
Topi
s in Set Theory, Wintersemester 20061.VorlesungStationary re�e
tionIf S is a set of ordinals and α is an ordinal of un
ountable 
o�nality, wesay that S is stationary in α i� S interse
ts every 
losed unbounded subset of
α. We say that stationary re�e
tion holds at α, abbreviated SR(α) i� every
S whi
h is stationary in α is also stationary in some smaller ᾱ of un
ountable
o�nality.Note that SR(α) is equivalent to SR(
of α), so we will just study SR(κ)for regular 
ardinals κ.Theorem 1 κ weakly 
ompa
t → SR(κ).Proof. Re
all that κ is weakly 
ompa
t i� κ is Π1

1 re�e
ting, i.e., for any S ⊆ κ,if ϕ is a Π1 formula true in (Hκ+ ,∈, S) then ϕ is also true in (Hα+ ,∈, S ∩α)for some α < κ. As the property �S is stationary in κ� is a Π1 property of
(Hκ+,∈, S ∩ κ), stationary re�e
tion follows. 2Theorem 2 In L, SR(κ) → κ weakly 
ompa
t.Proof. Assume V = L. First assume that κ is ina

essible. Let 〈Cα | α asingular 
ardinal〉 be a square sequen
e on the singular 
ardinals, i.e., forea
h singular 
ardinal α, Cα is a 
losed unbounded subset of α of ordertypeless than α and if ᾱ is a limit point of Cα then ᾱ is a singular 
ardinal and
Cᾱ = Cα ∩ ᾱ.Assume that κ is not weakly 
ompa
t and 
hoose A ⊆ κ and a Π1 formula
ϕ so that ϕ holds in (Hκ+ ,∈, A) = (Lκ+ ,∈, A) but not in (Hα+ ,∈, A ∩ α) =
(Lα+ ,∈, A ∩ α) for any α < κ. Let S0 
onsist of all singular 
ardinals α < κsu
h that ϕ holds in (Lβ,∈, A∩ α) provided β < α+ is a limit ordinal and αis regular in Lβ .Claim 1. S0 is stationary in κ.Proof. Suppose that C is 
losed unbounded in κ and 
hoose a limit β < κ+ sothat A and C belong to Lβ. As ϕ is Π1, it holds in S = (Lβ,∈, A). For ea
h1




ardinal α < κ let Mα be the least Σ1 elementary submodel of S 
ontaining
α ∪ {A, C} as a subset. Then C0 = {α < κ | α = Mα ∩ κ} is a 
losedunbounded subset of C whi
h is de�nable over S. If α is the ω-th elementof C0, then α belongs to S0, as α is singular de�nably over the transitive
ollapse (Lβ̄ ,∈, A ∩ Lα) of Mα and ϕ holds in this stru
ture. 2(Claim1)Claim 2. S0 is not stationary in α for any regular α < κ.Proof. Suppose that α < κ is regular and 
hoose a limit ordinal β < α+ largeenough so that A ∩ α belongs to Lβ and ϕ does not hold in S =
(Lβ,∈, A ∩ α). Mu
h as in the previous proof, for ea
h 
ardinal ᾱ < α let
Mᾱ be the least Σ1 elementary submodel of S 
ontaining ᾱ ∪ {A ∩ Lα} as asubset and C0 = {ᾱ < α | ᾱ = Mᾱ ∩ α}, a 
losed unbounded subset of α.Then no ᾱ in C0 belongs to S0. 2(Claim2)Now we thin out S0 to a stationary subset that is not stationary in any
α < κ. For ea
h α in S0 let f(α) be the ordertype of Cα, the 
losed unboundedsubset of α assigned by our square sequen
e on the singular 
ardinals. Let Sbe a stationary subset of S0 on whi
h f is 
onstant.Claim 3. S is not stationary in any α < κ.Proof. Suppose that S ∩ α were stationary in α; then α must be a singular
ardinal of un
ountable 
o�nality, and S ∩Lim Cα is unbounded in α. But fis 
onstant on S and 1-1 on Lim Cα, by the 
oheren
e property of the squaresequen
e. Contradi
tion! 2(Claim3)Thus S is a stationary subset of κ whi
h is not stationary in any α < κ,so SR(κ) fails.If κ = λ+ is a su

essor 
ardinal, then we use a 2λ sequen
e, i.e., asequen
e 〈Cα | λ < α < λ+, α limit〉 su
h that Cα is 
losed unbounded in
α of ordertype ≤ λ and ᾱ ∈ Lim Cα → Cᾱ = Cα ∩ ᾱ. As above 
hoose
S ⊆ (λ, κ) to be a stationary set of limit ordinals on whi
h the fun
tion α 7→ordertype Cα is 
onstant. Then S is not stationary in any α < κ. 22.VorlesungTheorem 3 Relative to a weakly 
ompa
t, it is 
onsistent that SR(κ) doesnot imply that κ is weakly 
ompa
t. 2



Proof. Suppose that κ is weakly 
ompa
t. Then κ is weakly 
ompa
t in L.Let Pκ be the reverse Easton iteration of length κ whi
h at ina

essible α < κadds an α-Cohen set. Let Gκ be Pκ-generi
 over L.Now over L[Gκ], 
onsider the following for
ing Q, due to Kunen, foradding a κ-Suslin tree:For an ordinal α, an α-tree is a subset T of 2<α 
losed under initialsegment su
h that for ea
h β < α, some element of T has length β. We referto α as the height of T . For limit α, we say that an α-tree T is homogeneousi� for any s in T , Ts = {t | s ∗ t ∈ T} equals T and an α + 1-tree T ishomogeneous i� for s ∈ T of length less than α, Ts equals T . For limit α, ahomogeneous α-tree exists i� α is inde
omposable, i.e., β + γ is less than αwhenever β and γ are less than α. If T is an α + 1-tree then not only does
T have a path of length α, but every node of T of length less than α 
an beextended to su
h a path.The for
ing Q 
onsists of the one-point tree {∅}, together with homo-geneous trees T of su

essor height less than κ su
h that both 〈0〉 and 〈1〉belong to T . Q is ordered by end-extension.If T is a homogeneous α-tree, α limit, and s is any path through T oflength α then there is a minimal extension m(T, s) of T to a 
ondition ofheight α + 1 whi
h 
ontains s, namely T ∪ {s0 ∗ (s \ β) | s0 ∈ T and β < α},where for ea
h β < α, s \ β is su
h that (s ↾ β) ∗ (s \ β) = s.Claim 1. Q is κ-distributive and adds a κ-Suslin tree.Proof. Q may fail to be κ-
losed, as if T0 ≥ T1 ≥ · · · is a des
ending sequen
ethrough Q of limit length λ < κ, then although the union T−

λ of the Ti's ishomogeneous, it may have no path of length Height(T−
λ ) and therefore notbe extendible to a 
ondition. However if in addition to the Ti's we have paths

si ∈ Ti of length Height(Ti)− 1 su
h that i < j → si ⊆ sj, then the union sλof the si's forms a path through T−
λ of length Height(T−

λ ), and we 
an extend
T−

λ to a 
ondition Tλ = m(T−
λ , sλ) below ea
h of the Ti's whi
h 
ontains sλ.This implies that we 
an indu
tively extend any 
ondition to meet a sequen
eof fewer than κ open dense sets, i.e., the for
ing Q is κ-distributive. It followsfrom this and indu
tion on α < κ, that any 
ondition 
an be extended to3



one of height at least α, and therefore the union of a Q-generi
 is indeed a
κ-tree whi
h we denote as TQ.We now 
he
k that TQ is κ-Suslin. Suppose that T 
 Ȧ is a maximalanti
hain in TQ. De�ne a des
ending sequen
e of 
onditions Tξ, ξ < κ, ofheight γξ + 1 together with elements sξ of Tξ of length γξ whi
h end-extendea
h other so that for limit ξ, Tξ = m(

⋃
ξ′<ξ Tξ′, sξ), and1. For any ξ, if s ∈ Tξ then Tξ+1 de
ides s ∈ Ȧ.2. For any s ∈

⋃
ξ<κ Tξ and α < κ there is an η su
h that γη > α and Tηfor
es that some proper initial segment of s ∗ (sη \ α) belongs to Ȧ.To a
hieve 2, 
onsider how to handle a parti
ular s and α. Choose a limit

ξ su
h that γξ is greater than both α and the length of s. If Tξ for
es thatsome proper initial segment of s ∗ (sξ \ α) belongs to Ȧ then take η to be
ξ. Otherwise there is a T ′ extending Tξ and an s1 su
h that s ∗ (sξ \ α) ∗ s1belongs to T ′ and T ′ for
es s ∗ (sξ \ α) ∗ s1 to belong to Ȧ. Let Tξ+1 extend
T ′ and satisfy 1. Choose sξ+1 to be a path through Tξ+1 extending sξ so that
sξ+1 \ α extends (sξ \ α) ∗ s1. Then 2 is satis�ed with η equal to ξ + 1.There must be a limit ordinal ξ su
h that for α < γξ and s ∈

