Internal and External Consistency, Wintersemester 2005
1.-6.Vorlesungen

There are two standard ways to establish consistency in set theory. One
is to prove consistency using inner models, in the way that Gddel proved
the consistency of GCH using the inner model L. The other is to prove
consistency using outer models, in the way that Cohen proved the consistency
of the negation of CH by enlarging L to a forcing extension L[G].

But we can demand more from the outer model method, and we illustrate
this by examining Easton’s strengthening of Cohen’s result:

Theorem 1 (Faston’s Theorem) There is a forcing extension L|G| of L in
which GCH fails at every reqular cardinal.

Assume that the universe V' of all sets is rich in the sense that it contains
inner models with large cardinals. Then what is the relationship between
Easton’s model L[G]| and V? In particular, are these models compatible, in
the sense that they are inner models of a common third model? If not, then
the failure of GCH at every regular cardinal is consistent only in a weak sense,
as it can only hold in universes which are incompatible with the universe of
all sets. Ideally, we would like L[G] to not only be compatible with V', but
to be an inner model of V.

We say that a statement is internally consistent (relative to large cardi-
nals) iff it holds in some inner model (under the assumption that there are
inner models with large cardinals). By specifying what large cardinals are
required, we obtain a new type of consistency result. Let Con (ZFC + ¢)
stand for “ZFC + ¢ is consistent” and Icon(ZFC + ¢) stand for “there is an
inner model of ZFC + ¢”. A typical consistency result takes the form

Con (ZFC + LC) — Con (ZFC + ¢)

where LC denotes some large cardinal axiom. An internal consistency result
takes the form
Icon(ZFC + LC) — Icon(ZFC + ¢).

Thus a statement ¢ is internally consistent relative to large cardinals iff
Icon(ZFC + ) follows from Icon(ZFC + LC) for some large cardinal axiom
LC.



A statement can be consistent without being internally consistent relative
to large cardinals. . An example is the statement that there are no transitive
models of ZFC, which fails in any inner model (assuming there are inner
models with inaccessible cardinals). Another example is:

For each infinite reqular cardinal k there is a nonconstructible subset of k
whose proper initial segments are constructible.

This can be forced over L, but does not hold in any inner model, assuming
the existence of 07.

If the consistency of a statement without parameters is shown using set
forcing, then it is usually easy to prove its internal consistency relative to
large cardinals. (Some examples are mentioned below.) But this is not the
case for statements that contain uncountable parameters or for statements
whose consistency is shown through the use of class forcing. In these latter
cases, questions of internal consistency and of internal consistency strength
can be quite interesting, as we shall see.

Large Cardinals and L-like Universes

The second part of this course addresses the following question: Can we
simultaneously have the advantages of both the axiom of constructibility
and the existence of large cardinals? Unfortunately even rather modest large
cardinal hypotheses, such as the existence of a measurable cardinal, refute
V = L. We can however hope for the following compromise:

V' is an “L-like” model containing large cardinals.

In this article we explore the possibilities for this assertion, for various
notions of “L-like” and for various types of large cardinals.

There are two approaches to this problem. The first approach is via the

Inner model program. Show that any universe with large cardinals has an
L-like inner model with large cardinals.



The inner model program, through use of fine structure theory and the
theory of iterated ultrapowers, has succeeded in producing very L-like inner
models containing many Woodin cardinals.

An alternative approach is given by the

Outer model program. Show that any universe with large cardinals has an
L-like outer model with large cardinals.

We will show that L-like outer models with extremely large cardinals can
be obtained using the method of iterated forcing.

Part One. Internal Consistency

We turn now to a detailed study of internal consistency, beginning with
Easton’s theorem.

Let Reg denote the class of infinite regular cardinals and Card the class of
all infinite cardinals. An Faston function is a class function F' : Reg — Card
such that:

For all K < Xin Reg: F(k) < F()).
For all k € Reg: cof (F(k)) > k.

Easton showed that if F'is an Easton function in L, then there is a cofinality-
preserving class forcing extension L[G] of L in which 2 = F'(k) for all regular
k. We say that the model L|G| realises the Easton function F'.

Which Easton functions in L can be realised in an inner model? The
following results were obtained jointly with Pavel Ondrejovié.

Theorem 2 Suppose that 07 exists and F is an Easton function in L which
is L-definable using parameters which are countable in V. Then there exists
an inner model with the same cofinalities as L in which 2 = F(k) for each
infinite reqular K.

Corollary 3 The statement
2% = kT for all infinite regular x

is internally consistent relative to 07.



Theorem 4 Assume that 0% exists, k is a reqular uncountable cardinal and
a < k*. Then there is an inner model with the same cofinalities as L in
which GCH holds below k and 2% > «.

Corollary 5 Assume that 0% exists. Then there is an inner model with the
same cofinalities as L in which the GCH holds below XY but fails at N .

Proof of Corollary 3. We consider the following reverse Easton iteration (de-
fined in L): Py is trivial. Py, A limit, is the direct limit of the P;, i < A,
if A\ is regular, and is the inverse limit of the P;, ¢ < A, if A is singular.
P,.1 = P, *Q, for every a, where @), is trivial unless « is a limit cardinal,
in which case:

Qa = [[ne, Add (o™, a2 if o is regular;
Qa = [ocne, Add (™, at(+2)) if o is singular.

The forcing Add (3,7) (for regular () adds 7 subsets of 3: Conditions are
functions p : d — 2, d a subset of 3 x v of size less than 3, ordered by
extension.

For any regular o, P factors as P(< a) * P(> «) where P(< «) is a™-cc
and P(< «) forces that P(> «) is a™-closed. It follows that cofinalities are
preserved by P. Also P forces that 2% = o™ for every regular «.

We show that if 0% exists, then there is a P-generic over L. By induction
on ¢ € I = the Silver indiscernibles we construct a P(< i)-generic G(< 7). To
facilitate limit stages of the construction, we maintain the following property:

(%) i < j — G(< 1) embeds into G(< j) in the sense that m;[G(< 7)] C G(<
7)-

In (%), m; is the “shift map” defined as follows. Let (i, | & € Ord) be the
increasing enumeration of I. Then m;_;, fixes indiscernibles less than i, and

sends iq4~ t0 ig4~. This definition of 7;; on indiscernibles lifts uniquely to an
elementary embedding m;; : L — L.

Lemma 6 Suppose that j is a limit indiscernible and G(< 1) is defined for
i € INj so as to satisfy (x). Define:

G(<j) = Uie[ﬂj i [G(< 4)].
Then G(< j) is P(< j)-generic over L.
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Proof. If D € L is open dense on P(< j) then write D as t(i, j, ) where
t is a Skolem term for L and 7 < j < o0 are indiscernibles. Let & be an
indiscernible such that 7 < k < j and set D = t(;, k,c0). Then D is open
dense on P(< k) and is therefore met by some condition p in G(< k). But
then m;(p) belongs to G(< j)ND. O

Now suppose that G(< 7) is defined and we wish to define G(< i*), where
i* is the least indiscernible greater than i, obeying property (x). First we make
a preliminary choice for G(< i*). Note that P(< i*) factors as P(< i) P(i, "]
where P(< i) forces that P(i,:*] is i"-closed.

Lemma 7 Let D be the collection of open dense subsets of P(i,i*] which
belong to LIG(< 4)]. Then D is the union of sets D, n € w, which belong to
L|G(<4)] and have cardinality at most i in that model.

Proof. Every D € D is named by a term in L+ C L. So it suffices to
show that L;« can be written as the countable union of sets which belong to
L and have size at most 7 in L. Any element of L; is of the form ¢(«, i, 7*, 30)
where t is a Skolem term for L, « is an ordinal less than ¢ and & is a finite
initial segment of I — (i* 4+ 1). For a fixed ¢, the collection of t(«,1,i*, 30),
a < i, is a constructible set of L-cardinality at most 7. As there are only
countably many t’s, we are done. O

By Lemma 7 we can build a P(i,i*]-generic G'(i,7*] over L[G(< i)] in w
steps, using the i*-closure of P(i,i*] to meet all open dense sets in D,, at
step n. This yields a generic G'(< i*) = G(< i) * G'(3, %] for P(< ).

