Generic Σ_3^1 Absoluteness

Sy D. Friedman

May 15, 2003

In this article we study the strength of Σ_3^1 absoluteness (with real parameters) in various types of generic extensions, correcting and improving some results from [2]. We shall also make some comments relating this work to the bounded forcing axioms BMM, BPFA and BSPFA.

The statement " Σ_3^1 absoluteness holds for ccc forcing" means that if a Σ_3^1 formula with real parameters has a solution in a ccc set-forcing extension of the universe V, then it already has a solution in V. The analogous definition applies when ccc is replaced by other set-forcing notions, or by class-forcing.

Theorem 1 ([1]) Σ_3^1 absoluteness for ccc has no strength; i.e., if ZFC is consistent then so is $ZFC + \Sigma_3^1$ absoluteness for ccc.

The following results concerning (arbitrary) set-forcing and class-forcing can be found in [2].

Theorem 2 (a) (Feng-Magidor-Woodin) Σ_3^1 absoluteness for arbitrary setforcing is equiconsistent with the existence of a reflecting cardinal, *i.e.* a regular cardinal κ such that $H(\kappa)$ is Σ_2 -elementary in V. (b) Σ_3^1 absoluteness for class-forcing is inconsistent.

We consider next the following set-forcing notions, which lie strictly between ccc and arbitrary set-forcing: proper, semiproper, stationary-preserving and ω_1 -preserving.

Using a variant of an argument due to Goldstern-Shelah (see [5]), we show the following.

Theorem 3 Σ_3^1 absoluteness for semiproper forcing has no strength.

Proof. By an ω_1 -iteration P_0 of semiproper forcing with revised countable support, produce a generic G_0 such that $L[G_0]$ satisfies semiproper absoluteness for Σ_3^1 formulas with real parameters in L. This is possible as there are only ω_1 reals in L and semiproperness is preserved through iteration with revised countable support. We can assume that P_0 has cardinality ω_1 in $L[G_0]$, as if necessary we can follow P_0 by a Lévy collapse with countable conditions to ω_1 . Thus we have $L[G_0] = L[X_0]$, where X_0 is a subset of ω_1 .

Now repeat the above over the model $L[X_0]$, guaranteeing with a semiproper revised countable support iteration of length ω_1 that semiproper absoluteness holds in $L[X_0, X_1]$ for Σ_3^1 formulas with real parameters from $L[X_0]$, where X_1 is a subset of ω_1 . Repeat this for ω_1 stages, producing $L[X_i, i < \omega_1]$, a model where semiproper absoluteness holds for Σ_3^1 formulas with real parameters in $\bigcup_{i < \omega_1} L[X_j, j < i]$.

Claim. Every real in $L[X_i, i < \omega_1]$ belongs to $L[X_j, j < i]$ for some $i < \omega_1$.

Proof of Claim. If R is a real in $L[X_i, i < \omega_1]$ then R belongs to a countable, sufficiently elementary submodel M of $L[X_i, i < \omega_1]$, as well as to the transitive collapse \overline{M} of M. But \overline{M} is equal to $L_{\alpha}[X_i \cap \beta, i < \beta]$, where α is the ordinal height of \overline{M} and β is the ω_1 of \overline{M} . It follows that R belongs to $L[X_i, i < \beta]$. This proves the Claim.

Thus $L[X_i, i < \omega_1]$ is a model of semiproper Σ_3^1 absoluteness for formulas with arbitrary real parameters, as desired. \Box

Remark. In the previous proof, we can begin with any *L*-cardinal κ of *L*-cofinality ω_1^L such that L_{κ} is Σ_2 -elementary in *L* and by "bookkeeping" perform a single semiproper ω_1^L -iteration with revised countable support guaranteeing Σ_3^1 semiproper absoluteness, where at each stage $i < \omega_1^L$, the iteration up to stage *i* belongs to L_{κ} . Thus the final model of Σ_3^1 absoluteness for semiproper forcing can be of the form L[X], where $X \subseteq \omega_1^L$ is generic over *L* for a forcing of *L*-cardinality κ .

We say that ω_1 is *inaccessible to reals* if and only if for every real x, ω_1 is inaccessible in L[x]; equivalently, ω_1 of L[x] is countable for each real x. In the

presence of this additional assumption, Σ_3^1 absoluteness for semiproper (and even proper) forcing has the full strength of Σ_3^1 absoluteness for arbitrary set-forcings:

Theorem 4 Σ_3^1 absoluteness for proper + ω_1 is inaccessible to reals has the consistency strength of a reflecting cardinal.