⋃
ξ′<ξ Tξ′there is an initial segment of s ∗ (sξ \ α) that is for
ed to belong to Ȧ. Itfollows that every point in Tξ = m(

⋃
ξ′<ξ Tξ′, sξ) of length γξ is for
ed to lieabove some point in Ȧ, so Tξ for
es that Ȧ ⊆ Tξ has size less than κ. Thisproves that the generi
 tree is κ-Suslin. 2(Claim1)Claim 2. Let TQ denote the κ-Suslin tree added by Q. Then the 2-step ite-ration Q ∗ TQ is equivalent to κ-Cohen.Proof. The for
ing Q ∗ TQ has R = {(T, s) | T has height Dom (s) + 1 and

s belongs to T} as a dense subfor
ing. But then both R and κ-Cohen are
κ-
losed for
ings of 
ardinality κ and therefore generate isomorphi
 
ompleteBoolean algebras. It follows that Q∗TQ is equivalent to κ-Cohen. 2(Claim2)It follows that Pκ ∗ Q ∗ TQ is equivalent to Pκ ∗ κ-Cohen.Claim 3. Pκ ∗ κ-Cohen preserves the weak 
ompa
tness of κ.Proof. Wemust show that κ satis�es Π1

1 re�e
tion in L[G((≤ κ)] = L[Gκ][G(κ)],where Gκ is generi
 over L for Pκ and G(κ) is generi
 over L[Gκ] for κ-Cohen.4



Suppose that (p, q̇) is a 
ondition in Pκ ∗κ-Cohen whi
h for
es Ȧ to be a sub-set of κ and the Π1 senten
e ϕ to hold in the stru
ture (Lκ+ [G(≤ κ)],∈, Ȧ).As Pκ is κ-

, we may assume that q̇ belongs to Lκ. And we may assume thatthe name Ȧ is a subset of Lκ. Now the statement
(p, q̇) 
 ϕ holds in (Lκ+ [Ġ(≤ κ)],∈, Ȧ)is a Π1 statement about the stru
ture (Lκ+,∈, Ȧ, p, q̇) and therefore by Π1

1re�e
tion in L there exists a 
ardinal α < κ su
h that (p, q̇) belongs to Lαand
(p, q̇) 
α ϕ holds in (Lα+ [Ġ(≤ α)],∈, Ȧ ∩ Lα),where 
α refers to the for
ing Pα ∗α-Cohen and Ġ(≤ α) refers to the generi
for that for
ing. Now 
hoose a 
ondition extending (p, q̇) whi
h for
es (in

Pκ ∗ κ-Cohen) that Ġ(κ) ↾ α = Ġ(α), and therefore that Ȧ ∩ α equals
(Ȧ ∩ Lα)Ġ(≤α). Then this 
ondition for
es (in Pκ ∗ κ-Cohen) that H(α+) of
L[Ġ(≤ κ)] = Lα+ [Ġ(≤ α)] and ϕ holds in (Lα+ [Ġ(≤ α)],∈, Ȧ∩α), as desired.
2(Claim3)Now let H be Q-generi
 over L[Gκ]. Then in L[Gκ][H ], κ is not weakly
ompa
t as there is a κ-Suslin tree. However, if S is a stationary subset of
κ in this model, then sin
e the for
ing TQ is κ-

, S is also stationary inthe larger model L[Gκ][H ][B], where B is TQ-generi
 over L[Gκ][H ]. As κis weakly 
ompa
t in L[Gκ][H ][B], it follows that S is stationary in some
α < κ. Thus L[Gκ][H ] is the desired model where κ is not weakly 
ompa
tbut where SR(κ) holds. 2 3.VorlesungCan SR(κ) hold for a su

essor 
ardinal κ?Proposition 4 SR(κ) fails if κ is the su

essor of a regular 
ardinal.Proof. Suppose that κ = γ+, γ regular. Then S = {α < κ | 
of α = γ} isstationary in κ but not in any κ̄ < κ. 2Theorem 5 If λ is a singular limit of λ+-super
ompa
t 
ardinals then SR(λ+)holds. 5



Proof. Re
all that κ is µ-super
ompa
t i� there is an elementary embedding
j : V → M with 
riti
al point κ su
h that j(κ) > µ and Mµ ⊆ M .Now suppose that S is stationary in λ+. Then for some λ+-super
ompa
t
κ < λ, T = S ∩ Cof(< κ) is stationary. Let j : V → M witness the λ+-super
ompa
tness of κ. We show that T ∩ α is stationary for some α < λ+.Let γ be the supremum of j[λ+]; as j ↾ λ+ belongs to M , 
of M(γ) = λ+, andtherefore γ is less than j(λ+), whi
h is regular in M . It su�
es to show that
M � j(T )∩ γ is stationary, for then by elementarity, V � T ∩α is stationaryfor some α < λ+.Suppose that C is 
losed unbounded in γ. As j is 
ontinuous at ordinalsof 
o�nality < κ, j[λ+] is < κ-
losed, i.e., 
ontains all of its limit pointsof 
o�nality less than κ. It follows that Range (j) ∩ C is unbounded in γand therefore D = j−1[C] ⊆ λ+ is unbounded in λ+. And again sin
e jis 
ontinuous at ordinals of 
o�nality < κ, D is < κ-
losed. Sin
e T is astationary subset of Cof(< κ) ∩ λ+, it follows that T ∩ D is nonempty andtherefore j[T ∩ D] ⊆ j(T ) ∩ C is nonempty, as desired. 2Theorem 6 Assume GCH and suppose that κ0 < κ1 < · · · is an ω se-quen
e of super
ompa
t 
ardinals. De�ne P1 = Coll (ω, < κ0), Pn+1 = Pn ∗Coll (κn−1, < κn) for �nite n > 0 and Pω = Inverse limit of the Pn's. Then
Pω for
es SR(ℵω+1).Proof. Let λ be the supremum of the κn's and let Gω be Pω-generi
, Gn =
Gω ↾ Pn.Claim 1. In V [Gω], κn = ℵn+1, λ = ℵω and λ+ = ℵω+1.Proof. The for
ing Coll (ω, < κ0) makes everything less than κ0 
ountableand is κ0-

. So κ0 is ℵ1 in V [G1]. The rest of the iteration is κ0-
losed,so κ0 is also ℵ1 in V [Gω]. A similar argument shows that ea
h κn is ℵn+1,and therefore that λ is ℵω. If λ+ were 
ollapsed then it would be given a
o�nality less than some κn; but for large enough m, the iteration Pω fa
torsas Pm ∗ Pm,ω where Pm has size less than λ and Pm,ω is κn-
losed; it followsthat λ+ 
annot have 
o�nality less than κn in V [Gω]. 2(Claim 1)4.Vorlesung6



Claim 2. For ea
h n there is a generi
 extension V [Gω][Hn] of V [Gω] in whi
hthere is a de�nable elementary embedding kn : V [Gω] → Mn ⊆ V [Gω][Hn]with 
riti
al point κn su
h that kn ↾ λ+ belongs to Mn and kn(κn) > λ+.Moreover the for
ing to add Hn is ℵn-
losed.Proof. Let j : V → M witness that κn is λ+ super
ompa
t. We wish to extend
j to the kn of the Claim. To do so, we need to �nd, in an ℵn-
losed generi
extension of V [Gω], a j(Pω) = P M

ω -generi
 GM
ω over M whi
h 
ontains j[Gω]as a subset.The for
ing Pω is the ω-iteration Coll (ω, < κ0) ∗ Coll (κ0, < κ1) ∗ · · ·and therefore j(Pω) = P M

ω is the ω-iteration in M given by Coll M(ω, <
κ0) ∗ Coll M(κ0, < κ1) ∗ · · · ∗ Coll M(κn−2, < κn−1) ∗ Coll M(κn−1, < j(κn)) ∗Coll M(j(κn), < j(κn+1)) ∗ · · ·. The �rst n fa
tors of these two iterations arethe same and so we 
hoose GM

n to be Gn, yielding a lifting of j to an elemen-tary embedding j∗ : V [Gn] → M [GM
n ]. The next fa
tor Coll (κn−1, < κn) ofthe V iteration is in
luded as a subfor
ing of the next fa
tor Coll M(κn−1, <

j(κn)) = Coll (κn−1, < j(κn)) of the M-iteration and indeed the latter fa
-tors as Coll (κn−1, < κn) × Coll (κn−1, [κn, j(κn)). Note that the for
ingColl (κn−1, [κn, j(κn)) is κn−1 = ℵn-
losed. So we 
hoose a generi
 for thisprodu
t whose �rst fa
tor equals the generi
 spe
i�ed by Gn+1, thereby lif-ting j∗ to j∗∗ : V [Gn+1] → M [GM
n+1].Now the remainder P n+1 of the Pω iteration (where Pω = Pn+1∗P n+1) hassize (κ+

