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1.Vorlesung
The singular cardinal hypothesis, SCH

Easton: The continuum function C'(k) = 2" on regular cardinals is subject
only to the following conditions:

Monotonicity: kg < k1 — C(ko) < C(K1).
Cofinality jump: cof C(k) > k.

Le., if GCH holds and C'is any class function on the regular cardinals obeying
the above conditions, there is a cofinality-preserving forcing extension where
2% = C(k) for all regular k.

Generalised continuum problem: What are the possible behaviours of the
continuum function on arbitrary cardinals?

Key subproblem: Can the GCH fail at a singular strong limit cardinal?

Initially it was thought that a positive answer to this type of question
would be obtained using a forcing method similar to Easton’s. However Silver
showed that the situation is not so simple.

Theorem 1 Suppose that GCH holds below a singular cardinal \ of uncoun-
table cofinality. Then the GCH holds at \ as well. If X is a singular cardinal
of uncountable cofinality and 2% < o™ for a < ), then 2* < A\*F. (And
more.)

This says nothing about singular cardinals of countable cofinality, and
nothing about the possibility of getting the GCH to fail at a singular strong
limit cardinal. In the wake of Silver’s result, Jensen proved the following
important result:

Theorem 2 Suppose that 0% does not exist. Then every uncountable set of
ordinals is a subset of a constructible set of ordinals of the same cardinality.

Corollary 3 In forcing extensions of L, the GCH holds at singular strong
limit cardinals.



Proof. Suppose that V is a forcing extension of L. Then 0% does not exist.
By Jensen’s theorem, every uncountable set of ordinals is a subset of a con-
structible set of the same size. Now suppose that A is a singular strong limit
cardinal and let o be the maximum of cof A\ and w;. There are at most A"
constructible subsets of A\, as GCH holds in L. It follows from Jensen’s theo-
rem that there are at most A™ - 2% = A\ subsets of )\ of size . But as )\ is a
strong limit cardinal, the number of subsets of A is the same as the number
of size o subsets of \, and therefore 2* is A*. O

Thus if it is possible to violate the GCH at a singular strong limit cardinal,
one must use large cardinals. Silver and Prikry achieved such a violation from
a supercompact cardinal.

Theorem 4 Suppose that GCH holds and k is k1 -supercompact. Then in
a forcing extension, K is a measurable cardinal where the GCH fails.

Theorem 5 Suppose that k is measurable. Then in a cardinal-preserving for-
cing extension with no new bounded subsets of k, Kk is a strong limit cardinal
of cofinality w.

Corollary 6 Con(ZFC + there is a  which is k™" -supercompact) implies
Con(ZFC + the GCH fails at a singular, strong limit cardinal).

This work was the beginning of the study of the singular cardinal problem,
a study which has involved some of the deepest work in large cardinal forcing.

2.Vorlesung
Basic Prikry forcing
Let x be measurable and U a normal ultrafilter on .
Definition 7 Let P be the set of pairs (p, A) such that:

(1) p is a finite subset of k.
(2) A is an element of U.
(3) min A > max p.



(p, A) is an extension of (¢, B) ((p, A) < (g, B)) iff p end-extends ¢, A is a
subset of B and p\ ¢ is contained in B. (p, A) is a direct or Prikry extension
of (¢,B) ((p, A) <* (¢, B)) iff p = ¢ and A is a subset of B.

The next lemma is easily verified.

Lemma 8 (a) If G is P-generic then | J{p | (p, A) € G for some A} is an
w-sequence cofinal in K.

(b) P is kT -cc.

(c) The direct extension relation <* is k-closed.

Lemma 9 (The Prikry property) If o is a sentence of the forcing lan-
guage then every condition (q, B) has a direct extension (q, A) which decides
o (i.e., either forces o or ~ o).

Proof. Define h : [B]<* — 2 as follows:

h(s) =1iff (¢Us,C) IF o for some C
h(s) = 0 otherwise.

As U is a normal ultrafilter, there is A € U which is homogeneous for h,
i.e., for each n € w and sy, sy € [A]", h(s1) = h(sz). We claim that (g, A)
decides 0. Otherwise there would be extensions (q U s, By), (¢ U sg, Bs) of
(q, A) which force o, ~ o, respectively. We can assume that s; and sy have
the same size n. Thus both s; and s, belong to [A]™. But then h(s;) = 0,
h(sz) = 1, contradicting the homogeneity of A. O

Corollary 10 P does not add bounded subsets of k.

Proof. Suppose (p,A) IF a is a subset of A, where A is less than x. Set
(p, Ag) = (p, A) and by Lemma 9 choose a direct extension (p, A1) of (p, Ao)
which decides “0 € @”. Then choose a direct extension (p, A2) of (p, A1) which
decides “1 € ", etc. After \ steps one arrives at a direct extension (p, A,)
of (p, A) which decides which ordinals less than A belong to @, and therefore
forces a to belong to the ground model. O

Corollary 11 If G is P-generic then k has cofinality w in V|G| and V, V[G]
have the same cardinals and bounded subsets of k. In particular, if GCH fails

at k in V, then in V[G], k is a singular strong limit cardinal where the GCH
fails.



Suppose that G is P-generic and let C be (J{p | (p, A) belongs to G for
some A}. Then C is called a Prikry sequence for U (over V). Note that the
entire generic G can be recovered from C":

G ={(p, A) | p is an initial segment of C' and C'\ p is a subset of A}.

The above holds as the set on the right is a compatible set of conditions
containing G. Thus V[G] = V|[C]. Also, C generates U in the sense that A
belongs to U iff A belongs to V' and C' is almost contained in A. (“Almost”
means “with finitely many exceptions”.)

Theorem 12 Suppose that M is an inner model containing the normal ul-
trafilter U on k and C' is an ordertype w subset of k which is almost contained
in each element of U. Then C' is a Prikry sequence for U (over M ).

Proof. We need to show that the set
G(C)={(p,A) | p is an initial segment of C' and C'\ p is contained in A}

is P-generic over M. It suffices to check that G(C') intersects all dense subsets
of P in M. First we show:

Lemma 13 Suppose that (q, B) is a condition and D is open dense. Then
there is a direct extension (q, A) of (¢, B) and m € w such that for alln > m
and s € [A]", the condition (¢ U s, A(> maxs)) belongs to D.

Proof. Define h : [B]<* — 2 as follows:

h(s) =1iff (¢Us,C) € D for some C
h(s) = 0 otherwise.

Let A’ € U, A’ C B, be homogeneous for h. As (¢, A’) has an extension in
D, there exists an m such that h(s) = 1 for all s € [A']", all n > m. For each
s € [A']", n > m, choose A; € U, A; C A’, so that (qU s, A;) belongs to D.
Now we take A to be the “diagonal intersection” A{A, | s € [A]*, n > m}
of these A,, where

NAs | se[AT,n>m} ={a < k| ae A forall n > m and for all
s € [A']" with max s < a}.



Then A is in U as it contains the usual diagonal intersection of sets in U.
The condition (g, A) is as desired, since for each n > m and s € [A]", we

have A(> maxs) C A, and so (¢ U s, A(> max s)) belongs to D. O (Lemma
13)

Now we show that G(C) intersects all open dense D in M. For each
finite ¢ C K, use the previous lemma to choose m(q) € w and A(q) € U
so that min A(¢) > maxgq and for n > m(q), s in [A(q)]", the condition
(¢ U s, A(q)(> maxs)) belongs to D. Let A be the diagonal intersection
NAQ) | q € [k]™¢}. As A belongs to U, there is 7 < k such that C'\ 7
is contained in A\ 7. Consider the condition (C' N7, A\ 7). Then for every
n>m(CN7) and every s € [C'\ 7]" we have

((CNT)Us, A(> maxs)) belongs to D,

since s is contained in A\ 7 and therefore in A(C'N 1), and A(> maxs)) is
contained in A(C'N7)(> maxs). Choose s € [C'\ 7]" for some n > m(C'NT).
Then (CN7)Us is contained in C' and C'(> max s) is contained in A(> max s).
So ((CNT)Us, A(> maxs)) belongs to G(C)N D. O

3.Vorlesung
Tree Prikry forcing

We eliminate the assumption of normality for the ultrafilter U in basic
Prikry forcing. Assume only that U is a k-complete non-principal ultrafilter
on the measurable cardinal .

Definition 14 A set T is called a U-tree with trunk ¢ iff

(1) T consists of finite increasing sequences below k.

(2) (T, =) is a tree, where < is the initial segment relation.

(3) For everyn e T, n =t ort=<n.

(4) For everyn € T, ift < n then {a < k | nxa € T} belongs to U.

For each n € w we let Lev, (T') denote the set of nodes in 7" of length n.