Proof. One direction is easy: If κ is reflecting in L then after a Lévy collapse with finite conditions to make κ equal to ω_1 , one obtains a model in which ω_1 is inaccessible to reals and in which Σ_3^1 absoluteness holds for arbitrary set-forcings. (See either [3] or Theorem 3 of [2].)

Conversely, assume that Σ_3^1 absoluteness holds for proper forcings and that ω_1 is inaccessible to reals. We may assume that ω_1 is not Mahlo in L, else the ZFC-model L_{ω_1} satisfies that there exists a reflecting cardinal. We will show that ω_1 is reflecting in L. The proof is a refinement of the proof of Theorem 4 of [2].

Let κ denote ω_1 of V. It suffices to show that if x belongs to L_{κ} , φ is a formula and for some L-cardinal $\lambda \geq \kappa$, $L_{\lambda} \models \varphi(x)$ then there is such a $\lambda < \kappa$ with $x \in L_{\lambda}$.

Assume that $L_{\lambda} \models \varphi(x), \lambda \ge \kappa$ is an *L*-cardinal and let *R* be a real coding *x*. We may assume that $0^{\#}$ does not exist, as otherwise ω_1 is surely reflecting in *L*. Then in a countably-closed set-forcing extension there is $A \subseteq \omega_1$ such that:

a. $\lambda < \omega_2$ and in fact λ is less than the height of the least transitive model of ZF⁻ containing A and ω_1 .

b. Every subset of ω_1 belongs to L[A] and in particular $\omega_2 = \omega_2$ of L[A].

A is obtained as follows: Let $\delta > \lambda$ be a singular strong limit cardinal of uncountable cofinality. Since $0^{\#}$ does not exist, we have $\delta^+ = \delta^+$ of L and $2^{\delta} = \delta^+$. Now collapse δ to ω_1 using countable conditions. This produces $A_0 \subseteq \omega_1$ such that ω_2 of $L[A_0] = \delta^+$ of L and in this extension $2^{\omega_1} = \omega_2$. In this model let $B \subseteq \omega_2$ code all subsets of ω_1 and using the fact that ω_2 is a successor cardinal of L, code B by $A \subseteq \omega_1$ via a countably closed almost disjoint forcing. In the extension, every subset of ω_1 belongs to L[A]. In L[A] the following holds:

(*) If $L_{\alpha}[A]$ is a model of ZF⁻, $\alpha > \omega_1$ then $L_{\alpha}[A] \vDash$ There is an *L*-cardinal λ such that $\varphi(x)$ holds in L_{λ} , where x is the set coded by R.

Now add $A^* \subseteq \omega_1$ with the following improved version of (*):

(**) If $L_{\alpha}[A^* \cap \gamma]$ is a model of ZF⁻ where $\alpha > \gamma$ and γ is the ω_1 of $L_{\alpha}[A^* \cap \gamma]$ then $L_{\alpha}[A^* \cap \gamma] \models$ There is an *L*-cardinal λ such that $\varphi(x)$ holds in L_{λ} , where x is the set coded by R.

 A^* is obtained as follows. Let P be the set of $p : \gamma(p) \to 2, \gamma(p) < \omega_1$, such that:

(***) For all $\gamma \leq \gamma(p)$ and all α , if $L_{\alpha}[A \cap \gamma, p \upharpoonright \gamma]$ is a model of ZF⁻ where $\alpha > \gamma$ and γ is the ω_1 of $L_{\alpha}[A \cap \gamma, p \upharpoonright \gamma]$ then $L_{\alpha}[A \cap \gamma, p \upharpoonright \gamma] \vDash$ There is an *L*-cardinal λ such that $\varphi(x)$ holds in L_{λ} , where *x* is the set coded by *R*.

A *P*-generic adds a function $F : \omega_1 \to 2$ such that $A^* = \{2\beta \mid \beta \in A\} \cup \{2\beta + 1 \mid F(\beta) = 1\}$ satisfies (**), since this is guaranteed for countable γ by the definition of *P* and for $\gamma = \omega_1$ by (*). It remains to show:

Lemma 5 P is proper.

Proof. This is a special case of an argument of [10], which was put to excellent use in [8]; a more general version of this particular proof can be found in [11].

