Topics in Set Theory, Wintersemester 2006
1.Vorlesung
Stationary reflection

If S is a set of ordinals and « is an ordinal of uncountable cofinality, we
say that S is stationary in « iff S intersects every closed unbounded subset of
a. We say that stationary reflection holds at «, abbreviated SR(«) iff every
S which is stationary in « is also stationary in some smaller & of uncountable
cofinality.

Note that SR(«) is equivalent to SR(cof «), so we will just study SR(k)
for regular cardinals k.

Theorem 1 k weakly compact — SR(k).

Proof. Recall that x is weakly compact iff x is [T} reflecting, i.e., for any S C &,
if ¢ is a II; formula true in (H,+, €, 5) then ¢ is also true in (H,+, €, 5N a)
for some o < k. As the property “S is stationary in «” is a II; property of
(H.+, €,5 N k), stationary reflection follows. O

Theorem 2 In L, SR(k) — k weakly compact.

Proof. Assume V = L. First assume that  is inaccessible. Let (C, | a a
singular cardinal) be a square sequence on the singular cardinals, i.e., for
each singular cardinal «, C,, is a closed unbounded subset of « of ordertype
less than o and if & is a limit point of C,, then & is a singular cardinal and

C&:Caﬂd.

Assume that « is not weakly compact and choose A C k and a II; formula
¢ so that ¢ holds in (H.+,€,A) = (Ly+, €, A) but not in (Hu+,€,ANa) =
(Lo+, €, AN a) for any a < k. Let Sy consist of all singular cardinals o < x
such that ¢ holds in (Lg, €, ANa) provided § < o is a limit ordinal and «
is regular in Lg.

Claim 1. Sy is stationary in s.

Proof. Suppose that C is closed unbounded in x and choose a limit 5 < k™ so
that A and C belong to Lg. As ¢ is II;, it holds in S = (Lg, €, A). For each
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cardinal o < k let M, be the least ¥; elementary submodel of S containing
a U {A,C} as a subset. Then Cy = {a < K | @ = M, Nk} is a closed
unbounded subset of C' which is definable over §. If « is the w-th element
of Cy, then a belongs to Sy, as « is singular definably over the transitive
collapse (Lg, €, AN L,) of M, and ¢ holds in this structure. O(Claim]1)

Claim 2. Sy is not stationary in « for any regular a < k.

Proof. Suppose that o < & is regular and choose a limit ordinal § < a™ large
enough so that AN a belongs to Lz and ¢ does not hold in § =

(Lg,€,AN a). Much as in the previous proof, for each cardinal a < «a let
My be the least ¥; elementary submodel of S containing @ U {AN L,} as a
subset and Cy = {a@ < a | @ = M; N a}, a closed unbounded subset of .
Then no @ in Cy belongs to Sy. O(Claim?2)

Now we thin out Sy to a stationary subset that is not stationary in any
a < k. For each ain Sy let f(a) be the ordertype of C,, the closed unbounded
subset, of a assigned by our square sequence on the singular cardinals. Let S
be a stationary subset of Sy on which f is constant.

Claim 3. S is not stationary in any o < k.

Proof. Suppose that S N «a were stationary in «; then o must be a singular
cardinal of uncountable cofinality, and S N Lim C, is unbounded in a. But f
is constant on S and 1-1 on Lim C,, by the coherence property of the square
sequence. Contradiction! O(Claim3)

Thus S is a stationary subset of x which is not stationary in any a < k,
so SR(k) fails.

If Kk = AT is a successor cardinal, then we use a Oy sequence, i.e., a
sequence (C,, | A < a < AT, a limit) such that C,, is closed unbounded in
a of ordertype < X and @ € Lim C, — C; = C, N a. As above choose
S C (A, k) to be a stationary set of limit ordinals on which the function a —
ordertype C, is constant. Then S is not stationary in any a < k. O

2.Vorlesung

Theorem 3 Relative to a weakly compact, it is consistent that SR(k) does
not imply that k is weakly compact.



Proof. Suppose that x is weakly compact. Then k is weakly compact in L.
Let P, be the reverse Easton iteration of length x which at inaccessible o < &
adds an a-Cohen set. Let G, be P.-generic over L.

Now over L[G,], consider the following forcing @, due to Kunen, for
adding a x-Suslin tree:

For an ordinal «, an a-tree is a subset T of 2<% closed under initial
segment such that for each 3 < «, some element of 7" has length 3. We refer
to « as the height of T'. For limit «, we say that an a-tree T is homogeneous
iff for any s in T, Ty = {t | s*xt € T} equals 7" and an « + 1-tree T is
homogeneous iff for s € T' of length less than «, T equals T'. For limit «, a
homogeneous a-tree exists iff a is indecomposable, i.e., 3 + v is less than «
whenever (8 and v are less than «. If T is an « + 1-tree then not only does
T have a path of length «, but every node of T" of length less than « can be
extended to such a path.

The forcing @ consists of the one-point tree {0}, together with homo-
geneous trees 1" of successor height less than x such that both (0) and (1)
belong to T'. @) is ordered by end-extension.

If T is a homogeneous a-tree, a limit, and s is any path through 7' of
length « then there is a minimal extension m(7T,s) of T to a condition of
height o + 1 which contains s, namely T'U {sg* (s \ ) | so € T and (§ < a},
where for each § < «, s\ (3 is such that (s [ ) x (s \ ) = s.

Claim 1. () is k-distributive and adds a x-Suslin tree.

Proof. () may fail to be k-closed, as if Ty > T7 > - - - is a descending sequence
through @ of limit length A < k, then although the union 7 of the 7}’s is
homogeneous, it may have no path of length Height(7) ) and therefore not
be extendible to a condition. However if in addition to the T};’s we have paths
s; € T; of length Height(T;) — 1 such that i < j — s; C s, then the union sy
of the s;’s forms a path through 7, of length Height(7} ), and we can extend
Ty to a condition T\ = m(T) , s)) below each of the 7;’s which contains s,.
This implies that we can inductively extend any condition to meet a sequence
of fewer than x open dense sets, i.e., the forcing () is k-distributive. It follows
from this and induction on a < k, that any condition can be extended to



one of height at least a, and therefore the union of a ()-generic is indeed a
k-tree which we denote as Tj.

We now check that Ty is x-Suslin. Suppose that 7' I+ A is a maximal
antichain in 7. Define a descending sequence of conditions T¢, § < &, of
height ¢ + 1 together with elements s¢ of T¢ of length ~¢ which end-extend
each other so that for limit §, T = m(Uy ¢ T, s¢), and

1. For any ¢, if s € T, then T, decides s € A.
2. For any s € U5<H T¢ and a < K there is an 1 such that v, > o and T,

forces that some proper initial segment of s * (s, \ a) belongs to A.

