
Internal and External Consisten
y, Wintersemester 20051.-6.VorlesungenThere are two standard ways to establish 
onsisten
y in set theory. Oneis to prove 
onsisten
y using inner models, in the way that Gödel provedthe 
onsisten
y of GCH using the inner model L. The other is to prove
onsisten
y using outer models, in the way that Cohen proved the 
onsisten
yof the negation of CH by enlarging L to a for
ing extension L[G].But we 
an demand more from the outer model method, and we illustratethis by examining Easton's strengthening of Cohen's result:Theorem 1 (Easton's Theorem) There is a for
ing extension L[G] of L inwhi
h GCH fails at every regular 
ardinal.Assume that the universe V of all sets is ri
h in the sense that it 
ontainsinner models with large 
ardinals. Then what is the relationship betweenEaston's model L[G] and V ? In parti
ular, are these models 
ompatible, inthe sense that they are inner models of a 
ommon third model? If not, thenthe failure of GCH at every regular 
ardinal is 
onsistent only in a weak sense,as it 
an only hold in universes whi
h are in
ompatible with the universe ofall sets. Ideally, we would like L[G] to not only be 
ompatible with V , butto be an inner model of V .We say that a statement is internally 
onsistent (relative to large 
ardi-nals) i� it holds in some inner model (under the assumption that there areinner models with large 
ardinals). By spe
ifying what large 
ardinals arerequired, we obtain a new type of 
onsisten
y result. Let Con (ZFC + ϕ)stand for �ZFC + ϕ is 
onsistent� and I
on(ZFC + ϕ) stand for �there is aninner model of ZFC + ϕ�. A typi
al 
onsisten
y result takes the formCon (ZFC + LC) → Con (ZFC + ϕ)where LC denotes some large 
ardinal axiom. An internal 
onsisten
y resulttakes the form I
on(ZFC + LC) → I
on(ZFC + ϕ).Thus a statement ϕ is internally 
onsistent relative to large 
ardinals i�I
on(ZFC + ϕ) follows from I
on(ZFC + LC) for some large 
ardinal axiomLC. 1



A statement 
an be 
onsistent without being internally 
onsistent relativeto large 
ardinals. . An example is the statement that there are no transitivemodels of ZFC, whi
h fails in any inner model (assuming there are innermodels with ina

essible 
ardinals). Another example is:For ea
h in�nite regular 
ardinal κ there is a non
onstru
tible subset of κwhose proper initial segments are 
onstru
tible.This 
an be for
ed over L, but does not hold in any inner model, assumingthe existen
e of 0#.If the 
onsisten
y of a statement without parameters is shown using setfor
ing, then it is usually easy to prove its internal 
onsisten
y relative tolarge 
ardinals. (Some examples are mentioned below.) But this is not the
ase for statements that 
ontain un
ountable parameters or for statementswhose 
onsisten
y is shown through the use of 
lass for
ing. In these latter
ases, questions of internal 
onsisten
y and of internal 
onsisten
y strength
an be quite interesting, as we shall see.Large Cardinals and L-like UniversesThe se
ond part of this 
ourse addresses the following question: Can wesimultaneously have the advantages of both the axiom of 
onstru
tibilityand the existen
e of large 
ardinals? Unfortunately even rather modest large
ardinal hypotheses, su
h as the existen
e of a measurable 
ardinal, refute
V = L. We 
an however hope for the following 
ompromise:

V is an �L-like� model 
ontaining large 
ardinals.In this arti
le we explore the possibilities for this assertion, for variousnotions of �L-like� and for various types of large 
ardinals.There are two approa
hes to this problem. The �rst approa
h is via theInner model program. Show that any universe with large 
ardinals has an
L-like inner model with large 
ardinals.2



The inner model program, through use of �ne stru
ture theory and thetheory of iterated ultrapowers, has su

eeded in produ
ing very L-like innermodels 
ontaining many Woodin 
ardinals.An alternative approa
h is given by theOuter model program. Show that any universe with large 
ardinals has an
L-like outer model with large 
ardinals.We will show that L-like outer models with extremely large 
ardinals 
anbe obtained using the method of iterated for
ing.Part One. Internal Consisten
yWe turn now to a detailed study of internal 
onsisten
y, beginning withEaston's theorem.Let Reg denote the 
lass of in�nite regular 
ardinals and Card the 
lass ofall in�nite 
ardinals. An Easton fun
tion is a 
lass fun
tion F : Reg → Cardsu
h that:For all κ ≤ λ in Reg: F (κ) ≤ F (λ).For all κ ∈ Reg: 
of (F (κ)) > κ.Easton showed that if F is an Easton fun
tion in L, then there is a 
o�nality-preserving 
lass for
ing extension L[G] of L in whi
h 2κ = F (κ) for all regular
κ. We say that the model L[G] realises the Easton fun
tion F .Whi
h Easton fun
tions in L 
an be realised in an inner model? Thefollowing results were obtained jointly with Pavel Ondrejovi¢.Theorem 2 Suppose that 0# exists and F is an Easton fun
tion in L whi
his L-de�nable using parameters whi
h are 
ountable in V . Then there existsan inner model with the same 
o�nalities as L in whi
h 2κ = F (κ) for ea
hin�nite regular κ.Corollary 3 The statement

2κ = κ++ for all in�nite regular κis internally 
onsistent relative to 0#.3



Theorem 4 Assume that 0# exists, κ is a regular un
ountable 
ardinal and
α < κ+. Then there is an inner model with the same 
o�nalities as L inwhi
h GCH holds below κ and 2κ > α.Corollary 5 Assume that 0# exists. Then there is an inner model with thesame 
o�nalities as L in whi
h the GCH holds below ℵV

1 but fails at ℵV
1 .Proof of Corollary 3. We 
onsider the following reverse Easton iteration (de-�ned in L): P0 is trivial. Pλ, λ limit, is the dire
t limit of the Pi, i < λ,if λ is regular, and is the inverse limit of the Pi, i < λ, if λ is singular.

Pα+1 = Pα ∗ Qα for every α, where Qα is trivial unless α is a limit 
ardinal,in whi
h 
ase:
Qα =

∏
n∈ω Add (α+n, α+(n+2)), if α is regular;

Qα =
∏

0<n∈ω Add (α+n, α+(n+2)), if α is singular.The for
ing Add (β, γ) (for regular β) adds γ subsets of β: Conditions arefun
tions p : d → 2, d a subset of β × γ of size less than β, ordered byextension.For any regular α, P fa
tors as P (≤ α) ∗ P (> α) where P (≤ α) is α+-

and P (≤ α) for
es that P (> α) is α+-
losed. It follows that 
o�nalities arepreserved by P . Also P for
es that 2α = α++ for every regular α.We show that if 0# exists, then there is a P -generi
 over L. By indu
tionon i ∈ I = the Silver indis
ernibles we 
onstru
t a P (≤ i)-generi
 G(≤ i). Tofa
ilitate limit stages of the 
onstru
tion, we maintain the following property:
(∗) i < j → G(≤ i) embeds into G(≤ j) in the sense that πij [G(≤ i)] ⊆ G(≤
j).In (∗), πij is the �shift map� de�ned as follows. Let 〈iα | α ∈ Ord〉 be thein
reasing enumeration of I. Then πiαiβ �xes indis
ernibles less than iα andsends iα+γ to iβ+γ. This de�nition of πij on indis
ernibles lifts uniquely to anelementary embedding πij : L → L.Lemma 6 Suppose that j is a limit indis
ernible and G(≤ i) is de�ned for
i ∈ I ∩ j so as to satisfy (∗). De�ne:
G(≤ j) =

⋃
i∈I∩j πij [G(≤ i)].Then G(≤ j) is P (≤ j)-generi
 over L.4



Proof. If D ∈ L is open dense on P (≤ j) then write D as t(~i, j, ~∞) where
t is a Skolem term for L and ~i < j < ~∞ are indis
ernibles. Let k be anindis
ernible su
h that ~i < k < j and set D̄ = t(~i, k, ~∞). Then D̄ is opendense on P (≤ k) and is therefore met by some 
ondition p in G(≤ k). Butthen πkj(p) belongs to G(≤ j) ∩ D. 2Now suppose that G(≤ i) is de�ned and we wish to de�ne G(≤ i∗), where
i∗ is the least indis
ernible greater than i, obeying property (∗). First we makea preliminary 
hoi
e for G(≤ i∗). Note that P (≤ i∗) fa
tors as P (≤ i)∗P (i, i∗]where P (≤ i) for
es that P (i, i∗] is i+-
losed.Lemma 7 Let D be the 
olle
tion of open dense subsets of P (i, i∗] whi
hbelong to L[G(≤ i)]. Then D is the union of sets Dn, n ∈ ω, whi
h belong to
L[G(≤ i)] and have 
ardinality at most i in that model.Proof. Every D ∈ D is named by a term in L(i∗)+L ⊆ Li∗∗ . So it su�
es toshow that Li∗∗ 
an be written as the 
ountable union of sets whi
h belong to
L and have size at most i in L. Any element of Li∗∗ is of the form t(α, i, i∗, ~∞)where t is a Skolem term for L, α is an ordinal less than i and ~∞ is a �niteinitial segment of I − (i∗ + 1). For a �xed t, the 
olle
tion of t(α, i, i∗, ~∞),
α < i, is a 
onstru
tible set of L-
ardinality at most i. As there are only
ountably many t's, we are done. 2By Lemma 7 we 
an build a P (i, i∗]-generi
 G′(i, i∗] over L[G(≤ i)] in ωsteps, using the i+-
losure of P (i, i∗] to meet all open dense sets in Dn atstep n. This yields a generi
 G′(≤ i∗) = G(≤ i) ∗ G′(i, i∗] for P (≤ i∗).However we must also ensure property (∗). Let π denote πi,i∗ . As π is theidentity on Li we do have G(< i) = π[G(< i)] ⊆ G(< i∗); however we mustmodify G′(i∗). Re
all that Qi∗ is the for
ing ∏

n∈ω Add ((i∗)+n, (i∗)+(n+2)).Therefore G′(i∗) 
an be written as ∏
n∈ω G′(i∗)n, where G′(i∗)n is generi
 forAdd ((i∗)+n, (i∗)+(n+2)). We show how to modify G′(i∗)0 so as to guarantee

