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In this article we study the strength of Σ1
3 absoluteness (with real param-

eters) in various types of generic extensions, correcting and improving some
results from [2]. We shall also make some comments relating this work to
the bounded forcing axioms BMM, BPFA and BSPFA.

The statement “Σ1
3 absoluteness holds for ccc forcing” means that if a Σ1

3

formula with real parameters has a solution in a ccc set-forcing extension of
the universe V , then it already has a solution in V . The analogous definition
applies when ccc is replaced by other set-forcing notions, or by class-forcing.

Theorem 1 ([1]) Σ1
3 absoluteness for ccc has no strength; i.e., if ZFC is

consistent then so is ZFC + Σ1
3 absoluteness for ccc.

The following results concerning (arbitrary) set-forcing and class-forcing
can be found in [2].

Theorem 2 (a) (Feng-Magidor-Woodin) Σ1
3 absoluteness for arbitrary set-

forcing is equiconsistent with the existence of a reflecting cardinal, i.e. a
regular cardinal κ such that H(κ) is Σ2-elementary in V .
(b) Σ1

3 absoluteness for class-forcing is inconsistent.

We consider next the following set-forcing notions, which lie strictly be-
tween ccc and arbitrary set-forcing: proper, semiproper, stationary-preserving
and ω1-preserving.

Using a variant of an argument due to Goldstern-Shelah (see [5]), we show
the following.
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Theorem 3 Σ1
3 absoluteness for semiproper forcing has no strength.

Proof. By an ω1-iteration P0 of semiproper forcing with revised countable
support, produce a generic G0 such that L[G0] satisfies semiproper absolute-
ness for Σ1

3 formulas with real parameters in L. This is possible as there are
only ω1 reals in L and semiproperness is preserved through iteration with re-
vised countable support. We can assume that P0 has cardinality ω1 in L[G0],
as if necessary we can follow P0 by a Lévy collapse with countable conditions
to ω1. Thus we have L[G0] = L[X0], where X0 is a subset of ω1.

Now repeat the above over the model L[X0], guaranteeing with a semiproper
revised countable support iteration of length ω1 that semiproper absoluteness
holds in L[X0, X1] for Σ1

3 formulas with real parameters from L[X0], where X1

is a subset of ω1. Repeat this for ω1 stages, producing L[Xi, i < ω1], a model
where semiproper absoluteness holds for Σ1

3 formulas with real parameters in⋃
i<ω1

L[Xj , j < i].

Claim. Every real in L[Xi, i < ω1] belongs to L[Xj , j < i] for some i < ω1.

Proof of Claim. If R is a real in L[Xi, i < ω1] then R belongs to a count-
able, sufficiently elementary submodel M of L[Xi, i < ω1], as well as to the
transitive collapse M̄ of M . But M̄ is equal to Lα[Xi ∩ β, i < β], where α is
the ordinal height of M̄ and β is the ω1 of M̄ . It follows that R belongs to
L[Xi, i < β]. This proves the Claim.

Thus L[Xi, i < ω1] is a model of semiproper Σ1
3 absoluteness for formulas

with arbitrary real parameters, as desired. 2

Remark. In the previous proof, we can begin with any L-cardinal κ of L-
cofinality ωL

1 such that Lκ is Σ2-elementary in L and by “bookkeeping” per-
form a single semiproper ωL

1 -iteration with revised countable support guaran-
teeing Σ1

3 semiproper absoluteness, where at each stage i < ωL
1 , the iteration

up to stage i belongs to Lκ. Thus the final model of Σ1
3 absoluteness for

semiproper forcing can be of the form L[X], where X ⊆ ωL
1 is generic over L

for a forcing of L-cardinality κ.

We say that ω1 is inaccessible to reals if and only if for every real x, ω1 is
inaccessible in L[x]; equivalently, ω1 of L[x] is countable for each real x. In the
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presence of this additional assumption, Σ1
3 absoluteness for semiproper (and

even proper) forcing has the full strength of Σ1
3 absoluteness for arbitrary

set-forcings:

Theorem 4 Σ1
3 absoluteness for proper + ω1 is inaccessible to reals has the

consistency strength of a reflecting cardinal.

Proof. One direction is easy: If κ is reflecting in L then after a Lévy collapse
with finite conditions to make κ equal to ω1, one obtains a model in which
ω1 is inaccessible to reals and in which Σ1

3 absoluteness holds for arbitrary
set-forcings. (See either [3] or Theorem 3 of [2].)