To achieve 2, consider how to handle a particular s and «. Choose a limit
¢ such that ~, is greater than both o and the length of s. If T; forces that
some proper initial segment of s * (s¢ \ @) belongs to A then take 7 to be
€. Otherwise there is a 7" extending T¢ and an sy such that s* (s¢ \ @) * 51
belongs to 7" and T” forces s * (s¢ \ @) * 51 to belong to A. Let Ty, extend
T" and satisfy 1. Choose s¢1; to be a path through 7¢, extending s¢ so that
Set1 \ v extends (s¢ \ @) * s1. Then 2 is satisfied with 7 equal to £ + 1.

There must be a limit ordinal £ such that for a < ¢ and s € U§,<g Te

there is an initial segment of s % (s¢ \ @) that is forced to belong to A. It
follows that every point in Tz = m(Ug ¢ T, s¢) of length ¢ is forced to lie

above some point in A, so T¢ forces that AC T¢ has size less than x. This
proves that the generic tree is xk-Suslin. O(Claim]1)

Claim 2. Let Ty denote the x-Suslin tree added by ). Then the 2-step ite-
ration () * Ty is equivalent to x-Cohen.

Proof. The forcing @ * Ty has R = {(7,s) | T has height Dom (s) + 1 and
s belongs to T'} as a dense subforcing. But then both R and k-Cohen are
r~closed forcings of cardinality x and therefore generate isomorphic complete
Boolean algebras. It follows that @ % Tj, is equivalent to x-Cohen. O(Claim?2)

It follows that P, * @) * T is equivalent to P, * k-Cohen.
Claim 3. P, * k-Cohen preserves the weak compactness of x.

Proof. We must show that r satisfies IT] reflection in L[G((< k)] = L|G,][G(k)],
where G, is generic over L for P, and G(k) is generic over L[G,] for k-Cohen.
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Suppose that (p, ¢) is a condition in P, % k-Cohen which forces A to be a sub-
set of s and the II; sentence ¢ to hold in the structure (L,+[G(< k)], €, A).
As P, is k-cc, we may assume that ¢ belongs to L,.. And we may assume that
the name A is a subset of L,.. Now the statement

(p,d) IF ¢ holds in (L.+[G(< k)], €, A)

is a II; statement about the structure (L,+, €, A,p, ) and therefore by IT!
reflection in L there exists a cardinal a < k such that (p, ¢) belongs to L,
and

(p,4) IFo @ holds in (Lo+[G(< a)], €, AN Ly),

where I, refers to the forcing P, * a-Cohen and G(< a) refers to the generic
for that forcing. Now choose a condition extending (p,q) which forces (in
P, % k-Cohen) that G(k) | a = G(«), and therefore that A N a equals
(AN Ly)%=%. Then this condition forces (in P, % k-Cohen) that H(a*) of
LIG(< K)] = Lo+ [G(< @)] and ¢ holds in (La+ [G(< )], €, ANa), as desired.
O(Claim3)

Now let H be @Q-generic over L[G,|. Then in L[G,][H], k is not weakly
compact as there is a k-Suslin tree. However, if S is a stationary subset of
x in this model, then since the forcing T, is k-cc, S is also stationary in
the larger model L|G,][H][B], where B is Tg-generic over L|G,][H]. As &
is weakly compact in L[G,][H]|[B], it follows that S is stationary in some
a < k. Thus L[G,]|[H] is the desired model where & is not weakly compact
but where SR(x) holds. O

3.Vorlesung

Can SR(k) hold for a successor cardinal x?

Proposition 4 SR(k) fails if k is the successor of a reqular cardinal.
Proof. Suppose that k = v, ~ regular. Then S = {a < k | cof @ = 7} is

stationary in x but not in any kK < k. O

Theorem 5 If A is a singular limit of AT -supercompact cardinals then SR(A™)
holds.



Proof. Recall that k is u-supercompact iff there is an elementary embedding
j 'V — M with critical point s such that j(x) > p and M* C M.

Now suppose that S is stationary in A*. Then for some A\™-supercompact
k< A\ T =5nN Cof(< k) is stationary. Let j : V — M witness the A\*-
supercompactness of k. We show that 7' N « is stationary for some o < A*.
Let v be the supremum of j[A*]; as j | A* belongs to M, cof M (v) = A*, and
therefore v is less than j(A™), which is regular in M. It suffices to show that
M E j(T) N~ is stationary, for then by elementarity, V E T'N« is stationary
for some o < \*.

Suppose that C' is closed unbounded in ~. As j is continuous at ordinals
of cofinality < k, j[AT] is < k-closed, i.e., contains all of its limit points
of cofinality less than . It follows that Range (j) N C' is unbounded in =
and therefore D = j'[C] C AT is unbounded in AT. And again since j
is continuous at ordinals of cofinality < k, D is < k-closed. Since T is a
stationary subset of Cof(< ) N AT, it follows that 7N D is nonempty and
therefore j[T'N D] C j(T) N C' is nonempty, as desired. O

Theorem 6 Assume GCH and suppose that kg < K1 < --- IS an w Se-
quence of supercompact cardinals. Define P, = Coll (w, < ko), Pni1 = Py *
Coll (Kp—1,< ky) for finite n > 0 and P, = Inverse limit of the P,’s. Then
P, forces SR(X,41).

Proof. Let A be the supremum of the x,’s and let G, be P, -generic, G, =
G, | P,.

Claim 1. In V[G,], kn = Npp1, A =N, and AT =R ,;.

Proof. The forcing Coll (w, < ko) makes everything less than ko countable
and is ko-cc. So kg is Ny in V[Gy]. The rest of the iteration is rg-closed,
SO Ko is also N in V[G,]. A similar argument shows that each k,, is N, 1,
and therefore that X is R,. If AT were collapsed then it would be given a
cofinality less than some «,,; but for large enough m, the iteration P, factors
as P, x P, ., where P, has size less than A and P, is x,-closed; it follows
that A" cannot have cofinality less than «,, in V[G,]. O(Claim 1)

4.Vorlesung



Claim 2. For each n there is a generic extension V[G,][H,] of V]G, in which
there is a definable elementary embedding k, : V[G,| — M, C VI[G,]|[H,]
with critical point x, such that k, [ AT belongs to M, and k,(k,) > \T.
Moreover the forcing to add H,, is N,-closed.

Proof. Let j : V — M witness that &, is AT supercompact. We wish to extend
j to the k, of the Claim. To do so, we need to find, in an N,-closed generic
extension of V[G,], a j(P,) = PM-generic GM over M which contains j[G.,]
as a subset.

The forcing P, is the w-iteration Coll (w, < kg) * Coll (kg, < K1) * - -
and therefore j(P,) = PM is the w-iteration in M given by Coll ¥(w, <
ko) * Coll M (kg, < ky) * -+ % Coll M (kp_o, < kip_1) * Coll M(kp_1, < j(Kn)) *
Coll M(j(kn), < j(Kns1)) * - - -. The first n factors of these two iterations are
the same and so we choose GM to be G,,, yielding a lifting of j to an elemen-
tary embedding j* : V[G,] — M[GM]. The next factor Coll (k,_1, < k,) of
the V iteration is included as a subforcing of the next factor Coll M (K1, <
J(kn)) = Coll (ky_1,< j(ky)) of the M-iteration and indeed the latter fac-
tors as Coll (kp_1, < Kky) X Coll (Kn_1, [kn, j(kn)). Note that the forcing
Coll (kn—1, [Fn, J(kn)) is Kn—1 = R,-closed. So we choose a generic for this
product whose first factor equals the generic specified by G, 1, thereby lif-
ting j* to j** : V[Gpy1] — M[GM,].

