezactly one of the following
holds:

(1) E is absolutely-reducible to equality on 2<“'.
(2) Eq is Borel-reducible to E.

The proof will make use of the following earlier result of Harrington-
Kechris-Louveau:

Theorem 35 Suppose that E is a Borel equivalence relation. Then ezxactly
one of the following holds:

(1) E is Borel-reducible to equality on R.
(2) Eq is Borel-reducible to E.
18.-19.Vorlesungen

We turn now to a proof of this latter theorem. We assume that E is A
without parameters. Consider the relation E defined by zFEy iff x,y belong
to the same F-invariant Al sets. (X is E-invariant iff X is the union of

A

E-equivalence classes.) Then £ C E.
Lemma 36 E is X!

Proof. There is a I} set of numbers C' whose elements serve as codes for Al
sets. An element ¢ of C' codes an E-invariant A] set W, iff

Ve, y((x € W, ANzEy) — y € W,).
So the set of codes for E-invariant A} sets forms a II] set. And then:
2 Ey iff whenever ¢ codes an E-invariant Al set W,, z € W, iff y € W,.
So Eis ¥!. O
Now we have:
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Case 1. E equals E.

In this case we show that F is smooth, i.e., reducible to equality on the reals.
Consider the relation R = {({x,y),c) | ¢ codes an E-invariant A] set W.,
x € W, and y ¢ W.}. Then the domain of R is the complement of E and is
therefore A, so R is a II; relation on a A} domain with countable sections.
It follows that R can be uniformised by a Al function f, whose range is a
Y1 subset of C*, the set of codes for F-invariant A} sets. It follows from X}
separation that for some Al set A, Range (f) C A C C*. It follows that
g(z) ={ce A|x e W,.} defines a A} reduction of F to equality on subsets
of w.

Case 2. F is properly contained in E. In this case we show that Ej is reducible
to E.

Define H = {z | [z]p # [z]z}. H is ¥} and E-invariant.

Lemma 37 If X is a nonempty 3{ subset of H then E and E disagree on
X.

Proof. We may assume that X is F-invariant, as if £ and E agree on X then
they must also agree on [X]g. As X is a nonempty subset of H, X is a proper
subset of [X];. Now Y = [X]; \ X = {z | For some y, zEy and ~ zEy} is
Y1, as £ is Aj. Therefore X and Y are disjoint, E-invariant X sets. Now we
use the following fact:

Fact. If F'is a ¥} equivalence relation and X,Y are disjoint F-invariant 3}
sets, then there is an F-invariant Al set D which contains X and is disjoint
from Y.

Proof of Fact. We only prove the non-effective version, which asserts that
there is a Borel set D satisfying the conclusion. An effective version of the
proof we give yields the desired result.

There is a Al set Ay which contains X and is disjoint from Y, by the
usual form of Y} separation. Now Aj = [Ag]r is also disjoint from Y, as Y is
F-invariant. Applying separation to the 3] sets Aj and Y, we get a A] set
A; containing Aj and disjoint from Y. Then the union of the A,’s is a Borel
set containing X and disjoint from Y. O (Fact)

But as each element of X belongs to D, it follows by the definition of E that
[ X1z € D, contradiction. O (Lemma 37)
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Lemma 38 If A, B are nonempty ¥} subsets of H with [Alg = [B|g then
there exists nonempty disjoint X1 A' C A, B' C B satisfying [A']g = [B']s.

Proof. We first show that there are a # b, a € A, b € B with aEb. If not,
then E agrees with equality on X = AU B. Now take any x # y in X and
let U be a clopen set containing = but not y. Then [U N X|g and [X \ U]g
are disjoint F-invariant sets containing x,y, respectively. But then ~ zFEy
by the Fact above. So we have shown that E agrees with /£ on X, which
contradicts Lemma 37.