(∗); the modi�
ation of the entire G′(i∗) is similar.Ea
h 
ondition p′ in G′(i∗)0 is a fun
tion from a subset of i∗× (i∗)++ into
2. Its modi�
ation p has the same domain as p′ and is de�ned by:
p(α, β) = p′(α, β) if α ≥ i or β /∈ Range (π)
p(α, β) = G(i)0(α, β̄) if α < i and π(β̄) = β.5



Lemma 8 (1) If p′ is a 
ondition in G′(i∗)0 then so is its above modi�
ation
p.(2) Let G(i∗)0 
onsist of all modi�
ations p of 
onditions p′ in G′(i∗)0. Then
G(i∗)0 is Add (i∗, (i∗)++)-generi
 over L[G(< i∗)].Proof. (1) We �rst show that if X is a 
onstru
tible set of L-
ardinality i∗and X̄ = π−1(X) then π ↾ X̄ is 
onstru
tible.Suppose that X is an element of Range (π). Then Range (π) also 
ontainsa bije
tion f between X and i∗, and X ∩ Range π = f−1[i∗ ∩ Range (π)] =
f−1[i]. Now π−1(f) = f̄ is a bije
tion between π−1(X) = X̄ and i, and for x ∈
X̄ we have: f̄(x) = π(f̄(x)) = π(f̄)(π(x)) = f(π(x)), so π(x) = f−1 ◦ f̄(x).Thus π ↾ X̄ is the 
omposition of two 
onstru
tible fun
tions.If X is not an element of Range (π), then write X as t(α, i, i∗,~j) where α <
i and~j are indis
ernibles greater than i∗. Let Y be the union of all t(α, β, i∗,~j)of L-
ardinality i∗, where α < β < i∗. Then Y 
ontains X as a subset, has
L-
ardinality i∗ and is an element of Range (π) = Hull(I − {i}). By theabove argument, π ↾ Ȳ is 
onstru
tible, where Ȳ = π−1[Y ∩ Range (π)].As X ∩ Range (π) = X ∩ (Y ∩ Range (π)) it follows that X ∩ Range (π) is
onstru
tible and therefore π ↾ X̄ is too, where X̄ = π−1[X ∩Range (π)].We now show that the modi�
ation p of any p′ in G′(i∗)0 is a 
ondition.Note that Dom (p′) is an element of L[G(< i∗)] of size less than i∗ andtherefore is a subset of a 
onstru
tible set of size i∗. It follows from theabove that Dom (p′)∩Range (π) and π−1 ↾ (Dom (p′)∩Range (π)) belong to
L[G(< i∗)]. It follows that p, whi
h is obtained by modifying p′ on Dom (p′)∩Range (π) using π−1, also belongs to L[G(< i∗)], as desired.(2) We 
laim that if D ∈ L[G(< i∗)] is open dense on Add (i∗, (i∗)++) thenthere is a 
ondition p′ ∈ G′(i∗)0 whi
h strongly meets D, i.e., any modi�
ationof p′ on a set of size ≤ i++ meets D. This implies the generi
ity of G(i∗)0, asthe above modi�
ation p of p′ takes pla
e on a set of size i++.It su�
es to show that the set of q whi
h strongly meet D is dense. Given
q0, extend q0 to q1 meeting D. Then temporarily modify q1 (in i++ pla
es)and extend this modi�
ation to meet D; unmodify this extension to obtain anextension q2 of q1. Continue this pro
ess for i+++ steps, ensuring at the endthat any modi�
ation of the �nal 
ondition has been 
onsidered at some stage6



of the 
onstru
tion. Then the �nal 
ondition strongly meets D. 2 (Lemma8) We now verify (∗) as follows. The embedding π = πi,i∗ from L to L 
an beextended to an embedding π∗ from L[G(< i)] to L[G(< i∗)] (sending G(< i)to G(< i∗)) as G(< i) ⊆ G(< i∗). By 
hoi
e of G0(i
∗), π∗ 
an be further ex-tended to an embedding from L[G(< i)][G0(i)] to L[G(< i∗)][G0(i

∗)] (sending
G0(i) to G0(i

∗)). We 
an similarly modify ea
h of the G′
n(i∗), and therefore

π∗ 
an in fa
t be extended to an embedding π∗∗ from L[G(< i)][G(i)] to
L[G(< i∗)][G(i∗)] (sending G(i) to G(i∗)). It follows that π∗∗ sends G(≤ i)to G(≤ i∗) as these are G(< i) ∗ G(i), G(< i∗) ∗ G(i∗), respe
tively. So
π[G(≤ i)] ⊆ G(≤ i∗), as stated in (∗). 2Proof of Theorem 4. First obtain a generi
 for the reverse Easton iteration
P , de�ned just as in the previous proof, but with Qα nontrivial at exa
tlythe regular 
ardinals, where it is taken to be simply Add (α, α). Let G be
P -generi
 over L and set g = G(κ), a generi
 for Add (κ, κ) over the groundmodel L[G(< κ)].Now let κ ≤ α < (κ+)V . We will show that a generi
 for Add (κ, α) over
L[G(< κ)] 
an be obtained by �stret
hing� g. For this purpose we need aspe
ial type of bije
tion between α and κ:De�nition. A bije
tion f : α → κ is good i� f ↾ X is 
onstru
tible whenever
X ⊆ α is 
onstru
tible and has L-
ardinality κ.Lemma 9 For any α < (κ+)V there exists a good bije
tion f : α → κ.Proof. We prove by indu
tion on i ∈ I ∩ [κ, (κ+)V ) that there is a goodbije
tion fi : i → κ. Set fκ = the identity. If the result holds for i thenprove it for i∗, the I-su

essor to i, as follows: For ea
h n ∈ ω set Hn =
i∗ ∩ Hull(i + 1 ∪ {i∗, i∗∗, . . . , i∗n}), where Hull denotes Skolem hull in L and
i∗n is the n-th indis
ernible greater than i. Then ea
h Hn has L-
ardinality iand any subset of i∗ of L-
ardinality i is 
ontained in some Hn. Let X0 = H0and Xn+1 = Hn+1 − Hn. Using the indu
tively de�ned fi, we 
an 
reate abije
tion f ∗ between i∗ and κ × ω with the property that for ea
h n, f ∗ ↾ Xis 
onstru
tible for any 
onstru
tible X ⊆ Xn of L-
ardinality κ. As any
onstru
tible X ⊆ i∗ of L-
ardinality κ is 
ontained in �nitely many Xn's7



it follows that f ∗ is a good bije
tion between i∗ and κ × ω. Obtain fi∗ by
omposing f ∗ with a 
onstru
tible bije
tion between κ × ω and κ.Suppose that i is a limit indis
ernible and let γ be its 
o�nality (in V ).Let 〈iα | α < γ〉 be in
reasing, 
ontinuous and 
o�nal in i, with i0 = 0and ea
h iα a multiple of κ. A 
onstru
tible subset of i of L-
ardinality κinterse
ts only �nitely many of the intervals [iα, iα+1). Using the fiα we 
antherefore 
reate a good bije
tion between i and κ×γ. Then fi is obtained by
omposing this good bije
tion with a 
onstru
tible bije
tion between κ × γand κ. 2 (Lemma 9)It follows that for any α < (κ+)V there is a bije
tion f : α → κ whi
his L[G(< κ)]-good, i.e., good with L repla
ed by L[G(< κ)]. This is be
auseany set in L[G(< κ)] of L[G(< κ)]-
ardinality κ is a subset of a 
onstru
tibleset of L-
ardinality κ.Fix an L[G(< κ)]-good bije
tion f : α → κ. For a 
ondition p ∈ Add (κ, α)de�ne f(p) as follows: (β, γ) is in the domain of f(p) i� (β, f−1(γ)) is in thedomain of p, in whi
h 
ase f(p)(β, γ) = p(β, f−1(γ)). Note that f(p) is a 
on-dition in Add (κ, κ) as f is L[G(< κ)]-good. (In fa
t, we only need goodnesshere for sets in L[G(< κ)] of L[G(< κ)]-
ardinality stri
tly less than κ.)Claim. Let h be the set of p ∈ Add (κ, α) su
h that f(p) belongs to g. Then
h is Add (κ, α)-generi
 over L[G(< κ)].Proof. Clearly h is a 
ompatible, upward-
losed set of 
onditions. We mustshow that if A ⊆ Add (κ, α) is a maximal anti
hain in L[G(< κ)] then f(p)belongs to g for some p ∈ A. It su�
es to show that B = {f(p) | p ∈ A} is amaximal anti
hain in Add (κ, κ), as by the L[G(< κ)]-goodness of f , B doesbelong to L[G(< κ)].Let D(A) be the union of the domains of the 
onditions in A and D(B)the union of the domains of the 
onditions in B. Then id × f maps D(A)onto D(B) and by the L[G(< κ)]-goodness of f , id × f ↾ D(A) belongs to
L[G(< κ)]. It follows that any 
ondition q ∈ Add (κ, κ) with domain in
ludedin D(B) is of the form f(p) for some 
ondition p ∈ Add (κ, α).Now let q be an arbitrary 
ondition in Add (κ, κ). We must show that qis 
ompatible with some element of B. It su�
es to show that q0 = q ↾ D8



is 
ompatible with some element of B, as in
ompatibility between q and a
ondition in B 
an only o

ur on D. Now by the above, q0 is of the form f(p0)for some p0 ∈ Add (κ, α). As A is a maximal anti
hain in Add (κ, α), p0 is
ompatible with some r ∈ A. Then f(p0) = q0 is 
ompatible with f(r) ∈ B,as desired. 2Conje
ture. Assume that 0# exists. Then an L-de�nable Easton fun
tion F
an be realised in an inner model M having the same 
o�nalities as L i� itsatis�es: F (κ) < (κ++)V for all κ ∈ RegL.Singular Jonsson 
ardinalsA Jonsson 
ardinal is a 
ardinal κ with the property that every stru
turefor a 
ountable language of size κ has a proper substru
ture of size κ.
κ is Ramsey i� κ → (κ)<ω, i.e., whenever F is a fun
tion from [κ]<ω into