Now the remainder P"*! of the P, iteration (where P, = P, ;% P""!) has
size (k)" and j(k,) is greater than (x}%)Y; therefore in M[GM ], P" is
an W,-closed forcing with only N,, maximal antichains in V[G,,,1]. It follows
that in M[G%.,] there is a generic for P"** over V[G,41], which we may
assume equals G"1. As the remainder PM" ! of the iteration P (where
PM = pM | « PMtY) is j(k,)-closed and therefore (A1) -closed, there is a
single condition in P *! which is below each condition in j**[G"]; so we
force below that condition. The result is that in a x,-closed forcing extension
we have lifted j to k, : V[G,] — M[GM], as desired. O(Claim 2)

5.Vorlesung

Claim 3. Suppose that n > 0 is finite and V[G,] F SN Cof(< N,) is statio-
nary. Then S remains stationary in all X,,-closed forcing extensions of V[G,].

Given this last Claim, we finish the proof of the Theorem as follows.
Suppose that VI[G,] E S C RN,y is stationary. Then for some finite n >
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0, VIG,] E SN Cof(< N,) is stationary. By Claim 2, in some X,-closed
forcing extension V[G,][H,] of V|G,] there is an embedding &, : V[G,] —
M, C VI|G,|[H,] with critical point k, = NGl I RV ¢ a1, and

n+1 w41
kn(RVIG41) > RYVIC By Claim 3, S is still stationary in V[G,][H,]. Let v be
the supremum of kn[Nxﬁ‘”}] Then ~ has cofinality X, in M,, and therefore ~

is less than kn(NZE”]), which is regular in M,,.

We claim that k,(S) N is stationary in M,,. Suppose that C' C ~ is closed
unbounded, C' € M,,. As k, is continuous at ordinals of V[G,,]-cofinality < ¥,
and V[G,], V[G,]|[H,] have the same < X, sequences of ordinals, it follows
that Range (k, | NZE“]) is < N,-closed in M,. Therefore Range (k,) N C
is unbounded in v. Let D be k,'[C]. Then D is unbounded in Nu‘fﬁ”} and
moreover is < N,-closed. As S is a subset of Cof(< X,,) which is stationary
in V[G,][H,], it follows that SN D is nonempty, and therefore that k,(S)NC
is nonempty, as desired.

As M, F k,(S)N~ is stationary, it follows that V[G,] E SN« is stationary
for some o < W, 41, thereby proving SR(X,,1) in V[G,].

Proof of Claim 3. We use the following Lemma of Shelah:

Lemma 7 In V[G,] there is a sequence (x| @ < Ryi1) of bounded subsets
of N1 such that for all o in a closed unbounded subset C' of N, there is
a closed unbounded ¢ C « of ordertype cof () such that all proper initial
segments of c are of the form xz for some 3 < «.

Now suppose that in V[G,], S C Cof(< X,,) is stationary and P is an
N, -closed forcing. Let (z, | @ < N, ;1) and C be as in the Lemma. Given
p € P which forces D to be closed unbounded in X, 1, we must find an
extension ¢ of p which forces that some « is in S N D.

In V[G,] let (N, €, <x) be an elementary submodel of some large (Hy, €
,<g) (where <y is a well-ordering of Hy) which contains P,p, D, (z, | a <
N,+1), D and such that N NR,; is an ordinal & € C'NS. This is possible as
S is stationary in V[G,]. Let ¢ C « be of ordertype cof (a) < N,, with all of
its proper initial segments of the form xz., for some v < a. It follows that all
of the proper initial segments of ¢ belong to N.



Now build a descending chain of conditions (p; | i < cof («)) such that
po = p and p; is the <y-least extension of p;, ¢ < j, which forces some ordinal
greater than the j-th element of ¢ into D. Then for each j < cof (a), the
sequence (p; | i < j) belongs to N and by the < W,-closure of P there is
a condition ¢ below each of the p;, i < cof (a). Then ¢ < p forces that «
belongs to S N D, as desired. O(Claim 3).

This completes the proof of the theorem.
6.Vorlesung
Saturated Ideals

Let x be an uncountable regular cardinal and I a nonprincipal xk-complete
ideal on &k, i.e., a collection of subsets of x, including all bounded subsets of
k, with the following properties:

1.ACBel —-Aecl
2. a <k, A; €1 foreach i < a —
3.kél.

A; el

<o

For a cardinal A, I is A-saturated iff the Boolean algebra P(k)/I has the A-cc.
Equivalently: If A;, ¢ < X are subsets of x not in I, then A; N A; belongs to
I for some distinct pair 2, j < A\. We say that s carries a A-saturated ideal iff
there exists a A-saturated, k-complete ideal on x.

I is 2-saturated iff [ is a maximal ideal, and therefore x carries a 2-
saturated ideal iff k¥ is measurable. However even ¥ -saturation does not
imply measurability, as the next result shows.

Theorem 8 If k is measurable then in some cofinality-preserving forcing
extension, 2% = k and Kk carries an Ny -saturated ideal.

Proof. Let P be the forcing that adds x Cohen reals, by a finite support
product. As P is ccc, cofinalities are preserved. In the extension 2% = k. Let
I be a k-complete maximal ideal on k, whose existence is guaranteed by the
measurability of k. We claim that in V|[G], where G is P-generic, the ideal
J={X Ckr|XCY forsome Y € I} is a k-complete, Ri-saturated ideal.

First we prove that J is k-complete. Suppose that p IF X, € J for each
a < A, where X is less than . For each a < \ let A, be a maximal antichain



of conditions ¢ below p which force X, to be a subset of some Yrelp
forces X, to be a subset of the union of the Y,’s. It follows that p forces

U,y Xa to belong to J, as it forces it to be a subset of | J,_, e, Yy, which
belongs to I as I is k-complete and each A, has size less than x (1n fact,
each A, is countable).

To prove N;-saturation, suppose that X, a < wy, is forced by a condition
p to be a sequence of subsets of k not in J whose pairwise intersections are in
J. By the R;-completeness of J, we may in fact assume that p forces X, ﬂXﬁ
to be empty for distinct a, 5 < w;. For each a < wy, let Y, be the set of
ordinals which are forced into X, by some condition below p. As X, is not in
J, it follows that Y,, is not in I and therefore as [ is an Ny-complete maximal
ideal, the intersection Y of the Y,, a < wi, belongs to I. Let v belong to
Y. Then for each o < wy there is an extension ¢, of p which forces v € X,.
By the ccc, there exist distinct o, 3 < w; such that g¢,, g are compatible;
but then a common extension of ¢,,gs forces that X, N Xg is nonempty,
contradiction. O

7.Vorlesung

Thus x can carry an Nj-saturated ideal without being strongly inaccessi-
ble. However:

Theorem 9 If k carries a k-saturated ideal then k is weakly inaccessible.