ω )V and j(κn) is greater than (κ++
ω )V ; therefore in M [GM

n+1], P n+1 isan ℵn-
losed for
ing with only ℵn maximal anti
hains in V [Gn+1]. It followsthat in M [GM
n+1] there is a generi
 for P n+1 over V [Gn+1], whi
h we mayassume equals Gn+1. As the remainder P M,n+1 of the iteration P M

ω (where
P M

ω = P M
n+1 ∗ P M,n+1) is j(κn)-
losed and therefore (λ++)V -
losed, there is asingle 
ondition in P M,n+1 whi
h is below ea
h 
ondition in j∗∗[Gn+1]; so wefor
e below that 
ondition. The result is that in a κn-
losed for
ing extensionwe have lifted j to kn : V [Gω] → M [GM

ω ], as desired. 2(Claim 2)5.VorlesungClaim 3. Suppose that n > 0 is �nite and V [Gω] � S ∩ Cof(< ℵn) is statio-nary. Then S remains stationary in all ℵn-
losed for
ing extensions of V [Gω].Given this last Claim, we �nish the proof of the Theorem as follows.Suppose that V [Gω] � S ⊆ ℵω+1 is stationary. Then for some �nite n >7



0, V [Gω] � S ∩ Cof(< ℵn) is stationary. By Claim 2, in some ℵn-
losedfor
ing extension V [Gω][Hn] of V [Gω] there is an embedding kn : V [Gω] →

Mn ⊆ V [Gω][Hn] with 
riti
al point κn = ℵ
V [Gω]
n+1 , kn ↾ ℵ

V [Gω ]
ω+1 ∈ Mn and

kn(ℵ
V [Gω]
n+1 ) > ℵ

V [Gω]
ω+1 . By Claim 3, S is still stationary in V [Gω][Hn]. Let γ bethe supremum of kn[ℵ

V [Gω ]
ω+1 ]. Then γ has 
o�nality ℵn in Mn and therefore γis less than kn(ℵ

V [Gω]
ω+1 ), whi
h is regular in Mn.We 
laim that kn(S)∩γ is stationary in Mn. Suppose that C ⊆ γ is 
losedunbounded, C ∈ Mn. As kn is 
ontinuous at ordinals of V [Gω]-
o�nality < ℵnand V [Gω], V [Gω][Hn] have the same < ℵn sequen
es of ordinals, it followsthat Range (kn ↾ ℵ

V [Gω]
ω+1 ) is < ℵn-
losed in Mn. Therefore Range (kn) ∩ Cis unbounded in γ. Let D be k−1

n [C]. Then D is unbounded in ℵ
V [Gω ]
ω+1 andmoreover is < ℵn-
losed. As S is a subset of Cof(< ℵn) whi
h is stationaryin V [Gω][Hn], it follows that S∩D is nonempty, and therefore that kn(S)∩Cis nonempty, as desired.As Mn � kn(S)∩γ is stationary, it follows that V [Gω] � S∩α is stationaryfor some α < ℵω+1, thereby proving SR(ℵω+1) in V [Gω].Proof of Claim 3. We use the following Lemma of Shelah:Lemma 7 In V [Gω] there is a sequen
e 〈xα | α < ℵω+1〉 of bounded subsetsof ℵω+1 su
h that for all α in a 
losed unbounded subset C of ℵω+1 there isa 
losed unbounded c ⊆ α of ordertype 
of (α) su
h that all proper initialsegments of c are of the form xβ for some β < α.Now suppose that in V [Gω], S ⊆ Cof(< ℵn) is stationary and P is an

ℵn-
losed for
ing. Let 〈xα | α < ℵω+1〉 and C be as in the Lemma. Given
p ∈ P whi
h for
es Ḋ to be 
losed unbounded in ℵω+1, we must �nd anextension q of p whi
h for
es that some α is in S ∩ Ḋ.In V [Gω] let (N,∈, <N) be an elementary submodel of some large (Hθ,∈
, <θ) (where <θ is a well-ordering of Hθ) whi
h 
ontains P, p, Ḋ, 〈xα | α <
ℵω+1〉, D and su
h that N ∩ℵω+1 is an ordinal α ∈ C ∩S. This is possible as
S is stationary in V [Gω]. Let c ⊆ α be of ordertype 
of (α) < ℵn with all ofits proper initial segments of the form xγ for some γ < α. It follows that allof the proper initial segments of c belong to N .8



Now build a des
ending 
hain of 
onditions 〈pi | i < 
of (α)〉 su
h that
p0 = p and pj is the <N -least extension of pi, i < j, whi
h for
es some ordinalgreater than the j-th element of c into Ḋ. Then for ea
h j < 
of (α), thesequen
e 〈pi | i < j〉 belongs to N and by the < ℵn-
losure of P there isa 
ondition q below ea
h of the pi, i < 
of (α). Then q ≤ p for
es that αbelongs to S ∩ Ḋ, as desired. 2(Claim 3).This 
ompletes the proof of the theorem.6.VorlesungSaturated IdealsLet κ be an un
ountable regular 
ardinal and I a nonprin
ipal κ-
ompleteideal on κ, i.e., a 
olle
tion of subsets of κ, in
luding all bounded subsets of
κ, with the following properties:1. A ⊆ B ∈ I → A ∈ I.2. α < κ, Ai ∈ I for ea
h i < α →

⋃
i<α Ai ∈ I.3. κ /∈ I.For a 
ardinal λ, I is λ-saturated i� the Boolean algebra P(κ)/I has the λ-

.Equivalently: If Ai, i < λ are subsets of κ not in I, then Ai ∩ Aj belongs to

I for some distin
t pair i, j < λ. We say that κ 
arries a λ-saturated ideal i�there exists a λ-saturated, κ-
omplete ideal on κ.
I is 2-saturated i� I is a maximal ideal, and therefore κ 
arries a 2-saturated ideal i� κ is measurable. However even ℵ1-saturation does notimply measurability, as the next result shows.Theorem 8 If κ is measurable then in some 
o�nality-preserving for
ingextension, 2ℵ0 = κ and κ 
arries an ℵ1-saturated ideal.Proof. Let P be the for
ing that adds κ Cohen reals, by a �nite supportprodu
t. As P is 


, 
o�nalities are preserved. In the extension 2ℵ0 = κ. Let

I be a κ-
omplete maximal ideal on κ, whose existen
e is guaranteed by themeasurability of κ. We 
laim that in V [G], where G is P -generi
, the ideal
J = {X ⊆ κ | X ⊆ Y for some Y ∈ I} is a κ-
omplete, ℵ1-saturated ideal.First we prove that J is κ-
omplete. Suppose that p 
 Ẋα ∈ J for ea
h
α < λ, where λ is less than κ. For ea
h α < λ let Aα be a maximal anti
hain9



of 
onditions q below p whi
h for
e Ẋα to be a subset of some Y α
q ∈ I. pfor
es Ẋα to be a subset of the union of the Y α

q 's. It follows that p for
es
⋃

α<λ Ẋα to belong to J , as it for
es it to be a subset of ⋃
α<λ,q∈Aα

Y α
q , whi
hbelongs to I as I is κ-
omplete and ea
h Aα has size less than κ (in fa
t,ea
h Aα is 
ountable).To prove ℵ1-saturation, suppose that Ẋα, α < ω1, is for
ed by a 
ondition

p to be a sequen
e of subsets of κ not in J whose pairwise interse
tions are in
J . By the ℵ1-
ompleteness of J , we may in fa
t assume that p for
es Ẋα∩Ẋβto be empty for distin
t α, β < ω1. For ea
h α < ω1, let Yα be the set ofordinals whi
h are for
ed into Ẋα by some 
ondition below p. As Ẋα is not in
J , it follows that Yα is not in I and therefore as I is an ℵ2-
omplete maximalideal, the interse
tion Y of the Yα, α < ω1, belongs to I. Let γ belong to
Y . Then for ea
h α < ω1 there is an extension qα of p whi
h for
es γ ∈ Ẋα.By the 