2, there is H ⊆ κ of size κ su
h that F is 
onstant on [H ]n for ea
h n. Inthe large 
ardinal hierar
hy, Ramsey 
ardinals lie stri
tly between 0# and ameasurable 
ardinal.Theorem 10 The following are equi
onsistent:a. There is a Jonsson 
ardinal.b. There is a Ramsey 
ardinal.The equi
onsisten
y is in fa
t an internal equi
onsisten
y: If κ is Jonssonthen κ is Ramsey in an inner model (the Dodd-Jensen 
ore model); 
onversely,if κ is Ramsey then κ is Jonsson in an inner model (in fa
t, in V itself).Theorem 11 The following are equi
onsistent:a. There is a singular Jonsson 
ardinal.b. There is a measurable 
ardinal.The dire
tion Con a → Con b is internal: Mit
hell showed that if there isa singular Jonsson 
ardinal then there is an inner model with a measurable
ardinal. The usual proof of Con b → Con a is however via for
ing, andtherefore not internal. Here is the argument:Theorem 12 (Prikry) Suppose that κ is measurable. Then there is a generi
extension in whi
h κ is a singular Jonsson 
ardinal.9



Proof. We use Prikry for
ing. Fix a normal, κ-
omplete nonprin
ipal ultra-�lter U on κ. Conditions are pairs (s, A) where s is a �nite subset of κ and
A is an element of U whose min is greater than max(s). When strengthening
(s, A), s is end-extended and A is shrunk to a subset. Prikry shows that forany senten
e ϕ of the for
ing language and 
ondition (s, A), ϕ is de
ided byan extension of (s, A) of the form (s, B). It follows using the κ-additivity of
U that bounded subsets of κ are not added. Also the for
ing is κ+-

, so
ardinals greater than κ are preserved. If G is generi
 then the union of the�rst 
omponents of 
onditions in G is an unbounded subset of κ of ordertype
ω. It remains to show that κ is Jonsson in the Prikry extension. For this weuse the following 
ombinatorial form of the Jonsson property:Proposition 13 κ is Jonsson i� for every F : [κ]<ω → κ there is H ⊆ κ ofsize κ su
h that F ↾ [H ]<ω : [H ]<ω → κ is not onto.This is easily proved: If κ is Jonsson then a proper substru
ture of (κ, F ) ofsize κ provides the required H ; 
onversely, if A is a stru
ture on κ then de�ne
F so that its range on any nonempty set is the universe of a substru
ture of
A. Now suppose that (s, A) 
 F : [κ]<ω → κ; we 
laim that there is a set Bin U and a 
ountable subset x of ω1 su
h that B ⊆ A and (s, B) for
es thatwhenever t belongs to [B]<ω and F (t) is 
ountable, then F (t) belongs to x.To obtain B and x, 
onsider the fun
tion G : [A]ω × [A]ω → κ de�ned by:
G(t, u) = α i� α is 
ountable and (s ∪ t, C) 
 F (u) = α for some C ⊆ A; ifthere is no su
h α then set G(t, u) = 0. Now we use:Lemma 14 If U is a normal, κ-
omplete ultra�lter on κ and G : [κ]<ω → λ,
λ < κ, then there is a set B ∈ U su
h that G is 
onstant on [B]n for ea
h n.Using this Lemma, there is a B ∈ U , B ⊆ A, su
h that G takes only
ountably-many values on [B]<ω × [B]<ω. It follows that (s, B) for
es F totake only 
ountably-many 
ountable values on [B]<ω, as desired. 2But is the equi
onsisten
y in Theorem 11 internal? By Theorem 12, it suf-�
es to show that the existen
e of a measurable 
ardinal implies the existen
eof an inner model whi
h is a Prikry extension.10



Theorem 15 Suppose that there is a measurable 
ardinal. Then there is aninner model of the form V ∗[G∗] where G∗ is Prikry generi
 over V ∗.Proof. Let U be a normal, κ-additive nonprin
ipal ultra�lter on κ. The ultra-power of (V, U) is formed by taking all equivalen
e 
lasses [f ]U of f : κ → Vin V under the equivalen
e relation f =U g i� {α | f(α) = g(α)} ∈ U ,with the relation ∈U de�ned by [f ]U ∈U [g]U i� {α | f(α) ∈ g(α)} ∈ U .This ultrapower is well-founded as U is 
ountably 
omplete and therefore isisomorphi
 to (V1, U1), where V1 is a transitive inner model and in V1, U1is a normal, κ1-additive nonprin
ipal ultra�lter on some κ1. We obtain anelementary embedding πU from V into V1 by sending x to [cx]U , where cx isthe 
onstant fun
tion on κ with value x. Every element of V1 is of the form
πU(f)(κ) where f is a fun
tion on κ, as the latter equals [f ]U .We 
an iterate this ω times, forming su

essive well-founded ultrapowers
(Vn, Un), n ∈ ω, with 
orresponding measurable 
ardinals κn. As ea
h Vn
anoni
ally embeds into Vn+1, we 
an form the dire
t limit of the Vn's, Vω.Lemma 16 (1) Vω is well-founded and therefore isomorphi
 to a transitiveinner model V ∗.(2) The image of (κ, U) under the 
anoni
al embedding of (V, U) into V ∗is (κ∗, U∗), where κ∗ is the supremum of the κn's and U∗ is a normal, κ∗-additive nonprin
ipal ultra�lter on κ∗ in V ∗.(3) The sequen
e {κn | n ∈ ω} is a Prikry sequen
e over V ∗ for the measure
U∗.This will �nish the proof, as then V ∗[G∗] is an inner model whi
h isa Prikry extension of V ∗, where G∗ is the Prikry generi
 
orresponding to
{κn | n ∈ ω}.Proof of Lemma 16. (1) First note that if π : (V̄ , Ū) → (V, U) is elementarythen there is an elementary embedding π∗ : Ult(V̄ , Ū) → Ult(V, U) su
hthat π∗πŪ = πUπ (where πU , πŪ are the 
anoni
al embeddings of (V, U),
(V̄ , Ū) into their ultrapowers). π∗ is de�ned by: π∗(πŪ(f)(κ̄)) = πU(π(f))(κ),where Ū is an ultra�lter on κ̄. It follows that the entire ω-iteration (V̄ , Ū) →
(V̄1, Ū1) → · · · of (V̄ , Ū) embeds into the ω-iteration (V, U) → (V1, U1) →
· · · of (V, U) in the following sense: Suppose that πij (π̄ij) is the 
anoni
alembedding of (Vi, Ui) into (Vj , Uj) (of (V̄i, Ūi) into (V̄j, Ūj)). Then there areembeddings τn : (V̄n, Ūn) → (Vn, Un) with πijτi = τj π̄ij . It follows that there11



is an embedding τ ∗ from (V̄ω, Ūω), the dire
t limit of the (V̄n, Ūn)'s, into
(Vω, Uω).Now note that if Vω is ill-founded then (V̄ , Ū) 
an be 
hosen to be 
oun-table and so that the asso
iated τ ∗ has an in�nite des
ending sequen
e in itsrange. So it su�
es to show: If π : (V̄ , Ū) → (V, U) is elementary with V̄
ountable, then the ω-iteration of (V̄ , Ū) is well-founded.Lemma 17 Suppose that π : (V̄ , Ū) → (V, U) and V̄ is 
ountable. Thenthere is σ : Ult(V̄ , Ū) → (V, U) su
h that σπŪ = π.Given the Lemma, we 
an su

essively embed the n-th iterate (V̄n, Ūn)into (V, U), and therefore the ω-th iterate (V̄ω, Ūω) as well, proving its well-foundedness.Proof of Lemma 17. As the interse
tion of 
ountably many elements of U isnonempty, we 
an 
hoose an ordinal α whi
h belongs to π(A) for every A ∈ Ū .Now de�ne σ(πŪ(f)(κ̄)) = π(f)(α). We must 
he
k that this is well-de�ned:
πŪ(f)(κ̄) = πŪ(g)(κ̄) →
[f ]Ū = [g]Ū →
{ᾱ | f(ᾱ) = g(ᾱ)} ∈ Ū →
α ∈ π({ᾱ | f(ᾱ) = g(ᾱ)}) →
α ∈ {β | π(f)(β) = π(g)(β)} →
π(f)(α) = π(g)(α),as desired. 2 (Lemma 17)(2) The 
anoni
al embedding πn,n+1 from Vn to Vn+1 is the identity on κnand sends κn to κn+1; it follows that the image of κ = κ0 in the ω-th iterateis the supremum of the κn's.(3) First note that the set C of κn's has the following property:
(∗) For A ⊆ κ∗ in V ∗: A ∈ U∗ i� A 
ontains all but �nitely many elementsof C.For, if A ⊆ κ∗ and A belongs to U∗ then for large enough n we 
an write A as
π∗