Conversely, assume that Σ1
3 absoluteness holds for proper forcings and

that ω1 is inaccessible to reals. We may assume that ω1 is not Mahlo in L,
else the ZFC-model Lω1

satisfies that there exists a reflecting cardinal. We
will show that ω1 is reflecting in L. The proof is a refinement of the proof of
Theorem 4 of [2].

Let κ denote ω1 of V . It suffices to show that if x belongs to Lκ, ϕ is a
formula and for some L-cardinal λ ≥ κ, Lλ � ϕ(x) then there is such a λ < κ

with x ∈ Lλ.

Assume that Lλ � ϕ(x), λ ≥ κ is an L-cardinal and let R be a real coding x.
We may assume that 0# does not exist, as otherwise ω1 is surely reflecting
in L. Then in a countably-closed set-forcing extension there is A ⊆ ω1 such
that:

a. λ < ω2 and in fact λ is less than the height of the least transitive model
of ZF− containing A and ω1.
b. Every subset of ω1 belongs to L[A] and in particular ω2 = ω2 of L[A].

A is obtained as follows: Let δ > λ be a singular strong limit cardinal of
uncountable cofinality. Since 0# does not exist, we have δ+ = δ+ of L and
2δ = δ+. Now collapse δ to ω1 using countable conditions. This produces
A0 ⊆ ω1 such that ω2 of L[A0] = δ+ of L and in this extension 2ω1 = ω2. In
this model let B ⊆ ω2 code all subsets of ω1 and using the fact that ω2 is
a successor cardinal of L, code B by A ⊆ ω1 via a countably closed almost
disjoint forcing. In the extension, every subset of ω1 belongs to L[A].
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In L[A] the following holds:

(∗) If Lα[A] is a model of ZF−, α > ω1 then Lα[A] � There is an L-cardinal
λ such that ϕ(x) holds in Lλ, where x is the set coded by R.

Now add A∗ ⊆ ω1 with the following improved version of (∗):

(∗∗) If Lα[A∗∩γ] is a model of ZF− where α > γ and γ is the ω1 of Lα[A∗∩γ]
then Lα[A∗∩γ] � There is an L-cardinal λ such that ϕ(x) holds in Lλ, where
x is the set coded by R.

A∗ is obtained as follows. Let P be the set of p : γ(p) → 2, γ(p) < ω1, such
that:

(∗ ∗ ∗) For all γ ≤ γ(p) and all α, if Lα[A∩ γ, p ↾ γ] is a model of ZF− where
α > γ and γ is the ω1 of Lα[A ∩ γ, p ↾ γ] then Lα[A ∩ γ, p ↾ γ] � There is an
L-cardinal λ such that ϕ(x) holds in Lλ, where x is the set coded by R.

A P -generic adds a function F : ω1 → 2 such that A∗ = {2β | β ∈ A} ∪
{2β + 1 | F (β) = 1} satisfies (∗∗), since this is guaranteed for countable γ

by the definition of P and for γ = ω1 by (∗). It remains to show:

Lemma 5 P is proper.

Proof. This is a special case of an argument of [10], which was put to excellent
use in [8]; a more general version of this particular proof can be found in [11].

We must show that for CUB many countable N ≺ Lω2
[A], each condition p

in N can be extended to a condition q such that q forces each name in N

for an ordinal to equal an ordinal of N . We take all countable N ≺ Lω2
[A]

which have A and R as elements. Suppose that p belongs to N and let N

be isomorphic to N̄ = Lγ[A ∩ β], where β is the ω1 of N̄ . As N contains a
witness to the non-Mahloness of ω1 in L, it follows that β is singular in L,
and therefore γ is not an L-cardinal. Let δ be least so that γ is collapsed in
Lδ. Notice that (∗ ∗ ∗) does hold when γ of (∗ ∗ ∗) is equal to β and α of
(∗ ∗ ∗) is at most γ, by the elementarity of N in Lω2

[A]. (∗ ∗ ∗) also holds
when γ of (∗ ∗ ∗) is equal to β and α of (∗ ∗ ∗) is between γ and δ, as in
this case any L-cardinal of Lγ is also an L-cardinal of Lα. Thus it suffices

4



to build q extending p of length β, as the union of conditions of length less
than β, so that β is collapsed in Lδ[A∩β, q], for then (∗ ∗ ∗) is vacuous when
γ of (∗ ∗ ∗) is equal to β and α of (∗ ∗ ∗) is at least δ.