Proof. We must show that & is a limit cardinal. Suppose not and let k = AT,
A an infinite cardinal. For £ < AT let f¢ be a surjection of A onto £. For
a < At and n < A define A, ,, = {¢ | fe(n) = a}. Then for each n < X, A,
and Ag,, are disjoint for distinct «, 5 < A". And for each a < A*, the union
of the A, ., n < A, contains all sufficiently large ordinals < A*.

Now suppose that I were a A™-saturated ideal on A\*. It follows from the
AT-completeness of I that for each a < A, A,,, does not belong to I for
some 7, < A. . Therefore for some fixed n < A\, A, does not belong to I for
AT-many a < A*. But as A,, and Ag, are disjoint for distinct a, 5 < AT,
this contradicts the A\*-saturation of I. O

Can a successor cardinal x carry a k*-saturated ideal? We give a positive
answer using forcing axioms.
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Definition. Let P be a forcing and p € P. The proper game for P below p
is defined as follows: Player I plays P-names ¢, for ordinals and I[ plays
ordinals f3,. II wins iff there is some ¢ < p which forces that for each n,
&, equals some (. The semiproper game (for P below p) is defined in the
same way, but with “ordinals” replaced with “countable ordinals”. P is proper
(semiproper) iff for each p € P, I has a winning strategy in the proper
(semiproper) game for P below p.

Properness (semiproperness) can be equivalently formulated in terms of
the existence of generics over countable models.

Definition. Let P be a forcing. For any countable set M, q is (M, P)-generic
(semigeneric) iff for every name o € M for an ordinal (countable ordinal), ¢
forces that o equals some ordinal of M.

Lemma 10 P is proper (semiproper) iff for sufficiently large cardinals X
there is a closed unbounded set of M € [H]* such that each p € M has an
extension which is (M, P)-generic (semigeneric).

The Proper forcing axiom PFA (the semiproper forcing axiom SPFA) is
the assertion that if P is a proper (semiproper) forcing and D a collection
of Ni;-many dense subsets of P then there is a compatible G C P which
intersects each element of D.

Lemma 11 Suppose that P, is a countable support iteration of forcings <Q5 |
B < a) such that P, | B forces Qg to be proper for each < a. Then P, is
proper.

Definition. k is \-supercompact, where X is a cardinal > &, iff there is an
elementary embedding j : V' — M with critical point x such that j(k) > A
and M* C M. k is supercompact iff k is A-supercompact for all \.

Remark. Supercompactness is a first-order property, as the A-supercompactness
of k can be witnessed by an embedding of the form j; : V' — My where U
is a normal measure on P.A\.

Theorem 12 If k is supercompact then there is a proper forcing extension
in which k equals Ny and PFA holds.

Proof. We need the following Lemma.
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Lemma 13 Suppose that k is supercompact. Then there is a function f :
k — V. such that for every set x and every cardinal A > k such that x € Hy+
there is a j: V. — M with critical point k such that j(k) > X\, M* C M and
J(f)(k) =x. f is called a Laver function on k.

Proof. Assume that the Lemma fails. For each f : kK — V|, let A\ be the least
cardinal > x such that some x € H,+ witnesses that f is not a Laver function

for k, i.e., such that j(f)(k) # x for every j : V. — M with critical point x
such that j(x) > X and M* C M. Let v be greater than all of the A\;’s and
let 7 : V — M witness the v-supercompactness of x.

Now inductively define f : k — V, as follows: If f | « is not a Laver
function for « then let A be least so that some x € H,+ witnesses this and
choose f(a) =z, to be such an z; otherwise set f(«) = 0.

Now consider = = j(f)(k). By the definition of f and the elementarity of
j, © witnesses the failure of f to be a Laver function in M. As MY C M, x
also witnesses the failure of f to be a Laver function in V' and Ay is defined
the same way in M as in V. This is a contradiction, as j(k) > A and
J(f)(k) = 2. O (Lemma 13)

8.Vorlesung

Now we prove the Theorem. Let f : K — V, be a Laver function. Con-
struct a countable support iteration P, of (Qa | o < ) as follows. At stage
o, if f(a) is a pair (P, D) of P,-names such that P is proper and D is
y-sequence of dense subsets of P for some v < k then set Q, = P; 0therw1se
let Q, be the trivial forcing.

Let G be P,-generic. As P, is proper, N; is preserved. Each P,, o < &,
has size less than x and the iteration is performed with countable support;
it follows that P, is k-cc and therefore x is preserved.

We claim that in V[G], if P is proper and D = (D, | o < 7v), v < &,
a sequence of dense subsets of P then there is a compatible subset of P
which intersects each D,. Let P and D be P.-names for P and D. Choose
A to be much larger than P and let j : V' — M have critical point x with
j(k) > X\, M» € M and j(f)(k) = (P, D). We can assume that V} is very
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elementary in M and therefore V/\M[G] = V/\V[G} is very elementary in M[G];
it follows that P is not only proper in V[G], but also in M[G].

Now consider the iteration j(P,) in M, which is a countable support
iteration of length j(k) using the Laver function j(f). As j(f)(x) = (P, D)
and P is proper in MIG], it follows that the forcing P is used at stage  in
the j(P,) iteration in M. So we can write j(P,) = P, * P * R for some R. If
H % K is generic for P x R over V[G], then in V[G x H x K] we can extend j
to an elementary embedding j* : V[G] — M|G « H x K. H is P-generic over
V[G] and therefore meets each D,, a < . Let E = {j*(p) |p € H}. Then E
belongs to M[G x H * K| and is a compatible set of conditions in j*(P) that
meets each dense set in j*(D). By elementarity it follows that in V[G] there
is a compatible set of conditions in P which meets each dense set in D, as
desired.

It now follows that V[G] is a model of PFA as X; < k. Also note that P,
collapses each v < k to w; as Coll (wy,7) is countably-closed, and therefore
proper, and for each o < 7, the set of conditions f € Coll (wy,v) with
a € Range (f) is dense. So k is the wq of V[G]. O

The iteration lemma for proper forcing has an analogue for semiproper
forcing. There is a notion of revised countable support iteration that preserves
semiproperness, and therefore one has:

Theorem 14 If  is supercompact then there is a semiproper forcing exten-
ston in which k equals Ny and SPFA holds.

SPFA implies an apparently stronger axiom. A forcing P is stationary-
preserving iff each stationary subset of w; remains stationary in P-generic
extensions. Martin’s mazimum MM is the assertion that if P is stationary-
preserving and D a collection of N;-many dense subsets of P then there is a
compatible G C P which intersects each element of D.

9.Vorlesung

Theorem 15 SPFA implies MM.

Proof. In fact SPFA implies that every stationary-preserving forcing is semi-
proper, as we now show.