, there exist distin
t α, β < ω1 su
h that qα, qβ are 
ompatible;but then a 
ommon extension of qα, qβ for
es that Ẋα ∩ Ẋβ is nonempty,
ontradi
tion. 2 7.VorlesungThus κ 
an 
arry an ℵ1-saturated ideal without being strongly ina

essi-ble. However:Theorem 9 If κ 
arries a κ-saturated ideal then κ is weakly ina

essible.Proof. We must show that κ is a limit 
ardinal. Suppose not and let κ = λ+,
λ an in�nite 
ardinal. For ξ < λ+ let fξ be a surje
tion of λ onto ξ. For
α < λ+ and η < λ de�ne Aα,η = {ξ | fξ(η) = α}. Then for ea
h η < λ, Aα,ηand Aβ,η are disjoint for distin
t α, β < λ+. And for ea
h α < λ+, the unionof the Aα,η, η < λ, 
ontains all su�
iently large ordinals < λ+.Now suppose that I were a λ+-saturated ideal on λ+. It follows from the
λ+-
ompleteness of I that for ea
h α < λ+, Aα,ηα

does not belong to I forsome ηα < λ. . Therefore for some �xed η < λ, Aα,η does not belong to I for
λ+-many α < λ+. But as Aα,η and Aβ,η are disjoint for distin
t α, β < λ+,this 
ontradi
ts the λ+-saturation of I. 2Can a su

essor 
ardinal κ 
arry a κ+-saturated ideal? We give a positiveanswer using for
ing axioms. 10



De�nition. Let P be a for
ing and p ∈ P . The proper game for P below pis de�ned as follows: Player I plays P -names α̇n for ordinals and II playsordinals βn. II wins i� there is some q ≤ p whi
h for
es that for ea
h n,
α̇n equals some βk. The semiproper game (for P below p) is de�ned in thesame way, but with �ordinals� repla
ed with �
ountable ordinals�. P is proper(semiproper) i� for ea
h p ∈ P , II has a winning strategy in the proper(semiproper) game for P below p.Properness (semiproperness) 
an be equivalently formulated in terms ofthe existen
e of generi
s over 
ountable models.De�nition. Let P be a for
ing. For any 
ountable set M , q is (M, P )-generi
(semigeneri
) i� for every name σ ∈ M for an ordinal (
ountable ordinal), qfor
es that σ equals some ordinal of M .Lemma 10 P is proper (semiproper) i� for su�
iently large 
ardinals λthere is a 
losed unbounded set of M ∈ [Hλ]

ℵ0 su
h that ea
h p ∈ M has anextension whi
h is (M, P )-generi
 (semigeneri
).The Proper for
ing axiom PFA (the semiproper for
ing axiom SPFA) isthe assertion that if P is a proper (semiproper) for
ing and D a 
olle
tionof ℵ1-many dense subsets of P then there is a 
ompatible G ⊆ P whi
hinterse
ts ea
h element of D.Lemma 11 Suppose that Pα is a 
ountable support iteration of for
ings 〈Q̇β |
β < α〉 su
h that Pα ↾ β for
es Q̇β to be proper for ea
h β < α. Then Pα isproper.De�nition. κ is λ-super
ompa
t, where λ is a 
ardinal ≥ κ, i� there is anelementary embedding j : V → M with 
riti
al point κ su
h that j(κ) > λand Mλ ⊆ M . κ is super
ompa
t i� κ is λ-super
ompa
t for all λ.Remark. Super
ompa
tness is a �rst-order property, as the λ-super
ompa
tnessof κ 
an be witnessed by an embedding of the form jU : V → MU where Uis a normal measure on Pκλ.Theorem 12 If κ is super
ompa
t then there is a proper for
ing extensionin whi
h κ equals ℵ2 and PFA holds.Proof. We need the following Lemma.11



Lemma 13 Suppose that κ is super
ompa
t. Then there is a fun
tion f :
κ → Vκ su
h that for every set x and every 
ardinal λ ≥ κ su
h that x ∈ Hλ+there is a j : V → M with 
riti
al point κ su
h that j(κ) > λ, Mλ ⊆ M and
j(f)(κ) = x. f is 
alled a Laver fun
tion on κ.Proof. Assume that the Lemma fails. For ea
h f : κ → Vκ let λf be the least
ardinal ≥ κ su
h that some x ∈ Hλ+

f
witnesses that f is not a Laver fun
tionfor κ, i.e., su
h that j(f)(κ) 6= x for every j : V → M with 
riti
al point κsu
h that j(κ) > λ and Mλ ⊆ M . Let ν be greater than all of the λf 's andlet j : V → M witness the ν-super
ompa
tness of κ.Now indu
tively de�ne f : κ → Vκ as follows: If f ↾ α is not a Laverfun
tion for α then let λ be least so that some x ∈ Hλ+ witnesses this and
hoose f(α) = xα to be su
h an x; otherwise set f(α) = 0.Now 
onsider x = j(f)(κ). By the de�nition of f and the elementarity of

j, x witnesses the failure of f to be a Laver fun
tion in M . As Mν ⊆ M , xalso witnesses the failure of f to be a Laver fun
tion in V and λf is de�nedthe same way in M as in V . This is a 
ontradi
tion, as j(κ) > λf and
j(f)(κ) = x. 2 (Lemma 13) 8.VorlesungNow we prove the Theorem. Let f : κ → Vκ be a Laver fun
tion. Con-stru
t a 
ountable support iteration Pκ of 〈Q̇α | α < κ〉 as follows. At stage
α, if f(α) is a pair (Ṗ , Ḋ) of Pα-names su
h that Ṗ is proper and Ḋ is a
γ-sequen
e of dense subsets of Ṗ for some γ < κ then set Q̇α = Ṗ ; otherwiselet Q̇α be the trivial for
ing.Let G be Pκ-generi
. As Pκ is proper, ℵ1 is preserved. Ea
h Pα, α < κ,has size less than κ and the iteration is performed with 
ountable support;it follows that Pκ is κ-

 and therefore κ is preserved.We 
laim that in V [G], if P is proper and D = 〈Dα | α < γ〉, γ < κ,is a sequen
e of dense subsets of P then there is a 
ompatible subset of Pwhi
h interse
ts ea
h Dα. Let Ṗ and Ḋ be Pκ-names for P and D. Choose
λ to be mu
h larger than P and let j : V → M have 
riti
al point κ with
j(κ) > λ, Mλ ⊆ M and j(f)(κ) = (Ṗ , Ḋ). We 
an assume that V M

λ is very12



elementary in M and therefore V
M [G]
λ = V

V [G]
λ is very elementary in M [G];it follows that P is not only proper in V [G], but also in M [G].Now 
onsider the iteration j(Pκ) in M , whi
h is a 
ountable supportiteration of length j(κ) using the Laver fun
tion j(f). As j(f)(κ) = (Ṗ , Ḋ)and Ṗ is proper in M [G], it follows that the for
ing Ṗ is used at stage κ inthe j(Pκ) iteration in M . So we 
an write j(Pκ) = Pκ ∗ Ṗ ∗ Ṙ for some Ṙ. If

H ∗K is generi
 for Ṗ ∗ Ṙ over V [G], then in V [G ∗H ∗K] we 
an extend jto an elementary embedding j∗ : V [G] → M [G ∗H ∗K]. H is P -generi
 over
V [G] and therefore meets ea
h Dα, α < γ. Let E = {j∗(p) | p ∈ H}. Then Ebelongs to M [G ∗H ∗K] and is a 
ompatible set of 
onditions in j∗(P ) thatmeets ea
h dense set in j∗(D). By elementarity it follows that in V [G] thereis a 
ompatible set of 
onditions in P whi
h meets ea
h dense set in D, asdesired.It now follows that V [G] is a model of PFA as ℵ1 < κ. Also note that Pκ
ollapses ea
h γ < κ to ω1 as Coll (ω1, γ) is 
ountably-
losed, and thereforeproper, and for ea
h α < γ, the set of 
onditions f ∈ Coll (ω1, γ) with
α ∈ Range (f) is dense. So κ is the ω2 of V [G]. 2The iteration lemma for proper for
ing has an analogue for semiproperfor
ing. There is a notion of revised 
ountable support iteration that preservessemiproperness, and therefore one has:Theorem 14 If κ is super
ompa
t then there is a semiproper for
ing exten-sion in whi
h κ equals ℵ2 and SPFA holds.SPFA implies an apparently stronger axiom. A for
ing P is stationary-preserving i� ea
h stationary subset of ω1 remains stationary in P -generi
extensions. Martin's maximum MM is the assertion that if P is stationary-preserving and D a 
olle
tion of ℵ1-many dense subsets of P then there is a
ompatible G ⊆ P whi
h interse
ts ea
h element of D.9.VorlesungTheorem 15 SPFA implies MM.Proof. In fa
t SPFA implies that every stationary-preserving for
ing is semi-proper, as we now show. 13



Let X be a set of 
ountable elementary submodels of H∗
λ = (Hλ,∈, <)(where < is a wellordering of Hλ). We write X⊥ for {M ∈ [Hλ]