As γ is collapsed to β in Lδ, we can write Lγ [A ∩ β] as the union of a
continuous elementary chain of elementary submodels of Lγ [A∩ β] of length
β, where each model is countable in Lδ[A∩β] and the chain itself belongs to
Lδ[A∩β]. Let C be the set of intersections of the models of this chain with β,
a CUB subset of β. Then we can choose an ω-sequence p = p0 ≥ p1 ≥ · · · of
conditions below p such that each pi belongs to N , each name for an ordinal
in N is forced by some pi to equal an ordinal of N and if q is the union of
the pi’s, and q(η) = 0 on C, except for a cofinal subset of C of ordertype ω.
Then β is collapsed in Lδ[A ∩ β, q], as desired. 2 (Lemma 5).

Now we code A by a real S. As ω1 is not Mahlo in L, ω1 is reshaped in the
sense that for some B ⊆ ω1, α countable → α countable in L[B ∩ α]. Using
this, we can choose reals Rα, α < ω1 so that Rα can be defined uniformly in
L[B ∩ α], and use these reals to code B, A∗ and R by a real S using a ccc

almost disjoint coding. As A∗ ∩ ω
Lα[S]
1 is definable in Lα[S] for each α < ω1,

we get:

For all α, if Lα[S] is a model of ZF− + ω1 exists, then Lα[S] � There is an
L-cardinal λ such that ϕ(x) holds in Lλ, where x is the set coded by R.

This is a Π1
2 condition on S, and therefore by our assumption that Σ1

3 abso-
luteness holds for proper forcing, there is such an S in V . By our assumption
that ω1 is inacessible to reals, Lω1

[S] satisfies that ω1 exists, and therefore
there is λ < ω1 such that Lλ � ϕ(x) and Lω1

� λ is an L-cardinal. It follows
that λ is an L-cardinal, and therefore we have completed the proof that ω1

is reflecting in L. 2

Remark. Σ1
3 absoluteness for proper + ω1 inaccessible to reals actually implies

that ω1 is reflecting to reals (i.e., ω1 is reflecting in L[R] for each real R). This
is because Lemma 5 only requires the assumption that ω1 is not remarkable
to reals (a property stronger than reflection, see [7]) and under the same
assumption, one can reshape ω1 using a proper forcing.

Corollary 6 Σ1
3 absoluteness for ω1-preserving forcing is equiconsistent with

a reflecting cardinal.
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Proof. By Corollary 1 of [2], the above form of absoluteness implies that
ω1 is inaccessible to reals. Therefore by the previous Theorem, we get the
consistency strength of a reflecting cardinal. 2

Using a recent technique of Ralf Schindler [9], we next compute the con-
sistency strength of Σ1

3 absoluteness for stationary-preserving forcing:

Lemma 7 Suppose that Σ1
3 absoluteness holds for stationary-preserving forc-

ings. Then ω1 is inaccessible to reals.

Proof. We first need the following, which was proved independently by
Schindler (see [8]).

Lemma 8 If A# does not exist for some set of ordinals A then every set of
ordinals is constructible from a real in a stationary-preserving forcing exten-
sion.

Proof. As in the proof of Theorem 4 (see the construction in that proof of
the set A), we can produce A ⊆ ω1 by a countably-closed forcing so that in
the extension H(ω2) = Lω2

[A] and the given set of ordinals belongs to H(ω2).
Let P be the “reshaping forcing”, whose conditions are p : |p| → 2, |p| < ω1

such that for all α ≤ |p|, α is countable in L[A ∩ α, p ↾ α]. We show that
P is stationary-preserving. Given this, we can then apply a ccc forcing to
code A, G by a real (where G ⊆ ω1 is P -generic), resulting in an extension
in which the given set of ordinals is constructible from a real.

We show now that P is stationary-preserving. Given p ∈ P , a stationary
X ⊆ ω1 and a name σ for a CUB subset of ω1, let C be a CUB subset of ω1

such that:

1. α ∈ C, β < α → p ∈ Lα[A] and every q ≤ p in Lα[A] has an extension
r ∈ Lα[A] such that r  β∗ ∈ σ for some β∗ between β and α.
2. α ∈ C → C ∩ α belongs to L[A ∩ α].