Now let U be a clopen set containing a but not b and put A =ANUN
(BN~ Ulg, B =BN~UN[ANU]g. O

(Lemma 40)

Now we use Gandy-Harrington forcing. Fix a countable, transitive model
M of ZF~. Let P?|E consist of all X x Y where X, Y C NV are nonempty
Y1 sets and [X]g = [V]g. A P?|E-generic G yields a pair (z&,2¢), where

x¢ 1% are generic for P = Gandy-Harrington forcing (whose conditions are

nonempty %! sets). Let iy, 4, be canonical names for =¥, ¢, respectively.

l?’r’

Lemma 39 Any condition X x Z in P?|E forces j:'in'r, and H x H forces
~ i Ei,.

Proof. To see that i B, is forced, suppose otherwise. Then by the definition
of E, there is X x Z € P?|F and an E-invariant A! set B such that X x Z
forces ; € B and &, ¢ B. Then X must be a subset of B and Z must be
disjoint from B, contradicting [X|g = [Z]E.

To see that H x H forces ~ i;Fi,, suppose that X x Z € P?|E with
XUZ C H forces i Fi,; thus zEz holds for every P?|E-generic pair (z,z) €
X x Z.

Claim. If z,y € X are P-generic over M and zEy then zEy.

Given the Claim, it follows that F agrees with E on X, as otherwise S =
{(x,y) € X? | zEyA ~ zEy} is a nonempty X! set, and any generic pair
(z,) for the Gandy-Harrington forcing on (N™V)? below S yields a contradic-
tion to the Claim. But by the definition of H, X is disjoint from H, contrary
to hypothesis.
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So it only remains to prove the Claim. We first assert that x and y belong
to the same FE-invariant 3} sets. If not, then choose an E-invariant 1 set A
such that x € A, y ¢ A; then by the genericity of y there is a 3{ set C with
y € C and A disjoint from C. As A is E-invariant, the Fact from the proof
of Lemma 37 yields an F-invariant A} set B containing C' and disjoint form
A. Then z ¢ B but y € B, contradicting zEy.

Now let {D, },en enumerate the dense subsets of P?|E which are coded
in M. We define sequence Py O P; D --- and Qg O ()1 O --- of conditions
P,=X,xZ,and Q, =Y, X Z,in P?)|Esothat Py=Qy =X x Z, v € X,
and y € Y,, for each n, and P,,Q, € D,_; for n > 0. Once this is done, we
have a real z (the only element of (") Z,) such that both (z,z) and (y, 2)
are P?|E-generic, and hence both 2Fz and yEz by our hypothesis, implying
Tz Ey.

Suppose that P,, ), are defined. As z is generic, there is a condition
P =AxC € D,, P C P, such that € A. Let B be Y,,N[A]g. Theny € B
by our first assertion and [B]g = [Clrg = [A]g (as [X,]|g = [Zu]e = [YalE);
thus B x C belongs to P?|E. So there is a condition Q' = V x W € D,
contained in B x C' C @Q,, with y € V. Finally, put ¥,,.1 =V, Z,,1 =W
and X,,.; = AN [W]g. O (Lemma 39)

To prove that Ej is Borel-reducible to E we use a splitting system, defined
as follows.

Fix enumerations {D(n)}nen, {D2(n)}neny and {D?*(n)},eny of all ele-
ments of M which are dense on P, P, and P?|E, respectively (where P is
Gandy-Harrington forcing on N, P, is Gandy-Harrington forcing on (N%)?
and P?|E is defined above). We assume that these sequences are descending
under inclusion. If u,v € 2™ have the form u = 0* x 0 x w, v = 0¥ x 1 % w for
some k,w then we call (u,v) a crucial pair. For each m, 2™ under the crucial
pair relation is a connected graph.

We define a splitting system to be sequences of sets X, u € 2<“, and
R.v, (u,v) a crucial pair, which obey the following requirements:

(1) X, € P and X, C H.

(2) X, € D(n) for any u € 2.

(3) Xuwi € X, for all u,i.

(4) Ry, € Py and R, € Dy(n) for any crucial pair (u,v) in 2™.
(5) Ryy C E and X, R,, X, for any crucial pair (u,v) in 2".
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(6) Ru*i,v*i g Ruv-
(7) If u,v € 2" and u(n — 1) # v(n — 1) then X, x X,, € D?(n) and X, is
disjoint from X,,.