n(An), where An ⊆ κn belongs to Un and π∗
n is the 
anoni
al embedding of

Vn into V ∗. Then for su
h n, κn belongs to πn,n+1(An) and therefore to A. If12



A does not belong to U∗ then its 
omplement does and therefore A 
ontainsonly �nitely many elements of C.Lastly we show:Lemma 18 Suppose that U is a normal, κ-
omplete nonprin
ipal ultra�lteron κ in V and C is a subset of κ of ordertype ω su
h that for A ⊆ κ in V :
A ∈ U i� A 
ontains all but �nitely many elements of C. Then C is a Prikrysequen
e for U over V .Proof. Let P denote Prikry for
ing for the ultra�lter U over V . We showthat G = {(s, A) ∈ P | s is a �nite initial segment of C and C \ s ⊆ A} is
P -generi
 over V .Let D ∈ V be open dense on P . For ea
h s ∈ [κ]<ω let Fs : [κ]<ω → 2be de�ned by F (t) = 1 i� max(s) < min(t) and for some X, (s ∪ t, X) ∈ D.Choose As ∈ U su
h that Fs is 
onstant on [As]

n for ea
h n. If there is an Xsu
h that (s, X) ∈ D then 
hoose su
h an X = Xs and de�ne Bs = As ∩Xs;otherwise set Bs = As.Let A be the diagonal interse
tion of the Bs, i.e., the set of α < κ su
hthat α belongs to Bs whenever max(s) is less than α. (It is easy to show that
A belongs to U , as ea
h Bs does.) Note that for all s, if (s, X) ∈ D for some
X, then (s, Bs) ∈ D and therefore (s, A \ (max(s) + 1)) ∈ D.By hypothesis there is a �nite initial segment s of C su
h that A 
ontains
C \ s. As D is dense we 
an 
hoose an extension (s ∪ t, X) of (s, A) whi
hbelongs to D (with max(s) < min(t)). As A \ (max(s) + 1) is homogeneousfor Fs, it follows that for any u ⊆ C \ (max(s) + 1) of the same size as t,
(s ∪ u, Y ) belongs to D for some Y and therefore (s ∪ u, A \ (max(u) + 1))belongs to D. By 
hoosing u to be an initial segment of C \ s, the 
ondition
(s ∪ u, A \ (max(u) + 1)) is in D ∩ G, as desired. 27.VorlesungThe singular 
ardinal hypothesisThe Singular 
ardinal hypothesis (SCH) is the statement: For every sin-gular 
ardinal κ, if 2
of κ < κ then κ
of κ = κ+.13



Note that κ
of κ is always at least κ+, as by König's theorem, if 〈κi |
i < 
of κ〉 is a 
o�nal in
reasing sequen
e of 
ardinals less than κ, then
κ =

∑
i<
of κ

κi <
∏

i<
of κ
κ = κ
of κ. Thus the SCH follows from theGCH. And the SCH implies that the GCH must hold at singular strong limit
ardinals, as for su
h λ, 2
of λ < λ and therefore 2λ = λ
of λ = λ+ by theSCH.Under SCH, 
ardinal exponentiation is 
ompletely determined by the be-haviour of the 
ontinuum fun
tion κ 7→ 2κ for regular κ:Theorem 19 Assume SCH.(a) If κ is a singular 
ardinal then 2κ is 2<κ if the 
ontinuum fun
tion iseventually 
onstant below κ, and is (2<κ)+ otherwise.(b) If κ, λ are any in�nite 
ardinals, then:(b1) If κ ≤ 2λ then κλ = 2λ.(b2) If 2λ < κ and λ < 
of κ then κλ = κ.(b3) If 2λ < κ and 
of κ ≤ λ then κλ = κ+.Proof. (a) For any limit 
ardinal κ, 2κ = (2<κ)
of κ. If κ is singular and the
ontinuum fun
tion is eventually 
onstant below κ then 
hoose µ < κ su
hthat 
of κ < µ and 2µ = 2<κ; then we have 2κ = (2<κ)
of κ = (2µ)
of κ =

2µ = 2<κ. If the 
ontinuum fun
tion is not eventually 
onstant below κ then
λ = 2<κ has 
o�nality 
of κ and 2
of κ < λ; by the SCH, 2κ = (2<κ)
of κ =

λ
of λ = λ+ = (2<κ)+.(b) Fix λ; we prove this by indu
tion on κ. (b1) holds as κλ ≤ (2λ)λ = 2λ ≤
κλ. Assume that 2λ < κ. If κ is a su

essor 
ardinal ν+ then by indu
tion
νλ is either 2λ, ν or ν+; in any 
ase it is at most κ. So as λ < κ, κλ =
(ν+)λ = ν+ · νλ = κ. If κ is a limit 
ardinal, then by indu
tion νλ < κfor all ν < κ. So if λ < 
of κ we have κλ = κ. If λ ≥ 
of κ then we have
κλ ≤

∏
i<
of κ

κλ
i ≤

∏
i<
of κ

κ = κ
of κ ≤ κλ; so κλ = κ
of κ and as
2
of κ ≤ 2λ < κ, the latter is κ+ by the SCH. 2The analog of Cohen's result for the SCH is:Theorem 20 (Gitik) Suppose that K is an inner model satisfying GCHwhi
h 
ontains a totally measurable 
ardinal κ (i.e., a 
ardinal κ of Mit-
hell order κ++). Then there is a generi
 extension K[G] of K in whi
h κ isa singular strong limit 
ardinal of 
o�nality ω and GCH fails at κ.14



By work of Mit
hell, a totally measurable 
ardinal is ne
essary. Now 
on-sider the following weak analogue of Easton's result for the singular 
ardinalhypothesis:(Global Gitik) GCH fails on a proper 
lass of singular strong limit 
ardinals.The proof of the previous theorem shows:Theorem 21 Suppose that K is an inner model satisfying GCH whi
h 
on-tains a proper 
lass of totally measurable 
ardinals. Then there is a generi
extension K[G] of K in whi
h Global Gitik holds.Is Global Gitik internally 
onsistent relative to large 
ardinals? In analogyto Easton's theorem, we might expe
t to show that the generi
 extension
K[G] of Theorem 21 
an be obtained as an inner model. This is however nottrue for the natural 
hoi
e of K, using 
overing arguments. The following isjoint with Tomá² Futá².Theorem 22 Suppose that there is a # for a proper 
lass of totally measu-rable 
ardinals and let K be the �natural� inner model with a 
lass of totallymeasurable 
ardinals. (K is obtained by taking the least iterable mouse mwith a measurable limit of totally measurable 
ardinals and iterating its topmeasure to in�nity.) Then there is no inner model of the form K[G], where
G is generi
 over K, in whi
h Global Gitik holds.On the other hand, it is possible to 
hoose K di�erently, so as to witnessthe internal 
onsisten
y relative to large 
ardinals of Global Gitik:Theorem 23 Suppose that there is an inner model 
ontaining a measurablelimit κ of totally measurable 
ardinals, where κ is 
ountable in V . Then thereis an inner model in whi
h Global Gitik holds.This is proved as follows: Using the proof of Theorem 21, for
e over thegiven inner model to obtain a failure of the GCH on a set of singular stronglimit 
ardinals 
o�nal in κ. This for
ing preserves the measurability of κ.Using the 
ountability of κ, the generi
 exists in V . Now iterate κ to in�nity;the resulting model is a model of Global Gitik.What is the internal 
onsisten
y strength of Global Gitik, i.e., what large
ardinal hypothesis must hold to guarantee an inner model of Global Gitik?15



Theorem 23 provides an upper bound, but the optimal upper bound is notyet known. 8.VorlesungPart Two. External Consisten
y: Large Cardinals and L-like UniversesWe now turn to a detailed dis
ussion of the outer model program. Firstwe have to say what we mean by �large 
ardinals�.A 
ardinal κ is ina

essible i� it is un
ountable, regular and larger thanthe power set of any smaller 
ardinal. It ismeasurable i� there is a κ-
omplete,nonprin
ipal ultra�lter on κ.Measurability is equivalent to a property expressed in terms of embed-dings, and stronger large 
ardinal properties are also expressed in this way.As usual, V denotes the universe of all sets. Let M be an inner model, i.e.,a transitive proper 
lass that satis�es the axioms of ZFC. A 
lass fun
tion
j : V → M is an embedding i� it preserves the truth of formulas with parame-ters in the language of set theory and is not the identity. If j is an embeddingthen there is a least ordinal κ su
h that j(κ) 6= κ, 
alled the 
riti
al point of
j, whi
h is a measurable 
ardinal.For an ordinal α, j : V → M is α-strong i� Vα is 
ontained in M . A
ardinal κ is α-strong i� there is an α-strong embedding with 
riti
al point
κ. Strong means α-strong for all α.Kunen showed that no embedding is strong. However a 
ardinal 
an bestrong, as embeddings witnessing its α-strength 
an vary with α. Strongerproperties are obtained by requiring j : V → M to have strength dependingon the image under j of its 
riti
al point. For example, κ is superstrongi� there is a nontrivial elementary embedding j : V → M with 
riti
alpoint κ whi
h is j(κ)-strong. An important weakening of superstrength isthe property that for ea
h f : κ → κ there is a κ̄ < κ 
losed under f anda nontrivial elementary embedding j : V → M with 
riti
al point κ̄ whi
his j(f)(κ̄)-strong; su
h κ are known as Woodin 
ardinals. The 
onsisten
ystrength of the existen
e of a Woodin 
ardinal is stri
tly between that of astrong 
ardinal and a superstrong 
ardinal.16