ℵ0 | M ≺
H∗

λ and N /∈ X for every 
ountable N that satis�es M ≺ N ≺ H∗
λ and

N ∩ ω1 = M ∩ ω1}. A ni
e 
hain in H∗
λ is a sequen
e 〈Mα | α < θ〉 of
ountable elementary submodels of H∗

λ su
h that α < β → Mα ∈ Mβ and
Mλ is the union of Mα, α < λ, for limit λ.Lemma 16 (Main Lemma) Assume SPFA and let ω1 ≤ κ < λ with λ regularand su�
iently large. Let Y ⊆ [Hκ]

ℵ0 be stationary and X = {M ∈ [Hλ]
ℵ0 |

M ∩ Hκ ∈ Y } (the �lifting� of Y to Hλ). Then there exists a ni
e 
hain
〈Mα | α < ω1〉 in H∗

λ su
h that Mα ∈ X ∪ X⊥ for every α.We now prove the Theorem using the Main Lemma. Assume SPFA andsuppose Q is a stationary-preserving for
ing. Choose κ large enough so thatany Q-names for a 
ountable ordinal is equivalent to one in Hκ. Choose a
ondition p in Q and de�ne Y = {M ∈ [Hκ]
ℵ0 | There exists no (M, Q)-semigeneri
 q ≤ p}. Choose λ > κ to be regular and let X = {M ∈ [Hλ]

ℵ0 |
M∩Hκ ∈ Y } be the lifting of Y to Hλ. By the 
hoi
e of κ, X = {M ∈ [Hλ]

ℵ0 |There exists no (M, Q)-semigeneri
 q ≤ p}.By the Main Lemma, there is a ni
e 
hain 〈Mα | α < ω1〉 in H∗
λ su
h that

Mα ∈ X ∪ X⊥ for ea
h α < ω1. We 
laim that S = {α < ω1 | Mα ∈ X}is nonstationary. Let G be Q-generi
, p in G. Let δ̇ξ, ξ < ω1, enumerate allnames for 
ountable ordinals in ⋃
α<ω1

Mα. Then C = {α < ω1 | Mα∩ω1 = αand δ̇ξ ∈ Mα, δ̇G
ξ < α for all ξ < α} is 
losed unbounded. And for ea
h α ∈ C,there exists q ∈ G below p whi
h for
es ea
h δ̇ξ ∈ Mα to equal some ordinalin Mα and is therefore (Mα, Q)-semigeneri
. So S is nonstationary in V [G]and therefore nonstationary in V .It follows that there is a ni
e 
hain 〈Mα | α < ω1〉 in H∗

λ su
h that
Mα ∈ X⊥ for ea
h α < ω1. Let µ > λ be su�
iently large. Choose a 
ountable
M ≺ (Hµ,∈, <, Q, 〈Mα | α < ω1〉) (where < is a wellordering of Hµ) with
p ∈ M . Set δ = M ∩ ω1. Then M ∩ Hλ ⊇ Mδ and δ = Mδ ∩ ω1; sin
e Mδbelongs to X⊥ we have M∩Hλ /∈ X. So by the de�nition of X, there exists an
(M, Q)-semigeneri
 q below p. So for ea
h p ∈ Q, there is a 
losed unboundedset of 
ountable M ≺ H∗

µ = (Hµ,∈, <) and an (M, Q)-semigeneri
 q ≤ p. Itfollows by taking a diagonal interse
tion that for a 
losed unbounded setof 
ountable M ≺ H∗
µ, there is an (M, Q)-semigeneri
 below any p ∈ M ,establishing the semiproperness of Q.14



10.VorlesungProof of the Main Lemma. Let P be the for
ing that adds a ni
e ω1-
hainthrough X ∪ X⊥ using ni
e 
ountable 
hains〈Mα | α ≤ γ〉 through X ∪ X⊥,ordered by end-extension.For ea
h γ < ω1 the set Dγ of 
onditions in P of length at least γ isdense: Let G be generi
 for 
ollapsing Hλ to ω1 with 
ountable 
onditions.Then in V [G], there is a ni
e ω1-
hain through [HV
λ ]ℵ0 with union HV

λ , and
X ⊆ [HV

λ ]ℵ0 is stationary. It follows that in V [G] there are ni
e 
hains through
X of any 
ountable length, and therefore su
h 
hains exist also in V . It thenfollows that any 
ondition in P 
an be extended to any 
ountable length andtherefore ea
h Dγ is dense.We show that P is semiproper. Let µ > λ be su�
iently large and M ≺
H∗

µ = (Hµ,∈, <), M 
ountable (where < is a wellordering of Hµ). Let p belongto P ∩ M . We show that there is a q ≤ p whi
h is (M, P )-semigeneri
. Firstnote that there is a 
ountable N , M ≺ N ≺ H∗
µ, su
h that N ∩ ω1 = M ∩ω1and N ∩ Hλ ∈ X ∪ X⊥: This is 
lear if M ∩ Hλ belongs to X⊥; otherwise
hoose a 
ountable N ′, M ∩Hλ ⊆ N ′ ≺ H∗

λ, su
h that N ′ ∩ω1 = M ∩ω1 and
N ′ belongs to X. Let N be the least elementary submodel of H∗

µ 
ontaining
M ∪ (N ′ ∩ Hκ). Then N ′ ∩ Hκ = N ∩ Hκ so N is as desired.Now we �nd the desired (M, P )-semigeneri
 below p. Choose N as above.We 
an build a des
ending ω-sequen
e of 
onditions pn = 〈Mα | α ≤ γn〉 ∈ Nbelow p su
h that the union of the Mγn

's equals N ∩Hλ and every name in Nfor a 
ountable ordinal is for
ed by some pn to be an ordinal in N . De�ne q tobe 〈Mα | α < γ = supn γn〉 together with Mγ = N∩Hλ. Then q is a 
onditionbelow p whi
h is (N, P )-semigeneri
 and therefore also (M, P )-semigeneri
.Finally, apply SPFA to obtain a ni
e 
hain of length ω1 using the semi-properness of P . 2We return to saturated ideals.Theorem 17 MM implies that the ideal of nonstationary subsets of ω1 is
ω2-saturated. 15



Proof. Assume MM and let {Ai | i ∈ W} be a maximal 
olle
tion of stationa-ry subsets of ω1 su
h that Ai ∩Aj is nonstationary for distin
t i, j. We showthat for some W0 ⊆ W of size at most ω1, {Ai | i ∈ W0} is also maximal.Let P be the 2-step iteration Q ∗ R where Q adds a surje
tion f : ω1 →
W using 
ountable 
onditions q : α → W , α < ω1, and R adds a 
losedunbounded subset to ▽α<ω1

Af(α) = {α | α ∈ Af(β) for some β < α} using
ountable 
losed subsets r of ▽α<ω1
Af(α), ordered by end-extension. Then

P is stationary-preserving: Suppose that S ⊆ ω1 is stationary. Then S ∩ Aiis stationary for some i ∈ W by the maximality of {Ai | i ∈ W}. For
ingwith Q preserves the stationarity of S ∩ Ai as Q is ω-
losed. And for
ingwith R preserves the stationarity of any stationary subset of ▽α<ω1
Af(α) andtherefore the stationarity of S ∩ Ai.Now for ea
h α < ω1 the set Dα of 
onditions (q, r) in P su
h that

α ∈ dom(q) ∩ max(r) is dense and therefore by MM there is a 
ompatible
G ⊆ P whi
h interse
ts ea
h Dα. Then ⋃

{q | (q, r) ∈ G for some r} is afun
tion f : ω1 → W and ⋃
{r | (q, r) ∈ G for some q} is a 
losed unboundedsubset C of ▽α<ω1

Af(α). It follows that {Ai | i ∈ Range (f)} is maximal, asany stationary subset of ▽α<ω1
Af(α) has stationary interse
tion with somesingle Af(α). 2 11.VorlesungThe tree propertyA tree is a partial ordering T = (T,≤T ) with the property that for ea
h

t ∈ T , Tt = the set of ≤T -prede
essors of t is well-ordered by ≤T . The α-thlevel of T is Tα = {t ∈ T | Tt is well-ordered by ≤T with ordertype α}. Theheight of T is the supremum of {α + 1 | Tα is nonempty}.Let κ be an in�nite regular 
ardinal. T is a κ-tree i� T has height κ andfor α < κ, Tα has 
ardinality less than κ. A κ-tree T is κ-Aronszajn i� it hasno κ-bran
h, i.e., there is no subset of T well-ordered by ≤T with ordertype
κ.