We must show that for CUB many countable $N \prec L_{\omega_2}[A]$, each condition pin N can be extended to a condition q such that q forces each name in Nfor an ordinal to equal an ordinal of N. We take all countable $N \prec L_{\omega_2}[A]$ which have A and R as elements. Suppose that p belongs to N and let Nbe isomorphic to $\overline{N} = L_{\gamma}[A \cap \beta]$, where β is the ω_1 of \overline{N} . As N contains a witness to the non-Mahloness of ω_1 in L, it follows that β is singular in L, and therefore γ is not an L-cardinal. Let δ be least so that γ is collapsed in L_{δ} . Notice that (* * *) does hold when γ of (* * *) is equal to β and α of (* * *) is at most γ , by the elementarity of N in $L_{\omega_2}[A]$. (* * *) also holds when γ of (* * *) is equal to β and α of (* * *) is between γ and δ , as in this case any L-cardinal of L_{γ} is also an L-cardinal of L_{α} . Thus it suffices to build q extending p of length β , as the union of conditions of length less than β , so that β is collapsed in $L_{\delta}[A \cap \beta, q]$, for then (***) is vacuous when γ of (***) is equal to β and α of (***) is at least δ .

As γ is collapsed to β in L_{δ} , we can write $L_{\gamma}[A \cap \beta]$ as the union of a continuous elementary chain of elementary submodels of $L_{\gamma}[A \cap \beta]$ of length β , where each model is countable in $L_{\delta}[A \cap \beta]$ and the chain itself belongs to $L_{\delta}[A \cap \beta]$. Let C be the set of intersections of the models of this chain with β , a CUB subset of β . Then we can choose an ω -sequence $p = p_0 \ge p_1 \ge \cdots$ of conditions below p such that each p_i belongs to N, each name for an ordinal in N is forced by some p_i to equal an ordinal of N and if q is the union of the p_i 's, and $q(\eta) = 0$ on C, except for a cofinal subset of C of ordertype ω . Then β is collapsed in $L_{\delta}[A \cap \beta, q]$, as desired. \Box (Lemma 5).

Now we code A by a real S. As ω_1 is not Mahlo in L, ω_1 is reshaped in the sense that for some $B \subseteq \omega_1$, α countable $\rightarrow \alpha$ countable in $L[B \cap \alpha]$. Using this, we can choose reals R_{α} , $\alpha < \omega_1$ so that R_{α} can be defined uniformly in $L[B \cap \alpha]$, and use these reals to code B, A^* and R by a real S using a ccc almost disjoint coding. As $A^* \cap \omega_1^{L_{\alpha}[S]}$ is definable in $L_{\alpha}[S]$ for each $\alpha < \omega_1$, we get:

For all α , if $L_{\alpha}[S]$ is a model of $\mathbb{ZF}^- + \omega_1$ exists, then $L_{\alpha}[S] \vDash$ There is an *L*-cardinal λ such that $\varphi(x)$ holds in L_{λ} , where *x* is the set coded by *R*.

This is a Π_2^1 condition on S, and therefore by our assumption that Σ_3^1 absoluteness holds for proper forcing, there is such an S in V. By our assumption that ω_1 is inacessible to reals, $L_{\omega_1}[S]$ satisfies that ω_1 exists, and therefore there is $\lambda < \omega_1$ such that $L_{\lambda} \models \varphi(x)$ and $L_{\omega_1} \models \lambda$ is an *L*-cardinal. It follows that λ is an *L*-cardinal, and therefore we have completed the proof that ω_1 is reflecting in L. \Box

Remark. Σ_3^1 absoluteness for proper $+ \omega_1$ inaccessible to reals actually implies that ω_1 is reflecting to reals (i.e., ω_1 is reflecting in L[R] for each real R). This is because Lemma 5 only requires the assumption that ω_1 is not *remarkable* to reals (a property stronger than reflection, see [7]) and under the same assumption, one can reshape ω_1 using a proper forcing.

Corollary 6 Σ_3^1 absoluteness for ω_1 -preserving forcing is equiconsistent with a reflecting cardinal.

Proof. By Corollary 1 of [2], the above form of absoluteness implies that ω_1 is inaccessible to reals. Therefore by the previous Theorem, we get the consistency strength of a reflecting cardinal. \Box

Using a recent technique of Ralf Schindler [9], we next compute the consistency strength of Σ_3^1 absoluteness for stationary-preserving forcing:

Lemma 7 Suppose that Σ_3^1 absoluteness holds for stationary-preserving forcings. Then ω_1 is inaccessible to reals.