We 
an demand more than superstrength. A 
ardinal κ is hyperstrong i� itis the 
riti
al point of an embedding j : V → M whi
h is j(κ)+1-strong. Fora �nite n > 0, n-superstrength is obtained by requiring j to be jn(κ)-strong,where j1 = j, jk+1 = j ◦ jk. Finally, κ is ω-superstrong i� it is the 
riti
alpoint of an embedding j : V → M whi
h is n-superstrong for all n. Kunen'sresult shows that no embedding j with 
riti
al point κ is jω(κ) + 1-strong,where jω(κ) is the supremum of the jn(κ) for �nite n.Large 
ardinals and L-like universesRegarding the inner model program: If κ is ina

essible, then κ is alsoina

essible in L, the most L-like model of all. This is not the 
ase for mea-surability, however if κ is measurable then κ is measurable in an inner model
L[U ], where U is an ultra�lter on κ, whi
h has a de�nable wellordering andin whi
h GCH, ♦, 2 hold and gap 1 morasses exist. For a strong 
ardinal
κ there is a similarly L-like inner model L[E] in whi
h κ is strong, where
E now is not a single ultra�lter, but rather a sequen
e of generalised ultra-�lters, 
alled extenders. More re
ent work yields similar results for Woodin
ardinals, and even for Woodin limits of Woodin 
ardinals.However, progress beyond that has been impeded by the so-
alled iter-ability problem.The outer model program: Can we obtain L-like outer models with large
ardinals? For ina

essibles one has the following result of Jensen:Theorem 24 (L-
oding) There is a generi
 extension V [G] of V su
h thata. ZFC holds in V [G].b. V [G] = L[R] for some real R.
. Every ina

essible 
ardinal of V remains ina

essible in V [G].There are similar L[U ] and L[E] 
oding theorems, providing outer modelsof the form L[U ][R] and L[E][R], R a real, whi
h are just as L-like as L[U ]and L[E], preserving measurability and strength, respe
tively.However the approa
h via 
oding is limited in its use. Obtaining L-likeouter models via 
oding depends on the existen
e of L-like inner models, su
has L[U ] or L[E], whi
h, as we have observed, are not known to exist beyond17



Woodin limits of Woodin 
ardinals. And there are problems with the 
odingmethod itself whi
h arise already just past a strong 
ardinal.A more promising approa
h is to use iterated for
ing. To illustrate this,
onsider the problem of making the GCH true in an outer model. Begin withan arbitrary model V of ZFC. Using for
ing, we 
an add a fun
tion from ℵ1onto 2ℵ0 without adding reals, thereby making CH true. By for
ing again,we add a fun
tion from (the possibly new) ℵ2 onto (the possibly new) 2ℵ1without adding subsets of ℵ1, thereby obtaining 2ℵ1 = ℵ2. Continue thisinde�nitely (via a reverse Easton iteration) and the result is a model of theGCH.Do we preserve large 
ardinal properties if we make GCH true in thisway? The answer is Yes. 9.VorlesungTheorem 25 (Large 
ardinals and the GCH) If κ is superstrong then thereis an outer model in whi
h κ is still superstrong and the GCH holds. Thesame holds for hyperstrong, n-superstrong for �nite n and ω-superstrong.Proof. First we des
ribe in more detail the above iteration to make GCHtrue. By indu
tion on α we de�ne the iteration Pα of length α: P0 is thetrivial for
ing. For limit λ, Pλ is the inverse limit of the Pα, α < λ, if λ issingular and is the dire
t limit of the Pα, α < λ, if λ is regular. For su

essor
α + 1, Pα+1 = Pα ∗ Qα, where Qα is the for
ing that 
ollapses 2ℵα to ℵα+1using 
onditions of size at most ℵα. For any 
ardinal κ of the form iα+1, theentire iteration P 
an be fa
tored as Pκ ∗ P κ, where Pκ has a dense subsetof size κ and P κ is κ+-
losed. In parti
ular, strongly ina

essible 
ardinalsremain strongly ina

essible after for
ing with P .Now suppose that κ is superstrong, witnessed by the embedding j : V →
M , and that G is P -generi
. Let P ∗ denote M 's version of P . To showthat κ is superstrong in V [G], it su�
es to �nd a P ∗-generi
 G∗ su
h that
V

V [G]
j(κ) ⊆ M [G∗] and G∗ 
ontains j[G], the pointwise image of G under j,as a sub
lass: Given su
h a G∗, extend the embedding j to an embedding

j∗ : V [G] → M [G∗] by sending σG to j(σ)G∗ , for an arbitrary P -name σ.This is well-de�ned and elementary by the truth lemma, as G∗ 
ontains j[G].And j∗ witnesses the superstrength of κ in V [G] as V
V [G]
j(κ) ⊆ M [G∗].18



Now P ∗
α is the same as Pα for α < j(κ), as j is a superstrong embedding.The �rst di�eren
e between P ∗ and P is at j(κ): P ∗

j(κ) is the dire
t limit ofthe Pα, α < j(κ), as j(κ) is ina
essible in M ; but j(κ) is not ne
essarilyregular in V and therefore it is possible that Pj(κ) is the inverse limit of the
Pα, α < j(κ). So we 
annot simply 
hoose G∗

j(κ) to be Gj(κ), as the latter isgeneri
 for the wrong for
ing.But this problem is easily �xed: As j(κ) is in fa
t Mahlo in M , it followsthat P ∗

j(κ) has the j(κ)-

 in M : If ∆ ∈ M is a maximal anti
hain in P ∗

j(κ)then by Mahloness ∆0 = ∆ ∩ P ∗
α is a maximal anti
hain in P ∗

α for someregular α < j(κ); but then ∆0 is a maximal anti
hain in the entire P ∗

j(κ) asby Easton support, any 
ondition in P ∗

j(κ) is the join of a 
ondition in P ∗
αwith a 
ondition with no support below α, and therefore is 
ompatible withan element of ∆0. So any G∗

j(κ) 
ontained in P ∗

j(κ) whose interse
tion withea
h Pα, α < j(κ), is Pα-generi
 must also be P ∗

j(κ)-generi
. It follows that we
an take G∗

j(κ) to simply be the interse
tion of Gj(κ) with P ∗

j(κ). Noti
e that
G∗ ∩ Vj(κ) equals G ∩ Vj(κ) and trivially 
ontains the pointwise image of Gκunder j as j is the identity below κ.Finally we must de�ne a generi
 G∗, j(κ) for the �upper part� P ∗, j(κ) ofthe P ∗ iteration, whi
h starts at j(κ) and is de�ned in the ground model
M [G∗

j(κ)]. In addition, G∗, j(κ) must 
ontain the pointwise image of Gκ under
j∗, where j∗ is the lifting of j to V [Gκ] and Gκ is generi
 for P κ, an iterationstarting at κ de�ned over the ground model V [Gκ].In fa
t this latter requirement 
ompletely determines G∗, j(κ):Lemma 26 j∗[Gκ] generates a P ∗, j(κ)-generi
 over M [G∗

j(κ)], i.e., ea
h pre-dense sub
lass of P ∗, j(κ) whi
h is de�nable over M [G∗

j(κ)] has an elementwhi
h is extended by a 
ondition in j∗[Gκ].Proof. We only 
onsider predense subsets of P ∗, j(κ) in M [G∗

j(κ)]; a similarargument works for predense sub
lasses.We 
an assume that j : V → M is given as an extender ultrapowerembedding. This means that ea
h element of M is of the form j(f)(a), where
a belongs to V M

j(κ) = Vj(κ) and f is a fun
tion (in V ) with domain Vκ. To seethis, it su�
es to show that the 
lass H = {j(f)(a) | a ∈ Vj(κ), f a fun
tion19



with domain Vκ} is an elementary submodel of M , for then we 
an repla
e
j by πj, where π is the transitive 
ollapse of H . Now for any f1, . . . , fnwith domain Vκ and any formula ϕ(x1, . . . , xn, y) let f be a fun
tion withdomain Vκ su
h that for any b1, . . . , bn in Vκ, if ϕ(f(b1), . . . , f(bn), y) holdsfor some y then y 
an be taken to be f(〈b1, . . . , bn〉). Then for any a1, . . . , anin V M

j(κ) = Vj(κ), if ϕ(j(f1)(a1), . . . , j(fn)(an), y) holds for some y in M then y
an be taken to be j(f)(〈a1, . . . , an〉). It follows that H is elementary in M .Now let D be a predense subset of P ∗, j(κ) in M [G∗

j(κ)]. D is of the form
σG∗

j(κ) where the name σ 
an be written as j(f)(a) with f and a as above.Now using the κ+-
losure of P κ, 
hoose a 
ondition p in Gκ whi
h extendsan element of f(ā) whenever ā belongs to Vκ and f(ā)Gκ is predense on
P ∗, κ. Then j∗(p) belongs to j∗[Gκ] and extends an element of j(f)(a)G∗

j(κ) =

σG∗

j(κ) = D, as desired. 2 (Lemma 26)This 
ompletes the 
onstru
tion of G∗ and therefore the proof that Ppreserves superstrong 
ardinals.10.-12.VorlesungenNow suppose that κ is hyperstrong. We need to �nd a P ∗-generi
 G∗su
h that V
V [G]
j(κ)+1 ⊆ M [G∗] and G∗ 
ontains j[G] as a sub
lass. Note that

V
V [G]
j(κ)+1 equals Vj(κ)+1[Gj(κ)] so for the former 
ondition it su�
es to have

G∗

j(κ) = Gj(κ).The for
ings Pj(κ)+1 = Pj(κ) ∗Qj(κ) and P ∗

j(κ)+1 agree as j(κ) is regular in
V and M 
ontains Vj(κ)+1. We take G∗

j(κ) to be Gj(κ). Also, j∗[gκ], where j∗ isthe lifting of j to V [Gκ] and gκ is the QGκ
κ -generi
 
hosen by G at stage κ ofthe iteration, is a set of 
onditions in Q
Gj(κ)

j(κ) whi
h belongs to M [Gj(κ)] andhas size 2κ there; therefore j∗[gκ] has a lower bound in Q
Gj(κ)

j(κ) . By 
hoosingour generi
 G so that gj(κ) in
ludes this lower bound (or by modifying G toa P -generi
 G′ in V [G] so that g′

j(κ) will 
ontain this lower bound), we 
ansu

eed in lifting j to V [Gκ+1]. We may assume that j : V → M is given bya hyperextender ; this means that ea
h element of M is of the form j(f)(a)where f is a fun
tion in V with domain Vκ+1 and a is an element of Vj(κ)+1.Then we 
an use the argument from the superstrong 
ase to generate theentire generi
 G∗ 
ontaining j[G]. 20