The conditions in Tree Prikry forcing are the pairs (¢,7) where T is a
U-tree and t is the trunk of 7. Extension is defined by: (¢,7) < (s,S5) iff



T C S. Note that this implies s <t € S. If in addition s = ¢, then we say
that (¢,7") is a direct or Prikry extension of (s, S), written (¢, 7)) <* (s, 5).

The following is an immediate consequence of the x-completeness of the
ultrafilter U.

Lemma 15 Suppose that T,,, o < A, are U-trees with the same trunk t and
A is less than k. Then the intersection of the T, ’s is also a U-tree with trunk
t.

It now follows, as with basic Prikry forcing, that if P denotes Tree Prikry
forcing, then for P-generic G, |J{t | (t,T) € G for some T'} is an w-sequence
cofinal in x, P is k™-cc and the direct extension relation <* is x-closed. We
next prove the Prikry property.

Lemma 16 (The Prikry Property) If (t,7) is a condition and o is a
sentence of the forcing language, then there is a direct extension (s,S) of
(t,T) which decides o.

Proof. Let us say that a finite increasing sequence s is indecisive iff there is
no U-tree S with trunk s such that (s, S) decides o. If the lemma fails, then
the node t is indecisive: For, if (¢,5) decides o then so does (¢,7N.S), a direct
extension of (¢, 7).

Now note that if s is indecisive, it must be the case that s« is indecisive
for a set of v in U: Otherwise we can choose T'(s * ) for U-measure one «
such that (s*x«a,T(s*a)) decides o in the same way for all such «, and then
form a U-tree S with trunk s by glueing together these T'(s*«); the resulting
condition (s,S) would then decide o.

It follows that we can inductively form a U-tree S with trunk ¢ consisting
entirely of indecisive nodes. But this is impossible, as the condition (¢,.5) has
some extension (u, R) which decides o, demonstrating that the node u of S
is not indecisive. O

As an easy corollary we have:

Corollary 17 Tree Prikry forcing at k adds no bounded subsets of k, pre-
serves cardinals and gives k cofinality w.



Prikry forcing at cofinality w

Suppose that x is the supremum of an increasing sequence of measurable
cardinals x,, n € w, where k,, carries the nonprincipal x,,-complete ultrafilter
U,. We describe a cofinality-preserving forcing P for adding an element of
[ L, 5» which eventually dominates each element of this product in the ground
model.

Definition 18 A condition in P is a sequence p = (p, | n € w) where:

(1) For each n, p, is either an element of U, or an ordinal less than k.
(2) There is an l(p) < w such that for n < l(p), p, is an ordinal less than k,
and for n > l(p), pn is an element of U,.

We say that p extends ¢, written p < g, iff for each n, one of the following
holds:

(a) p(n) = g(n) is an ordinal less than k.
(b) p(n) € q(n) where ¢(n) is an element of U,,.
(c) p(n) C ¢(n) both belong to U,.

Note that p < ¢ implies that [(p) is at least I(q). We say that p is a direct or
Prikry extension of ¢, written p <* ¢, iff p < ¢ and I(p) = I(q).

For each n and p € P we write p(< n) for p restricted to n and p(> n) for
p restricted to [n,w). For each n, P naturally factors as P(< n) x P(> n),
where P(< n) consists of all p(< n), p € P, and P(> n) consists of all p(> n),
p € P. Note that the direct extension relation on P(> n) is x,-closed.

We now prove the important Prikry property.

Lemma 19 (The Prikry Property) If p = (p, | n € w) is a condition
and o is a sentence of the forcing language, then p has a direct extension q
which decides o.

Proof. Suppose that s is a finite sequence from Hm<n(s) Km for some n(s) € w.
We say that s is indecisive iff there is no p deciding o with p(< n(s)) = s
and [(p) = n(s). If the lemma fails, then p(< I(p)) is indecisive.

Suppose that s is indecisive. Then for U,,(,)-measure one «, s * o is inde-
cisive: Otherwise, we could choose p(s* ), with p(s*a)(< n(s)+1) = s* «
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and [(p(s * a)) = n(s) + 1, for U,(s-measure one a which decide o in the
same way, and then using the ﬁ:(s)—closure of U,, n > n(s), glue the p(s * «)
together to a single p with p(< n(s)) = s, {(p) = n(s), which would decide o.

Now again using the closure properties of the ultrafilters U,,, we can build
a condition ¢ <* p so that r(< [(r)) is indecisive for each r < ¢. But this
is impossible, as ¢ has some extension r which decides o, contradicting the
indecisiveness of r(< I(r)). O

As an easy corollary we obtain:

Corollary 20 Let P denote the above forcing. Then P adds no new bounded
subsets of k = ,,c,, kn, s KT -cc, preserves cofinalities and adds an element
of 11,,, kn which eventually dominates each ground model element of that
product.

The last statement of the above corollary holds as if py is an element of
L, #n, it is dense for p € P to have the property that for n > I(p), minp(n)
is greater than py(n).

Supercompact Prikry forcing

For k < A, k regular, P, \ denotes the set of size < k subsets of A\. An
ultrafilter U on P, is fine iff it contains the set {x € P\ | o € x} for each
a < A. A function f: A — X\, A C P, is regressive iff f(a) € a for each
a € A. An ultrafilter U on P\ is normal iff it is fine, k-complete and any
function which is regressive on a set in U is constant on a set in U.

Definition 21 « is A-strongly compact iff there is a fine, k-complete ultra-
filter on P.\. And r is \-supercompact iff there is a normal ultrafilter on
P

Prikry forcing with a normal ultrafilter on P, \ is analogous to basic Prikry
forcing, with x replaced by P.\ and the standard ordering on x replaced with
the following ordering on P, \:

Definition 22 For a, b in P.\ we say that a s strongly included in b,
written a < b, iff a is a subset of b and the ordertype of a is less than the
ordertype of b N k.



Lemma 23 Suppose that U is a normal ultrafilter on P ).

(a) If F is a function defined on a set in U such that F(a) < a for each a in
the domain of F', then F' is constant on a set in U.

(b) Suppose that A, belong to U for each a € P,\. Then the diagonal inter-
section A, A, = {b| b€ A, for each a < b} belongs to U.

Proof. (a) Note that function a — ordertype (F'(a)) is regressive on a set in
U and therefore constant with some value & < k on a set in U. Also, for each
a < R, the function a — a-th element of F'(a) is regressive and therefore
constant on a set in U. As there are fewer than x possible a’s, it follows that
[ is constant on a set in U.

(b) If not then there is a function G defined on a set in U such that G(a) < a
and a does not belong to Ag(, for each a. But then by (a), G is constant on
a set in U, which contradicts the fact that each Ag(,) belongs to U. O

Definition 24 For A C P\, [A]" denotes the set of n-element subsets of
A which are totally ordered by <, and [A]l<“! denotes the union of the [A]",
necw.

The following is a generalisation of the fact that measurable cardinals are

“measure-one Ramsey”. The proof is as in the measurable cardinal case, using
Lemma 23 (b).

5.Vorlesung

Lemma 25 Suppose that U is a normal ultrafilter on P . If F : [A]l<¥] — 2
and A belongs to U then there is B C A in U such that F | [B]" is constant
for each n € w.

In our analysis of the effect of supercompact Prikry forcing on the cardi-
nals, we will need the following important result of Solovay.

Theorem 26 Suppose that k is \-strongly compact, Kk < X reqular. Then
A =\,

We need three lemmas.

Lemma 27 Suppose that k is A-strongly compact, k < X\ reqular. Then there
1s an elementary embedding 7 : V — M with critical point k such that every
subset of M of size X\ is covered by an element of M of M-cardinality less
than j(k). In particular, j(k) is greater than \ and j is discontinuous at all
regular cardinals in [k, .



Proof. Suppose that U is a k-complete fine ultrafilter on P, A\ and let j : V' —
M be the ultrapower via U. If [f,]y, a < A, are elements of M then define
F(z) ={f.(x) | @ € x}. Then [f,]y belongs to [F]y for each a by the fineness
of U and [F]y has M-cardinality less than j(x). Thus every subset of M of
size at most A is covered by an element of M of M-cardinality less than j(x).
It follows that sup j[u| is singular in M for each regular u € (k, A] as sup j[u]
has cofinality ¢ < X in V' and therefore M-cofinality less than j(x) < sup j[u].
As j(p) is regular in M for regular p, it follows that j is discontinuous at
all regulars in (k, A]. The above covering property also implies that j(r) is
greater than A\ and the x-completeness of U implies that « is therefore the
critical point of j. O (Lemma 27)

Lemma 28 Suppose that k is \-strongly compact, k < X\ reqular. Then if
(S; | i <), v < K, is a sequence of stationary subsets of AN Cof(< k),
there exists A\ < X of cofinality strictly between Yo and k such that S; N\ is
stationary for each i < .