However we must also ensure property (x). Let 7 denote m; ;. As 7 is the
identity on L; we do have G(< i) = m[G(< 7)] C G(< *); however we must
modify G’(i*). Recall that @ is the forcing [, Add ((z*)™", (i*)*("+2).
Therefore G'(i*) can be written as [[, . G'(i*)n, where G'(i*),, is generic for
Add ((7*)*", (i*)*(2). We show how to modify G'(i*)y so as to guarantee
(%); the modification of the entire G’(:*) is similar.

Each condition p’ in G'(i*) is a function from a subset of i* x ()" into
2. Its modification p has the same domain as p’ and is defined by:

pla, B) = p'(a, B) if a > i or 5 ¢ Range ()
pla, B) = G(i)o(a, B) if @ < i and 7(B) = S.
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Lemma 8 (1) Ifp' is a condition in G'(i*)y then so is its above modification
p.

(2) Let G(i*)o consist of all modifications p of conditions p' in G'(i*)o. Then
G(i%)o is Add (%, (i*)T1)-generic over L|G(< i*)].

Proof. (1) We first show that if X is a constructible set of L-cardinality 4*
and X = 771(X) then 7 | X is constructible.

Suppose that X is an element of Range (7). Then Range () also contains
a bijection f between X and i*, and X N Range 7 = f~![i* N Range ()] =
f~[i]. Now 7=1(f) = f is a bijection between 7=!(X) = X and 4, and for = €
X we have: f(z) = n(f(x)) = 7(f)(n(z)) = f(x(x)), so w(x) = [~ o f(x).

Thus 7 [ X is the composition of two constructible functions.

If X is not an element of Range (), then write X as t(,4,7*, j) where o <
i and 7 are indiscernibles greater than i*. Let Y be the union of all t(a, B,1", j)
of L-cardinality *, where o < § < ¢*. Then Y contains X as a subset, has
L-cardinality i* and is an element of Range (w) = Hull(/ — {i}). By the
above argument, 7 | Y is constructible, where Y = 7~ ![Y" N Range (7)].
As X NRange (7) = X N (Y N Range (7)) it follows that X N Range (7) is
constructible and therefore 7 | X is too, where X = 7~ 1[X N Range (7)].

We now show that the modification p of any p’ in G’(i*)y is a condition.
Note that Dom (p) is an element of L[G(< i*)] of size less than i* and
therefore is a subset of a constructible set of size i*. It follows from the
above that Dom (p')NRange (7) and 7' | (Dom (p’)NRange (7)) belong to
L[G(< i*)]. Tt follows that p, which is obtained by modifying p’ on Dom (p)N
Range () using 7!, also belongs to L[G(< i*)], as desired.

(2) We claim that if D € L[G(< *)] is open dense on Add (i*, (¢*)*") then
there is a condition p’ € G'(i*)o which strongly meets D, i.e., any modification
of p’ on a set of size < i meets D. This implies the genericity of G(i*)o, as
the above modification p of p’ takes place on a set of size i77.

It suffices to show that the set of ¢ which strongly meet D is dense. Given
o, extend ¢y to ¢; meeting D. Then temporarily modify ¢; (in it places)
and extend this modification to meet D; unmodify this extension to obtain an
extension ¢y of ¢;. Continue this process for i steps, ensuring at the end
that any modification of the final condition has been considered at some stage
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of the construction. Then the final condition strongly meets D. O (Lemma
8)

We now verify (x) as follows. The embedding m = m; ;« from L to L can be
extended to an embedding 7* from L[G(< i)] to L|G(< i*)] (sending G(< 7)
to G(< %)) as G(< i) C G(< i*). By choice of Gy(i*), 7* can be further ex-
tended to an embedding from L[G(< )][G(7)] to L[G(< i*)][Go(i*)] (sending
Go(i) to Go(*)). We can similarly modify each of the G/ (i*), and therefore
7 can in fact be extended to an embedding 7** from L[G(< ©)][G(7)] to
LIG(< )][G(i)] (sending G(7) to G(i*)). It follows that 7** sends G(< 1)
to G(< %) as these are G(< @) x G(i), G(< i*) * G(i*), respectively. So
7[G(< )] C G(<L %), as stated in (). O

Proof of Theorem 4. First obtain a generic for the reverse Easton iteration
P, defined just as in the previous proof, but with (), nontrivial at exactly
the regular cardinals, where it is taken to be simply Add (o, «). Let G be
P-generic over L and set g = G(k), a generic for Add (k, k) over the ground
model L[G(< k).

Now let k < o < (k7). We will show that a generic for Add (x, «) over
L[G(< k)] can be obtained by “stretching” g. For this purpose we need a
special type of bijection between « and k:

Definition. A bijection f : a — kK is good iff f [ X is constructible whenever
X C «a is constructible and has L-cardinality k.

Lemma 9 For any o < (k%)Y there exists a good bijection f : a — k.

Proof. We prove by induction on i € I N [k, (k7)) that there is a good
bijection f; : i — k. Set f, = the identity. If the result holds for ¢ then
prove it for ¢*, the I-successor to ¢, as follows: For each n € w set H,, =
i* N Hull(i + 1 U {i*,4*,...,i"}), where Hull denotes Skolem hull in L and
1*" is the n-th indiscernible greater than 7. Then each H, has L-cardinality ¢
and any subset of i* of L-cardinality ¢ is contained in some H,,. Let Xy = Hy
and X, .1 = H,.1 — H,. Using the inductively defined f;, we can create a
bijection f* between i* and xk X w with the property that for each n, f* [ X
is constructible for any constructible X C X, of L-cardinality x. As any
constructible X C i* of L-cardinality k is contained in finitely many X,’s



it follows that f* is a good bijection between ¢* and x x w. Obtain f;« by
composing f* with a constructible bijection between k x w and k.

Suppose that i is a limit indiscernible and let 7 be its cofinality (in V).
Let (i, | @ < =) be increasing, continuous and cofinal in i, with i = 0
and each 7, a multiple of k. A constructible subset of ¢ of L-cardinality x
intersects only finitely many of the intervals [i, i411). Using the f; we can
therefore create a good bijection between ¢ and x x . Then f; is obtained by
composing this good bijection with a constructible bijection between x x ~
and . O (Lemma 9)

It follows that for any a < (k7)Y there is a bijection f : & — & which
is L|G(< k)]-good, i.e., good with L replaced by L[G(< )]. This is because
any set in L[G(< k)] of L[G(< k)]-cardinality x is a subset of a constructible
set of L-cardinality k.

Fix an L[G(< k)]-good bijection f : o — k. For a condition p € Add (k, «)
define f(p) as follows: (3,7) is in the domain of f(p) iff (8, f~'(7)) is in the
domain of p, in which case f(p)(3,7) = p(3, f~*(7)). Note that f(p) is a con-
dition in Add (k, k) as f is L|G(< k)]-good. (In fact, we only need goodness
here for sets in L[G(< k)] of L[G(< k)]-cardinality strictly less than x.)

Claim. Let h be the set of p € Add (k, «) such that f(p) belongs to g. Then
h is Add (k, a)-generic over L[G(< k).

Proof. Clearly h is a compatible, upward-closed set of conditions. We must
show that if A C Add (k, «) is a maximal antichain in L|G(< k)| then f(p)
belongs to g for some p € A. It suffices to show that B = {f(p) | p € A} isa
maximal antichain in Add (k, k), as by the L[G(< k)]-goodness of f, B does
belong to L|G(< K)].

Let D(A) be the union of the domains of the conditions in A and D(B)
the union of the domains of the conditions in B. Then id x f maps D(A)
onto D(B) and by the L[G(< k)]-goodness of f, id x f | D(A) belongs to
L|G(< k)]. It follows that any condition ¢ € Add (k, k) with domain included
in D(B) is of the form f(p) for some condition p € Add (k, ).