(5) implies that X, FX, for any crucial pair (u,v), hence also for any pair
(u,v) from 2". It follows that X, x X, belongs to P?|E for any pair u,v € 2",
for any n.

Now assume that such a splitting system has been defined. Then for any
a € 2V the sequence { X, }nen is P-generic over M by (2) and therefore the
intersection of the X,,’s is {x,} where z, is P-generic. Moreover the map
a — x, is continuous since the diameters of the X, converge to 0 as the
length of u goes to infinity, and this map is 1-1 by the last condition of (7).

Let a, b be elements of 2V. If ~ aFyb then by (7), (z,, ) is P%| E-generic
and hence ~ x,Fx;, by Lemma 39. Now suppose that aFyb and we wish to
show that x,Fx,. We can assume that a = wx0x*c, b = w*1xc for some w, c.
Then (z,,xp) is Ps-generic as it is the unique member of the intersection of
the Ruysoscinwsiscn’s, by (4) and (5). In particular, z,Ex;, because R,, C E
for all u,v. So Ej is in fact continuously, 1-1 reducible to F.

To complete the proof of the Glimm-Effros Dichomtomy in the Borel case,
it remains only to construct a splitting system.

20.Vorlesung

To complete the proof of the Glimm-Effros Dichomtomy in the Borel
case, it remains only to construct a splitting system. For this we will need
the following earlier lemma:

Lemma 40 If A, B are nonempty %] subsets of H with [A]g = [B|g then
there exists nonempty disjoint X} A’ C A, B' C B satisfying [A'lg = [B']&.

Let Xy be any set in D(0) contained in H.

Now suppose that X, and R, have been defined for all s of length n and
all crucial pairs (s, t) of length n. Temporarily define X,.;, = X, and R i =
R; this leaves Ron.o ons1 undefined, which we take to be EN(Xgn x Xgn ). With
these definitions we have a “splitting pre-system”, i.e., we have satisfied all
the requirements for strings of length n+1 with the exception of membership
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in the dense sets of (2), (4) and (7) and the disjointness requirement of (7).
We show how to produce a splitting system consisting of sets and relations
contained in those of this pre-system.

Step 1. We arrange X, € D(n + 1) for u € 2", Choose some uy € 2"*1.
Choose X, C X, in D(n + 1). Suppose that (ug,v) is a crucial pair. Put
R, ,={(z,y) € Ry | v € X|, } and X, = Ran R, . In this way we obtain
a splitting pre-system satisfying X, € D(n-+1). Do this consecutively for all
ug € 2", The result is a splitting pre-system with X, € D(n + 1) for all u.

Note that we still have Xgn*o = XO"*l and RO”*O,O”*l =FEnN (XO”*O X XU“*l)-

Step 2. We arrange X,.0 X Xpq € D?*(n + 1) for all s,t of length n + 1.
Consider a pair ug = 5o * 0 and vy = to * 1 of length n + 1. Choose X x
X € D*(n + 1) contained in X,, x X,,. We have [X/ |p = [X] ]r and
thanks to Lemma 40, we can ensure that X , X| are disjoint. Now define
Rinso,0ne1 = £ N (Xnsg X Xjnyp)- The result is a splitting pre-system which
satisfies the D(n + 1), D?*(n + 1) requirements of (2) and (7).

Step 3. We arrange R, € Dy(n+1) for any crucial pair (u,v) of length n+1,
together with the disjointness of X{.,q, X{n,,- Consider any such crucial pair
(10, vg). If this pair is not (0" * 0,0™ x 1) then let R, , be any subset of
Ry, in Dy(n + 1). Otherwise choose disjoint nonempty X1 sets U C Xy,
V C Xogn, with [U]g = [V]g (which is possible by Lemma 40), and then
R,., € EN(U xV)in Dy(n 4+ 1). In all cases put X, = Dom R; .
X,, = Ran R, . Then handle other crucial pairs as in Step 1. Performing
such a reduction for all crucial pairs (ug,vo) of length n + 1 one at a time,

we end up with the desired splitting system. O
21.Vorlesung
Now using the Glimm-Effros dichotomy for the Borel case, we prove:

Theorem 41 Let E be an LER (or any orbit equivalence relation induced by
a Polish group action on a Polish space). Then ezactly one of the following
holds:

(1) E is absolutely-reducible to equality on 2<“'.
(2) Ey is Borel-reducible to E.