Proof. Let j : V. — M be as in the previous Lemma. By elementarity, it
suffices to show that in M there is 6 < j(\) of M-cofinality strictly between
Ny and j(x) such that j(S;) N0 is stationary in M for each ¢ < ~. Let 0 be
sup j[\] < A. Then § has cofinality A in V' and therefore cofinality strictly
between N, and j(x) in M.

Note that j[A] is a < k-closed unbounded subset of 5. Now suppose that
C' is closed unbounded in 6. Then C" = C' N j[\] is < k-closed unbounded
in §. Let D be j7'[C"]. Then D is < k-closed unbounded in ¢ and therefore
S; N D is nonempty. It follows that j(.S;) N C” is nonempty and therefore we
have shown that each j(5;), i < 7, is stationary in ¢ (in V). O (Lemma 28)

Lemma 29 If X\ < \ are reqular then there is exist pairwise disjoint (S; | i <
A) such that each S; is a stationary subset of AN CofA, the set of ordinals
less than \ of cofinality ).

Proof. For each o € Cof)\ let f, : A\ — «a be cofinal and continuous. Now
for each § < X and a € (9, \) choose is, such that f,(is.) is greater than 4.
Then there is a stationary set Ss C AN Cof\ such that i5,o = U5 is constant
for a in Ss and also f,(is) = As is constant for v € Ss. Now choose A-many
Ss’s with the same 75 and distinct \s; these stationary subsets of A N Cof\
are pairwise disjoint. O (Lemma 29)
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Now we prove Theorem 26. Let (S; | i < A) be pairwise disjoint stationary
subsets of AN Cofw. We may assume that A is greater than k, as k<" = K
follows from the strong inaccessibility of k. For each x in [A]<" choose A\, < A
of cofinality strictly between N, and x such that S; N\, is stationary for each
1 € x. Let C, be a closed unbounded subset of A, of ordertype cof .. Then
S; N C, is stationary and therefore nonempty for each ¢ € x. Thus if x, y are
distinct elements of [\]<* and A\, = A\, then C;, = C,, and {S;NC, | i € x} #
{SiNnCy | i€ y}. Now there are at most A possibilities for A\, and for each
Az, there are at most [QCOf (A2)]<® < K possibilities for {S; N C, | i € z}. It
follows that [A]<" is A, as desired. O

We can extend Theorem 26 to the case of singular A\ using the following.
Lemma 30 If x is A\-strongly compact then r is also A\<"-strongly compact.

Proof. Let U be a fine, k-complete ultrafilter on P, \. For x in P\ let 2* €
P.P. X be {y € P\ |y < x}. Then define U* contained in the power set of
P.P.\ by: A* € U* iff {z | * € A*} belongs to U. As U is a k-complete
ultrafilter on P\ it follows that U™ is a k-complete ultrafilter on P, P \. If
y belongs to P\, then the set of x € P\ such that y < = belongs to U by
the fineness and k-completeness of U. It follows that {a € P.P.\ | y € a}
belongs to U*, so U* is fine. O (Lemma 30)

Corollary 31 Suppose that k is A-strongly compact, k < . If X has cofina-
lity at least k then \<" = \ and otherwise \~" = \T.

Proof. If X\ is regular then this follows from Theorem 26. If )\ is singular
of cofinality at least » then A<* is the supremum of A<®, A < \, which
by Theorem 26 is A. If A has cofinality less than x then by Lemma 30, s
is A<"-strongly compact and therefore A\"-strongly compact. Thus again by
Theorem 26, A<" < (AT)<% = AT, As A<" is greater than X in this case, it
follows that A<* equals A\T. O

6.Vorlesung
We now define supercompact Prikry forcing.

Definition. P consists of all pairs ((a,...,a,), A) such that:
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(1) a1 < ag < -+ < a, belong to P\.
(2) AeU.
(3) a, < a for each a € A.

((ay,...,a,),A) extends ((by,...,bm), B), written ((ay,...,a,), A) < ((b1,...,bn), B),
iff:

(a) n > m.

(b) For k < m, aj = by.

(c) AC B.

(d) ay belongs to B for each k in [m + 1, n].

((ay,...,a,), A) directly extends ((by,...,bm), B), written ((aq,...,a,), A) <*
((byy...,bn), B), iff ((a1,...,a,), A) extends ((by,...,by),B) and n = m.
The relation <* is k-closed.

Lemma 32 If 0 is a sentence of the forcing language then every condition
in supercompact Prikry forcing has a direct extension which decides o.

Proof. The proof is exactly as in the measurable cardinal case, now using Lem-
ma 25. Suppose that ((aj, ..., a,), A) is a condition and define h : [A]l<%] — 2
as follows:

h(by,...,by) =1iff ((a1,...,an,b1,...,by),C) forces o for some C
h(by,...,bn) = 0, otherwise.

By Lemma, 25, there is B C A which is homogeneous for A, i.e., for each n € w,

h is constant on [B]". We claim that ((ay,...,a,), B) decides o. Otherwise

there would be extensions ((a1, ..., an,b1,...by), By) and ((a1,...,a,,c1,...¢), B2)
of ((ay,...,a,), B) which force o, ~ o, respectively. We can assume that [
equals m. Thus both (by,...,b,,) and (cy,...,c,) belong to [B]™. But then
h(bi,...,by) =1and h(cy,...,cy) =0, contradicting the homogeneity of B.

O

It follows that P does not add bounded subsets of x and therefore pre-
serves cardinals up to k.

Let G be P-generic and let C' = (ay, as, . . .) be the limit of the (ay, ..., a,)
such that ((ai,...,a,),A) € G for some A. An easy density argument shows
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that if § < A, then 0 = |, (a, N 6). Therefore, if 6 < A had cofinality at least
k in V, it will have cofinality w in V[G]. It follows that ™ in V[G] is at least
AT of V.

Now as A-supercompact Prikry forcing P is (Card P,\)"-cc and card P,\ =
A<% it follows from Corollary 31 that P is A"™-cc when )\ has cofinality at
least x and A*"-cc when \ has cofinality less than x. Thus in the former
case, cofinalities greater than \ are preserved and k™ of V|[G] equals AT of V.
In the latter case, cofinalities greater than At are preserved; the remaining
question is what happens to AT itself.

Lemma 33 Suppose that \ has cofinality less than x in V. Then P changes
the cofinality of AT to w.

Proof. Fix in V' an increasing sequence (\; | i < cof \) of regular cardinals
cofinal in A\, A\g > k. As A" = \T the cardinality of Hi<cof/\ A; is AT. Now
inductively build a sequence (f, | & < A*) of elements of [[;_,;, A with the
following properties, where <* denotes < on a final segment of cof A:

(1) a < B — fo <* f5
(2) g € Hi<cof)\ \i — g <* f, for some oo < \™.

Recall the sequence C' = (ag,aq,...) derived from G. For each n consider
9n € [Liceop Ai defined by g,,(i) = sup(a, N A;). Then as the range of each f,
is contained in a,, for sufficiently large n, it follows that the g,’s are cofinal
modulo a final segment of cof \ in [] A; and therefore A™ has cofinality
w in V[G]. O (Lemma 33)

i<cofA

This completes the analysis of supercompact Prikry forcing.
7.Vorlesung
Strongly compact Prikry forcing

The construction here is entirely analogous to that of Tree Prikry forcing
with a (possibly) non-normal measure on .

Let U be a fine xk-complete ultrafilter on P, A which may fail to be normal.
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Definition 34 A set T is called a U-tree with trunk ¢ iff

(1) T consists of finite sequences (x1,...,x,) from P\ which are increasing
in the Magidor relation <.

(2) (T, =) is a tree, where =< is the initial segment relation.

(3) For everyneT,n=tort=<n.

(4) For everyn € T, if t < n then {x | nxx € T'} belongs to U.

The conditions in Tree Prikry forcing are the pairs (¢,7) where T is a
U-tree and t is the trunk of 7. Extension is defined by: (¢,7) < (s,S5) iff
T C S. Note that this implies s <t € S. If in addition s = ¢, then we say
that (¢,7) is a direct or Prikry extension of (s, S), written (¢,7) <* (s,.5).

The following is an immediate consequence of the x-completeness of the
ultrafilter U.

Lemma 35 Suppose that T, a < X, are U-trees with the same trunk t and
A is less than k. Then the intersection of the T, ’s is also a U-tree with trunk
t.