Now let ¢ be an arbitrary condition in Add (k, k). We must show that ¢
is compatible with some element of B. It suffices to show that ¢qo = ¢ [ D



is compatible with some element of B, as incompatibility between ¢ and a
condition in B can only occur on D. Now by the above, qq is of the form f(po)
for some py € Add (k,a). As A is a maximal antichain in Add (k, ), po is
compatible with some r € A. Then f(pg) = qo is compatible with f(r) € B,
as desired. O

Conjecture. Assume that 07 exists. Then an L-definable Easton function F
can be realised in an inner model M having the same cofinalities as L iff it
satisfies: F(k) < (k7)Y for all k € Reg”.

Singular Jonsson cardinals

A Jonsson cardinal is a cardinal k with the property that every structure
for a countable language of size x has a proper substructure of size k.

Kk is Ramsey iff k — (k)<“, i.e., whenever F' is a function from [k]<“ into
2, there is H C k of size k such that F is constant on [H]" for each n. In
the large cardinal hierarchy, Ramsey cardinals lie strictly between 0% and a
measurable cardinal.

Theorem 10 The following are equiconsistent:
a. There is a Jonsson cardinal.
b. There is a Ramsey cardinal.

The equiconsistency is in fact an internal equiconsistency: If s is Jonsson
then k is Ramsey in an inner model (the Dodd-Jensen core model); conversely,
if k is Ramsey then x is Jonsson in an inner model (in fact, in V' itself).

Theorem 11 The following are equiconsistent:
a. There is a singular Jonsson cardinal.
b. There is a measurable cardinal.

The direction Con a — Con b is internal: Mitchell showed that if there is
a singular Jonsson cardinal then there is an inner model with a measurable
cardinal. The usual proof of Con b — Con a is however via forcing, and
therefore not internal. Here is the argument:

Theorem 12 (Prikry) Suppose that k is measurable. Then there is a generic
extension in which k is a singular Jonsson cardinal.



Proof. We use Prikry forcing. Fix a normal, k-complete nonprincipal ultra-
filter U on k. Conditions are pairs (s, A) where s is a finite subset of x and
A is an element of U whose min is greater than max(s). When strengthening
(s, A), s is end-extended and A is shrunk to a subset. Prikry shows that for
any sentence ¢ of the forcing language and condition (s, A), ¢ is decided by
an extension of (s, A) of the form (s, B). It follows using the x-additivity of
U that bounded subsets of x are not added. Also the forcing is x™-cc, so
cardinals greater than x are preserved. If G is generic then the union of the
first components of conditions in G is an unbounded subset of x of ordertype
w.

[t remains to show that x is Jonsson in the Prikry extension. For this we
use the following combinatorial form of the Jonsson property:

Proposition 13 « is Jonsson iff for every F : [k]<¥ — k there is H C k of
size Kk such that F | [H|<¥ : [H|<¥ — k is not onto.

This is easily proved: If x is Jonsson then a proper substructure of (k, F') of
size Kk provides the required H; conversely, if A is a structure on  then define
F' so that its range on any nonempty set is the universe of a substructure of

A.

Now suppose that (s, A) IF F': [k]<¥ — k; we claim that there is a set B
in U and a countable subset = of w; such that B C A and (s, B) forces that
whenever ¢ belongs to [B]<“ and F'(t) is countable, then F(t) belongs to x.

To obtain B and z, consider the function G : [A]* x [A]* — & defined by:
G(t,u) = a iff « is countable and (s Ut,C) IF F(u) = « for some C' C A; if
there is no such « then set G(¢,u) = 0. Now we use:

Lemma 14 IfU is a normal, k-complete ultrafilter on k and G : [K]<¥ — ),
A\ < R, then there is a set B € U such that G is constant on [B|" for each n.

Using this Lemma, there is a B € U, B C A, such that G takes only
countably-many values on [B]<¥ x [B]<¥. It follows that (s, B) forces F' to
take only countably-many countable values on [B]<“, as desired. O

But is the equiconsistency in Theorem 11 internal? By Theorem 12, it suf-
fices to show that the existence of a measurable cardinal implies the existence
of an inner model which is a Prikry extension.
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Theorem 15 Suppose that there is a measurable cardinal. Then there is an
inner model of the form V*|G*| where G* is Prikry generic over V*.

Proof. Let U be a normal, k-additive nonprincipal ultrafilter on . The ultra-
power of (V,U) is formed by taking all equivalence classes [f]y of f:k — V
in V under the equivalence relation f =y ¢ iff {a | f(a) = g(a)} € U,
with the relation €y defined by [f]y €y [glv iff {a | f(a) € g(a)} € U.
This ultrapower is well-founded as U is countably complete and therefore is
isomorphic to (V,U;), where V; is a transitive inner model and in V;, U;
is a normal, xi-additive nonprincipal ultrafilter on some x;. We obtain an
elementary embedding 7y from V' into V; by sending x to [c.]y, where ¢, is
the constant function on x with value z. Every element of V; is of the form
mu(f)(k) where f is a function on k, as the latter equals [f]y.

We can iterate this w times, forming successive well-founded ultrapowers
(Vo,Uy), n € w, with corresponding measurable cardinals x,. As each V,,
canonically embeds into V,, 1, we can form the direct limit of the V,’s, V,,.

Lemma 16 (1) V,, is well-founded and therefore isomorphic to a transitive
inner model V™.

(2) The image of (k,U) under the canonical embedding of (V,U) into V*
is (k*,U"), where k* is the supremum of the k,’s and U* is a normal, Kk*-
additive nonprincipal ultrafilter on k* i V*.

(3) The sequence {k, | n € w} is a Prikry sequence over V* for the measure

U-.

This will finish the proof, as then V*[G*] is an inner model which is
a Prikry extension of V*, where G* is the Prikry generic corresponding to
{kn | n € w}.

Proof of Lemma 16. (1) First note that if 7 : (V,U) — (V,U) is elementary
then there is an elementary embedding 7* : Ult(V,U) — Ult(V,U) such
that 7*m; = mym (where 7y, mp are the canonical embeddings of (V,U),
(V,U) into their ultrapowers). 7* is defined by: 7* (75 (f) (%)) = 7v (7 (f))(x),
where U is an ultrafilter on &. It follows that the entire w-iteration (V,U) —
(V1,U,) — -+ of (V,U) embeds into the w-iteration (V,U) — (V;,U;) —

-of (V,U) in the following sense: Suppose that m;; (7;;) is the canonical
embedding of (V;,U;) into (V;,U;) (of (V;,U;) into (V;,U;)). Then there are
embeddings 7, : (V,,, U,) — (Vi, U,) with 77, = 7;7;;. It follows that there
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is an embedding 7 from (V,,U,), the direct limit of the (V,,U,)’s, into
Vo, Uy).

Now note that if V, is ill-founded then (V,U) can be chosen to be coun-
table and so that the associated 7* has an infinite descending sequence in its
range. So it suffices to show: If 7 : (V,U) — (V,U) is elementary with V/
countable, then the w-iteration of (V,U) is well-founded.

Lemma 17 Suppose that « : (V,U) — (V,U) and V is countable. Then
there is o : Ult(V,U) — (V,U) such that omg = 7.

Given the Lemma, we can successively gmbgd the n-th iterate (Vn, Un)
into (V,U), and therefore the w-th iterate (V,,, U,) as well, proving its well-
foundedness.

Proof of Lemma 17. As the intersection of countably many elements of U is
nonempty, we can choose an ordinal o which belongs to m(A) for every A € U.
Now define o(75(f)(R)) = 7(f)(a). We must check that this is well-defined:

o (f)(K) = 75(9)(K) —
[flo = lglo —

{a]| fla)=g(@)} €U —
aen({a] fla) =g(a)}) —

as desired. O (Lemma 17)

(2) The canonical embedding 7, ,4+1 from V,, to V,1; is the identity on x,
and sends k, to k,11; it follows that the image of kK = kg in the w-th iterate
is the supremum of the k,,’s.

(3) First note that the set C' of k,’s has the following property:

(%) For A C k* in V*: A € U* iff A contains all but finitely many elements
of C.

For, if A C k* and A belongs to U* then for large enough n we can write A as

*

7 (A,), where A, C &, belongs to U, and 7 is the canonical embedding of

V,, into V*. Then for such n, &, belongs to 7, ,+1(A,) and therefore to A. If
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A does not belong to U* then its complement does and therefore A contains
only finitely many elements of C'.