κ has the tree property i� there is no κ-Aronszajn tree. ℵ0 has the treeproperty as by König's Lemma, a �nitely bran
hing tree of height ω musthave an in�nite bran
h. But ω1 does not have the tree property:16



Theorem 18 There is an ω1-Aronszajn tree.Proof. We 
onstru
t a an ω1-tree T whose elements are bounded, in
reasing,well-ordered sequen
es of rational numbers, ordered by end-extension. It is
lear that su
h a tree has no ω1-bran
h, as that would give an in
reasingsequen
e of rationals of length ω1, whi
h is impossible.We 
onstru
t the α-th level Tα of T by indu
tion on α < ω1. We indu
-tively maintain the following property:
(∗) Tα is 
ountable and if x belongs to Tβ, β < α and q is a rational greaterthan sup(x) then x is extended by some y ∈ Tα with sup(y) < q.
T0 
onsists only of the empty sequen
e (we take sup(∅) to be −∞. To de�ne
Tα+1 from Tα, simply extend ea
h x ∈ Tα with ea
h rational q > sup(x). It is
lear that property (∗) is preserved. If α is a limit ordinal then for ea
h x insome Tβ, β < α, and ea
h rational q > sup(x), we extend x to x1 ⊆ x2 ⊆ · · ·so that sup(xn) < q for ea
h n and the levels of the xn's are 
o�nal in α; thenput the resulting sequen
e ⋃

n xn into Tα. It follows that Tα is 
ountable andthat for ea
h x ∈
⋃

β<α Tβ and q > sup(x), x has an extension y in Tα with
sup(y) ≤ q; by 
hoosing q′ between q and sup(x) we 
an in fa
t guarantee
sup(y) < q, whi
h gives (∗) for α. 2The previous proof generalises. For an in�nite 
ardinal λ, let Qλ be the setof < λ sequen
es of ordinals less than λ, ordered lexi
ographi
ally. Then λ 
anbe order-preservingly embedded into any interval of Qλ. Now the 
ardinalityof Qλ is λ<λ; if this is λ, then we 
an repla
e the rationals by Qλ in theprevious proof, obtaining:Theorem 19 If λ<λ = λ then there is a λ+-Aronszajn tree. In parti
ular ifGCH holds and λ is regular, there is a λ+-Aronszajn tree.The 
onsisten
y strength of the existen
e of an un
ountable κ with thetree property is that of a weakly 
ompa
t:Theorem 20 (1) If κ is weakly 
ompa
t then κ has the tree property.(2) In L, κ has the tree property i� κ is weakly 
ompa
t.(3) If κ has the tree property then κ is weakly 
ompa
t in L.17



Proof. (1) It su�
es to show that any κ-tree T with universe κ has a κ-bran
h. If T is a κ-tree on κ then the statement that T has no κ-bran
h isa Π1
1 statement about the stru
ture (Hκ,∈, T ). As κ is weakly 
ompa
t, itis Π1
1 re�e
ting, whi
h implies that for some α < κ, T |α =

⋃
β<α Tβ has no

α-bran
h. But this is impossible, as the T -prede
essors of any element of Tαform an α-bran
h through T |α.(2) This uses the �ne stru
ture theory and will not be proved here.(3) Sket
h: If κ is not weakly 
ompa
t in L then by 2 there is a κ-tree T in Lwith no κ-bran
h in L. Now build another κ-tree T ∗ in L with the propertythat any κ-bran
h through T ∗ gives rise to a 
onstru
tible κ-bran
h through
T ; it follows that κ does not have the tree property. 2Can ω2 have the tree property? By the above results, we will need touse a weakly 
ompa
t 
ardinal and kill CH to obtain the 
onsisten
y of this.The following 
hara
terisation of weak 
ompa
tness in terms of elementaryembeddings will prove useful.Proposition 21 κ is weakly 
ompa
t i� κ is strongly ina

essible and forevery transitive model M of ZF− su
h that κ belongs to M , M is < κ-
losedand M has size κ there is an elementary embedding j : M → N , N transitive,with 
riti
al point κ. 12.VorlesungTheorem 22 Suppose that κ is weakly 
ompa
t. Then in some for
ing ex-tension, κ = ω2, 2ℵ0 = ℵ2 and ω2 has the tree property.Proof. Consider the following �mixed support� iteration P = 〈Pα | α < κ〉.For ea
h α < κ, Pα+1 = Pα ∗ Qα, where Qα is a Pα-name for the produ
t ω-Cohen × ω1-Cohen. For limit α we take all p = 〈(p(β)0, p(β)1) | β < α〉 in theinverse limit of the Pβ, β < α, su
h that for all but �nitely many β < α, p(β)0is trivial and for all but 
ountably many β < α, p(β)1 is trivial. For p ∈ Pwrite (p)0 for 〈p(β)0 | β < length (p)〉 and (p)1 for 〈p(β)1 | β < length (p)〉(where length (p) denotes the stri
t supremum of the support of p). Thus
(p)0 is �nitely supported and (p)1 is 
ountably supported.At stage α < κ, Qα 
ollapses α to ω1 as Pα adds α reals and Qα addsan ω1-Cohen set. P is κ-

: If X is a maximal anti
hain in P then for some18



α < κ of un
ountable 
o�nality, X ∩ Pα is a maximal anti
hain in Pα andsin
e Pα is a dire
t limit, X ∩ Pα is in fa
t a maximal anti
hain in P .Note that it is dense for p ∈ P to have the property that for ea
h α <length (p), if p(α)0 is not the trivial name then it is for
ed by p ↾ α to be equalto some parti
ular ω-Cohen 
ondition. This is proved for Pα by indu
tion on
α; the su

essor 
ase is easy, and as (p)0 is �nitely supported, the 
ase where
α is a limit ordinal is trivial.Also note that any 
ondition in P is equivalent to a 
ondition p in P withthe property that for ea
h α < length (p), the trivial 
ondition in Pα for
es
p(α) to belong to Qα. This is be
ause we 
an repla
e the Pα name p(α) bya name whi
h is for
ed by the trivial 
ondition to equal p(α) if p(α) belongsto Qα and is for
ed to be the trivial 
ondition of Qα otherwise.Let P ∗ be the dense set of 
onditions in P with the above two proper-ties. We show that P ∗, and therefore also P , preserves ω1: Suppose that ḟ isfor
ed to be a fun
tion from ω into ω1. Given a 
ondition p we will �nd anextension of p whi
h for
es a 
ountable bound on the range of ḟ . Extend p toa 
ondition q1 whi
h de
ides a value of ḟ(0) and let p1 be obtained from q1by setting p1(α)0 to be p(α)0 for α < length (p) and to be the trivial namefor α in [length (p), length (q1)). Extend p1 to a 
ondition q2 whi
h de
ides adi�erent value of ḟ(0) and obtain p2 from q2 by setting p2(α)0 to be p(α)0 for
α < length (p) and to be the trivial name for α in [length (p), length (q2)).Continue this 
onstru
tion as long as possible, taking greatest lower boundsat 
ountable limit stages. In fa
t this 
onstru
tion terminates at some 
ounta-ble stage, as the 
olle
tion of (qi)0's forms an anti
hain in the �nite supportiteration of ω-Cohen, and any su
h anti
hain is 
ountable. The result is a
ondition q extending p whi
h for
es a bound on ḟ(0). Now repeat this for
ḟ(1), ḟ(2), et
., resulting in an extension of p whi
h for
es a bound on ḟ .So in V [G], where G is P -generi
, κ equals ω2 and there are ω2 reals.Suppose that T were an ω2-Aronszajn tree in V [G]. Let Ṫ be a name for T .As κ is weakly 
ompa
t, there is an elementary embedding j : M → N with
riti
al point κ where Ṫ belongs to M and M, N are transitive ZF− models.Then Ṫ belongs to N and therefore T belongs to N [G]. As T has no 
o�nalbran
h in V [G], it has none in N [G].Now the for
ing j(P ) is the mixed support iteration of ω-Cohen and ω1-Cohen in N , of length j(κ). The for
ing j(P ) fa
tors as P ∗Q where Q is the19



mixed support iteration of ω-Cohen and ω1-Cohen de�ned in NP , indexedon the interval [κ, j(κ)). Choose H to be QG-generi
 over N [G]; then theembedding j : M → N lifts to j∗ : M [G] → N [G][H ]. As T is an initialsegment of the tree j∗(T ), it follows that T has a 
o�nal bran
h in N [G][H ].However this 
ontradi
ts the following Claim.13.VorlesungClaim. The for
ing QG for adding H over N [G] adds no 
o�nal bran
hthrough T .Proof of Claim. Let C be generi
 over N [G] for Coll (ω1, ω2), the for
ingwhi
h 
ollapses ω2 using 
ountable 
onditions. Then T has no 
o�nal bran
hin N [G][C]: Suppose that Ḃ were a name for su
h a bran
h. Build an in�nitebinary tree of 
onditions ps, s ∈ 2<ω, in Coll (ω1, ω2) and an ω-sequen
e
α1 < α2 < · · · less than κ su
h that for distin
t s and t of length n, ps, ptfor
e di�erent elements of T to belong to Ḃ at level αn. Then as there are ω2reals in N [G], this gives ω2 di�erent elements of the α-th level of T , where αis the supremum of the αn's, 
ontradi
ting the fa
t that T is an ω2-tree.To prove the Claim, it su�
es to show that QG does not add a 
o�nalbran
h through T over the ground model N [G][C]. Suppose that p ∈ QGfor
es Ḃ to be su
h a bran
h and let 〈αi | i < ω1〉 be an in
reasing sequen
ein N [G][C] 
o�nal in ω