The 
ase of n-superstrongs raises a new di�
ulty. We �rst treat the 
ase
n = 2. As in the superstrong 
ase, P and P ∗ may take di�erent limits at
j2(κ), as the latter may be singular in V . As in that 
ase, we 
an obtain a
P ∗

j2(κ)-generi
 by interse
ting Gj2(κ) with P ∗

j2(κ). However we must also ensurethat G∗

j2(κ) 
ontain j[Gj(κ)] as a subset. Write Pj(κ) as Pκ ∗P κ
j(κ); it su�
es toarrange that G∗

j2(κ) 
ontain j∗[Gκ
j(κ)] as a subset, where j∗ is the lifting of jto V [Gκ] and Gκ

j(κ) is P κ
j(κ)-generi
 over V [Gκ].We argue as follows. If j[j(κ)] is bounded in j2(κ) then the set of 
on-ditions j∗[Gκ

j(κ)] has a lower bound in P ∗

j2(κ) ⊆ Pj2(κ). Otherwise j2(κ) issingular, so Pj2(κ) is an inverse limit and again the set of 
onditions j∗[Gκ
j(κ)]has a lower bound in Pj2(κ). We therefore assume that our generi
 G has be-en 
hosen so that Gj2(κ) 
ontains the greatest lower bound of j∗[Gκ

j(κ)]. Thenwe 
an take G∗

j2(κ) to be the interse
tion of Gj2(κ) with P ∗

j2(κ) and therebyobtain j[Gj(κ)] ⊆ G∗

j2(κ). This allows us to lift j to V [Gj(κ)]. Then we 
an usethe argument from the superstrong 
ase to generate the entire generi
 G∗
ontaining j[G].For the 
ase n > 2 the argument is similar; we must 
hoose Gjn(κ) to
ontain the greatest lower bound of j∗[G
jn−2(κ)
jn−1(κ)], where j∗ is the lifting of jto the model V [Gjn−2(κ)].Finally we 
onsider ω-superstrength. Again we must 
hoose G∗ to be

P ∗-generi
 over M and to 
ontain the pointwise image of G under j. Let
jω(κ) denote the supremum of the jn(κ), n ∈ ω. As before it su�
es to �nd
G∗

jω(κ) whi
h is P ∗

jω(κ)-generi
 and 
ontains j[Gjω(κ)] as a subset. Note that
j[Gκ] = Gκ is trivially 
ontained in Gjω(κ) and j∗[Gκ

jω(κ)] has a lower bound in
P κ

jω(κ) (as de�ned in V [Gκ]); by 
hoosing Gjω(κ) to 
ontain this lower boundwe 
an take G∗

jω(κ) to be Gjω(κ)∩P ∗

jω(κ) and thereby obtain j[Gjω(κ)] ⊆ G∗

jω(κ).And again we 
an use the argument from the superstrong 
ase to generatethe entire generi
 G∗ 
ontaining j[G]. So it only remains to show:Lemma 27 Gjω(κ) ∩ P ∗

jω(κ) is P ∗

jω(κ)-generi
 over M .Proof. Suppose that D ∈ M is dense on P ∗

jω(κ) and write D as j(f)(a) where fhas domain Vjω(κ) and a belongs to Vjn+1(κ) for some n. (We may assume thatevery element of M is of this form.) Choose p in Gjω(κ) su
h that p redu
es21



f(ā) below jn(κ) whenever ā belongs to Vjn(κ) and f(ā) is open dense on
Pjω(κ), in the sense that if q extends p then q 
an be further extended into
f(ā) without 
hanging q at or above jn(κ). Su
h a p exists using the jn(κ)+-
losure of P

jn(κ)
jω(κ) in V [Gjn(κ)]. Then j(p) belongs to j[Gjω(κ)] and redu
es Dbelow jn+1(κ). As Gjn+1(κ) is Pjn+1(κ)-generi
 and P , P ∗ agree below jn+1(κ),it follows that Gjω(κ) ∩ P ∗

jω(κ) interse
ts D, as desired. 2 (Lemma 27)This 
ompletes the proof of the Theorem. 2Jensen's (global) 2 prin
iple asserts the existen
e of a sequen
e 〈Cα | αsingular〉 su
h that Cα has ordertype less than α for ea
h α and Cᾱ = Cα∩ ᾱwhenever ᾱ ∈ Lim Cα. The following strengthens a result of Doug Burke:Theorem 28 (Superstrong 
ardinals and 2) If κ is superstrong then thereis an outer model in whi
h κ is still superstrong and 2 holds.Proof. We may assume the GCH. Consider now the reverse Easton iteration
P where at the regular stage α, Qα is a Pα-name for the for
ing whi
h addsa 2-sequen
e on the singular limit ordinals less than α. A 
ondition in Qα isa sequen
e 〈Cβ | β ≤ γ, β singular〉, γ < α, su
h that Cβ has ordertype lessthan β for ea
h β and Cβ̄ = Cβ ∩ β̄ whenever β̄ belongs to Lim Cβ.Using the fa
t that Pα for
es 2-sequen
es of any regular length less than
α, it is easy to verify by indu
tion that any 
ondition in Qα 
an be extendedto have arbitrarily large length less than α. Also Qα, and indeed the entireiteration from stage α on, is α-distributive.Let P ∗ denote M 's version of P . We want to 
onstru
t G∗ to be P ∗-generi
 over M , to agree with G stri
tly below j(κ) and to 
ontain j[G] as asub
lass. As in earlier arguments, P and P ∗ agree stri
tly below j(κ) but notne
essarily at j(κ), whi
h is regular in M but may be singular in V ; as beforewe take G∗

j(κ) to be Gj(κ) ∩ P ∗

j(κ). Our new task is to de�ne a Q∗

j(κ)-generi
 gover M [G∗

j(κ)].Lemma 29 Assume GCH and let j : V → M witness the superstrength of
κ with j(κ) minimal. Then j(κ) has 
o�nality κ+.Proof. Let 〈fi | i < κ+〉 be a list of all fun
tions from κ to κ. Then thesequen
e 〈j(fi) | i < κ〉 belongs to M , as it equals j(〈fi | i < κ+〉) ↾ κ. For22



any ordinal α < κ+ we 
an use a bije
tion between α and κ and similarly
on
lude that 〈j(fi) | i < α〉 belongs to M .Now for ea
h α < κ+ let κα be least so that κα is 
losed under ea
h j(fi),
i < α. Then κα is less than j(κ), as j(κ) is regular in M . Let κ∗ be the supre-mum of the κα's. It su�
es to show that there is a superstrong embedding
j∗ with 
riti
al point κ su
h that j∗(κ) = κ∗; then by the minimality of j(κ),we must have j(κ) = κ∗ and therefore j(κ) has 
o�nality κ+.To obtain j∗ de�ne H = {j(f)(a) | f : Vκ → V , a ∈ Vκ∗}. Then H is anelementary submodel of M and H ∩ j(κ) = κ∗. Let π : H ≃ M∗; then j∗ =
πj : V → M∗ witnesses the superstrength of κ and j∗(κ) = π(j(κ)) = κ∗, asdesired. 2We 
an assume that j is given by an ultrapower, and therefore that j is
ontinuous at κ+. It follows that (j(κ)+)M has 
o�nality κ+. Therefore we
an write the 
olle
tion of κ+-many open dense subsets of Q∗

j(κ) as the unionof κ∗ sub
olle
tions, ea
h of size less than j(κ). Now we 
an build g in κ+steps, using j(κ)-distributivity to meet fewer than j(κ) open dense sets atea
h step (and de�ning the 2-sequen
e 
oherently at limit stages). We mustalso ensure that g extend gκ; but this is easy to arrange as the latter is a
ondition in the for
ing Q∗

j(κ).Finally the rest of G∗ 
an be generated from j[G] as before. 2The proof of the previous theorem does not work for hyperstrong κ, andthere is a good reason for this. κ is sub
ompa
t i� for any B ⊆ Hκ+ thereare µ < κ, A ⊆ Hµ+ and an elementary embedding j : (Hµ+ , A) → (Hκ+, B)with 
riti
al point µ. (Note that by elementarity, j must send µ to κ.)Proposition 30 (a) If κ is hyperstrong then κ is sub
ompa
t. (b) (Jensen)If there is a sub
ompa
t 
ardinal then 2 (even when restri
ted to ordinalsbetween κ and κ+) fails.Proof. (a) Suppose that j : V → M witnesses hyperstrength. Then for allsubsets B of j(κ)+ in the range of j, j gives an elementary embedding of
(Hκ+, A) into (Hj(κ)+ , B), where j(A) = B; moreover this embedding belongsto M as j is hyperstrong and j ↾ Hκ+ belongs to Hj(κ)+. As the range of j is anelementary submodel of M , it follows that there is an elementary embedding23