Lastly we show:

Lemma 18 Suppose that U is a normal, k-complete nonprincipal ultrafilter
on k in'V and C is a subset of k of ordertype w such that for A C k in V:
A € U iff A contains all but finitely many elements of C. Then C' is a Prikry
sequence for U over V.

Proof. Let P denote Prikry forcing for the ultrafilter U over V. We show
that G = {(s, A) € P | s is a finite initial segment of C' and C'\ s C A} is
P-generic over V.

Let D € V be open dense on P. For each s € [k]<¥ let Fy : [k]<¥ — 2
be defined by F(t) = 1 iff max(s) < min(¢) and for some X, (sUt, X) € D.
Choose A € U such that F; is constant on [A4]" for each n. If there is an X
such that (s, X) € D then choose such an X = X, and define B, = A, N X§;
otherwise set B, = A,.

Let A be the diagonal intersection of the B, i.e., the set of a < x such
that o belongs to By whenever max(s) is less than «. (It is easy to show that
A belongs to U, as each B does.) Note that for all s, if (s, X) € D for some
X, then (s, By) € D and therefore (s, A\ (max(s) + 1)) € D.

By hypothesis there is a finite initial segment s of C' such that A contains
C'\ s. As D is dense we can choose an extension (s U, X) of (s, A) which
belongs to D (with max(s) < min(t)). As A\ (max(s) + 1) is homogeneous
for Fj, it follows that for any v C C'\ (max(s) + 1) of the same size as t,
(s Uwu,Y) belongs to D for some Y and therefore (s Uwu, A\ (max(u) + 1))
belongs to D. By choosing u to be an initial segment of C'\ s, the condition
(sUu, A\ (max(u) + 1)) is in D N G, as desired. O

7.Vorlesung
The singular cardinal hypothesis

The Singular cardinal hypothesis (SCH) is the statement: For every sin-

gular cardinal &, if 9¢of v i then xCOf # = k+.
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Note that x°°f # is always at least x*, as by Konig’s theorem, if (ki |
i < cof k) is a cofinal increasing sequence of cardinals less than x, then
k= icof ni < Iiocof o = 1% Thus the SCH follows from the
GCH. And the SCH implies that the GCH must hold at singular strong limit
cardinals, as for such )\, 9¢0f A\ and therefore 20 = \COf A — \+ by the
SCH.

Under SCH, cardinal exponentiation is completely determined by the be-
haviour of the continuum function s +— 2* for regular x:

Theorem 19 Assume SCH.

(a) If Kk is a singular cardinal then 2% is 2<% if the continuum function is
eventually constant below k, and is (2<%)% otherwise.

(b) If k, \ are any infinite cardinals, then:

(b1) If k < 2* then k™ = 27,

(b2) If 2* < k and X\ < cof k then K* = k.

(b3) If 2* < k and cof k < X then Kk = k.

Proof. (a) For any limit cardinal , 2 = (2<5)°°f & If & is singular and the
continuum function is eventually constant below x then choose p < k such
that cof £ < p and 2¢ = 2<%; then we have 2% = (2<%)c0f x — (omycof »
2t = 2<F_If the continuum function is not eventually constant below x then
A\ = 2<% has cofinality cof x and gcof r \; by the SCH, 2¢ = (2<"‘)C0f £ =
Aeof A+ (2<9)+.

(b) Fix A; we prove this by induction on «. (b1) holds as k* < (2*)* = 2* <
x*. Assume that 2* < k. If k is a successor cardinal v+ then by induction

V) is either 2%, v or vT; in any case it is at most k. So as A < Kk, K* =

(vHA = vt . v = k. If K is a limit cardinal, then by induction v* < &
for all v < k. So if A < cof kK we have k* = k. If A > cof k then we have
Y < Tliceof w0 < Tliccof o = kTR < 1h g0 d = kCOT# and as

gcof v < ox K, the latter is k* by the SCH. O
The analog of Cohen’s result for the SCH is:

Theorem 20 (Gitik) Suppose that K is an inner model satisfying GCH
which contains a totally measurable cardinal k (i.e., a cardinal k of Mit-
chell order k** ). Then there is a generic extension K[G] of K in which k is
a singular strong limit cardinal of cofinality w and GCH fails at k.
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By work of Mitchell, a totally measurable cardinal is necessary. Now con-
sider the following weak analogue of Easton’s result for the singular cardinal
hypothesis:

(Global Gitik) GCH fails on a proper class of singular strong limit cardinals.
The proof of the previous theorem shows:

Theorem 21 Suppose that K is an inner model satisfying GCH which con-
tains a proper class of totally measurable cardinals. Then there is a generic
extension K[G] of K in which Global Gitik holds.

Is Global Gitik internally consistent relative to large cardinals? In analogy
to Easton’s theorem, we might expect to show that the generic extension
K|[G] of Theorem 21 can be obtained as an inner model. This is however not
true for the natural choice of K, using covering arguments. The following is
joint with Tomas Futas.

Theorem 22 Suppose that there is a # for a proper class of totally measu-
rable cardinals and let K be the “natural” inner model with o class of totally
measurable cardinals. (K is obtained by taking the least iterable mouse m
with a measurable limit of totally measurable cardinals and iterating its top
measure to infinity.) Then there is no inner model of the form K[G], where
G s generic over K, in which Global Gitik holds.

On the other hand, it is possible to choose K differently, so as to witness
the internal consistency relative to large cardinals of Global Gitik:

Theorem 23 Suppose that there is an inner model containing a measurable
limit k of totally measurable cardinals, where r is countable in V. Then there
18 an inner model in which Global Gitik holds.

This is proved as follows: Using the proof of Theorem 21, force over the
given inner model to obtain a failure of the GCH on a set of singular strong
limit cardinals cofinal in . This forcing preserves the measurability of k.
Using the countability of x, the generic exists in V. Now iterate s to infinity;
the resulting model is a model of Global Gitik.

What is the internal consistency strength of Global Gitik, i.e., what large
cardinal hypothesis must hold to guarantee an inner model of Global Gitik?
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Theorem 23 provides an upper bound, but the optimal upper bound is not
yet known.

8.Vorlesung
Part Two. External Consistency: Large Cardinals and L-like Universes

We now turn to a detailed discussion of the outer model program. First
we have to say what we mean by “large cardinals”.

A cardinal k is inaccessible iff it is uncountable, regular and larger than
the power set of any smaller cardinal. It is measurable iff there is a k-complete,
nonprincipal ultrafilter on k.

Measurability is equivalent to a property expressed in terms of embed-
dings, and stronger large cardinal properties are also expressed in this way.
As usual, V' denotes the universe of all sets. Let M be an inner model, i.e.,
a transitive proper class that satisfies the axioms of ZFC. A class function
j:V — M is an embedding iff it preserves the truth of formulas with parame-
ters in the language of set theory and is not the identity. If j is an embedding
then there is a least ordinal x such that j(k) # &, called the critical point of
7, which is a measurable cardinal.

For an ordinal o, j : V — M is a-strong iff V,, is contained in M. A
cardinal x is a-strong iff there is an a-strong embedding with critical point
k. Strong means a-strong for all a.

Kunen showed that no embedding is strong. However a cardinal can be
strong, as embeddings witnessing its a-strength can vary with a. Stronger
properties are obtained by requiring 5 : V' — M to have strength depending
on the image under j of its critical point. For example, x is superstrong
iff there is a nontrivial elementary embedding 7 : V — M with critical
point £ which is j(k)-strong. An important weakening of superstrength is
the property that for each f : k — k there is a kK < k closed under f and
a nontrivial elementary embedding 7 : V' — M with critical point £ which
is j(f)(k)-strong; such x are known as Woodin cardinals. The consistency
strength of the existence of a Woodin cardinal is strictly between that of a
strong cardinal and a superstrong cardinal.
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We can demand more than superstrength. A cardinal x is hyperstrong iff it
is the critical point of an embedding j : V' — M which is j(x)+ 1-strong. For
a finite n > 0, n-superstrength is obtained by requiring j to be j™(k)-strong,
where j' = j, j*T! = j o j*. Finally,  is w-superstrong iff it is the critical
point of an embedding j : V' — M which is n-superstrong for all n. Kunen’s
result shows that no embedding j with critical point  is j*(k) + 1-strong,

where j¥(k) is the supremum of the j"(k) for finite n.
Large cardinals and L-like universes

Regarding the inner model program: If k is inaccessible, then x is also
inaccessible in L, the most L-like model of all. This is not the case for mea-
surability, however if x is measurable then x is measurable in an inner model
L[U], where U is an ultrafilter on x, which has a definable wellordering and
in which GCH, ¢, O hold and gap 1 morasses exist. For a strong cardinal
k there is a similarly L-like inner model L[E] in which k is strong, where
FE now is not a single ultrafilter, but rather a sequence of generalised ultra-
filters, called extenders. More recent work yields similar results for Woodin
cardinals, and even for Woodin limits of Woodin cardinals.