13



Let X be a set of countable elementary submodels of HY = (H), €, <)
(where < is a wellordering of H,). We write X+ for {M € [H)* | M <
H; and N ¢ X for every countable N that satisfies M < N < Hj and
NNw = MnNuwi}. A nice chain in H5 is a sequence (M, | o < 6) of
countable elementary submodels of H} such that o« < 8 — M, € Mz and
M, is the union of M,, a < A, for limit .

Lemma 16 (Main Lemma) Assume SPFA and let wy < k < X\ with A reqular
and sufficiently large. Let Y C [HY be stationary and X = {M € [H,™ |
M N H, € Y} (the “lifting” of Y to H,). Then there ezists a nice chain
(M, | @ < w) in H; such that M, € X U X for every a.

We now prove the Theorem using the Main Lemma. Assume SPFA and
suppose () is a stationary-preserving forcing. Choose « large enough so that
any ()-names for a countable ordinal is equivalent to one in H,. Choose a
condition p in @ and define Y = {M € [H,]* | There exists no (M, Q)-
semigeneric ¢ < p}. Choose A > & to be regular and let X = {M € [H,]" |
MNH, € Y} be the lifting of Y to H,. By the choice of k, X = {M € [Hy]" |
There exists no (M, @)-semigeneric ¢ < p}.

By the Main Lemma, there is a nice chain (M, | @ < w;) in H5 such that
M, € X UX* for each a < w;. We claim that S = {a < w; | M, € X}
is nonstationary. Let G be ()-generic, p in G. Let 55, ¢ < wy, enumerate all
names for countable ordinals in | J,_,, M,. Then C' = {a <w; [ MyNw; =
and 55 e M,, 5? < afor all £ < a} is closed unbounded. And for each a € C,
there exists ¢ € G below p which forces each 55 € M, to equal some ordinal
in M, and is therefore (M,, @)-semigeneric. So S is nonstationary in V[G]
and therefore nonstationary in V.

It follows that there is a nice chain (M, | o < w;) in H} such that
M, € X+ for each @ < wy. Let p1 > X be sufficiently large. Choose a countable
M < (H, €,<,Q,(My | @ < wy)) (where < is a wellordering of H,) with
p € M.Set 6§ = M Nwy. Then M N Hy, O Ms and § = Ms N wy; since Mg
belongs to X+ we have MNH, ¢ X. So by the definition of X, there exists an
(M, @Q)-semigeneric g below p. So for each p € @, there is a closed unbounded
set of countable M < Hj = (H,, €, <) and an (M, Q)-semigeneric ¢ < p. It
follows by taking a diagonal intersection that for a closed unbounded set
of countable M < Hj, there is an (M, Q)-semigeneric below any p € M,
establishing the semiproperness of ().

14



10.Vorlesung

Proof of the Main Lemma. Let P be the forcing that adds a nice w;-chain
through X U X using nice countable chains(M, | o < ) through X U X+,
ordered by end-extension.

For each v < w; the set D, of conditions in P of length at least 7 is
dense: Let GG be generic for collapsing H) to w; with countable conditions.
Then in V[G], there is a nice w;-chain through [HY ] with union HY, and
X C [HY]™ is stationary. It follows that in V[G] there are nice chains through
X of any countable length, and therefore such chains exist also in V. It then
follows that any condition in P can be extended to any countable length and
therefore each D, is dense.

We show that P is semiproper. Let p > A be sufficiently large and M <
H} = (H,, €,<), M countable (where < is a wellordering of H,,). Let p belong
to PN M. We show that there is a ¢ < p which is (M, P)-semigeneric. First
note that there is a countable N, M < N < H}, such that N Nw; = M Nw,
and N N Hy € X UX*: This is clear if M N H, belongs to X*; otherwise
choose a countable N', M N H, C N’ < H}, such that N'Nw; = M Nw; and
N’ belongs to X. Let N be the least elementary submodel of H} containing
MU(N'NnH,). Then NNNH,=NNH,so N is as desired.

Now we find the desired (M, P)-semigeneric below p. Choose N as above.
We can build a descending w-sequence of conditions p, = (M, | o <7,) € N
below p such that the union of the M., ’s equals N N H), and every name in N
for a countable ordinal is forced by some p,, to be an ordinal in N. Define ¢ to
be (M, | @ < v = sup,, 7») together with M, = NN H). Then ¢ is a condition
below p which is (N, P)-semigeneric and therefore also (M, P)-semigeneric.

Finally, apply SPFA to obtain a nice chain of length w; using the semi-
properness of P. O

We return to saturated ideals.

Theorem 17 MM implies that the ideal of nonstationary subsets of wy is
wa-saturated.
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Proof. Assume MM and let {A; | i € W} be a maximal collection of stationa-
ry subsets of w; such that A; N A; is nonstationary for distinct ¢, j. We show
that for some Wy C W of size at most wy, {A4; | i € Wy} is also maximal.

Let P be the 2-step iteration () * R where () adds a surjection f : w; —
W using countable conditions ¢ : « — W, a < w;, and R adds a closed
unbounded subset to Vacw, Af) = {a | @ € Ay for some 3 < a} using
countable closed subsets r of \/q<w, Af(a), ordered by end-extension. Then
P is stationary-preserving: Suppose that S C w; is stationary. Then S N A;
is stationary for some ¢ € W by the maximality of {A; | i € W}. Forcing
with @ preserves the stationarity of S N A; as @ is w-closed. And forcing
with R preserves the stationarity of any stationary subset of \74«<., Af() and
therefore the stationarity of SN A;.

Now for each a < w; the set D, of conditions (¢,7) in P such that
a € dom(q) N max(r) is dense and therefore by MM there is a compatible
G C P which intersects each D,. Then (J{q | (¢,7) € G for some r} is a
function f : w; — W and {7 | (¢,7) € G for some ¢} is a closed unbounded
subset C' of Vacw, Af(a)- It follows that {A; | i € Range (f)} is maximal, as
any stationary subset of \/o<u, Af) has stationary intersection with some
single Ay(q. O

11.Vorlesung
The tree property

A tree is a partial ordering T' = (T, <r) with the property that for each
t € T, T, = the set of <p-predecessors of t is well-ordered by <. The «a-th
level of T'is T,, = {t € T' | 1} is well-ordered by <7 with ordertype a}. The
height of T' is the supremum of {a + 1 | T}, is nonempty}.

Let x be an infinite regular cardinal. T" is a k-tree iff T' has height x and
for a < k, T, has cardinality less than x. A k-tree T is k-Aronszajn iff it has
no x-branch, i.e., there is no subset of T" well-ordered by < with ordertype
K.

v has the tree property iff there is no k-Aronszajn tree. Ny has the tree
property as by Konig’s Lemma, a finitely branching tree of height w must
have an infinite branch. But w; does not have the tree property:
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Theorem 18 There is an wy-Aronszajn tree.

Proof. We construct a an w;-tree T" whose elements are bounded, increasing,
well-ordered sequences of rational numbers, ordered by end-extension. It is
clear that such a tree has no w;-branch, as that would give an increasing
sequence of rationals of length w;, which is impossible.

