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Set theory entered the modern era through the work of Gödel and Cohen.
This work provided set-theorists with the necessary tools to analyse a large
number of mathematical problems which are unsolvable using only the tra-
ditional axiom system ZFC for set theory. Through these methods, together
with their subsequent generalisation into the context of large cardinals, set-
theorists have had great success in determining the axiomatic strength of a
wide range of ZFC-undecidable statements, not only within set theory but
also within other areas of mathematics.

Through this work a very attractive picture of the universe of sets is start-
ing to emerge, a picture based upon the existence of inner models satisfying
large cardinal axioms. In this article I shall argue for the correctness of this
picture, using the principles of completeness and iteration.

1. Constructibility.

Gödel ([4]) provided an interpretation of ZFC whose structure can be
thoroughly analysed. The universe L of constructible sets consists of all sets
which appear within the hierarchy

L0 = ∅
Lα+1 = The set of definable subsets of Lα

Lλ =
⋃
{Lα | α < λ} for limit λ

L =
⋃
{Lα | α ∈ ORD}.
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This hierarchy differs from the von Neumann hierarchy of Vα’s in that only
definable subsets are considered at successor stages, as opposed to arbitrary
subsets. By restricting the power set operation in this way, one brings the
notion of set much closer that of ordinal number, and can achieve as clear
an understanding of arbitrary sets as one has of ordinal numbers. As an
example, one can show that in L the set of reals and the set of countable
ordinals have the same cardinality.

Jensen ([5]) went one step further, by dividing the transition from Lα to
Lα+1 into ω intermediate levels Lα ⊆ L1

α ⊆ L2
α ⊆ · · · ⊆ Lα+1. The power of

Jensen’s idea, which led to his fine structure theory for L, is that these new
successor levels Ln+1

α
consist of sets which can be enumerated in a way analo-

gous to that in which the Σ0
n+1-definable sets of arithmetic can be recursively

enumerated using an oracle for the n-th Turing jump 0(n). What is perhaps
surprising is that this “ramification” of levels can be used to establish new
results concerning the structure of the constructible universe as a whole. For
example, Jensen shows that the following combinatorial principle holds in L:

The 2 Principle. To every limit ordinal α that is not a regular cardinal, one
can assign an unbounded subset Xα of α with ordertype less than α, such
that if ᾱ is a limit of elements of Xα then Xᾱ = Xα ∩ ᾱ.

Every known proof that this principle holds in L makes use of some version of
the fine structure theory. Indeed, Jensen’s theory is so powerful that one has
the impression that any question in combinatorial set theory (not implying
the consistency of ZFC) can be resolved under the assumption V = L.

L is the least inner model, i.e. transitive class containing all ordinals, in
which the axioms of ZFC hold. Can we construct larger inner models which
admit a similar Gödel-Jensen analysis?

2. Completeness.

It will be convenient to work now, not with the usual theory ZFC, but
with the Gödel-Bernays theory of classes GB. This theory is no stronger than
ZFC, but allows us to discuss classes which may not necessarily be definable.
For an inner model M , a class A belongs to M iff A ∩ x belongs to M for
every set x in M .
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V = L (i.e., the statement that every set is constructible) is not a theorem
of GB: The forcing method allows us to consistently enlarge L to models L[G]
where G is a set or class that is P -generic over L for some L-forcing P , i.e.,
some partial ordering P that belongs to L. Thus it is consistent with GB
that there are inner models larger than L.

Assume now that generic extensions of L do exist, and let us see what
implications this has for the nature of the set-theoretic universe. For this
purpose we introduce the notion of CUB-completeness.

Definition. A class of ordinals is CUB (closed and unbounded) iff it is a
proper class of ordinals which contains all of its limit points. A class X of
ordinals is large iff it contains a CUB subclass.

Largeness is not absolute: It is possible that a class X belonging to L is not
large but becomes large after expanding the universe by forcing.

Definition. A class X is potentially large iff it is large in a generic extension
of the universe.

Now we pose the following question: Can the universe be complete with
respect to the largeness of classes that belong to L? That is, can the universe
be CUB-complete over L in the sense that every class which belongs to L and
is potentially large is already large? Using the fact that Jensen’s 2 Principle
holds in L, we have the following.