However, progress beyond that has been impeded by the so-called iter-
ability problem.

The outer model program: Can we obtain L-like outer models with large
cardinals? For inaccessibles one has the following result of Jensen:

Theorem 24 (L-coding) There is a generic extension V|G] of V' such that

a. ZFC holds in V[G].
b. V|G] = L[R] for some real R.

c. Every inaccessible cardinal of V' remains inaccessible in V[G].

There are similar L[U] and L[E] coding theorems, providing outer models
of the form L[U][R] and L[E][R], R a real, which are just as L-like as L[U]
and L[E], preserving measurability and strength, respectively.

However the approach via coding is limited in its use. Obtaining L-like
outer models via coding depends on the existence of L-like inner models, such
as L[U] or L[E], which, as we have observed, are not known to exist beyond
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Woodin limits of Woodin cardinals. And there are problems with the coding
method itself which arise already just past a strong cardinal.

A more promising approach is to use iterated forcing. To illustrate this,
consider the problem of making the GCH true in an outer model. Begin with
an arbitrary model V' of ZFC. Using forcing, we can add a function from Ny
onto 2% without adding reals, thereby making CH true. By forcing again,
we add a function from (the possibly new) R, onto (the possibly new) 2™
without adding subsets of N;, thereby obtaining 2% = N,. Continue this
indefinitely (via a reverse Easton iteration) and the result is a model of the
GCH.

Do we preserve large cardinal properties if we make GCH true in this
way? The answer is Yes.

9.Vorlesung

Theorem 25 (Large cardinals and the GCH) If k is superstrong then there
15 an outer model in which K is still superstrong and the GCH holds. The
same holds for hyperstrong, n-superstrong for finite n and w-superstrong.

Proof. First we describe in more detail the above iteration to make GCH
true. By induction on « we define the iteration P, of length a: Fy is the
trivial forcing. For limit A\, P, is the inverse limit of the P,, a < A, if X is
singular and is the direct limit of the P,, a < A, if A is regular. For successor
a+1, Py = P, x Qq, where @, is the forcing that collapses 2% to N,iq
using conditions of size at most R,. For any cardinal  of the form 3,,1, the
entire iteration P can be factored as P, x P", where P, has a dense subset
of size k and P* is k*-closed. In particular, strongly inaccessible cardinals
remain strongly inaccessible after forcing with P.

Now suppose that x is superstrong, witnessed by the embedding j : V' —
M, and that G is P-generic. Let P* denote M’s version of P. To show
that x is superstrong in V[G], it suffices to find a P*-generic G* such that
V]‘(/H[?] C MI[G*] and G* contains j[G|, the pointwise image of G under j,
as a subclass: Given such a G*, extend the embedding j to an embedding
j* : VIG] — MI[G*] by sending ¢“ to j(c)9", for an arbitrary P-name o.
This is well-defined and elementary by the truth lemma, as G* contains j[G].

And j* witnesses the superstrength of x in V|G| as V]‘(/,_C[)G] C M[G™].
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Now P is the same as P, for a < j(k), as j is a superstrong embedding.
The first difference between P* and P is at j(k): Py, is the direct limit of
the P,, a < j(k), as j(k) is inacessible in M; but j(x) is not necessarily
regular in V' and therefore it is possible that Pj) is the inverse limit of the
P,, a < j(k). So we cannot simply choose G;f(ﬁ) to be Gj(.), as the latter is
generic for the wrong forcing.

But this problem is easily fixed: As j(k) is in fact Mahlo in M, it follows
that P, has the j(k)-cc in M: If A € M is a maximal antichain in P
then by Mahloness Ay = A N P} is a maximal antichain in P} for some
regular o < j(x); but then Ag is a maximal antichain in the entire P}, as
by Easton support, any condition in an is the join of a condition in P}
with a condition with no support below «, and therefore is compatible with
an element of Ay. So any G;(K) contained in P]Tk(ﬁ) whose intersection with
each P,, o < j(k), is P,-generic must also be P]T*(H)—generic. It follows that we
can take G;T(H) to simply be the intersection of G with P]T*(H). Notice that
G™ N Vjx) equals G N Vj,) and trivially contains the pointwise image of G
under j as j is the identity below k.

Finally we must define a generic G* /) for the “upper part” P* 7% of
the P* iteration, which starts at j(x) and is defined in the ground model
MG ). In addition, G™ (%) must contain the pointwise image of G* under
J*, where j* is the lifting of j to V[G,] and G* is generic for P*, an iteration
starting at x defined over the ground model V[G,].

In fact this latter requirement completely determines G* 7(%):

Lemma 26 j*[G*] generates a P* 7(")_generic over M[G;(H)], i.e., each pre-
dense subclass of P* ") which is definable over M[G;(H)] has an element

which is extended by a condition in j*[G"].

Proof. We only consider predense subsets of P* %) in M[G;(H)]; a similar
argument works for predense subclasses.

We can assume that 7 : V — M is given as an extender ultrapower
embedding. This means that each element of M is of the form j(f)(a), where
a belongs to V]](‘I{) = Vj(x) and f is a function (in V) with domain V... To see
this, it suffices to show that the class H = {j(f)(a) | @ € Vj(), [ a function
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with domain V. } is an elementary submodel of M, for then we can replace
j by mj, where 7 is the transitive collapse of H. Now for any fi,..., f,.
with domain V, and any formula ¢(x1,...,z,,y) let f be a function with
domain V,; such that for any b,...,b, in Vi, if o(f(b1),..., f(b,),y) holds
for some y then y can be taken to be f({(by,...,b,)). Then for any a4, ..., a,
in VJ%) = Vi, if 0(J(f1)(a1), ..., j(fn)(an),y) holds for some y in M then y
can be taken to be j(f)({a1,...,a,)). It follows that H is elementary in M.

Now let D be a predense subset of P* /() in MI[G5y]- D is of the form

ot where the name o can be written as j(f)(a) with f and a as above.
Now using the xT-closure of P*, choose a condition p in G* which extends
an element of f(a) whenever @ belongs to Vi, and f(a)“* is predense on
P* *_Then j*(p) belongs to j*[G*] and extends an element, of j(f)(a)%it =
o) = D, as desired. O (Lemma 26)

This completes the construction of G* and therefore the proof that P
preserves superstrong cardinals.

10.-12.Vorlesungen

Now suppose that s is hyperstrong. We need to find a P*-generic G*

such that V]‘gﬂl C M[G*] and G* contains j[G] as a subclass. Note that

%Yi)cll equals Vj()11[Gj(x)) so for the former condition it suffices to have
;(n) = Yi(k)-

The forcings Pj.)+1 = Pj(x) * Qj(x) and P;(HH
V and M contains Vj(,)41. We take G;(n) to be Gjx). Also, 7[gx], where 5™ is

| agree as j(k) is regular in

the lifting of j to V[G,] and g, is the Q%=-generic chosen by G at stage x of
the iteration, is a set of conditions in Q].G(ﬁ)“) which belongs to M |G| and

has size 2% there; therefore j*[g,.] has a lower bound in QJG(;(;) By choosing
our generic G so that gj(.) includes this lower bound (or by modifying G to
a P-generic G in V[G] so that g}, will contain this lower bound), we can
succeed in lifting j to V[G,41]. We may assume that j : V — M is given by
a hyperextender; this means that each element of M is of the form j(f)(a)
where f is a function in V' with domain V,;; and a is an element of Vj(),:.
Then we can use the argument from the superstrong case to generate the
entire generic G* containing j[G].
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The case of n-superstrongs raises a new difficulty. We first treat the case
n = 2. As in the superstrong case, P and P* may take different limits at
j%(k), as the latter may be singular in V. As in that case, we can obtain a
P (H)-generic by intersecting G2,y with P (n)" However we must also ensure

j
arrange that G7,, contain j*[G;‘(H)] as a subset, where j* is the lifting of j

to V[G,] and G, is PJ, -generic over V[G,].