If P denotes the above Tree Prikry forcing, then for P-generic GG, the
limit of the ¢t = (z1,...,x,) such that (¢,7) belongs to G for some 7" is an
w-sequence in P\ whose union is all of A. It follows that each cardinal in
the interval [k, A] of cofinality at least x is forced by P to have cofinality w.
P is (A<%)T-cc and therefore all cofinalities greater than A<* are preserved.
The direct extension relation <* is k-closed. We also have:

Lemma 36 (The Prikry Property) If (t,7) is a condition and o is a
sentence of the forcing language, then there is a direct extension (s,S) of
(t,T) which decides o.

The proof of this lemma is just as in the case of a Tree Prikry forcing
with a measure on k. It follows that P does not add bounded subsets of x
and therefore cofinalities less than x are preserved. Now recall the following:

(a) If X has cofinality at least x then \<" = \.
(b) If X has cofinality less than x then A< = A" and P adds an w-sequence
cofinal in \*.
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It follows that cofinalities greater than A are preserved when A\ has cofi-
nality at least x (and therefore < becomes A" in the generic extension), and
cofinalities greater than A* are preserved when ) has cofinality less than x
(and therefore k™ becomes A™* in the generic extension). This completes the
analysis of Tree Prikry forcing for a strong compact.

Extender-based Prikry forcing at cofinality w

We have seen how to add a new w-sequence to an w-limit x of measurables
(Kn | n € w) without adding new bounded subsets of k. Now we wish to add
many to obtain a violation of the singular cardinal hypothesis.

Assume GCH and let A be regular and greater than x = sup,,c, k,. We
wish to add at least A\-many sequences through the product of the x,’s wi-
thout adding bounded subsets of «.

We suppose that each x, is H(A")-strong; this means that there is an
elementary embedding j, : V — M, with critical point k,, such that H(\")
belongs to M,, and j,(k,) is greater than A\. We may assume that j, is an
ultrapower embedding which is equivalent to saying that every element of M,
is of the form j,(f)(a) for some f : K, — K, and a < AT. This implies that
M, is closed under k,,-sequences. For each a < A we consider the x,-complete
ultrafilter U, defined by

X € Uy, iff X C K, and « € j,(X).

For o < 3 < X we define the following ordering (which depends on the choice
of jn):

a <, fiff a < and for some f : Kk, — Ky, jn(f)(B) = a.

Remark. This implies that U, is below U, in the Rudin-Keisler ordering of
ultrafilters on k,. The Rudin-Keisler ordering of ultrafilters on a cardinal x
is defined by: Uy <gg U, iff for some f : k — k, A € Uy iff f71[A] € U,. If f

witnesses a <,, 3 then f also witnesses U, <rx U,s. But the converse does
not hold in general.

Lemma 37 The partial ordering <, is k,-directed and in fact each x €
[A]<"" has A-many upper bounds in <,,.
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Proof. Using GCH, let (a, | @ < k,,) be an enumeration of [x,]<"" such that
for each = € [k,]<"", the set of a such that + = a, is a cofinal subset of
(supx)*. Now note that as j, is the identity below k,, (a, | @ < k,,) is the
restriction to k, of j,({(as | @ < Ky)); let {a, | & < A) denote the restriction
of j,((as | @ < K,)) to X. Then for each x € [A\]<* N M, the set of o such
that © = a, is a cofinal subset of (sup z)".

Now suppose that = belongs to [A]<""; we find o < A such that § <,, « for
each § € z. Enumerate z in increasing order as ((; | i < 7y), where + is less
than x, and choose a < A so that a, equals x. If § = 3; belongs to x, then
B = ju(f)(«), where f is defined by: f(@) = the i-th element (in increasing
order) of az. So  <,, a. As there are A-many « such that = equals a,, we
are done. O

Fix 7,3 witnessing 3 <,, o, setting m,, to be the identity.

Lemma 38 Suppose that v < < «a with v <, a and 0 <, a. Then
{v < kp | map(v) > may(v)} belongs to U,,.

Proof. Let X denote {v < k,, | map(v) > Ty (v)}. We wish to show that «
belongs to j,(X). But j,(X) equals {v < j,(kn) | Jn(7Tap) (V) > jn(Tay) (V) },
so we must show that j,(m.s)(a) = 5 > J,(7ay)(a) = 7, which follows from
our hypothesis. O

Lemma 39 Suppose that x belongs to [A\]<"" and 5 <, « for each [} € x.
Then there is A € U, such that m,p5, agrees with mg,g,map, on A whenever
Bo <, (1 belong to x.

Proof. We must show that {v | m.g,(v) = 7s,3,Tas (V)} belongs to U,.
By the definition of U, this means that j,(mag,) () = jn (75,6, )Jn(Tas ) (@),
which by the choice of the 7’s just says By = jn(7s,5,)(01) = Do, s0 we are
done. O

8.Vorlesung

We are now ready to define extender-based Prikry forcing at cofinality w.
We first define forcings @), for each n, and then put them together to form
the desired forcing P. Each @), is the union of @), and (),,1, which we define
next.
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Definition 40 @), consists of all functions f from a subset of A of size at
most k into Kk,, ordered by: f < g iff f extends g as a function.

Definition 41 @, consists of triples (a, A, f) such that:

(1) f belongs to Q-
(2a) a is a subset of \ of size less than k, with a mazimum .

(2b) a is disjoint from Dom f.

(2¢) a <,, maxa for each a € a.

(8) A belongs to the ultrafilter Uy, maxa-

(4) Whenever o >,, 3 belong to a then Tmaxas(ft) = TasTmaxa.a(pt) for all p
in A.

(5) Whenever o > (3 belong to a then Tmaxa.a(ft) > Tmaxas(p) for p in A.

Eztension is defined by: (a, A, f) < (b, B, g) iff f extends g, a contains b and
AcCr ! [B].

max a,max b

Remark. (4) above implies that whenever o >,, 3 >, v belong to a then
Tory (1) = Ty Tap(p) for all 1 in TmaxaalA], as if ft = Tmaxa,a (V) then by (4),
the left side is Toy (1) = ToyTmaxa,0(V) = Tmaxa~ () and also the right side is
Ty Tas (1) = ToyTasTmaxaa(¥) = Ty Tmaxa,8(V) = Tmaxan (V)-

Let @), be the union of )0 and @),;. The direct extension relation <*
on (), is simply the union of the extension relations on ),,0 and ,;. The
extension relation < on (), is defined by: p < ¢ iff p is a direct extension of

qorp € Qn,q= (CL,A, f) € Qno where:

a) p extends f.

b) Dom p contains a.
¢) p(maxa) € A.

d

) For 8 in a, p(3) = Tmaxa,s(p(maxa)).

At last we define the desired forcing P.

Definition 42 P consists of p = (p, | n € w) such that for each n, p,
belongs to Q,, and for some finite (p), p, belongs to Q,1 for n less than I(p)
and for n at least I(p), pn = (an, Ay, fn) belongs to Qno with a, C a,1.

p < q iff for each n, p, < g, in Q,. And p <* q (p is a direct extension of
q) iff for each n, p, is a direct extension of q,.
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9.Vorlesung

Lemma 43 Suppose that v < < «a with v <, a and 0 <, a. Then
{v < Ky | map(v) > 7oy (V) } belongs to Uy,

Lemma 44 Suppose that x belongs to [A\]<"" and 5 <, « for each [ € x.
Then there is A € U, such that m,p, agrees with mg 5,70, on A whenever
Bo <, 1 belong to x.

Lemma 45 P is kT -cc.

Proof. Let p(a), « < k1T, be elements of P and write p(«) as (p(a), | n € w),
where for n > l(p(«)), p(a), = (a(a)n, A(@),, f(a),). There is a stationary
S C k™" such that for a, 3 in S we have:

(a) l(p(a)) = U(p(B)) = L.

(b) For n less than [, the collection of Dom (p(«),), o € S, forms a A system
on whose root p(«), and p(/3),, agree.

(c) For n at least [, the collection of a(a),, UDom (f(«),), a € S, forms a
A system on whose root f(«), and f(3), agree. Moreover a(«),, and a(f3),
have the same intersection with this root and therefore a(«),, is disjoint from

Dom (f()n)-

Now we claim that if «, 5 belong to S then p(«) and p(f3) are compatible. We
construct ¢ below both of these conditions as follows. For n less than [ let g,
be p(a),, Up(B),, which by (b) above is a well-defined function. Now suppose
n is at least [; we define ¢, = (b,, By, gn). We take g, to be f(a), U f(5)x-
To define b,,, choose p above all elements of a(a),, Ua(B), in the ordering <,
and greater than all elements of Dom (g, ), then set b, = a(«),Ua(8), U{p}.
Finally, to define B, let a*, 3* be maxa(«a),, maxa((),, respectively, and
let B), be the intersection of 7. [A(a),] N 7T;51* [A(3),]. Now using Lemmas
43 and 44, choose B, € U,, to be a subset of B;, such that:

i. Whenever o >,, 3 belong to b,, then m,5(1t) = om0 (p) for all pin B,.
ii. Whenever a > 3 belong to b,, then m,, (1) > m,5(1) for 1 in B,,.