Proof. We first need the following, which was proved independently by Schindler (see [8]).

Lemma 8 If $A^{\#}$ does not exist for some set of ordinals A then every set of ordinals is constructible from a real in a stationary-preserving forcing extension.

Proof. As in the proof of Theorem 4 (see the construction in that proof of the set A), we can produce $A \subseteq \omega_1$ by a countably-closed forcing so that in the extension $H(\omega_2) = L_{\omega_2}[A]$ and the given set of ordinals belongs to $H(\omega_2)$. Let P be the "reshaping forcing", whose conditions are $p : |p| \to 2$, $|p| < \omega_1$ such that for all $\alpha \leq |p|$, α is countable in $L[A \cap \alpha, p \upharpoonright \alpha]$. We show that P is stationary-preserving. Given this, we can then apply a ccc forcing to code A, G by a real (where $G \subseteq \omega_1$ is P-generic), resulting in an extension in which the given set of ordinals is constructible from a real.

We show now that P is stationary-preserving. Given $p \in P$, a stationary $X \subseteq \omega_1$ and a name σ for a CUB subset of ω_1 , let C be a CUB subset of ω_1 such that:

1. $\alpha \in C, \ \beta < \alpha \to p \in L_{\alpha}[A]$ and every $q \leq p$ in $L_{\alpha}[A]$ has an extension $r \in L_{\alpha}[A]$ such that $r \Vdash \beta^* \in \sigma$ for some β^* between β and α . 2. $\alpha \in C \to C \cap \alpha$ belongs to $L[A \cap \alpha]$.

C is easily constructed, by choosing $L_{\gamma}[A]$ to contain *p* and σ , taking a chain $\langle M_i \mid i < \omega_1 \rangle$ of countable elementary submodels of $L_{\gamma}[A]$ with $p, \sigma, A \in M_0$ and setting $C = \{M_i \cap \omega_1 \mid i < \omega_1\}$.

Now choose $\alpha \in \text{Lim } C \cap X$ and let D be any cofinal subset of $C \cap \alpha$ of ordertype ω . Using property 1 above, we can choose q with domain α to be the union of conditions q_i below p so that $q_i \Vdash \beta_i \in \sigma$, where the β_i are unbounded in α and $\{\beta \in C \cap \alpha \mid q(\beta) = 1\}$ is a final segment of D. By property 2 above, D belongs to $L[A \cap \alpha, q]$, and therefore α is countable in L[A, q], establishing that q is a condition. As q forces that $\sigma \cap \alpha$ is unbounded in α , q also forces that α belongs to σ ; as α belongs to X, we have $q \Vdash X \cap \sigma \neq \emptyset$, as desired. \Box (Lemma 8)

Now to prove Lemma 7, suppose that ω_1 is not inaccessible to reals. In particular the hypothesis of Lemma 8 holds, so in a stationary-preserving set-generic extension, V = L[R] for some real R. As the real R plays no role in the arguments below, we assume that R equals 0. For any $A \subseteq \omega_1$ consider the function $f_A: \omega_1 \to \omega_1$ defined by

 $f_A(\alpha)$ = the least β such that α is countable in $L_{\beta+1}[A \cap \alpha]$.

We say that A is faster than B iff $f_A < f_B$ on a CUB.

Lemma 9 (Ralf Schindler) For any A there is a faster B in a further stationary-preserving forcing extension.

Proof. Consider the forcing P whose conditions are pairs (b, c) where:

c is a countable closed subset of ω_1 . $b : \max c \to 2$. For all $\alpha \in c$, α is countable in $L_{f_A(\alpha)}[b \upharpoonright \alpha]$.

Any condition can be extended so as to increase $\max c$ above any given countable ordinal: Given (b, c) there are limit ordinals $\alpha > \max c$ with $f_A(\alpha) > \alpha$. We obtain a condition by adding α to c and extending b to b' of length α so that α is countable in $L_{\alpha+1}[b']$, using an ω -sequence cofinal in α . Thus if G is P-generic then $B = \bigcup \{b \mid (b, c) \in G \text{ for some } c\}$ is faster than A, as witnessed by the CUB set $C = \bigcup \{c \mid (b, c) \in G \text{ for some } b\}$. It remains only to show that P is stationary-preserving.