N [G]
2 . As in the proof that P preserves ω1, form ade
reasing sequen
e of 
onditions pi, i < ω1 in QG as follows: Extend pto a 
ondition q1 whi
h de
ides whi
h element of Tα0

belongs to Ḃ and let
p1 be obtained from q1 by setting p1(α)0 to be p(α)0 for α < length (p)and to be the trivial name for α in [length (p), length (q1)). Extend p1 to a
ondition q2 whi
h de
ides whi
h element of Tα1

belongs to Ḃ and obtain
p2 from q2 by setting p2(α)0 to be p(α)0 for α < length (p) and to be thetrivial name for α in [length (p), length (q2)). Continue this 
onstru
tion for
ω1 stages, taking greatest lower bounds at 
ountable limit stages. By a ∆-system argument, there is an un
ountable S ⊆ ω1 su
h that for any α, β in
S, (qα)0, (qβ)0 are 
ompatible. But this gives a 
o�nal bran
h through T in
N [G][C], 
ontradi
tion. 2The previous proof generalises to show that if λ > ω is regular and κ > λis weakly 
ompa
t, then in some for
ing extension, λ+ has the tree property:Use the length κ iteration of ω-Cohen × λ-Cohen, with �nite support on20



the ω-Cohen for
ings and < λ support on the λ-Cohen for
ings. (For thisargument, (ω, �nite) 
ould be repla
ed with (λ̄, < λ̄) for any regular λ̄ < λ.)Can the su

essor of a singular 
ardinal have the tree property? We pro-vide a postitive answer using strongly 
ompa
t 
ardinals.De�nition. κ is λ-strongly 
ompa
t i� it is the 
riti
al point of an elementaryembedding j : V → M su
h that any X ⊆ M of 
ardinality λ is a subset ofsome Y ∈ M of M-
ardinality < j(κ). We say that κ is strongly 
ompa
t i�it is λ-strongly 
ompa
t for every λ.Note that λ-super
ompa
tness easily implies λ-strong 
ompa
tness, as inthat 
ase j(κ) is greater than λ and M is 
losed under λ-sequen
es, so wemay take Y to equal X. 14.VorlesungLemma 23 κ is λ-strongly 
ompa
t i� for any set I, any κ-
omplete �lteron I generated by at most λ sets 
an be extended to a κ-
omplete ultra�lteron I.Proof. Suppose that κ is λ-strongly 
ompa
t, witnessed by j : V → M ,and let X be a 
olle
tion of λ-many sets on I whi
h generate a κ-
omplete�lter F . Choose Y ⊇ j[X] in M of M-
ardinality < j(κ). Then j(F) is a
j(κ)-
omplete �lter in M and j(F) ∩ Y is a subset of j(F) in M of M-
ardinality less than j(κ). So we may 
hoose a ∈

⋂
(j(F) ∩ Y ). De�ne anultra�lter U by: A ∈ U i� A ⊆ I and a ∈ j(A). Then U is a κ-
ompleteultra�lter extending F . Conversely, 
onsider the κ-
omplete �lter F on Pκλgenerated by the sets {x | α ∈ x} for α < λ. Extend F to a κ-
ompleteultra�lter U and let j : V → M = V Pκλ/U be the ultrapower of V by U . If

X = {[fα] | α < λ} ⊆ M , de�ne G(x) = {fα(x) | α ∈ x}. Then X ⊆ [G] and
M � 
ard([G]) < j(κ). 2Theorem 24 If λ0 < λ1 < · · · is an ω-sequen
e with supremum λ and ea
h
λn is λ+-strongly 
ompa
t then λ+ has the tree property.Proof. Let T be a λ+-tree. We assume that the α-th level Tα of T is the set
λ × {α}. For ea
h n let Tα,n be λn × {α}.21



Claim. There is an unbounded D ⊆ λ+ and n ∈ ω su
h that whenever α < βbelong to D, there are a ∈ Tα,n and b ∈ Tβ,n with a <T b.Proof of Claim.Using the fa
t that λ0 is λ+-strongly 
ompa
t extend the �lterof subsets of T with 
omplement of size at most λ to a 
ountably 
ompleteultra�lter U . For α < λ+ de�ne nα ∈ ω as follows: For x ∈ T at some levelgreater than α 
hoose px
α ∈ Tα below x and let nx be least so that px

α belongsto Tα,nx . By the 
ountable 
ompleteness of U there is some nα ∈ ω su
h that
Xα = {x ∈ T | nx = nα} belongs to U .Now 
hoose an unbounded D ⊆ λ+ su
h that nα is some �xed n for
α ∈ D. If we take α < β in D then Xα ∩ Xβ 
ontains some x and then
px

α <T px
β belong to Tα,n, Tβ,n, respe
tively. 2 (Claim)Now let D, n be as in the Claim and 
hoose V to be a λ+

n -
ompleteultra�lter on λ+ 
ontaining D and all �nal segments of λ+. Choose any
α ∈ D. For every β > α in D �nd a(β) ∈ Tα,n and b(β) ∈ Tβ,n su
hthat a(β) <T b(β). Using the λ+

n -
ompleteness of V, �nd aα ∈ Tα,n and
ξα < λn su
h that for a set of β's in V, aα = a(β) and b(β) = (ξα, β). For anunbounded D′ ⊆ D, the ordinal ξα has a �xed value ξ for α ∈ D′. Now the
olle
tion {aα | α ∈ D′} is a bran
h through T , be
ause if α1, α2 belong to
D′ then for some β (indeed for a set of β's in V) both aα1

and aα2
are below

(ξ, β). 2Magidor and Shelah also showed that in fa
t ℵω+1 
an have the treeproperty. For this they needed to assume the 
onsisten
y of an ω-sequen
eof 
ardinals κ < λ0 < λ1 < · · · with κ the 
riti
al point of j : V → M ,
j(κ) = λ0, M 
losed under µ = (supn λn)+ sequen
es, with ea
h λn being
µ-super
ompa
t. 15.VorlesungJónsson 
ardinalsA stru
ture A of 
ardinality κ for a 
ountable language is a Jónssonstru
ture i� it has no proper elementary submodel of 
ardinality κ. We saythat κ is a Jónsson 
ardinal i� there is no Jónsson stru
ture of 
ardinality
κ. We do not assume here that κ is regular.Using Skolem fun
tions it is easy to show that κ is a Jónsson 
ardinal i�
κ → [κ]<ω

κ , i.e., whenever F : [κ]<ω → κ there is H ⊆ κ of 
ardinality κ su
hthat the range of F on [H ]<ω is a proper subset of κ.22



We show that measurable 
ardinals are Jónsson.De�nition. We write κ → (κ)<ω
λ for the following: For any F : [κ]<ω → λthere is H ⊆ κ of 
ardinality κ su
h that F is 
onstant on [H ]n for ea
h n.