J

that G;Q(H) contain j[Gj(.)] as a subset. Write Pj(.y as Py * Pff(ﬁ); it suffices to

We argue as follows. If j[j(x)] is bounded in j*(x) then the set of con-
ditions j*[G,)] has a lower bound in P%,, C Pj,. Otherwise 72 (k) is
singular, so Pjz(,) is an inverse limit and again the set of conditions j*[G;‘(H)]
has a lower bound in Pj2(,). We therefore assume that our generic G has be-
en chosen so that G z(,) contains the greatest lower bound of j*[G,]. Then
we can take G;Q(H) to be the intersection of sz(ﬁ) with P]Tg(ﬁ) and thereby
obtain j[Gj()] € Gz~ This allows us to lift j to V[G)(.)]. Then we can use
the argument from the superstrong case to generate the entire generic G*
containing j[G].

For the case n > 2 the argument is similar; we must choose Gjn(.) to
contain the greatest lower bound of j*[Gi:jE:;], where j* is the lifting of j
to the model VG jn—2(y)).

Finally we consider w-superstrength. Again we must choose G* to be
P*-generic over M and to contain the pointwise image of G under j. Let
j“(k) denote the supremum of the j"(k), n € w. As before it suffices to find
G;w(ﬁ) which is P;w(ﬁ)—generic and contains j[Gj.(x)] as a subset. Note that
j[Gy] = Gy is trivially contained in G () and j*[G7. ] has a lower bound in
Pl (as defined in V[G,]); by choosing Gju(s) to contain this lower bound
we can take G, ) to be Gju(,) NP ) and thereby obtain j[Gju(s)] C Gju(,)-
And again we can use the argument from the superstrong case to generate
the entire generic G* containing j[G]. So it only remains to show:

Lemma 27 ij(n) N P

w18 P -generic over M.

Proof. Suppose that D € M is dense on P, ) and write D as j(f)(a) where f

has domain Vj.(,) and a belongs to Vjn+1(,) for some n. (We may assume that
every element of M is of this form.) Choose p in Gjv(.) such that p reduces
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f(a) below j"(k) whenever a belongs to Vjn() and f(a) is open dense on
Pjo(y), in the sense that if ¢ extends p then ¢ can be further extended into
f(a) without changing ¢ at or above j"(k). Such a p exists using the j"(x)"-
closure of ij:((:)) in V[Gjn(]. Then j(p) belongs to j[Gje (.| and reduces D
below j"t (k). As Gjn+1(y) is Pjn+1(s)-generic and P, P* agree below 5" (k),
it follows that Gju(q) N Pj.(,, intersects D, as desired. O (Lemma 27)

This completes the proof of the Theorem. O

Jensen’s (global) O principle asserts the existence of a sequence (C, | «
singular) such that C,, has ordertype less than « for each a and Cy = C,Na
whenever & € Lim C,,. The following strengthens a result of Doug Burke:

Theorem 28 (Superstrong cardinals and O) If K is superstrong then there
18 an outer model in which k s still superstrong and O holds.

Proof. We may assume the GCH. Consider now the reverse Easton iteration
P where at the regular stage o, @), is a P,-name for the forcing which adds
a O-sequence on the singular limit ordinals less than «. A condition in @), is
a sequence (Cg | B <, @ singular), v < «, such that Cs has ordertype less

than 8 for each § and Cz = C3 N 3 whenever 3 belongs to Lim Cp.

Using the fact that P, forces O-sequences of any regular length less than
«, it is easy to verify by induction that any condition in (), can be extended
to have arbitrarily large length less than «. Also ()., and indeed the entire
iteration from stage « on, is a-distributive.

Let P* denote M’s version of P. We want to construct G* to be P*-
generic over M, to agree with G strictly below j(x) and to contain j[G] as a
subclass. As in earlier arguments, P and P* agree strictly below j(x) but not
necessarily at j(x), which is regular in M but may be singular in V; as before
we take G7 ) to be Gj() N Pf,). Our new task is to define a Q7 -generic g
over M[G5 .

Lemma 29 Assume GCH and let j : V — M witness the superstrength of
k with j(k) minimal. Then j(k) has cofinality k™.

Proof. Let (f; | i < k1) be a list of all functions from x to x. Then the
sequence (j(fi) | i < k) belongs to M, as it equals j({f; | ¢ < k1)) | k. For
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any ordinal o < k% we can use a bijection between « and x and similarly
conclude that (j(f;) | i < ) belongs to M.

Now for each o < Kk let Kk, be least so that k, is closed under each j(f;),
i < a.. Then K, is less than j(k), as j(k) is regular in M. Let £* be the supre-
mum of the x,’s. It suffices to show that there is a superstrong embedding
J* with critical point s such that j*(k) = £*; then by the minimality of j(k),
we must have j(k) = x* and therefore j(x) has cofinality 7.

To obtain j* define H = {j(f)(a) | f: V.. =V, a € Vi+}. Then H is an
elementary submodel of M and H N j(k) = k*. Let m : H ~ M*; then j* =
mj : V — M* witnesses the superstrength of k and j*(k) = 7(j(k)) = k*, as
desired. O

We can assume that j is given by an ultrapower, and therefore that j is
continuous at k7. It follows that (j(x)")™ has cofinality x*. Therefore we
can write the collection of k*-many open dense subsets of Q;(H) as the union
of k* subcollections, each of size less than j(x). Now we can build g in
steps, using j(k)-distributivity to meet fewer than j(x) open dense sets at
each step (and defining the O-sequence coherently at limit stages). We must
also ensure that g extend g.; but this is easy to arrange as the latter is a
condition in the forcing Q;(H).

Finally the rest of G* can be generated from j[G] as before. O

The proof of the previous theorem does not work for hyperstrong «, and
there is a good reason for this. x is subcompact iff for any B C H,+ there
are 4 < k, A C H,+ and an elementary embedding j : (H,+,A) — (H.+, B)
with critical point p. (Note that by elementarity, j must send p to k.)

Proposition 30 (a) If k is hyperstrong then k is subcompact. (b) (Jensen)
If there is a subcompact cardinal then O (even when restricted to ordinals
between k and k1) fails.

Proof. (a) Suppose that j : V' — M witnesses hyperstrength. Then for all
subsets B of j(k)T in the range of j, j gives an elementary embedding of
(H,+, A) into (Hj.y+, B), where j(A) = B; moreover this embedding belongs
to M as j is hyperstrong and j [ H,+ belongs to Hj(.+. As the range of j is an

elementary submodel of M, it follows that there is an elementary embedding
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of some (H,+,A) into (Hj.+, B) (sending 4 to j(x)) which belongs to the
range of 7. So j(k) is subcompact in Range j and therefore by elementarity
subcompact in M. As j is elementary, k is subcompact in V.

(b) Suppose that « is subcompact and C = (Cy | K < o < k™, a singular)

has the properties of a O-sequence. By thinning out the C,’s we can ensure
that each has ordertype at most . Let j be an embedding from (H,+,C)
to (Hy+, 5), sending p to k. Let o be the supremum of the ordinals in the
range of j. Then « has cofinality x*. The ordinals in the range of j form a
< p-closed and therefore w-closed unbounded subset of av. And Lim C, is a
closed unbounded subset of a. Therefore the intersection D of these two sets
is unbounded in «. By the coherence property of (7, the ordertype of Cjp for
sufficiently large 3 in D is at least u. But as the ordertype of C, is at most
k (in fact less than k), the ordertype of Cjs for all 5 in D is strictly less than
k. Thus there are 8 in D C Range j with Cj3 of ordertype not in Range j,
contradicting the elementarity of j. O

13.-14.Vorlesungen

Another important property of L is the existence of a definable wellorde-
ring of the universe.