Then ¢(n) = (by, Bn, gn) belongs to Qo for each n, and ¢ is a condition
extending both p(«) and p(f3), as desired. O

10.-11.Vorlesungen

We wish to prove the following two lemmas.
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Lemma 46 (The Prikry Property) For any sentence o, each condition in P
has a direct extension that decides o.

Lemma 47 P preserves k.

Both of these lemmas will follow rather easily, given a certain fact about
“minimal extensions” of conditions, which we now describe. Recall the fol-
lowing notation: If p = (p, | n € w) is a condition and n > [(p), we write
P as (an(p), An(p), fu(p)). Now suppose that ¢ < p belong to P. Define the
condition ¢ | p = r as follows: For n not in the interval [[(p),1(q)), 7 = Pn-
For n in the interval [I(p),1(q)), ry is the union of f,(p) and ¢, | a,(p). We
say that q is a minimal extension of p ift g = q | p.

Note that minimal extensions can be alternatively described as follows.
Suppose that m is at least [(p) and choose 7 = (Vip), - - -, Vm—1) In [ [ < Ar(D)-
Define the condition ¢ = p *  as follows: ¢, = p,, for n not in [I(p), m) and
for n in [I(p), m),

= fo(P) U8, Tmaxan(e).6(Vn)) | B € an(p)}-

Then p * ©/ is a minimal extension of p and every minimal extension of p
is of this form, as ¢ | p is just the condition p * (v, ..., Vq-1) Where

Uy = qn(maxa,(p)).

The main fact we need is the following.

Sublemma 48 Suppose that p belongs to P and D is open dense. Then there
s a direct extension p* of p such that whenever q < p* belongs to D, so does

qlp*

Proof. For each n > I(p) and each 7 = (v, ..., Vp—1) 0[]}y <pey ks We
will define a condition p” which directly extends p. Let (7; | i < ) be an
enumeration of the /. We assume that for i less than j, length (%) is at most
length (7/;) and if these lengths are equal, then max7; is at most max ;. We
define a <*-descending sequence (p’ | i < k) of direct extensions of p and set
p” = p' where ¥V = 7.

Note that if 7 = (p' | i < A), X limit, is a <*-descending sequence of
direct extensions of p with a <*-lower bound, then although p' may not have
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a greatest <*-lower bound, it does have a canonical mazimal <*-lower bound

¢, defined by: g, = |UJ,_, pj, for k < I(p), and for k > I(p), fr(q) = U, fe(p),
ar(q) = U,y ar(p “YU{a} where a is the least <;-upper bound to the elements

of U, ar(p') and Ax(q) = ;-\ ajnaxak(p )[Ak(pz)]-

Suppose that p’ is defined for all i < j and we wish to define p’. Let ¢’
be p if j equals 0, and otherwise let ¢’ be the canonical maximal <*-lower
bound to the p’, i < j. (It will be clear from the construction that the p’,
i < j, have a <*-lower bound.) Let n denote I(p) +length (7;). If 7; does not
belong to [, <r<n Ai(¢?) or if it does but ¢/ * I/; has no direct extension in
D, then let p’ be ¢’. Otherwise choose some direct extension 7 of ¢/ x ; in
D and define the direct extension p’ of ¢/ as follows:

(a) For k outside the interval [I(p), n), p,% = Ti
(b) For k inside the interval [I(p),n), set ax(p’) = ar(¢?), Ar(p!) = Ar(¢’)
and fi(p') =} | (Dom (r]) \ ax(¢’)).

Then note that as p’ * ; is defined and equal to 77, it follows that p’ * IJ;
belongs to D.

Let p* be a <*-lower bound to all of these conditions p’, i < x. Such a
<*-lower bound exists as the extension relation below p on [0,1(p)) is K-
closed and in the above construction, a;)(p’) and Ay (p') never grow and
for k greater than I(p), ax(p®) and Ag(p') only grow at most rj_; times. Now
if ¢ < p* belongs to D then choose v so that ¢ is a direct extension of p* x v/.
(This 7is (vip), - - -, Vi(g)—1) Where v, = fi.(q)(max ay(p*)) for each k.) Choose
i so that o/ equals 7;. Then as Ai(p') = Ay(p*) for k in [I(p),1(q)), p' * 7 is a
well-defined condition and therefore p’ was chosen so that p’ x 7 belongs to
D. As q | p* = p* x U extends p’ x 7, it follows that ¢ | p* also belongs to D,
as desired. This proves Sublemma 51.

12.-13.Vorlesungen
We prove the following two lemmas.

Lemma 49 (The Prikry Property) For any sentence o, each condition in P
has a direct extension that decides o.

Lemma 50 P preserves k.
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The main fact we need is the following.

Sublemma 51 Suppose that p belongs to P and D is open dense. Then there
15 a direct extension p* of p such that whenever ¢ < p* belongs to D, so does

qlp”

Proof of Lemma 49. Suppose that the condition p has no direct extension
deciding the sentence o. Applying Sublemma 51, we may assume that whe-
never ¢ < p decides o, then so does ¢ | p. Set I(p) = n. We claim that
{vn € An(p) | p * (v,) does not decide o} must belong to the ultrafilter
Un maxan(p)- Otherwise, we can thin A,(p) to A € U, maxa,(p) 50 that the
p * (v,) for v, in A decide o in the same way, and form p* by replacing
A,(p) by A. Then p* is a direct extension of p deciding o, contradicting our
hypothesis.

Similarly, we have that whenever p * (), ..., Vm-1) is an extension of
p which does not decide o, the set {v,, € An(p) | p* (Vi) -+ Vi1, Vm)
does not decide o} belongs to Uy, max am(p)- Therefore we can form a direct
extension p* of p such that no minimal extension p * ©/ of p compatible with
p* decides 0. Now choose ¢ < p* deciding o. By choice of p, ¢ | p also decides
o. But ¢ | p is a minimal extension of p compatible with p*, contradicting
the choice of p*. This proves Lemma 49.

Proof of Lemma 50. As k is singular it suffices to show that if p forces f to
be a function from k, into (k7)Y then some extension ¢ of p forces a bound
on the range of f. Assume that l(p) is greater than n. Now using Sublemma
51, build a k,-sequence of direct extensions of p with lower bound p* having
the property that for each ¢ < &, if ¢ < p* forces a value of f at ¢ then so
does g | p*. But there are only x-many conditions of the form ¢ | p*, and
therefore p* forces a bound on the range of f. This proves Lemma 50.

Lemma 52 P adds \-many w-sequences to the product of the k,’s.

Proof. Let G be P-generic. For each o < A define ¢, by t,(n) = p,(«), where
p belongs to G, n < l(p) and a € Dom p,. For any a < A, either « is in
the domain of f,(p) for some p in G and all n > I(p), or « is in a,(p) for
some p in G and all n > I(p), and both cases occur cofinally in A. In the
former case, t, belongs to V' and in the latter case an easy density argument
shows that t, eventually dominates each element of the product of the x,’s
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in V. We show that in the latter case, ¢, also eventually dominates each g,
0 < «, which does not belong to V', and therefore as the latter case must

occur unboundedly in A\, A-many new elements of the product of the x,’s
have been added.

Suppose 3 is less than «, t3 does not belong to V' and « is in a,(p) for
some p in G and all n > [(p). Choose ¢ in G so that [ belongs to a,(q)
for each n > [(q). We may assume that ¢ extends p. Then both § and «
belong to a,(q) for each n > I(q). By the definition of condition, we have
Tmaxan(q),8(V) < Tmaxan(q),a(V) for each v in A,(q). But now choose r in
G so that [(r) is greater than n and r extends g. Then tz(n) = r,(5) =
Tmaxan(q),3(V) < Tmaxan(q),e(V) = Tn(®) = to(n), where v = r,(maxa,(q)) €
A, (q). So t, eventually dominates tg. O

Thus after forcing with P, the GCH still holds below « and 2" is at least
A, yielding a dramatic failure of the singular cardinal hypothesis.

Extender-based Prikry forcing with a single extender

In the previous section we showed how to violate the singular cardinal hy-
pothesis at an w-limit of cardinals with a rather high degree of strength. In
this section we start with a single cardinal with much less strength and simul-
taneously singularise it and blow up its power set, without adding bounded
subsets.