κ is Ramsey i� κ → (κ)<ω
λ for all λ < κ.Theorem 25 (a) Measurable 
ardinals are Ramsey.(b) Ramsey 
ardinals are Jónsson.Proof. (a) Suppose κ is measurable with nonprin
ipal, κ-
omplete, normalultra�lter U . We prove by indu
tion on n < ω that for any Fn : [κ]n → λ,

λ < κ, there is a set Hn in U su
h that Fn is 
onstant on [Hn]n. For n = 1this is 
lear by the κ-
ompleteness of U . Suppose the result holds for n and
Fn+1 : [κ]n+1 → λ. For ea
h α < κ de�ne Gα

n : [(α, κ)]n → λ by Gα
n(x) =

Fn+1({α} ∪ x). By indu
tion there is some βα < λ su
h that Gα
n is 
onstantwith value βα on [Hα

n ]n for some Hα
n in U . By the κ-
ompleteness of U thereis a �xed β < λ su
h that Gα

n is 
onstant on [Hα
n ]n with value β for all αin some set H ∈ U . It follows that Fn+1 is 
onstant on [Hn+1]

n+1, where
Hn+1 ∈ U is the interse
tion with H of the diagonal interse
tion of the Hα

n ,
α ∈ H .Then if F : [κ]<ω → λ, λ < κ, we 
an 
hoose Hn ∈ U for ea
h n su
h that
Fn = F ↾ [κ]n is 
onstant on [Hn]n; it follows that F is 
onstant on [H ]n forea
h n, where H is the interse
tion of the Hn's.(b) Suppose that κ is Ramsey and F : [κ]<ω → κ. Consider the stru
ture A =
(κ, <, F1, F2, . . .) where Fn is the restri
tion of F to [κ]n. Using Ramseynesswe 
an get I ⊆ κ of 
ardinality κ su
h that for ea
h n, all in
reasing n-tuplesfrom I realise the same type in A. (Apply Ramseyness to F : [κ]<ω → 2ℵ0where F (x) des
ribes the type of x in A.) Now let i0 < i1 be the �rst twoelements of I. Then for x ∈ [I \ {i0, i1}]

<ω, F (x) 
annot equal i0; otherwise,by the 
hoi
e of I, F (x) would also have to equal i1, 
ontradi
ting the fa
tthat F is a fun
tion. So the range of F on [I \ {i0, i1}]
<ω is not all of κ,proving Jónssonness. 2Mit
hell showed that all Jónsson 
ardinals are Ramsey in the Dodd-Jensen 
ore model, and therefore these two large 
ardinal notions have thesame 
onsisten
y strength.The next result shows that a Jónsson 
ardinal 
an be singular.23



Theorem 26 Suppose that κ is measurable. Then in a for
ing extension, κis a singular Jónsson 
ardinal.Proof. Use Prikry For
ing: Conditions are pairs (s, A) where s ∈ [κ]<ω and
A ∈ U , where U is a normal measure on κ. The 
ondition (t, B) extends
(s, A) i� t end-extends s, B ⊆ A and t \ s ⊆ A. Prikry for
ing preserves
ardinals and gives κ 
o�nality ω.Now suppose that (s, A) 
 Ḟ : [κ]<ω → κ. We �nd (s, B) ≤ (s, A) whi
hfor
es Range (Ḟ ↾ [B]<ω) 6= κ. Let 〈Ri | i < ω1〉 be a partition of κ into ω1disjoint pie
es.For s, t ∈ [κ]<ω write s < t for max(s) < min(t). Now for ea
h t ∈ [κ]<ωwith s < t 
onsider the partition Ft : [κ]<ω → ω1 de�ned by: Ft(u) = i + 1 i�for some B ∈ U , (t, B) 
 Ḟ (u) ∈ Ri; Ft(u) = 0 if otherwise unde�ned. (Notethat Ft is single-valued.) Using the proof of Theorem 25(b), for ea
h t with
s < t 
hoose At ∈ U su
h that for ea
h n, Ft is 
onstant on [At]

n, and denotethis 
onstant value by Gn(t). Let B0 be the diagonal interse
tion of the At,i.e., the set of α < κ su
h that α belongs to At for ea
h t with max(t) < α;then for ea
h t, Ft is 
onstant with value Gn(t) on [B0 \ (max(t) + 1)]n.Now 
hoose B1 ∈ U su
h that for ea
h n, Gn is 
onstant on [B1]
n andlet B the interse
tion of B1 with B0. Then Ft 
an take on only 
ountablymany values for t in [B]<ω and therefore (s, B) for
es a 
ountable bound on

{i < ω1 | Range (Ḟ ↾ [B]<ω) ∩ Ri 6= ∅}. In parti
ular, (s, B) for
es thatRange (Ḟ ↾ [B]<ω) is not all of κ. 2Mit
hell showed that if κ is a singular Jónsson 
ardinal then κ is measu-rable in some inner model, and therefore the existen
e of a singular Jónsson
ardinal is equi
onsistent with that of a measurable 
ardinal.16.VorlesungCan a small 
ardinal be Jónsson? ℵ0 is obviously not a Jónsson 
ardinal.The next result implies that neither is any ℵn, n �nite.Theorem 27 If κ is not a Jónsson 
ardinal then neither is κ+.Proof. Assume that κ is not a Jónsson 
ardinal and let F : [κ]<ω → κwitness this. For any α ∈ [κ, κ+) we 
an use a bije
tion between κ and α24



to get Fα : [α]<ω → α whi
h is surje
tive when restri
ted to [A]<ω for any
A ⊆ α of 
ardinality κ. De�ne G : [κ+]<ω → κ+ by G(α1, . . . , αn) = 0if αn < κ, G(α1, . . . , αn) = Fαn

(α1, . . . , αn−1), otherwise. Then if A ⊆ κ+has 
ardinality κ+ it follows that the range of G on [A]<ω 
ontains α forunboundedly many α < κ+, and therefore the range of G is all of κ+. 2Can ℵω be a Jónsson 
ardinal? The answer is unknown. However thereare some results about the failure of 
ertain regular 
ardinals to be Jónsson.Theorem 28 If λ is a regular Jónsson 
ardinal then stationary re�e
tionholds for λ.Corollary 29 The su

essor of a regular 
ardinal is not Jónsson.Proof of Theorem 28. Let λ be a regular Jónsson 
ardinal and 
hoose M tobe elementary in some large H(θ) so that λ ∈ M , M ∩ λ has 
ardinality λbut λ is not a subset of M . We show that ea
h stationary S ⊆ λ belonging to
M re�e
ts, i.e., has a stationary proper initial segment. By the elementarityof M this su�
es.First note that S \M is stationary. Otherwise, let E be 
ub in λ, E∩S ⊆
M . In M we 
an split S into λ-many disjoint stationary subsets, so thereis in M a fun
tion f : S → λ su
h that Sα, the preimage of {α} under
f , is stationary for ea
h α < λ. Choose α /∈ M . Sin
e Sα ⊆ S, E ∩ Sα isa nonempty subset of M . But if β belongs to E ∩ Sα, it then follows that
α = f(β) belongs to M , 
ontradi
tion.So 
hoose δ ∈ S\M su
h that δ = sup(M∩δ). De�ne βδ to be min(M \δ).Then δ < βδ and βδ is a limit ordinal of un
ountable 
o�nality. We show that
S ∩ βδ is stationary in βδ: If not, then sin
e S and βδ are in M , M 
ontainsa 
ub subset C of βδ whi
h is disjoint from S. As M ∩ δ is 
o�nal in δ, forany α < δ there is β ∈ M with α < β < δ. Sin
e M � C is unbounded in
βδ, there is γ ∈ M ∩ C with β < γ. By 
hoi
e of βδ, γ must be less than δ.We have shown that δ is a limit point of C and therefore belongs to C; this
ontradi
ts our assumption that S and C are disjoint. 217.VorlesungTheorem 30 ℵω+1 is not a Jónsson 
ardinal.25



Proof. We use the following result of Shelah:Lemma 31 There exists an in�nite I ⊆ ω and F ⊆
∏

n∈I ℵn su
h that:(i) F is wellordered by ≤∗ in length ℵω+1, where ≤∗ denotes the eventualdomination order.(ii) F is ≤∗-
o�nal in ∏
n∈I ℵn.For ea
h n 
hoose a stru
ture An with universe ℵn for a 
ountable languagewith no proper substru
ture of 
ardinality ℵn, using the fa
t that ℵn is notJónsson. Choose A to be the least elementary submodel of (H(ℵω+2),∈, <)(where < is a wellordering of H(ℵω+2)) of 
ardinality ℵω+1 whi
h 
ontains

ℵω+1 as a subset and F as well as ea
h An as elements. We show that A hasno proper elementary submodel of 
ardinality ℵω+1 whi
h 
ontains F andthe An's as elements, proving that ℵω+1 is not Jónsson.Suppose that B were the universe of a proper elementary submodel B of
A of 
ardinality ℵω+1 
ontaining F and the An's. As A is the least elementarysubmodel of itself 
ontaining ℵω+1 as a subset and F as well as ea
h An aselements, it follows that B ∩ ℵω+1 is unbounded in ℵω+1.If B ∩ ℵn is unbounded in ℵn for in�nitely many n ∈ I then as ea
h
An witnesses that ℵn is not Jónsson, B must 
ontain ℵω as a subset. Itfollows that B∩ℵω+1 is an initial segment of ℵω+1 and therefore equals ℵω+1.Therefore B is the universe of A, 
ontradi
tion.So it must be that for large enough n ∈ I, g(n) = sup(B ∩ ℵn) is lessthan ℵn. We may 
hoose f ∈ F su
h that g <∗ f ; as B is 
o�nal in ℵω+1 and
F is wellordered by ≤∗ in length ℵω+1, we may in fa
t 
hoose f ∈ F ∩ B.But then f(n) belongs to B ∩ ℵn for ea
h n and for large enough n, f(n) isgreater than g(n) = sup(B ∩ ℵn), 
ontradi
tion. 2
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