Suppose that $(b,c) \in P$, S is stationary and σ is a name for a CUB. Let C be a CUB set such that:

If α belongs to C then p belongs to L_{α} and for each $\beta < \alpha$, each $q \leq p$ in L_{α} has an extension $r \in L_{\alpha}$ such that $r \Vdash \beta^* \in \sigma$ for some β^* between β and α .

C is easily constructed, by choosing L_{γ} to contain p, σ, A , taking a continuous chain $\langle M_i \mid i < \omega_1 \rangle$ of countable elementary submodels of L_{γ} with $p, \sigma, A \in M_0$ and setting $C = \{M_i \cap \omega_1 \mid i < \omega_1\}$.

Now choose L_{γ} to contain A, C and $\alpha \in \text{Lim } C \cap S$ such that $\alpha = M \cap \omega_1$ for some elementary submodel M of L_{γ} containing A and C. Let D be any cofinal subset of $C \cap \alpha$ of ordertype ω . We can extend p to a descending sequence of conditions $q_i = (b_i, c_i)$ of height less than α so that $q_i \Vdash \beta_i \in \sigma$, where the β_i are unbounded in α and if $b = \bigcup_i b_i$ then $\{\beta \in C_0 \cap \alpha \mid b(\beta) = 1\}$ is a final segment of D. It follows that D belongs to $L_{f_A(\alpha)}[b]$ and therefore we obtain a condition q = (b, c) where $c = (\bigcup_i c_i) \cup \{\alpha\}$. Then q extends pand forces that α belongs to $S \cap \sigma$, as desired. \Box (Lemma 9)

Finally, set $A_0 = \emptyset$. By Lemma 9 there is A_1 which is faster than A_0 in a stationary-preserving forcing extension. A_1 , together with a CUB set C_1 witnessing that A_1 is faster than A_0 , can be coded by a real R_1 via a ccc forcing; then R_1 satisfies the Π_2^1 condition

For all $\alpha < \omega_1$, $f_{R_1}(\alpha) < f_{\emptyset}(\alpha)$ for all α in the CUB set coded by R_1 .

By Σ_3^1 absoluteness for stationary-preserving forcings, there is such a real R_1 in the ground model. But we can repeat this, obtaining R_{n+1} which is faster than R_n , for each n. Thus $f_{R_{n+1}} < f_{R_n}$ on a CUB for each n, a contradiction. \Box (Lemma 7)

Corollary 10 Σ_3^1 absoluteness for stationary-preserving forcing has the strength of a reflecting cardinal.

Proof. By Theorem 4 and Lemma 7. \Box

Using a refinement of the technique of [6], David Schrittesser has shown the following:

Theorem 11 (Schrittesser, see [11]) Σ_3^1 absoluteness for $ccc + \omega_1$ inaccessible to reals has the consistency strength of a lightface Σ_2^1 reflecting cardinal, *i.e.*, an inaccessible cardinal κ such that every Σ_2^1 sentence with parameters from H_{κ} which is true in H_{κ} is also true in H_{γ} for some $\gamma < \kappa$.

The Bounded Forcing Axioms

Goldstern-Shelah (see [5]) introduced the bounded forcing axioms, which include BMM, BPFA and BSPFA. By the technique of [1], these are equivalent to $\Sigma_1(H(\omega_2))$ absoluteness (with parameters from $H(\omega_2)$) for stationarypreserving, proper and semiproper forcing, respectively. Also, MA (Martin's axiom) is equivalent to $\Sigma_1(H(\omega_2))$ absoluteness (with parameters from $H(\omega_2)$) for ccc forcing. Note that $\Sigma_1(H_{\omega_2})$ absoluteness implies Σ_3^1 absoluteness.

It is shown in [5] that BPFA and BSPFA have the strength of a reflecting cardinal. However unlike BMM, these axioms do not imply that ω_1 is inaccessible to reals; indeed one has:

Theorem 12 (a) ([6]) $MA + \omega_1$ inaccessible to reals has the strength of a weakly compact cardinal.

(b) ([7]) BPFA + ω_1 inaccessible to reals has the strength of a remarkable cardinal with a reflecting cardinal above.

When ω_1 is *not* inaccessible to reals, then these axioms reduce to their Σ_3^1 counterparts:

Theorem 13 Suppose that ω_1 is not inaccessible to reals.