We construct the a-th level T,, of T' by induction on o < w;. We induc-
tively maintain the following property:

(%) T, is countable and if = belongs to T3, 3 < a and ¢ is a rational greater
than sup(z) then z is extended by some y € T,, with sup(y) < gq.

Ty consists only of the empty sequence (we take sup()) to be —oco. To define
Tyy1 from T, simply extend each x € T, with each rational ¢ > sup(z). It is
clear that property (x) is preserved. If « is a limit ordinal then for each x in
some T3, # < «, and each rational ¢ > sup(x), we extend x to z; C x5 C - --
so that sup(x,) < ¢ for each n and the levels of the xz,,’s are cofinal in a; then
put the resulting sequence |J, z,, into T,,. It follows that T}, is countable and
that for each x € {J,;_, 75 and ¢ > sup(z),  has an extension y in T, with
sup(y) < g; by choosing ¢’ between ¢ and sup(z) we can in fact guarantee
sup(y) < ¢, which gives (x) for a. O

The previous proof generalises. For an infinite cardinal A, let () be the set
of < X sequences of ordinals less than A, ordered lexicographically. Then A can
be order-preservingly embedded into any interval of (5. Now the cardinality
of Qy is A<"; if this is ), then we can replace the rationals by @, in the
previous proof, obtaining:

Theorem 19 If A< = X then there is a XT-Aronszajn tree. In particular if
GCH holds and X is reqular, there is a A\t -Aronszajn tree.

The consistency strength of the existence of an uncountable £ with the
tree property is that of a weakly compact:

Theorem 20 (1) If k is weakly compact then k has the tree property.
(2) In L, k has the tree property iff k is weakly compact.
(3) If & has the tree property then k is weakly compact in L.
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Proof. (1) It suffices to show that any k-tree 7" with universe x has a k-
branch. If T" is a k-tree on x then the statement that 7 has no x-branch is
a II} statement about the structure (H,, €,T). As r is weakly compact, it
is I} reflecting, which implies that for some o < &, T|a = Uﬁ@ T has no
a-branch. But this is impossible, as the T-predecessors of any element of T,
form an a-branch through T'|a.

(2) This uses the fine structure theory and will not be proved here.

(3) Sketch: If s is not weakly compact in L then by 2 there is a k-tree T in L
with no k-branch in L. Now build another s-tree 7% in L with the property
that any x-branch through 7™ gives rise to a constructible x-branch through
T'; it follows that x does not have the tree property. O

Can wy have the tree property? By the above results, we will need to
use a weakly compact cardinal and kill CH to obtain the consistency of this.
The following characterisation of weak compactness in terms of elementary
embeddings will prove useful.

Proposition 21 k is weakly compact iff k is strongly inaccessible and for
every transitive model M of ZF~ such that k belongs to M, M is < k-closed
and M has size k there is an elementary embedding j : M — N, N transitive,
with critical point k.

12.Vorlesung

Theorem 22 Suppose that k is weakly compact. Then in some forcing ex-
tension, k = wy, 2% = Ny and wy has the tree property.

Proof. Consider the following “mixed support” iteration P = (P, | o < k).
For each a < K, P,;1 = P, * ()., where (), is a P,-name for the product w-
Cohen x wy-Cohen. For limit a we take all p = ((p(83)o,p(5)1) | 5 < «) in the
inverse limit of the P3, 8 < «, such that for all but finitely many 8 < «, p(3)o
is trivial and for all but countably many § < «, p(3); is trivial. For p € P
write (p)o for (p(3)o | 5 < length (p)) and (p)1 for (p(5): | § < length (p))
(where length (p) denotes the strict supremum of the support of p). Thus
(p)o is finitely supported and (p); is countably supported.

At stage a < K, @), collapses a to w; as P, adds « reals and (), adds
an w;-Cohen set. P is k-cc: If X is a maximal antichain in P then for some
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a < k of uncountable cofinality, X N P, is a maximal antichain in P, and
since P, is a direct limit, X N P, is in fact a maximal antichain in P.

Note that it is dense for p € P to have the property that for each o <
length (p), if p(c)o is not the trivial name then it is forced by p | « to be equal
to some particular w-Cohen condition. This is proved for P, by induction on
«; the successor case is easy, and as (p)o is finitely supported, the case where
« is a limit ordinal is trivial.

Also note that any condition in P is equivalent to a condition p in P with
the property that for each a < length (p), the trivial condition in P, forces
p(a) to belong to @Q,. This is because we can replace the P, name p(a) by
a name which is forced by the trivial condition to equal p(«) if p(«) belongs
to @), and is forced to be the trivial condition of (), otherwise.

Let P* be the dense set of conditions in P with the above two proper-
ties. We show that P*, and therefore also P, preserves wy: Suppose that f is
forced to be a function from w into w;. Given a condition p we will find an
extension of p which forces a countable bound on the range of f. Extend p to
a condition ¢; which decides a value of f(O) and let p; be obtained from ¢
by setting p;(a)o to be p(a)y for v < length (p) and to be the trivial name
for v in [length (p),length (q;)). Extend p; to a condition g2 which decides a
different value of f(()) and obtain ps from ¢ by setting ps(a)g to be p(a)q for
a < length (p) and to be the trivial name for « in [length (p),length (g2)).
Continue this construction as long as possible, taking greatest lower bounds
at countable limit stages. In fact this construction terminates at some counta-
ble stage, as the collection of (g;)¢’s forms an antichain in the finite support
iteration of w-Cohen, and any such antichain is countable. The result is a
condition ¢ extending p which forces a bound on f(0). Now repeat this for
f(l), f(2), etc., resulting in an extension of p which forces a bound on f.

So in V|G|, where G is P-generic, k equals ws and there are wy reals.
Suppose that 7" were an wo-Aronszajn tree in V|[G]. Let T be a name for 7.
As k is weakly compact, there is an elementary embedding j : M — N with
critical point £ where T" belongs to M and M, N are transitive ZF~ models.
Then T belongs to N and therefore T belongs to N[G]. As T has no cofinal
branch in V[G], it has none in N|[G].

Now the forcing j(P) is the mixed support iteration of w-Cohen and w;-
Cohen in N, of length j(x). The forcing j(P) factors as P* (@ where @ is the
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mixed support iteration of w-Cohen and w;-Cohen defined in N7, indexed
on the interval [k,j(x)). Choose H to be Q%-generic over N[G]; then the
embedding j : M — N lifts to j* : M[G] — N[G][H]|. As T is an initial
segment of the tree j*(T), it follows that T has a cofinal branch in N|[G][H].
However this contradicts the following Claim.

13.Vorlesung

Claim. The forcing Q¢ for adding H over N[G] adds no cofinal branch
through T'.

Proof of Claim. Let C' be generic over N[G] for Coll (wq,ws), the forcing
which collapses wy using countable conditions. Then T has no cofinal branch
in N[G][C]: Suppose that B were a name for such a branch. Build an infinite
binary tree of conditions ps, s € 2<¢, in Coll (wy,ws) and an w-sequence
a; < ag < --- less than k such that for distinct s and ¢ of length n, ps, p;
force different elements of T" to belong to B at level a,,. Then as there are ws
reals in N[G], this gives wy different elements of the a-th level of T', where «
is the supremum of the «,’s, contradicting the fact that T is an wo-tree.