C is easily constructed, by choosing Lγ [A] to contain p and σ, taking a chain
〈Mi | i < ω1〉 of countable elementary submodels of Lγ [A] with p, σ, A ∈ M0

and setting C = {Mi ∩ ω1 | i < ω1}.
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Now choose α ∈ Lim C ∩ X and let D be any cofinal subset of C ∩ α

of ordertype ω. Using property 1 above, we can choose q with domain α

to be the union of conditions qi below p so that qi  βi ∈ σ, where the
βi are unbounded in α and {β ∈ C ∩ α | q(β) = 1} is a final segment
of D. By property 2 above, D belongs to L[A ∩ α, q], and therefore α is
countable in L[A, q], establishing that q is a condition. As q forces that σ∩α

is unbounded in α, q also forces that α belongs to σ; as α belongs to X, we
have q  X ∩ σ 6= ∅, as desired. 2 (Lemma 8)

Now to prove Lemma 7, suppose that ω1 is not inaccessible to reals. In
particular the hypothesis of Lemma 8 holds, so in a stationary-preserving
set-generic extension, V = L[R] for some real R. As the real R plays no
role in the arguments below, we assume that R equals 0. For any A ⊆ ω1

consider the function fA : ω1 → ω1 defined by

fA(α) = the least β such that α is countable in Lβ+1[A ∩ α].

We say that A is faster than B iff fA < fB on a CUB.

Lemma 9 (Ralf Schindler) For any A there is a faster B in a further
stationary-preserving forcing extension.

Proof. Consider the forcing P whose conditions are pairs (b, c) where:

c is a countable closed subset of ω1.
b : max c → 2.
For all α ∈ c, α is countable in LfA(α)[b ↾ α].

Any condition can be extended so as to increase max c above any given count-
able ordinal: Given (b, c) there are limit ordinals α > max c with fA(α) > α.
We obtain a condition by adding α to c and extending b to b′ of length α

so that α is countable in Lα+1[b
′], using an ω-sequence cofinal in α. Thus if

G is P -generic then B =
⋃
{b | (b, c) ∈ G for some c} is faster than A, as

witnessed by the CUB set C =
⋃
{c | (b, c) ∈ G for some b}. It remains only

to show that P is stationary-preserving.

Suppose that (b, c) ∈ P , S is stationary and σ is a name for a CUB. Let
C be a CUB set such that:
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If α belongs to C then p belongs to Lα and for each β < α, each q ≤ p in Lα

has an extension r ∈ Lα such that r  β∗ ∈ σ for some β∗ between β and α.

C is easily constructed, by choosing Lγ to contain p, σ, A, taking a continuous
chain 〈Mi | i < ω1〉 of countable elementary submodels of Lγ with p, σ, A ∈
M0 and setting C = {Mi ∩ ω1 | i < ω1}.

Now choose Lγ to contain A, C and α ∈ Lim C ∩ S such that α = M ∩ ω1

for some elementary submodel M of Lγ containing A and C. Let D be any
cofinal subset of C ∩ α of ordertype ω. We can extend p to a descending
sequence of conditions qi = (bi, ci) of height less than α so that qi  βi ∈ σ,
where the βi are unbounded in α and if b = ∪ibi then {β ∈ C0∩α | b(β) = 1}
is a final segment of D. It follows that D belongs to LfA(α)[b] and therefore
we obtain a condition q = (b, c) where c = (∪ici) ∪ {α}. Then q extends p

and forces that α belongs to S ∩ σ, as desired. 2 (Lemma 9)

Finally, set A0 = ∅. By Lemma 9 there is A1 which is faster than A0 in
a stationary-preserving forcing extension. A1, together with a CUB set C1

witnessing that A1 is faster than A0, can be coded by a real R1 via a ccc
forcing; then R1 satisfies the Π1

2 condition

For all α < ω1, fR1
(α) < f∅(α) for all α in the CUB set coded by R1.

By Σ1
3 absoluteness for stationary-preserving forcings, there is such a real R1

in the ground model. But we can repeat this, obtaining Rn+1 which is faster
than Rn, for each n. Thus fRn+1

< fRn
on a CUB for each n, a contradiction.