(a) MA is equivalent to Σ_3^1 absoluteness for ccc + every subset of ω_1 is constructible from a real.

(b) BPFA is equivalent to Σ_3^1 absoluteness for proper + every subset of ω_1 is constructible from a real.

(c) BSPFA is equivalent to Σ_3^1 absoluteness for semiproper + every subset of ω_1 is constructible from a real.

Moreover (a) only needs the assumption that ω_1 is not weakly compact to reals and (b),(c) only need that ω_1 is not remarkable to reals.

Proof. We prove (a). As ω_1 is not inaccessible to reals, every subset of ω_1 can be coded by a real via a ccc almost disjoint forcing. This gives the implication from left to right. Conversely, assume Σ_3^1 absoluteness for ccc + every subset of ω_1 is constructible from a real. We want to establish $\Sigma_1(H(\omega_2))$ absoluteness with parameters from $H(\omega_2)$ for ccc forcings. As every subset of ω_1 is constructible from a real, it is sufficient to show that

for each formula φ and real R, if in a ccc extension there is $\alpha < \omega_2$ such that $L_{\alpha}[R] \models \varphi(R, \omega_1)$ then this holds in V. We may assume that α is less than the height of the least ZF⁻ model containing R and ω_1 , by further coding into a real. Then by reflection, there is a CUB subset C of ω_1 such that $L_{\beta}[R] \models \varphi(R, \gamma)$ whenever γ belongs to C and is the ω_1 of the ZF⁻ model $L_{\beta}[R]$. By further ccc coding, we may assume that whenever γ is the ω_1 of some countable ZF⁻ model $L_{\beta}[R]$ then γ belongs to C. Therefore in a ccc extension there is a real R obeying the Π_2^1 property:

(*) For every ZF⁻ model $L_{\beta}[R]$ with $\gamma = \omega_1$ of $L_{\beta}[R]$, there is $\alpha < \beta$ such that $L_{\alpha}[R] \models \varphi(R, \gamma)$.

By hypothesis there is such a real R in V. If we apply (*) to $\beta = \omega_2$ then we get $L_{\alpha}[R] \models \varphi(R, \omega_1)$, for some $\alpha < \omega_2$, as desired.

The same argument proves (b) and (c), given the assumption that ω_1 is not inaccessible to reals. For the last statement of the Theorem: By [6], if ω_1 is not weakly compact to reals then every subset of ω_1 is constructible from a real in a ccc forcing extension, and therefore under MA this holds in V. Similarly, if ω_1 is not remarkable to reals then by [7], every subset of ω_1 is constructible from a real in a proper forcing extension, and therefore under BPFA this holds in V. \Box

Open Question. What is the strength of BSPFA + ω_1 is inaccessible to reals? What is the strength of BMM?

References

- Bagaria, J., A characterization of Martin's axiom in terms of absoluteness, *Journal of Symbolic Logic*, vol. 62, No. 2, pp. 366–372, 1997.
- [2] Bagaria, J. and Friedman, S., Generic absoluteness, Annals of Pure and Applied Logic, Vol.108, pp. 3–13, 2001.
- [3] Feng, Q., Magidor, M. and Woodin, H., Universally Baire sets of reals, in Set theory of the continuum, MSRI Publications 26, pp. 203–242, 1992.
- [4] Friedman, S., *Fine structure and class forcing*, de Gruyter Series in Logic and its Applications, Vol. 3, 2000.

- [5] Goldstern, M. and Shelah, S., The bounded proper forcing axiom, Journal of Symbolic Logic, Vol. 60, No. 1, pp. 58–73, 1995.
- [6] Harrington, L. and Shelah, S., Some exact equiconsistency results in set theory, Notre Dame Journal of Formal Logic, vol. 26, pp. 178-188, 1985.
- [7] Schindler, R., Forcing axioms and projective sets of reals, to appear.
- [8] Schindler, R., Coding into K by reasonable forcing, Transactions of the American Mathematical Society 353, pp. 479–489, 2000.
- [9] Schindler, R., BMM is stronger than BSPFA, preprint, May 2003.
- [10] Shelah, S. and Stanley, L., Coding and reshaping when there are no sharps, Math. Sci. Res. Inst. Publ. 26, pp. 407–416, 1992.
- [11] Schrittesser, D., Σ_3^1 absoluteness in forcing extensions, Diplomarbeit, Universität Wien, to appear.