Assume GCH and suppose that x and \ are regular with \ at least k™.
We assume that x is H()\)-strong, which means that there is an elementary
embedding j : V' — M with critical point x such that H(\) is contained in M
and j(k) is greater than A\. We also make the following additional assumption:

(%) A is of the form j(f\)(x) for some function fy: x — k.

(%) is clearly the case if there is a formula ¢ such that A is the least regular
cardinal with H()\) F ¢(k); for then we can take f\(i) = the least A\ such
that H()\) F o(&). This applies for example when A = x*™ for finite n or \ =
the least inaccessible greater than x. It can also be shown that if x is H(\)-
strong for all A then this is necessarily witnessed by embeddings which obey
(%), and that for a single A, if x is H(\)-strong then in a generic extension
of the universe, x is H(\)-strong via an embedding obeying (x). Thus the

additional hypothesis (x) should be regarded as harmless.

22



As in the previous section, for each @ < A we consider the k-complete
ultrafilter U, defined by:

XelU,iff X Ckand ac€ jX).

We also define the following ordering:

a<; Biff Kk <a < G and for some f:k— K, j(f)(5) =
Lemma 53 For each a € [k, ), kK <; .

Proof. Define g : K — k by g(@) = the least & such that fy\(k) > & (if such a
R exists, 0 otherwise). O

Lemma 54 The partial ordering <; is kT -directed and in fact each x €
(A" has \-many upper bounds in <.

Proof. Using GCH, let (a,, | @ < k) be an enumeration of <" such that for
each = € [k|<", the set of o such that x = a, is a cofinal subset of (supx)*.
Now note that as j is the identity below s, (a, | @ < k) is the restriction to
kof j({ay | < K)); let (a, | @ < A) denote the restriction of j({a, | @ < K))
to A. Then for each z € <*X N M = <*), the set of o such that z = a, is a
cofinal subset of (supz)™.

Now suppose that z belongs to " \; we find @ < \ such that § < «
for each 3 € Range (z). Using the fact that A > x** is regular, choose
a < X so that a, equals z. Using Lemma 53, choose g : K — & such that
j(g)(a) = k. Now for each i < k™ we may choose a function f; : kK — &
such that j(fi)(«r) = 4; such an f; can be defined by choosing A C & to
code i and then setting f;(@) = the ordinal coded by AN g(a). Now suppose
that 3 belongs to Range (z) and choose i < k' so that § = z(i). Then
B = j(f)(a), where f is defined by: f(@) = as(fi(@)), the f;(a)-th element
of ag. So 3 <; a.. As there are \-many « such that = equals a,, we are done.
]

Fix 7,3 witnessing 3 <; . As in the previous section we have:

Lemma 55 Suppose that v < § < a with v <; o and § <; o. Then {v <
K| Tap(V) > Tay(v)} belongs to U,.
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Lemma 56 Suppose that By <; 51 <; o. Then there is A € U, such that
TaB, agrees with ma 5,map, on A.

For technical reasons we make a few further demands of the projection
maps Tag, 8 <; a:

Fized projection to k: T (@) = mge(@) for all a.

Total commutativity at k: For § <; a, mau(@) = mg.(map(@)) for all a.

U, is a P-point: If (A; | i < k) belong to U, then for some A € U,, A is
almost contained in A; for each i (i.e., modulo bounded sets).

Lemma 57 Suppose that v < f < a with v <; a and § <; a. Then {v <
K| Tap(v) > Tay(v)} belongs to U,.

14.-15.Vorlesungen

Fized projection to k: T, (&) = mge(@) for all a.

Total commutativity at k: For § <; a, ma(@) = ma.(map(@)) for all a.

U, is a P-point: If (A; | i < k) belong to U, then for some A € U,, A is
almost contained in A; for each i (i.e., modulo bounded sets).

To achieve the first two of these properties, we define X to be the set of
@ < k such that for some & < @, k is closed under f,, k is inaccessible and
fr(k) > @. Then X belongs to each of the measures U,, k < a < \. So we
can assume that for all « € [k, \), the projection 7, is defined by: 7, (&) =
the unique % witnessing @ € X (for @ in X); m,.(@) = 0 (for @ not in X).
This achieves the first property.

To achieve the second property, we require that m,s(@) = 0 for & not in
X and for a in X, m,s(@) is in the interval [m.. (@), @]. As k <; 3 for all
B € [k, \), Lemma 57 implies that these requirements are vacuous on a set
which belongs to each of the ultrafilters U,, x < a < A, and therefore can be
imposed. We now have that for 8 <, a, if @ belongs to X, then 7,5(a) is in
the interval [, (&), @] and therefore 7,, (&) witnesses that m,5(a) belongs to
X; it follows that 7, (mas5(@)) equals the witness 7. (@). And if & does not
belong to X, then 7., (&) = 0 and 74, (mas(@)) = 74,.(0) = 0. This establishes
the second property.

To verify the P-point property, note that the function 7a, : £ — K is
non-decreasing and cofinal on X € U,, and j(7.,)(a) = k. Then as each A;,
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i < K, belongs to U,, we have that o belongs to j(A;) = j((A; | i < k)); for
all i < k = j(Tax)(). It follows that A = Ar_ A; = {a € X | @ belongs to
A; for all i < m,.(a)} belongs to U,, and as 7, is cofinal and non-decreasing
on X, it follows that A is almost contained in each A;, i < k.

For a € [k, \) and v < k we denote 7., (V) as x(v). (This is independent
of the choice of a.) A sequence (v, ...,v, 1) of ordinals less than x is k-
increasing iff i < j implies x(v;) < k(v;). For k(1) < k(v1), we have that
the cardinality of {v € X | k(v) = k(1p)} is less than k(v;) and therefore
less than v. If ¥ = (1, ...,v,_1) is a sequence of ordinals less than x, then
k(V) denotes the max of the x(v;). Note that by total commutativity at x, if
a <; § then k(v) = k(ms,(v)) for each v < k.

We are at last ready to define the desired forcing.

A condition pis of the form {(v,p?) | v € g\{max g} }U{(max g, p™*>*9,T)}
where:

(a) k € g C [k, A), ¢ has cardinality at most x, g has a maximal element and
a <;maxg for all o € g.

(b) For v € g, p" is a finite s-increasing sequence of ordinals in X C .

(¢) T is a tree of s-increasing sequences from X with trunk p™*<9. For each
n >r p™9, Succr(n) = {v < kK | n*xv € T} belongs to Upax, and for
m > no =7 pm**9, T, is a subtree of T}, , where T;, denotes the set of o such
that n * o belongs to 7.

(d) For v € g, s(p™™9) < K(p").

(e) For v € Succy(p™®9), the cardinality of {y € g | k(v) > k(p")} is at
most k(v).

(f) Tmax g, sends p™*9 to p*.

We denote g by supp(p), max g by mc(p) (for “maximal coordinate” of p),
T by TP and p™@*9 by p™e.

For two conditions p, g as above, we say that p extends q iff:

1. supp(p) 2 supp(q)-
2. For ~ € supp(q), p" is an end-extension of ¢”.

3. p™@ belongs to T9.
4. For v € supp(q), p” \ ¢" is the range of 7, OD pmeld) \ ¢me@) past 4,
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where i € Dom (p™©(@) is largest so that x(p™@ (7)) < k(q").
5. Tme(p),me(q) Maps TP to a subtree of 7.
6. For v in supp(q) and v € Succr»(p™°), if k(v) is greater than x(p?) then

Tome(p)y (V) = Tme(g) (Tme(p).me(q) (V))-

Remark. The above properties imply that if p extends ¢ then 7,,c(5) me(q) (P) =
p"@  See the proof of the transitivity of the extension relation below.

If in addition p” = ¢” for each v in supp(q), then we say that p is a direct
extension of q. We write p < ¢ for p extends ¢ and p <* ¢ for p directly
extends q.

16.-17.Vorlesungen
Lemma 58 The ordering relation of P is transitive.

Proof. Suppose that p < q and g < r; we check that p < r. Properties 1 and
2 are clearly satisfied.

For property 3, first note that it follows from from property (f) for condi-
tions and property 4 for extensions that if p extends ¢, then () me(q) (™)
equals p"“@. To see this, it suffices to show that Tme(q) ok Tme(p),me(q) (D)
equals ﬁmc(q)ﬁ(pmc(q)), as the map 7.y~ is 1-1 on k-increasing sequences.
NOW Tc(q),x Tme(p)me(q) (P™C) €quAls Te(p),«(P¢) by total commutativity to &,
and by property (f) for the condition p, the latter is p. And Tc(q)..(p™?)
is the union of 7,,.(¢)x(¢™) and ﬁmc(q),,{(pmc(q) \ ¢™¢). The former is ¢" by
property (f) for the condition ¢. The latter is p* \ ¢* by property 4 for the
extension p < ¢. It follows that (). (p™?) is also p*.