2 (Lemma 7)

Corollary 10 Σ1
3 absoluteness for stationary-preserving forcing has the strength

of a reflecting cardinal.

Proof. By Theorem 4 and Lemma 7. 2

Using a refinement of the technique of [6], David Schrittesser has shown
the following:

Theorem 11 (Schrittesser, see [11]) Σ1
3 absoluteness for ccc + ω1 inacces-

sible to reals has the consistency strength of a lightface Σ1
2 reflecting cardinal,

i.e., an inaccessible cardinal κ such that every Σ1
2 sentence with parameters

from Hκ which is true in Hκ is also true in Hγ for some γ < κ.
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The Bounded Forcing Axioms

Goldstern-Shelah (see [5]) introduced the bounded forcing axioms, which
include BMM, BPFA and BSPFA. By the technique of [1], these are equiva-
lent to Σ1(H(ω2)) absoluteness (with parameters from H(ω2)) for stationary-
preserving, proper and semiproper forcing, respectively. Also, MA (Mar-
tin’s axiom) is equivalent to Σ1(H(ω2)) absoluteness (with parameters from
H(ω2)) for ccc forcing. Note that Σ1(Hω2

) absoluteness implies Σ1
3 absolute-

ness.

It is shown in [5] that BPFA and BSPFA have the strength of a reflect-
ing cardinal. However unlike BMM, these axioms do not imply that ω1 is
inaccessible to reals; indeed one has:

Theorem 12 (a) ([6]) MA + ω1 inaccessible to reals has the strength of a
weakly compact cardinal.
(b) ([7]) BPFA + ω1 inaccessible to reals has the strength of a remarkable
cardinal with a reflecting cardinal above.

When ω1 is not inaccessible to reals, then these axioms reduce to their
Σ1

3 counterparts:

Theorem 13 Suppose that ω1 is not inaccessible to reals.
(a) MA is equivalent to Σ1

3 absoluteness for ccc + every subset of ω1 is con-
structible from a real.
(b) BPFA is equivalent to Σ1

3 absoluteness for proper + every subset of ω1 is
constructible from a real.
(c) BSPFA is equivalent to Σ1

3 absoluteness for semiproper + every subset of
ω1 is constructible from a real.
Moreover (a) only needs the assumption that ω1 is not weakly compact to
reals and (b),(c) only need that ω1 is not remarkable to reals.

Proof. We prove (a). As ω1 is not inaccessible to reals, every subset of
ω1 can be coded by a real via a ccc almost disjoint forcing. This gives the
implication from left to right. Conversely, assume Σ1

3 absoluteness for ccc
+ every subset of ω1 is constructible from a real. We want to establish
Σ1(H(ω2)) absoluteness with parameters from H(ω2) for ccc forcings. As
every subset of ω1 is constructible from a real, it is sufficient to show that
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for each formula ϕ and real R, if in a ccc extension there is α < ω2 such that
Lα[R] � ϕ(R, ω1) then this holds in V . We may assume that α is less than
the height of the least ZF− model containing R and ω1, by further coding
into a real. Then by reflection, there is a CUB subset C of ω1 such that
Lβ[R] � ϕ(R, γ) whenever γ belongs to C and is the ω1 of the ZF− model
Lβ[R]. By further ccc coding, we may assume that whenever γ is the ω1 of
some countable ZF− model Lβ [R] then γ belongs to C. Therefore in a ccc
extension there is a real R obeying the Π1

2 property:

(∗) For every ZF− model Lβ [R] with γ = ω1 of Lβ [R], there is α < β such
that Lα[R] � ϕ(R, γ).

By hypothesis there is such a real R in V . If we apply (∗) to β = ω2 then we
get Lα[R] � ϕ(R, ω1), for some α < ω2, as desired.

The same argument proves (b) and (c), given the assumption that ω1 is
not inaccessible to reals. For the last statement of the Theorem: By [6], if ω1

is not weakly compact to reals then every subset of ω1 is constructible from
a real in a ccc forcing extension, and therefore under MA this holds in V .
Similarly, if ω1 is not remarkable to reals then by [7], every subset of ω1 is
constructible from a real in a proper forcing extension, and therefore under
BPFA this holds in V . 2

Open Question. What is the strength of BSPFA + ω1 is inaccessible to reals?
What is the strength of BMM?
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