Theorem 31 (Large cardinals and definable wellorderings) If k is super-
strong then there is an outer model in which k is still superstrong and there
15 a definable wellordering of the universe. The same holds for hyperstrong,
n-superstrong for finite n and w-superstrong.

Proof. We may assume the GCH. Let x have one of the large cardinal proper-
ties mentioned in the theorem, as witnessed by the embedding 7 : V — M.
Choose A to be a cardinal greater than j*(x). By the method of L-coding,
we can enlarge V without adding subsets of A to a universe of the form L[A],
A a subset of AT. By an earlier argument, the embedding j lifts to L[A] and
therefore k retains its large cardinal properties.

Now we introduce a definable wellordering. Perform a reverse Easton
iteration of length A™, indexed by successor cardinals greater than A\*, where
at the i-th successor cardinal, an i*-Cohen set is added iff ¢ belongs to A.
The result is that ¢ belongs to A iff not every subset of the successor of
the i-th successor cardinal is constructible from a subset of the i-th successor
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cardinal. Now the result of this iteration is a model of the form L[B] where B
is a subset of A®™)| the “A*-th cardinal greater than A\”. Repeat this to code
B using the next interval of successor cardinals. Continuing this indefinitely
yields a model with a wellordering definable from the parameter .

To eliminate the parameter A, use a pairing function f : Ord x Ord — Ord
on the ordinals and arrange that the universe is of the form L[C] where C
is a class of ordinals and for any 4, 7 is in C' iff some subset of the successor
to the f(i,j)-th successor cardinal is not constructible from a subset of the
f (i, 7)-th successor cardinal, for all sufficiently large 7. O

Jensen’s (global) O principle asserts the existence of a sequence (C, | «
singular) such that C,, has ordertype less than « for each a and Cy = C,Na
whenever & € Lim C,,. The following strengthens a result of Doug Burke.

Theorem 32 (Superstrong cardinals and O) If k is superstrong then there
18 an outer model in which k s still superstrong and O holds.

Proof. We may assume the GCH. Consider now the reverse Easton iteration
P where at the regular stage «, (), is a P,-name for the forcing which adds
a O-sequence on the singular limit ordinals less than «. A condition in @, is
a sequence (Cy | B <7, @ singular), v < «, such that Cs has ordertype less
than 8 for each § and Cz = CzN 3 whenever 3 belongs to Lim Cj.

Using the fact that P, forces O-sequences of any regular length less than
«, it is easy to verify by induction that any condition in (), can be extended
to have arbitrarily large length less than «. Also ()., and indeed the entire
iteration from stage « on, is a-distributive.

Let P* denote M’s version of P. We want to construct G* to be P*-
generic over M, to agree with G strictly below j(x) and to contain j[G] as a
subclass. As in earlier arguments, P and P* agree strictly below j(x) but not
necessarily at j(x), which is regular in M but may be singular in V'; as before
we take G’;(H) to be G N P]T*(H). Our new task is to define a Q’;(H)—generic g
over M[G7 ]

Lemma 33 Assume GCH and let j : V — M witness the superstrength of
k with j(k) minimal. Then j(k) has cofinality k™.
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Proof. Let (f; | i < k%) be a list of all functions from x to x. Then the
sequence (j(fi) | i < k) belongs to M, as it equals j({f; | i < k1)) | k. For
any ordinal @ < k' we can use a bijection between « and x and similarly
conclude that (j(f;) | ¢ < ) belongs to M.

Now for each o < Kk let Kk, be least so that k, is closed under each j(f;),
i < a.. Then K, is less than j(k), as j(k) is regular in M. Let x* be the supre-
mum of the x,’s. It suffices to show that there is a superstrong embedding
J* with critical point s such that j*(k) = £*; then by the minimality of j(k),
we must have j(k) = k* and therefore j(x) has cofinality *.

To obtain j* define H = {j(f)(a) | f: V. = V, a € Vi+}. Then H is an
elementary submodel of M and H N j(k) = k*. Let m : H ~ M*; then j* =
7j: V. — M* witnesses the superstrength of x and j*(k) = 7(j(k)) = k*, as
desired. O

We can assume that j is given by an ultrapower, and therefore that j is
continuous at x*. It follows that (j(x) ™)™ has cofinality s and H(j(x)")M is
closed under x-sequences. Therefore we can write the collection of (j(x)™)-
many open dense subsets of Q;(H) as the union of k% subcollections, each of
which belongs to M[G7 )] and has size less than j(x) there. Now we can build
g in kT steps, using j(k)-distributivity to meet fewer than j(x) open dense
sets at each step (and defining the O-sequence coherently at limit stages).
We must also ensure that g extend g,; but this is easy to arrange as the latter
is a condition in the forcing Q;(H).

Finally the rest of G* can be generated from j[G] as before. O

The proof of the previous theorem does not work for hyperstrong x, and
there is a good reason for this. k is subcompact iff for any B C H,+ there
are it < K, A C H,+ and an elementary embedding j : (H,+,A) — (H,+, B)
with critical point p. (Note that by elementarity, j must send p to k.)

Proposition 34 (a) If k is hyperstrong then r is subcompact. (b) (Jensen)
If there is a subcompact cardinal then O (even when restricted to ordinals
between r and k) fails.

Proof. (a) Suppose that j : V' — M witnesses hyperstrength. Then for all
subsets B of j(k)" in the range of j, j gives an elementary embedding of
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(Hy+, A) into (Hj.)+, B), where j(A) = B; moreover this embedding belongs
to M as j is hyperstrong and j [ H,+ belongs to Hj(.+. As the range of j is an
elementary submodel of M, it follows that there is an elementary embedding
of some (H,+,A) into (Hj(.+, B) (sending p to j(x)) which belongs to the
range of j. So j(k) is subcompact in Range 7 and therefore by elementarity
subcompact in M. As j is elementary,  is subcompact in V.

(b) Suppose that « is subcompact and C = (C, | & < o < kT, « singular)

has the properties of a O-sequence. By thinning out the C,’s we can ensure
that each has ordertype at most . Let j be an embedding from (H,+, C)
to (H.+, (7), sending i to k. Let « be the supremum of the ordinals in the
range of j. Then « has cofinality pu*. The ordinals in the range of j form a
< p-closed and therefore w-closed unbounded subset of a. And Lim C,, is a
closed unbounded subset of a. Therefore the intersection D of these two sets
is unbounded in «. By the coherence property of C_”, the ordertype of Cjp for
sufficiently large 3 in D is at least u. But as the ordertype of C, is at most
r (in fact less than k), the ordertype of Cjs for all 5 in D is strictly less than
k. Thus there are 3 in D C Range j with Cj3 of ordertype not in Range j,
contradicting the elementarity of j. O

For uncountable, regular x, <, says that there exists (D, | @ < k) such
that D, is a subset of « for each a and for every subset D of k, {a < & |
D, = DNa} is stationary in k. ) asserts that <, holds for every uncountable,
regular k.

Theorem 35 (Large cardinals and <) If k is superstrong then there is an
outer model in which k is still superstrong and { holds. The same holds for
hyperstrong, n-superstrong for finite n and w-superstrong.

Proof. We use a reverse Easton iteration P where at each regular stage o, @,
is a-distributive (in fact, in the present context the entire iteration starting
with a is a-closed). A condition in @, is a sequence (Dg | 8 < 7), v < «,
such that Dg is a subset of 3 for each § < «. It is easy to show that a
Q.-generic yields a ,-sequence, using the a-closure of Q.

The proof in the superstrong case is just as in Theorem 32, where we take
G;(K) to be the intersection of G,y with Pj(n) and then build a Q;(K)—generic
containing the condition g,.. For hyperstrong s (witnessed by j : V' — M),
we need only observe that j[G,+] has a lower bound in the forcing Py, .
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and choose G, )+ = Gj(s)+ to contain this lower bound. (This is where the
argument with O breaks down.)