To prove the Claim, it suffices to show that Q¢ does not add a cofinal
branch through T over the ground model N[G][C]. Suppose that p € QY
forces B to be such a branch and let (o; | i < w;) be an increasing sequence
in N[G][C] cofinal in wéV[G]. As in the proof that P preserves wi, form a
decreasing sequence of conditions p;, i < w; in Q¢ as follows: Extend p
to a condition ¢; which decides which element of T,, belongs to B and let
p1 be obtained from ¢ by setting pi(a)o to be p(a)y for a < length (p)
and to be the trivial name for « in [length (p),length (¢1)). Extend p; to a
condition ¢, which decides which element of 7,, belongs to B and obtain
po from g by setting ps(a)p to be p(a)y for a < length (p) and to be the
trivial name for « in [length (p),length (¢2)). Continue this construction for
wy stages, taking greatest lower bounds at countable limit stages. By a A-
system argument, there is an uncountable S C w; such that for any «, 8 in
S, (ga)o, (gs)o are compatible. But this gives a cofinal branch through 7 in
NI[G][C], contradiction. O

The previous proof generalises to show that if A > w is regular and K > A
is weakly compact, then in some forcing extension, A™ has the tree property:
Use the length k iteration of w-Cohen x A-Cohen, with finite support on
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the w-Cohen forcings and < A support on the A-Cohen forcings. (F_or this
argument, (w, finite) could be replaced with (A, < A) for any regular A < \.)

Can the successor of a singular cardinal have the tree property? We pro-
vide a postitive answer using strongly compact cardinals.

Definition. k is A-strongly compact iff it is the critical point of an elementary
embedding 7 : V' — M such that any X C M of cardinality A is a subset of
some Y € M of M-cardinality < j(k). We say that « is strongly compact iff
it is A-strongly compact for every .

Note that A\-supercompactness easily implies A\-strong compactness, as in
that case j(r) is greater than A and M is closed under A-sequences, so we
may take Y to equal X.

14.Vorlesung

Lemma 23 « is \-strongly compact iff for any set I, any k-complete filter
on I generated by at most \ sets can be extended to a k-complete ultrafilter
on I.

Proof. Suppose that x is A-strongly compact, witnessed by j : V. — M,
and let X be a collection of \-many sets on I which generate a xk-complete
filter F. Choose Y D j[X] in M of M-cardinality < j(x). Then j(F) is a
j(k)-complete filter in M and j(F) NY is a subset of j(F) in M of M-
cardinality less than j(k). So we may choose a € ((j(F) NY). Define an
ultrafilter U by: A € U iff A C I and a € j(A). Then U is a k-complete
ultrafilter extending F. Conversely, consider the k-complete filter F on P, A
generated by the sets {x | a € z} for @ < A. Extend F to a k-complete
ultrafilter ¢ and let j : V — M = VP /U be the ultrapower of V by U. If
X =A{[fa] | « < A} € M, define G(z) = {fo(z) | @ € x}. Then X C [G] and
M E card([G]) < j(k). O

Theorem 24 If \g < A\ < --- i$ an w-sequence with supremum X and each
An 18 AT -strongly compact then X\ has the tree property.

Proof. Let T be a \*-tree. We assume that the a-th level T, of T is the set
A x {a}. For each n let T,, be A, x {a}.
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Claim. There is an unbounded D C A" and n € w such that whenever o < 3
belong to D, there are a € T}, ,, and b € T, with a <r b.

Proof of Claim. Using the fact that )\ is A™-strongly compact extend the filter
of subsets of T" with complement of size at most A to a countably complete
ultrafilter . For o < A" define n, € w as follows: For x € T at some level
greater than a choose p? € T, below x and let n” be least so that p? belongs
to T, »=. By the countable completeness of U there is some n, € w such that
Xo={x €T | n®=n,} belongs to U.

Now choose an unbounded D C AT such that n, is some fixed n for
a € D. If we take o < 8 in D then X, N Xz contains some x and then
Pe <t Pj belong to Ty, Tj,, respectively. O (Claim)

Now let D, n be as in the Claim and choose V to be a Af-complete
ultrafilter on A* containing D and all final segments of A*. Choose any
a € D. For every § > «a in D find a(8) € T,, and b(3) € T3, such
that a(8) <r b(5). Using the Af-completeness of V, find a, € T,, and
€a < A, such that for a set of 3’s in V, a, = a(5) and b(3) = (&, 3). For an
unbounded D’ C D, the ordinal &, has a fixed value & for o € D’. Now the
collection {a, | @ € D’} is a branch through T, because if oy, as belong to
D’ then for some (3 (indeed for a set of 3’s in V) both a,, and a,, are below

(& 6). 0

Magidor and Shelah also showed that in fact N,,.; can have the tree
property. For this they needed to assume the consistency of an w-sequence
of cardinals kK < A\g < A\; < --- with s the critical point of 7 : V — M,
Jj(k) = Ao, M closed under u = (sup, A,)* sequences, with each A, being
p-supercompact.

15.Vorlesung
Jonsson cardinals

A structure A of cardinality x for a countable language is a Jdnsson
structure iff it has no proper elementary submodel of cardinality . We say
that  is a Jonsson cardinal iff there is no Jonsson structure of cardinality
r. We do not assume here that x is regular.

Using Skolem functions it is easy to show that x is a Jonsson cardinal iff
Kk — [K]|5Y, i.e., whenever F': [k]<¥ — & there is H C k of cardinality s such
that the range of F' on [H|<“ is a proper subset of k.
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We show that measurable cardinals are Jonsson.

Definition. We write k — (k)5 for the following: For any F : [k]<¥ — A
there is H C k of cardinality s such that F' is constant on [H]" for each n.
k is Ramsey iff k — (k)5 for all A < k.

Theorem 25 (a) Measurable cardinals are Ramsey.
(b) Ramsey cardinals are Jonsson.

Proof. (a) Suppose k is measurable with nonprincipal, x-complete, normal
ultrafilter &. We prove by induction on n < w that for any F), : [k]" — A,
A < K, there is a set H,, in U such that [}, is constant on [H,]". For n =1
this is clear by the x-completeness of U. Suppose the result holds for n and
Foiq : [&]™™ — A For each o < k define G : [(a, k)] — X by G%(z) =
F,+1({a} U x). By induction there is some (3, < A such that G is constant
with value 3, on [H2]™ for some H? in U. By the k-completeness of U there
is a fixed # < X such that G2 is constant on [H?]" with value g for all «
in some set H € U. It follows that F,; is constant on [H, ]""!, where
H, 11 € U is the intersection with H of the diagonal intersection of the H,
ac H.