Proof. We use the following.
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Lemma 42 There is a sequence A¢, § < wi, of E-invariant sets such that:

(1) The union of the A¢’s is the entire Polish space.

(2) The E|A¢’s are uniformly Borel: For some parameter z, A¢ and E|A¢
are uniformly Ai(w, z) in any code w for &.

(3) Relative to some parameter, there is an absolute function ¢ such that for
each x, f(z) is a code for an ordinal  such that = belongs to Ae.

We now prove the theorem, given this lemma. For simplicity we assume
that the parameters in (2) and (3) are just 0.

Suppose that F is not Borel-reducible to E. Then E is Borel-reducible to
none of the E|A’s, and therefore each E|A¢ is smooth (i.e., Borel-reducible
to = on R). The smoothness of an equivalence relation F is equivalent to
the existence of a separating family, i.e., a sequence of Borel sets B,,, n € w,
such that zFy iff Vn(z € B, < y € B,). In the present case we have in fact
uniform separating families for the E|A,’s, i.e., for each code w for &, there
is a separating family (SY),e., for E|A¢ such that the S*’s are uniformly Aj
for w € WO = the set of codes for wellorderings.

We now define a new separating family (5% %), . . for E|Aq,

for each . For each injection f € (£)*, the Polish space of injections from
w into ¢ (assume that ¢ is infinite), let w; € WO be the associated code for
¢, given by wg(m,n) =1 < f(m) < f(n). Then S550 81 consists of all
z such that the set of f € (£)“ with x € S,” is comeager on N, ¢, (the
basic open set consisting of those injections f satisfying f(i) = &; for each
i < k). We claim that (5}%’&)"“’5’“’1)néo,m,g,ﬁ1 is indeed a separating family for
E|A;.

Suppose that zFEy. If x belongs to S5%04=1 then so does Y, as each
Sy’ is E-invariant. Conversely, suppose that ~ zEy. Then for any code w
for an ordinal £, there is some n such that x € S but y ¢ SY. It follows
by a category argument that for some distinct &y,...,&1 < € and n € w,
(z € S»/ and y ¢ S,”) holds for comeager many f in Ng, . ¢ ,. Thus z

belongs to G501 and y does not. So we do have a separating family.

Finally put V(z) = {(§,&,...,&—1,n) | The &’s are distinct, & < & for
each i < k and z € Sﬁ’éo’”"{k’l}, where ¢ is chosen so that x belongs to Ae.
Then zEy iff V(z) = V(y), which shows that E is absolutely-reducible to
equality on 2<“1,
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Proof sketch of Lemma 42. Let G denote the group S, and - the logic action
on some invariant Borel set X, whose orbit equivalence relation is £. We
consider the product action

g-(x,F)=(g9-2,9Fg")

of G on X x §(G), where S(G) is the Borel space of closed subgroups of
G. Then P = {(z,G,) | * € X} is invariant under this action, where G,
denotes the stabilizer of x in the logic action. Moreoever, P is II}. It follows
that there is a IT{-rank ¢ : P — w; which is also invariant under this action,
and in fact:

(1) There is a II} function g such that for each (z,G,) € P, g(x,G,) € WO
codes the ordinal ¢(z,G,).

(2) For any &, the set P¢ = {(z,G,) € P | p(x,G,) < &} is uniformly Al in
any code for £.

Now for each ¢ let P be {(z,G.) | p(x,G,) = £}. Then P is uniformly Aj
in any code for . Put A, = {z | (z,G,) € FP¢}. Then both A, and E|A, are
uniformly Al in any code for ¢ and witness the lemma. O
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