For n-superstrongs, 1 < n finite, we can take G;n(ﬁ) to be the intersection
of Gjn(ﬁ) with Pj*n(ﬁ)
of j[G jn-1(,)]), but face the problem of defining a Qn(,)-generic containing the

image of gjn-1(,) under (the lifting to V[Gjn-1,)] of) j. We use the following.

(requiring the latter to contain the greatest lower bound

Lemma 36 Suppose that n is greater than 1 and j : V — M witnesses the
n-superstrength of k, with j"(k) chosen minimally. Then j is continuous at
J" (k) (i.e., the range of j is cofinal in j"(k)).

Proof. Let k* be the supremum of the range of j intersect j" (k). It suffices to
show that there is an n-superstrong embedding j* with critical point x such
that (j°)" (k) = k™.

Let H consist of all elements of M of the form j(f)(a), where f : V, — V
and a belongs to V,«. Then H is an elementary submodel of M: If M E
o(y,7(fi)(ar),...,5(fn)(ay)) for some y in M, where f; : V, =V, a; € V.
for each i, then choose g : V, — V so that g({xy,...,z,)) = y is a so-
lution to ¢(y, fi(x1),..., fa(an)) in V' (if there is such a solution y in V).
Then by elementarity, M E o(y,7(f1)(a1),...,j(fn)(a,)) where y equals
j(g)({ay,...,a,)). The latter is an element of H.

Note that HNj"(k) = x*: If j(f)(a) is less than j"(k), where f : V, — V
and a € V-, then j(f)(a) is less than the supremum of j(f)[V,] N j™(k)
where o € Range (j) Nk* is large enough so that V,, contains a; as the latter
supremum belongs to Range (j), it follows that j(f)(a) is less than k*.

Now let 7 : H ~ M* be the transitive collapse of H and define j* = 7.
Then j* : V — M* is elementary and has critical point k. As 7 sends ;" (k)
to k* and is the identity on x*, it follows that (j*)™ (k) = j™(k) for m < n
and (5*)"(k) = k*. And j* is n-superstrong as V.~ = VM = VA" O

We may assume that every element of M is of the form j(f)(a) where
J t Vin-14) — V and a belongs to Vjn(). Now we claim that the image of
gjn—1(x) under (the lifting to V[Gn-1(,)] of) j generates a generic for Qfn (>

in the sense that every dense subset of @7, which belongs to M[Gjn(ﬁ)] is
met by a condition in j[g;n-1(,]. For, if D is such a dense set, then D has a
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name of the form j(f)(a) where a belongs to Vj(,) for some o < j"7(k). By
the j"~!(k)-closure of Qjn-1(,), there is a condition p € gjn-1(,) which meets
all dense sets with names of the form f(a), a € V,; then j(p) = p meets D.

Finally, w-superstrength is handled just as in the case of GCH. O

The technique of the previous proof can also be used to force a weakened
form of O, preserving very large cardinals. O holds at small cofinalities iff the
O principle holds when restricted to singular ordinals of cofinality at most
the least superstrong cardinal.

Theorem 37 If k is hyperstrong then thre is an outer model in which K 1is
still hyperstrong and O holds at small cofinalities.

Proof. Perform a reverse Easton iteration where at each regular stage a, @,
adds a O-sequence on the singular ordinals less than x which have cofinality
at most the least superstrong cardinal. If j : V' — M witnesses that s is
hyperstrong, then we take G5, to be G+ and observe that jlg.+| does
have a greatest lower bound in Q;(.+, because its supremum is an ordinal of
cofinality ™, greater than the least superstrong cardinal of M. By choosing
i)+ = Yj(s)+ to contain this greatest lower bound, we can lift j to V[G +14],
and then to all of V[G]. If j : V' — M witnesses the 2-superstrength of
then similarly we get a greatest lower bound for j[G(.)] in Pj2(.)] as for each
regular a € (k, j(k)), the supremum of j[a] is an ordinal of cofinality greater
than r, which is superstrong (and more) in M. Then we use the argument
of the preceding proof to lift j to all of V[G]. A similar argument handles
w-superstrength. O

Theorem 38 (Large cardinals and Gap 1 morasses) If k is superstrong then
there is an outer model in which k is still superstrong and gap 1 morasses
exist at each regular cardinal. The same holds for hyperstrong, n-superstrong
for finite n and w-superstrong.

Proof. For the definition of a gap 1 morass we refer the reader to Devlin’s
book. Assume GCH and let x be superstrong. We apply the reverse Easton
iteration P where at each regular stage a, @), adds a gap 1 morass at a. A
condition in (), is a size < « initial segment of a morass up to some top
level, together with a map of an initial segment of this top level into a™
which obeys the requirements of a morass map. To extend a condition, we
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end-extend the morass up to its top level and require that the map from the
given initial segment of its top level into o™ factor as the composition of a
map into the top level of the stronger condition followed by the map given
by the stronger condition into a*. The forcing @, is a-closed and, using a
A-system argument, is a-cc.

To obtain the desired G*, we must build a Q;(H)—generic which extends
the image under (the lifting to V{G.] of) j of the Q,.-generic g.. As in the
case of O we use minimisation of j(k) to ensure that it has cofinality ™ and
then build a Q7 -generic in kT steps. Note that any condition in j[g,] is
extended by one which has top level x and maps an initial segment of the
top level into j(x)* using j. Now given fewer than j(x) maximal antichains
in M[G7 )], we can choose o < j(k)" of cofinality j(x) in M so that these
maximal antichains are maximal when restricted to conditions which are
“below «” in the sense that they map an initial segment of their top level
into a. Moreover, there is a condition which serves as a lower bound to all
conditions in j[g,] which are below « in this sense. Therefore we can choose
a condition below a meeting all of the given maximal antichains compatibly
with the conditions in j[g.] which are below «, and therefore compatibly
with all conditions in j[g.]. Repeating this in k™ steps for increasingly large
a < j(k)t of M-cofinality j(k) (taking unions at limit stages) yields the
desired Q’;(H)—generic. The remainder of the generic G* can be generated as
before.

Now suppose that x is hyperstrong. We must define a suitable Q;(H);
generic. We may assume that j is given by a hyperextender and therefore j
is cofinal from k™ into j(k)™t of M. Let S consist of those morass points
at the top level (i.e., level k7) of g.+ which have cofinality x*. For each o
in S let g.+ | o denote the set of conditions in g,+ which are below ¢. Then

*

Jlgx+ | o] has a greatest lower bound p, in Qj(n)Jr.

The collection of maximal antichains of Q;(H)+ which belong to M| ;(R)Jr]
can be written as a union J;_;,
X; | j(o) (the subset of X; consisting of those maximal antichains all of whose
elements are below j(0)) is a set of size at most j(x) in M. By induction on
o € S choose a condition g, extending p, and all ¢, 7 € SNo, which meets all
antichains in Xy [ j(o). By hyperstrength, the sequence of ¢, [ j(o), 7 € S,
has a greatest lower bound p! for each o0 € S. Now repeat this construction

+ X; where for each 7 and each o in S,
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for X1, Xs, ... for j(k)* steps, resulting in a set of conditions which generates
a generic g+ for Q) o)t As before, the remainder of the generic G* can be
generated as before.

*

J(

The cases of n-superstrength, 2 < n finite, are handled as in the proof of
Theorem 35. w-superstrength is handled as in the case of GCH. O

Questions. 1. The above proofs show that one can force the GCH and O
preserving the superstrength of all superstrong cardinals and GCH preserving
the hyperstrength of all hyperstrong cardinals. Is it possible to force GCH
preserving the 2-superstrength of all 2-superstrong cardinals?

2. It is possible to force a definable wellordering of the universe over a model of
GCH preserving the superstrength of all superstrong cardinals, at the cost of
some cardinal collapsing. Is it possible to do this without cardinal collapsing?
Is it possible to preserve the superstrength of all superstrong cardinals while
forcing not only the universe but also each H(k), £ > wy, to have a definable
wellordering?

3. Is it consistent with a superstrong cardinal to have a gap 2 morass at every
regular cardinal?

4. To what extent are the condensation and hyperfine structural properties
of L consistent with large cardinals?
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