of some (Hµ+ , A) into (Hj(κ)+ , B) (sending µ to j(κ)) whi
h belongs to therange of j. So j(κ) is sub
ompa
t in Range j and therefore by elementaritysub
ompa
t in M . As j is elementary, κ is sub
ompa
t in V .(b) Suppose that κ is sub
ompa
t and ~C = 〈Cα | κ < α < κ+, α singular〉has the properties of a 2-sequen
e. By thinning out the Cα's we 
an ensurethat ea
h has ordertype at most κ. Let j be an embedding from (Hµ+ , ~̄C)to (Hκ+ , ~C), sending µ to κ. Let α be the supremum of the ordinals in therange of j. Then α has 
o�nality µ+. The ordinals in the range of j form a
< µ-
losed and therefore ω-
losed unbounded subset of α. And Lim Cα is a
losed unbounded subset of α. Therefore the interse
tion D of these two setsis unbounded in α. By the 
oheren
e property of ~C, the ordertype of Cβ forsu�
iently large β in D is at least µ. But as the ordertype of Cα is at most
κ (in fa
t less than κ), the ordertype of Cβ for all β in D is stri
tly less than
κ. Thus there are β in D ⊆ Range j with Cβ of ordertype not in Range j,
ontradi
ting the elementarity of j. 213.-14.VorlesungenAnother important property of L is the existen
e of a de�nable wellorde-ring of the universe.Theorem 31 (Large 
ardinals and de�nable wellorderings) If κ is super-strong then there is an outer model in whi
h κ is still superstrong and thereis a de�nable wellordering of the universe. The same holds for hyperstrong,
n-superstrong for �nite n and ω-superstrong.Proof.We may assume the GCH. Let κ have one of the large 
ardinal proper-ties mentioned in the theorem, as witnessed by the embedding j : V → M .Choose λ to be a 
ardinal greater than jω(κ). By the method of L-
oding,we 
an enlarge V without adding subsets of λ to a universe of the form L[A],
A a subset of λ+. By an earlier argument, the embedding j lifts to L[A] andtherefore κ retains its large 
ardinal properties.Now we introdu
e a de�nable wellordering. Perform a reverse Eastoniteration of length λ+, indexed by su

essor 
ardinals greater than λ+, whereat the i-th su

essor 
ardinal, an i+-Cohen set is added i� i belongs to A.The result is that i belongs to A i� not every subset of the su

essor ofthe i-th su

essor 
ardinal is 
onstru
tible from a subset of the i-th su

essor24




ardinal. Now the result of this iteration is a model of the form L[B] where Bis a subset of λ(λ+), the �λ+-th 
ardinal greater than λ�. Repeat this to 
ode
B using the next interval of su

essor 
ardinals. Continuing this inde�nitelyyields a model with a wellordering de�nable from the parameter λ.To eliminate the parameter λ, use a pairing fun
tion f : Ord×Ord → Ordon the ordinals and arrange that the universe is of the form L[C] where Cis a 
lass of ordinals and for any i, i is in C i� some subset of the su

essorto the f(i, j)-th su

essor 
ardinal is not 
onstru
tible from a subset of the
f(i, j)-th su

essor 
ardinal, for all su�
iently large j. 2Jensen's (global) 2 prin
iple asserts the existen
e of a sequen
e 〈Cα | αsingular〉 su
h that Cα has ordertype less than α for ea
h α and Cᾱ = Cα∩ ᾱwhenever ᾱ ∈ Lim Cα. The following strengthens a result of Doug Burke.Theorem 32 (Superstrong 
ardinals and 2) If κ is superstrong then thereis an outer model in whi
h κ is still superstrong and 2 holds.Proof. We may assume the GCH. Consider now the reverse Easton iteration
P where at the regular stage α, Qα is a Pα-name for the for
ing whi
h addsa 2-sequen
e on the singular limit ordinals less than α. A 
ondition in Qα isa sequen
e 〈Cβ | β ≤ γ, β singular〉, γ < α, su
h that Cβ has ordertype lessthan β for ea
h β and Cβ̄ = Cβ ∩ β̄ whenever β̄ belongs to Lim Cβ.Using the fa
t that Pα for
es 2-sequen
es of any regular length less than
α, it is easy to verify by indu
tion that any 
ondition in Qα 
an be extendedto have arbitrarily large length less than α. Also Qα, and indeed the entireiteration from stage α on, is α-distributive.Let P ∗ denote M 's version of P . We want to 
onstru
t G∗ to be P ∗-generi
 over M , to agree with G stri
tly below j(κ) and to 
ontain j[G] as asub
lass. As in earlier arguments, P and P ∗ agree stri
tly below j(κ) but notne
essarily at j(κ), whi
h is regular in M but may be singular in V ; as beforewe take G∗

j(κ) to be Gj(κ) ∩ P ∗

j(κ). Our new task is to de�ne a Q∗

j(κ)-generi
 gover M [G∗

j(κ)].Lemma 33 Assume GCH and let j : V → M witness the superstrength of
κ with j(κ) minimal. Then j(κ) has 
o�nality κ+.25



Proof. Let 〈fi | i < κ+〉 be a list of all fun
tions from κ to κ. Then thesequen
e 〈j(fi) | i < κ〉 belongs to M , as it equals j(〈fi | i < κ+〉) ↾ κ. Forany ordinal α < κ+ we 
an use a bije
tion between α and κ and similarly
on
lude that 〈j(fi) | i < α〉 belongs to M .Now for ea
h α < κ+ let κα be least so that κα is 
losed under ea
h j(fi),
i < α. Then κα is less than j(κ), as j(κ) is regular in M . Let κ∗ be the supre-mum of the κα's. It su�
es to show that there is a superstrong embedding
j∗ with 
riti
al point κ su
h that j∗(κ) = κ∗; then by the minimality of j(κ),we must have j(κ) = κ∗ and therefore j(κ) has 
o�nality κ+.To obtain j∗ de�ne H = {j(f)(a) | f : Vκ → V , a ∈ Vκ∗}. Then H is anelementary submodel of M and H ∩ j(κ) = κ∗. Let π : H ≃ M∗; then j∗ =
πj : V → M∗ witnesses the superstrength of κ and j∗(κ) = π(j(κ)) = κ∗, asdesired. 2We 
an assume that j is given by an ultrapower, and therefore that j is
ontinuous at κ+. It follows that (j(κ)+)M has 
o�nality κ+ and H(j(κ)+)M is
losed under κ-sequen
es. Therefore we 
an write the 
olle
tion of (j(κ)+)M -many open dense subsets of Q∗

j(κ) as the union of κ+ sub
olle
tions, ea
h ofwhi
h belongs to M [G∗

j(κ)] and has size less than j(κ) there. Now we 
an build
g in κ+ steps, using j(κ)-distributivity to meet fewer than j(κ) open densesets at ea
h step (and de�ning the 2-sequen
e 
oherently at limit stages).We must also ensure that g extend gκ; but this is easy to arrange as the latteris a 
ondition in the for
ing Q∗

j(κ).Finally the rest of G∗ 
an be generated from j[G] as before. 2The proof of the previous theorem does not work for hyperstrong κ, andthere is a good reason for this. κ is sub
ompa
t i� for any B ⊆ Hκ+ thereare µ < κ, A ⊆ Hµ+ and an elementary embedding j : (Hµ+ , A) → (Hκ+, B)with 
riti
al point µ. (Note that by elementarity, j must send µ to κ.)Proposition 34 (a) If κ is hyperstrong then κ is sub
ompa
t. (b) (Jensen)If there is a sub
ompa
t 
ardinal then 2 (even when restri
ted to ordinalsbetween κ and κ+) fails.Proof. (a) Suppose that j : V → M witnesses hyperstrength. Then for allsubsets B of j(κ)+ in the range of j, j gives an elementary embedding of26



(Hκ+, A) into (Hj(κ)+ , B), where j(A) = B; moreover this embedding belongsto M as j is hyperstrong and j ↾ Hκ+ belongs to Hj(κ)+. As the range of j is anelementary submodel of M , it follows that there is an elementary embeddingof some (Hµ+ , A) into (Hj(κ)+ , B) (sending µ to j(κ)) whi
h belongs to therange of j. So j(κ) is sub
ompa
t in Range j and therefore by elementaritysub
ompa
t in M . As j is elementary, κ is sub
ompa
t in V .(b) Suppose that κ is sub
ompa
t and ~C = 〈Cα | κ < α < κ+, α singular〉has the properties of a 2-sequen
e. By thinning out the Cα's we 
an ensurethat ea
h has ordertype at most κ. Let j be an embedding from (Hµ+ , ~̄C)to (Hκ+ , ~C), sending µ to κ. Let α be the supremum of the ordinals in therange of j. Then α has 
o�nality µ+. The ordinals in the range of j form a
< µ-
losed and therefore ω-
losed unbounded subset of α. And Lim Cα is a
losed unbounded subset of α. Therefore the interse
tion D of these two setsis unbounded in α. By the 
oheren
e property of ~C, the ordertype of Cβ forsu�
iently large β in D is at least µ. But as the ordertype of Cα is at most
κ (in fa
t less than κ), the ordertype of Cβ for all β in D is stri
tly less than
κ. Thus there are β in D ⊆ Range j with Cβ of ordertype not in Range j,
ontradi
ting the elementarity of j. 2For un
ountable, regular κ, ♦κ says that there exists 〈Dα | α < κ〉 su
hthat Dα is a subset of α for ea
h α and for every subset D of κ, {α < κ |
Dα = D∩α} is stationary in κ.♦ asserts that♦κ holds for every un
ountable,regular κ.Theorem 35 (Large 
ardinals and ♦) If κ is superstrong then there is anouter model in whi
h κ is still superstrong and ♦ holds. The same holds forhyperstrong, n-superstrong for �nite n and ω-superstrong.Proof.We use a reverse Easton iteration P where at ea
h regular stage α, Qαis α-distributive (in fa
t, in the present 
ontext the entire iteration startingwith α is α-
losed). A 
ondition in Qα is a sequen
e 〈Dβ | β < γ〉, γ < α,su
h that Dβ is a subset of β for ea
h β < γ. It is easy to show that a
Qα-generi
 yields a ♦α-sequen
e, using the α-
losure of Qα.The proof in the superstrong 
ase is just as in Theorem 32, where we take
G∗

j(κ) to be the interse
tion of Gj(κ) with P ∗

j(κ) and then build a Q∗

j(κ)-generi

ontaining the 
ondition gκ. For hyperstrong κ (witnessed by j : V → M),we need only observe that j[Gκ+ ] has a lower bound in the for
ing P ∗

j(κ)+27



and 
hoose G∗

j(κ)+ = Gj(κ)+ to 
ontain this lower bound. (This is where theargument with 2 breaks down.)For n-superstrongs, 1 < n �nite, we 
an take G∗

jn(κ) to be the interse
tionof Gjn(κ) with P ∗

jn(κ) (requiring the latter to 
ontain the greatest lower boundof j[Gjn−1(κ)]), but fa
e the problem of de�ning a Q∗

jn(κ)-generi
 
ontaining theimage of gjn−1(κ) under (the lifting to V [Gjn−1(κ)] of) j. We use the following.Lemma 36 Suppose that n is greater than 1 and j : V → M witnesses the
n-superstrength of κ, with jn(κ) 
hosen minimally. Then j is 
ontinuous at
jn−1(κ) (i.e., the range of j is 
o�nal in jn(κ)).Proof. Let κ∗ be the supremum of the range of j interse
t jn(κ). It su�
es toshow that there is an n-superstrong embedding j∗ with 
riti
al point κ su
hthat (j∗)n(κ) = κ∗.Let H 
onsist of all elements of M of the form j(f)(a), where f : Vκ → Vand a belongs to Vκ∗ . Then H is an elementary submodel of M : If M �

ϕ(y, j(f1)(a1), . . . , j(fn)(an)) for some y in M , where fi : Vκ → V , ai ∈ Vκ∗for ea
h i, then 
hoose g : Vκ → V so that g(〈x1, . . . , xn〉) = y is a so-lution to ϕ(y, f1(x1), . . . , fn(an)) in V (if there is su
h a solution y in V ).Then by elementarity, M � ϕ(y, j(f1)(a1), . . . , j(fn)(an)) where y equals
j(g)(〈a1, . . . , an〉). The latter is an element of H .Note that H ∩ jn(κ) = κ∗: If j(f)(a) is less than jn(κ), where f : Vκ → Vand a ∈ Vκ∗ , then j(f)(a) is less than the supremum of j(f)[Vα] ∩ jn(κ)where α ∈ Range (j)∩κ∗ is large enough so that Vα 
ontains a; as the lattersupremum belongs to Range (j), it follows that j(f)(a) is less than κ∗.Now let π : H ≃ M∗ be the transitive 
ollapse of H and de�ne j∗ = πj.Then j∗ : V → M∗ is elementary and has 
riti
al point κ. As π sends jn(κ)to κ∗ and is the identity on κ∗, it follows that (j∗)m(κ) = jm(κ) for m < nand (j∗)n(κ) = κ∗. And j∗ is n-superstrong as Vκ∗ = V M

κ∗ = V M∗

κ∗ . 2We may assume that every element of M is of the form j(f)(a) where
f : Vjn−1(κ) → V and a belongs to Vjn(κ). Now we 
laim that the image of
gjn−1(κ) under (the lifting to V [Gjn−1(κ)] of) j generates a generi
 for Q∗

jn(κ),in the sense that every dense subset of Q∗

jn(κ) whi
h belongs to M [G∗

jn(κ)] ismet by a 
ondition in j[gjn−1(κ)]. For, if D is su
h a dense set, then D has a28



name of the form j(f)(a) where a belongs to Vj(α) for some α < jn−1(κ). Bythe jn−1(κ)-
losure of Qjn−1(κ), there is a 
ondition p̄ ∈ gjn−1(κ) whi
h meetsall dense sets with names of the form f(ā), ā ∈ Vα; then j(p̄) = p meets D.Finally, ω-superstrength is handled just as in the 
ase of GCH. 2The te
hnique of the previous proof 
an also be used to for
e a weakenedform of 2, preserving very large 
ardinals. 2 holds at small 
o�nalities i� the
2 prin
iple holds when restri
ted to singular ordinals of 
o�nality at mostthe least superstrong 
ardinal.Theorem 37 If κ is hyperstrong then thre is an outer model in whi
h κ isstill hyperstrong and 2 holds at small 
o�nalities.Proof. Perform a reverse Easton iteration where at ea
h regular stage α, Qαadds a 2-sequen
e on the singular ordinals less than κ whi
h have 
o�nalityat most the least superstrong 
ardinal. If j : V → M witnesses that κ ishyperstrong, then we take G∗

j(κ)+ to be Gj(κ+ and observe that j[gκ+] doeshave a greatest lower bound in Qj(κ)+ , be
ause its supremum is an ordinal of
o�nality κ+, greater than the least superstrong 
ardinal of M . By 
hoosing
g∗

j(κ)+ = gj(κ)+ to 
ontain this greatest lower bound, we 
an lift j to V [Gκ++1],and then to all of V [G]. If j : V → M witnesses the 2-superstrength of κthen similarly we get a greatest lower bound for j[Gj(κ)] in Pj2(κ)] as for ea
hregular α ∈ (κ, j(κ)), the supremum of j[α] is an ordinal of 
o�nality greaterthan κ, whi
h is superstrong (and more) in M . Then we use the argumentof the pre
eding proof to lift j to all of V [G]. A similar argument handles
ω-superstrength. 2Theorem 38 (Large 
ardinals and Gap 1 morasses) If κ is superstrong thenthere is an outer model in whi
h κ is still superstrong and gap 1 morassesexist at ea
h regular 
ardinal. The same holds for hyperstrong, n-superstrongfor �nite n and ω-superstrong.Proof. For the de�nition of a gap 1 morass we refer the reader to Devlin'sbook. Assume GCH and let κ be superstrong. We apply the reverse Eastoniteration P where at ea
h regular stage α, Qα adds a gap 1 morass at α. A
ondition in Qα is a size < α initial segment of a morass up to some toplevel, together with a map of an initial segment of this top level into α+whi
h obeys the requirements of a morass map. To extend a 
ondition, we29



end-extend the morass up to its top level and require that the map from thegiven initial segment of its top level into α+ fa
tor as the 
omposition of amap into the top level of the stronger 
ondition followed by the map givenby the stronger 
ondition into α+. The for
ing Qα is α-
losed and, using a
∆-system argument, is α+-

.To obtain the desired G∗, we must build a Q∗

j(κ)-generi
 whi
h extendsthe image under (the lifting to V[Gκ] of) j of the Qκ-generi
 gκ. As in the
ase of 2 we use minimisation of j(κ) to ensure that it has 
o�nality κ+ andthen build a Q∗

j(κ)-generi
 in κ+ steps. Note that any 
ondition in j[gκ] isextended by one whi
h has top level κ and maps an initial segment of thetop level into j(κ)+ using j. Now given fewer than j(κ) maximal anti
hainsin M [G∗

j(κ)], we 
an 
hoose α < j(κ)+ of 
o�nality j(κ) in M so that thesemaximal anti
hains are maximal when restri
ted to 
onditions whi
h are�below α� in the sense that they map an initial segment of their top levelinto α. Moreover, there is a 
ondition whi
h serves as a lower bound to all
onditions in j[gκ] whi
h are below α in this sense. Therefore we 
an 
hoosea 
ondition below α meeting all of the given maximal anti
hains 
ompatiblywith the 
onditions in j[gκ] whi
h are below α, and therefore 
ompatiblywith all 
onditions in j[gκ]. Repeating this in κ+ steps for in
reasingly large
α < j(κ)+ of M-
o�nality j(κ) (taking unions at limit stages) yields thedesired Q∗

j(κ)-generi
. The remainder of the generi
 G∗ 
an be generated asbefore.Now suppose that κ is hyperstrong. We must de�ne a suitable Q∗

j(κ)+-generi
. We may assume that j is given by a hyperextender and therefore jis 
o�nal from κ++ into j(κ)++ of M . Let S 
onsist of those morass pointsat the top level (i.e., level κ+) of gκ+ whi
h have 
o�nality κ+. For ea
h σin S let gκ+ ↾ σ denote the set of 
onditions in gκ+ whi
h are below σ. Then
j[gκ+ ↾ σ] has a greatest lower bound pσ in Q∗

j(κ)+ .The 
olle
tion of maximal anti
hains of Q∗

j(κ)+ whi
h belong to M [G∗

j(κ)+ ]
an be written as a union ⋃
i<j(κ)+ Xi where for ea
h i and ea
h σ in S,

Xi ↾ j(σ) (the subset of Xi 
onsisting of those maximal anti
hains all of whoseelements are below j(σ)) is a set of size at most j(κ) in M . By indu
tion on
σ ∈ S 
hoose a 
ondition qσ extending pσ and all qτ , τ ∈ S∩σ, whi
h meets allanti
hains in X0 ↾ j(σ). By hyperstrength, the sequen
e of qτ ↾ j(σ), τ ∈ S,has a greatest lower bound p1

σ for ea
h σ ∈ S. Now repeat this 
onstru
tion30



for X1, X2, . . . for j(κ)+ steps, resulting in a set of 
onditions whi
h generatesa generi
 gj(κ)+ for Q∗

j(κ)+ . As before, the remainder of the generi
 G∗ 
an begenerated as before.The 
ases of n-superstrength, 2 ≤ n �nite, are handled as in the proof ofTheorem 35. ω-superstrength is handled as in the 
ase of GCH. 2Questions. 1. The above proofs show that one 
an for
e the GCH and 2preserving the superstrength of all superstrong 
ardinals and GCH preservingthe hyperstrength of all hyperstrong 
ardinals. Is it possible to for
e GCHpreserving the 2-superstrength of all 2-superstrong 
ardinals?2. It is possible to for
e a de�nable wellordering of the universe over a model ofGCH preserving the superstrength of all superstrong 
ardinals, at the 
ost ofsome 
ardinal 
ollapsing. Is it possible to do this without 
ardinal 
ollapsing?Is it possible to preserve the superstrength of all superstrong 
ardinals whilefor
ing not only the universe but also ea
h H(κ), κ > ω1, to have a de�nablewellordering?3. Is it 
onsistent with a superstrong 
ardinal to have a gap 2 morass at everyregular 
ardinal?4. To what extent are the 
ondensation and hyper�ne stru
tural propertiesof L 
onsistent with large 
ardinals?
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