Then if F': [k]<¥ — A, A < K, we can choose H,, € U for each n such that
F, = F | [k]™ is constant on [H,]"; it follows that F' is constant on [H]" for
each n, where H is the intersection of the H,,’s.
(b) Suppose that  is Ramsey and F' : [k]<* — k. Consider the structure A =
(k, <, F1, Fy,...) where F, is the restriction of F to [«]|”. Using Ramseyness
we can get I C k of cardinality x such that for each n, all increasing n-tuples
from I realise the same type in A. (Apply Ramseyness to F : [k]<¢ — 2%
where F(z) describes the type of z in A.) Now let iy < i; be the first two
elements of I. Then for x € [I'\ {ig,41}]=¥, F(x) cannot equal ig; otherwise,
by the choice of I, F(z) would also have to equal i1, contradicting the fact
that F' is a function. So the range of F' on [I \ {ig,i1}]<* is not all of x,
proving Joénssonness. O

Mitchell showed that all Jonsson cardinals are Ramsey in the Dodd-
Jensen core model, and therefore these two large cardinal notions have the
same consistency strength.

The next result shows that a Jonsson cardinal can be singular.
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Theorem 26 Suppose that k is measurable. Then in a forcing extension, K
18 a singular Jonsson cardinal.

Proof. Use Prikry Forcing: Conditions are pairs (s, A) where s € [k]<* and
A € U, where U is a normal measure on . The condition (¢, B) extends
(s, A) iff t end-extends s, B C A and t\ s C A. Prikry forcing preserves
cardinals and gives x cofinality w.

Now suppose that (s, A) I F: [5]< — k. We find (s, B) < (s, A) which

forces Range (F' | [B]<¥) # k. Let (R; | i < wq) be a partition of s into w;
disjoint pieces.

For s,t € [k|<¥ write s < t for max(s) < min(¢). Now for each ¢ € [k]<“
with s <t consider the partition F} : [k]<% — w; defined by: Fy(u) =i+ 1 iff
for some B € U, (t, B) I- F(u) € Ry; F,(u) = 0 if otherwise undefined. (Note
that F} is single-valued.) Using the proof of Theorem 25(b), for each ¢ with
s < t choose A; € U such that for each n, F} is constant on [A4;]", and denote
this constant value by G, (t). Let By be the diagonal intersection of the Ay,
i.e., the set of @ < k such that « belongs to A; for each ¢ with max(t) < «;
then for each ¢, F; is constant with value G,(t) on [By \ (max(t) + 1)]™.
Now choose B; € U such that for each n, G, is constant on [B;]" and
let B the intersection of B; with By. Then F; can take on only countably
many values for ¢ in [B]<“ and therefore (s, B) forces a countable bound on
{i < wy | Range (F | [B]<*) N R; # 0}. In particular, (s, B) forces that
Range (F' | [B]<“) is not all of x. O

Mitchell showed that if x is a singular Jonsson cardinal then x is measu-
rable in some inner model, and therefore the existence of a singular Jonsson
cardinal is equiconsistent with that of a measurable cardinal.

16.Vorlesung

Can a small cardinal be Jonsson? N is obviously not a Jonsson cardinal.
The next result implies that neither is any N,,, n finite.

Theorem 27 If k is not a Jonsson cardinal then neither is k.

Proof. Assume that s is not a Jonsson cardinal and let F : [k]<¥ — &k
witness this. For any « € [k,xT) we can use a bijection between x and «
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to get F, : [@]<¥ — a which is surjective when restricted to [A]<“ for any
A C « of cardinality x. Define G : [xT]<¥ — st by G(a1,...,a,) = 0
if a, < Kk, G(ay,...,0p) = F,, (a1,...,0,_1), otherwise. Then if A C k¥
has cardinality ' it follows that the range of G on [A]<“ contains « for
unboundedly many a < x*, and therefore the range of G is all of k™. O

Can X, be a Jonsson cardinal? The answer is unknown. However there
are some results about the failure of certain regular cardinals to be Jonsson.

Theorem 28 If )\ is a reqular Jonsson cardinal then stationary reflection
holds for X.

Corollary 29 The successor of a regular cardinal is not Jonsson.

Proof of Theorem 28. Let A be a regular Jonsson cardinal and choose M to
be elementary in some large H(6) so that A € M, M N A has cardinality A
but A is not a subset of M. We show that each stationary S C X belonging to
M reflects, i.e., has a stationary proper initial segment. By the elementarity
of M this suffices.

First note that S\ M is stationary. Otherwise, let E be cub in A, ENS C
M. In M we can split S into A-many disjoint stationary subsets, so there
is in M a function f : S — X such that S,, the preimage of {a} under
f, is stationary for each o < A. Choose o« ¢ M. Since S, C S, EN S, is
a nonempty subset of M. But if § belongs to £ N .S,, it then follows that
a = f() belongs to M, contradiction.

So choose 6 € S\ M such that § = sup(MNd). Define G5 to be min(M \J).
Then 6 < 5 and fs is a limit ordinal of uncountable cofinality. We show that
S N s is stationary in fFy: If not, then since S and (s are in M, M contains
a cub subset C' of 85 which is disjoint from S. As M N § is cofinal in 9, for
any « < 0 there is § € M with o < < 4. Since M E C' is unbounded in
(s, there is v € M N C with § < ~. By choice of (35, v must be less than §.
We have shown that ¢ is a limit point of C' and therefore belongs to C'; this
contradicts our assumption that S and C are disjoint. O

17.Vorlesung

Theorem 30 N, ., is not a Jonsson cardinal.
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Proof. We use the following result of Shelah:

Lemma 31 There exists an infinite I C w and F C Hnel N,, such that:
(i) F is wellordered by <* in length N 1, where <* denotes the eventual
domination order.

(ii) I is <*-cofinal in ], c; Rn.

For each n choose a structure A, with universe R,, for a countable language
with no proper substructure of cardinality N,,, using the fact that N, is not
Jonsson. Choose A to be the least elementary submodel of (H(R,.2), €, <)
(where < is a wellordering of H(X,2)) of cardinality X,; which contains
N1 as a subset and F as well as each A,, as elements. We show that A has
no proper elementary submodel of cardinality N,,; which contains F' and
the A, ’s as elements, proving that N, is not Jonsson.

Suppose that B were the universe of a proper elementary submodel B of
A of cardinality N, containing F' and the A,,’s. As A is the least elementary
submodel of itself containing X, .1 as a subset and F' as well as each A,, as
elements, it follows that B N N, is unbounded in N, ;.

If BN Y, is unbounded in R,, for infinitely many n € I then as each
A, witnesses that N, is not Jonsson, B must contain N, as a subset. It
follows that BN, is an initial segment of N, and therefore equals N, ;.
Therefore B is the universe of A, contradiction.

So it must be that for large enough n € I, g(n) = sup(B NY,,) is less
than N,,. We may choose f € F' such that g <* f; as B is cofinal in N, ,; and
F is wellordered by <* in length N ,;, we may in fact choose f € F'NB.
But then f(n) belongs to B NX,, for each n and for large enough n, f(n) is
greater than g(n) = sup(B NY,), contradiction. O

26