Now we check property 3 for the pair p, 7; i.e., we check that p™*(") belongs
to T7. As ¢ extends r, k(¢™°) equals k(¢")) and therefore as p extends g,
pmer) \ ¢ is the range of Tme(q),me(r) ON pmel@ \ ¢m@ It follows from
property 5 for the extension ¢ < r that g™ x (pme() \ gmet)) = pmer)
belongs to 1", as desired.

Next we check property 4. Suppose that v belongs to supp(r); we must
show that p” \ 7 is the range of 7,()~ On pmelr) \ rme") past i, where
i € Dom (p™")) is largest so that x(p™")(i)) < k(r?). Since ¢ extends r,
q"\r7 is the range of ()~ on ¢\ r™() past j, where j € Dom (¢™¢()
is largest so that x(¢™"(j5)) < k(r7).
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First suppose that ¢” is a proper extension of r7, from which it follows
that x(q”) equals x(¢™") and j equals 7. It suffices to show that p” \ ¢” is
the range of Tc(r),, on p™e™ \ g™ for then p¥ \ 7" = (p” \ ¢") U (¢ \ r7)
is the range of (), on (P \ ¢m) U (¢me) \ <) past i), which is
pmelr) \ et past i, as desired. Now since p extends ¢, p7 \ ¢7 is the range
of Tpne(g),y ON p™e@ \ g™ past k, where k € Dom (p™°(@) is largest so that
k(p™@ (k) < k(q”). But as ¢ extends r, k(¢™@) equals x(¢™") = k(q"),
from which it follows that & is just max ¢™“@. Therefore p” \ ¢ is the range
of Tme(q)~ o0 ™D\ ¢™*9. Now using property 6 for the extension ¢ < r we
have:

p? \ Q= Tme(q)y [me(q) \ qm(q)] —
Tome(r) i [Tme(a),me(r) [P\ ¢9]] =
Wmc(r),'y [pmc(r) \ qmc(r)] )

The last equality holds by property 4 for the extension p < ¢, using the fact
that x(¢™") equals k(qm?).

If ¢” equals 77, then as requirement (d) for the condition r implies that
k(rme) is at most x(r?) = k(q?), it follows that x(g™")) is at most x(q?).
As p extends ¢, p* \ 7 = p7 \ ¢ is the range of (g, on p™@ \ ¢me@
past j, where j € Dom (p™°@) is largest so that x(p™?(5)) < x(q"). Also,
pme) \ ¢m<() is the range of Tme(q),me(r) ON pmel@ \ ¢me@, Tt follows that
pme) \ (") past i equals the range of Tme(q),me(r) ON pmeld) \ g9 past ;.
Using property 6 for the extension ¢ < r we therefore have:

ppy \ r = ppy \ qu = Tmc(q),y [Pmc(q) \ qmc(q) past j] =
7Tmc(r)ﬁ[7"-1”/Lt:(q),rnc(r) [pmc(q) \qmc(q) past j]] =
Tomer) [P0\ ™) past i), as desired.

We check property 5. AS Tne(p)mey(P™C) = p™), it suffices to show
that () me(r) maps Tpme into T ery- Suppose that f o belongs to Thne.
As p extends ¢, it follows that 7,,c(p)me(q)(0) belongs to T;mc(q) and the-
refore (p™D \ ¢") * Tpe(p)me(q)(0) belongs to Time. As in the verification
of property 4 above, Tc(q)me(r) [pme(@ \ pme] = pmet) \ ¢m<(") and therefore
Tme(q)me(r) Fme(p)me(q) (0) belongs to T7. .

We claim that if v is a component of o then (v) is greater than x(p™(")).
We have £(v) = K(Tmep)me(q (V) is greater than r(p™@). If pme() is a

proper extension of 7™ then as a final segment of p"(") is the image under
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Tme(q).me(r) Of a final segment of p™°(@)_ it follows that #(p™“")) equals x(p™@)
and therefore x(v) is also greater than s(p™™). If p™(") equals r™° then
as Tme(q),me(r) MAPS qumc into T;mc(r), I{(l/) = K(Wmc(q),mc(r)Wmc(p),mc(q)(V)) is
greater than (g™ = x(pmer)).

Now we can apply property 6 for the extension p < ¢ to conclude that

Tme(q),me(r) Tme(p)me(q) (T) = Tme(p)me(r) (0) € T ey as desired.

Finally, we verify property 6 for p and r. Suppose that v belongs to
supp(r), v belongs to Succr» (p™°) and k(v) is greater than x(p”). Then apply-
ing property 6 for the extension p < g we have ()4 (V) = Time(q)y Tme(p),me(q) (V)
As v belongs to Succry (p™°), it follows from property 5 for the extension p < ¢
that Tme(p) me(q) () belongs to Succrq (p™?) and therefore to Sucerq (™). As
K(Tme(p),me(q) (V) = K(v) is also greater than x(p?) > k(¢”) and ¢ < 7, we
have Wmc(p),,y(l/) = Wmc(r)ﬁﬂ'mc(q),mc(r)Wmc(p),mc(q)(l/). Recall that in the verifi-
cation of property 5 for p, r we showed that x(v) is greater than (p™");
so once again applying property 6 to the extension p < ¢, we conclude that
Tme(p)y (V) €QUALS Tpc(r) A Tme(p)me(r) (V), as desired. O

Lemma 59 If q belongs to P and « belongs to [k, \) then there is p <* q
with o € supp(p).

Proof. If o belongs to supp(q) then this is trivial. Suppose that « does not
belong to supp(¢) but a <; mc(q). Then add to ¢ a k-increasing sequence ¢*
such that x(t%) > k(g™); the result is a direct extension of ¢.

Now suppose that o %; mc(q). We may assume that mc(q) <; a, as
otherwise we may choose § < A so that a, me(q) <; 5, find a direct extension
of ¢ whose support includes 3 and then by the previous paragraph add « to
the support of that direct extension. The desired p will be of the form ¢ U
{(a,t,T)}, where ¢ is obtained from ¢ by replacing the triple (mc(q), g™, T9)
by (mc(q),q™°) and ¢, T are defined below.

We take ¢ to be any s-increasing sequence such that 7, .(t) = ¢". Recall
that 7, . is independent of «; therefore a candidate for ¢ is ¢"“9 which by
definition projects under () . to ¢~

A first attempt at defining 7" is to take 7y = the preimage of 7. un-
der o me(q), With t added as its trunk. The resulting py = ¢’ U {(a,t,T5)}
is a condition. The only difficulty with verifying py < ¢ is property 6: It
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may be the case that for some v € supp(q) \ {mc(¢)} and some v € A =
Sucer, (t) = 7! (@ [Sucera(¢™)], £(v) is greater than x(q7) but 7, (v) #

a,mc

Tme(q)y Tame(q) (V)-

To fix this problem, we shrink 7. For v € A we let B, be the set of
v € supp(q) \ {mc(q)} such that x(v) is greater than x(q”). Then B, has
cardinality at most k() as k(V) = K(Tame(q)(V)), Tame(q) (V) € Sucerd(¢™°)
and ¢ is a condition. The union of the B, ’s is all of supp(q) \ {mc(q)}. Now for
each v € A choose C, € U, such that for v in B} = {~ € supp(q) \ {mc(q)} |
k(v) > K(q")}, Mo,y agrees With Te(q))Tame(q) O Cy. Let C' be the “quasi”
diagonal intersection AXC, = {v | v € C,, when (V') < k(v)}. Then C
also belongs to U, and we let T" consist of all sequences in 7 all of whose
components (beyond the trunk) belong to C. Then p = ¢ U {(«,t,T)} is a
condition which (directly) extends ¢, as if 7 belongs to supp(q) \ {mc(q)},
v € Sucer(t) = ANC and k(v) is greater than x(¢”) then v belongs to Cy(gv),
~ belongs to B:((m and therefore 7, , agrees with m,c(q) 1) Tame(q) at v. As a
belongs to the support of ¢, we are done. O

Lemma 60 If q belongs to P and « belongs to [k, \) then there is p <* q
with o € supp(p).

18.-19.Vorlesungen
Lemma 61 P has the k™ -cc.

Proof. Let {p, | & < K™} belong to P. We can assume that the supports of
the p,’s form a A-system, the p,’s agree on the root of that A-system and
also (pI', TP=) is independent of «. This is because the supports have size at
most k and there are only k™ possible pairs (p7¢, TP~). We then show that
Da, Pp are compatible for any pair «, 3. The techniques for doing this are in
the proof of the previous lemma: Our first candidate for a common extension
of p, and ps is p, U pz. But the support of this may not have a maximal
element. So choose ¢ so that mc(p,), mc(pg) <; 6 and let p}, be formed from
Po by adding J to the support, as in the proof of the previous lemma. Then
p* = p, Upg is a condition, using the fact that x(p°) and x(pj°) agree.
To obtain a condition extending both p, and ps we shrink 77" further to
ensure that 7 me(p,) maps T, @**)mc into T;)EZC and then shrink 77" again using
the proof of the previous lemma to guarantee that property 6 holds for the
resulting condition relative to pz. O
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Lemma 62 The direct extension relation for P is k-closed.

Proof. Suppose that (p; | i < ¢) is a <*-decreasing sequence of length § < k.
We assume that mc(p;) > k for some i, as otherwise the result follows from
the analogous result for basic Prikry forcing. Choose « so that me(p;) <;
for each i < 0. Let p’ be the union of the p;’s, with the trees T?: removed.
Let T* be the tree consisting of all (v, ..., vp—1) in [);_; Tr;}nc(pi)[Tpi] such
that x(vg) > 6, let t be p/*® for some ¢ with mc(p;) > k and let 7" be the
tree with trunk ¢, followed by the strings in 7*. Then p' U {(a,t,7")} is a
condition: (a), (b) and (c) are easily checked; (d) holds as k(p§) = k(p["™©)
for each i < 0, (e) holds as k() is greater than ¢ for each v € Succy(t) and
(f) holds as for some i with mc(p;) > K, Tax(t) = T« (07) = p§ = ()"
Now as in the proof of Lemma 60, we can thin out 7" to T; for each i < ¢ so
that p’ U {(a,t,T")} extends p;; finally take p to be p’ U {(a,t,T*)}, where
Ty is the intersection of the T}’s, and we have a direct extension of each p;.
]

20.-21.Vorlesungen
Lemma 63 P satisfies the Prikry property.

Proof. We consider a strengthening of the notion of direct extension. We say
that p is a very direct extension of q, p <** ¢, iff p is a direct extension of
q and supp(p) = supp(q). Now if p extends ¢ then we write p |} ¢ for the
condition r obtained as follows:

(1) supp(r) = supp(q), 7 = p” for v € supp(q).
(ii) 7" has trunk p™@ and 1" T

pme(@) — Lpme(a)

We also write p | ¢ for the condition r defined by:

(i) supp(r) = supp(q), 7" = p” for v € supp(q).
(11) TT = 7Tmc(p%mc(q) [Tp]

Note that p || ¢ is uniquely determined by ¢ and p“@ . due to property 4 for
the notion of extension, and therefore we also write p | ¢ as ¢ * p"(9). Also

note that p <* (p | ¢) <* (p 4 ¢q) <.

If p extends ¢ we also write ¢ 1} p for the condition r obtained as follows:
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(i) supp(r) = supp(p).
(ii) ' = qV for v € supp(q).

(i) 777 = 7,0 ()

(iv) 7 = py for y € supp(p) \ supp(q), v # mc(p).
V)T ={cecn ! [TQ]\pmcgaeaeTp}.

me(p),me(q)

Note that ¢ 1} p is a direct extension of ¢ and p | (¢ 1} p) is equal to p.

Sublemma 64 Suppose that qy is a condition and D is open dense. Then
qo has a direct extension q such that whenever p belongs to D and extends q,
the condition p |} q has a very direct extension which also belongs to D.

Proof. We build a sequence (q; | ¢ < k) of direct extensions of ¢o. This
sequence will be taken from M, an elementary submodel of H(A") of size ™
closed under k-sequences and containing D as an element. Choose « so that
B <; a for each §in M N[k, ) and fix an enumeration (t; | ¢ < k) € M of
all k-increasing sequences.

If g;, t; are defined, choose some p in D N M extending ¢; with p™¢ =
W%i(p),mc(q,-)wavmc(qi)(ti)’ if possible, and set ¢;; to be ¢; f} p. Then p equals
P (gt p) = (6 1 P) * D™ = Git1 * Tortar ) me(qr) Feume(as) (t:) and therefore
the condition ;1 * Wr;i(qm),mc(qi)ﬂa,m(qi)(ti) belongs to D.

For limit \ < k, we define ¢\, = r as follows:

(i) supp(r) = U, supp(¢;) together with the least «) such that 5 <; «, for
each [ € UK/\ supp(q;)-

(ii) 77 = ¢/ for v € supp(g;).

(111) ro = ﬂ-a)\ R(QO)

iv) For n € T" extending r™¢ = r*, Succr-(n) is the intersection of the
lSucera (Ta, me(q) (1 ))] for i < \.

Also define g = ¢, just as above with A = k and «), = «, except replace (iv)
by:

(v) For n € T7" extending r¢ = r®, Succyr(n) is the quasi diagonal intersec-
tion Af_, 7 amc(q [Sucera (T me(g,) (1))

Now suppose that p is in D and extends ¢. For each ¢ < k let p; be the
condition r defined by:
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(i) supp(r) = supp(p), 77 = p? for v € supp(p).
(i) 77 = 7t me(an | T4 N TP

Then p; is a very direct extension of p which extends ¢;. Choose i < k so
that t; equals mpe(p)o(p™°) = p®. Then p; is an extension of ¢; in D such that
W;Li(pi),mc(qi)wavmc(%)(ti) = Wr;i(pi),mc(qi)wavmc(%)(p(i)é); as pq extends 4, this is

ﬂ;é(pi) mc(qi)(p;”c(q”), and as p; extends ¢;, this is p"“. So ¢;41 was chosen so

that @i 1T 1) et Tame(a) (L) = Gt 1% T g0 ) me(qe) Taumetqs) () belongs
to D. But as p extends ¢, this is ¢; 1 * W%i(qm)mc(qi)(pmc(qi)) and as p;;1

extends ¢, this is ¢ * pﬁcl(qi“) = @ip1 * p™9+1) . Ag p extends g, this

equals giy1 * Ta,me(q1)(P"), @ condition extended by p;1 | ¢. Thus piq | ¢
is a very direct extension of p || ¢ which belongs to D. O (Sublemma)

Now suppose that ¢ is a sentence and p is a condition. We wish to show
that p has a direct extension deciding (. By the sublemma, we may assume
that if r is an extension of p which decides ¢ then so does some very direct
extension of r || p = p*r™®) We claim now that some very direct extension
of p decides . Suppose not; we say that p is indecisive.

We claim that for U,,.(,-measure one v > max(p™°) in Succy»(p™*), the
condition p(r) = p* (p™° * v) is also indecisive. For, if p(v) were decisive for
Upne(p)-measure one v, then by thinning 7" we obtain a very direct extension
of p which decides ¢, contradiction. Similarly, if vy belongs to Succr»(p™)
and p(vp) is indecisive, then for U,,.)-measure one vy in Succy»(p™ * 1vyp),
the condition p(vp, 1) = p * (p™° * vy * 1) is indecisive. Continuing in this
way we can form a very direct extension ¢ of p such that for each o € T,
the condition p(o) is indecisive.

Now choose » < ¢ which decides . By choice of p, a very direct extension
of r | p also decides . But r || p is a very direct extension of a condition of
the form p(o) where o belongs to T;i.; this contradicts the choice of ¢. O

Lemma 65 P preserves k™.

Proof. As P forces « to be singular, x* is either preserved or given a cofinality
less than . Thus it suffices to show that if ¢, forces f to be a function from
some « < k into k* then some extension ¢ of ¢o forces a bound on the range
of f. Now using Sublemma 65 form a <*-descending sequence (g; | i < @) so
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that for each ¢ < «, ¢;11 has the property that if p extends ¢;,; and decides
f at 7, then so does a very direct extension of p | g;41. Then g = g, forces a
bound on the range of f, as if p < ¢ decides f at ¢ < «, so does a very direct
extension of p || ¢ < p | ¢;+1, and there are only xk-many conditions of the
formp | ¢q. O

Lemma 66 For each o in [k, \), G* = |J{p™ | p € G} is a Prikry sequence
for U, and if « < 3 belong to [k, \) then G® eventually strictly dominates
G°.

Proof. The first conclusion follows easily from the definition of the forcing P.
Suppose that o < 3 belong to [, \). Choose 7 < A so that «, 5 <; 7. Then
{v | mp(v) > mya(v) belongs to the ultrafilter U,. It now follows easily from
the definition of the forcing P that G° eventually strictly dominates G*. O

Therefore by forcing with P we obtain a model where x has cofinality w,
GCH holds below x and 2" = .
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