Theorem 1 ([2]). There exists a sequence Xn, n ∈ ω of classes such that:
1. Each Xn belongs to L and indeed the relation “α belongs to Xn” is
definable in L.
2. Xn ⊇ Xn+1 for each n and each Xn is potentially large.
3. If each Xn is large then the universe is CUB-complete over L.

Thus we have the following picture: Let n be least so that Xn is not large,
if such a finite n exists, and n = ∞ otherwise. If n is finite then n can be
increased by going to a generic extension of the universe, further increased
by going to a further generic extension, and so on. The only alternative is
that the universe be CUB-complete over L.
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Can there be many different ways of making the universe CUB-complete over
L? The next result says not.

Theorem 2. If the universe is CUB-complete over L then there is a smallest
inner model L# which is CUB-complete over L.

Thus L# is the “canonical” completion of L with respect to largeness of
classes that belong to L.

What is L#? This model is not a generic extension of L, but rather a new
kind of extension, which can be defined in terms of the concept of rigidity :
An embedding of L is an elementary embedding π : L → L which is not the
identity. We say that L is rigid iff there is no such embedding.

Fact. The universe is CUB-complete over L iff L is not rigid. If this is
the case then L# is the smallest inner model to which an embedding of L

belongs.

A more explicit description of L# is the following: Let π : L → L be an
embedding of L and let α be the least ordinal such that π ↾ α is not an
element of L. Then L# = L[π ↾ α] for any choice of π.

L# is usually written as L[0#], where 0# is a special set of integers, and the
hypothesis that L is not rigid is usually written as “0# exists”.

The hypothesis that 0# exists not only completes the universe with regard
to the largeness of classes that belong to L, but also solves another mystery:
It can be shown that P -generics cannot exist simultaneously for all L-forcings
P . How can we decide whether or not a P -generic should exist for a given
P ? The next result leads us to a good criterion, under the assumption that
0# exists.

Theorem 3 ([1]). Assume slightly more than GB (precisely: ORD is ω + ω-
Erdős). If 0# exists, P is an L-forcing which is definable in L (without
parameters) and there exists a P -generic, then there exists a P -generic de-
finable in L[0#].

Thus the inner model L[0#] is saturated with respect to L-definable forcings.
The existence of P -generics for L-definable forcings P is thereby resolved by
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the assumption that 0# exists: P has a generic iff it has one definable in
L[0#].

3. Iteration.

The above discussion leads us to the existence of 0#. We can go further:
0## relates to the model L[0#] in the same way as 0# relates to L, and its
existence follows from the CUB-completeness of the universe with respect to
L[0#]. Indeed, through iteration of a suitable “# operation”, we are led to
models much larger than L, which satisfy strong large cardinal axioms.

We have said that the existence of 0# is equivalent to the non-rigidity
of L, i.e., to the existence of an embedding of L. Let us use this as a
basis for generalisation. Suppose that M is a non-rigid inner model and let
π : M → M be an embedding of M . Let κ be the critical point of π, i.e., the
least ordinal such that π(κ) 6= κ. (For technical reasons we assume that M

is of the form LA for some class of ordinals A and that π respects A in the
sense that π(A∩κ) = A∩π(κ), HM

κ
= LA

κ
and HM

π(κ) = LA

π(κ).) For some least

ordinal α = α(π), the restriction π ↾ α is not an element of M . Normally
this ordinal is κ+ of M . We then define the # (or extender) derived from

π to be the restriction Eπ = π ↾ κ+ of M . A # for M is a # derived from
some embedding π : M → M . Thus M has a # iff M is non-rigid.

A # iteration is a sequence M0, M1, . . . of inner models where

M0 = L

Mi+1 = Mi[Ei], where Ei is a # for Mi

Mλ for limit λ is the “limit” of 〈Mi | i < λ〉.

The type of model that arises through such an iteration is called an extender

model and is of the form L[E] where E = 〈Eα | α ∈ ORD〉 is a sequence of
extenders.

How large an extender model can we produce through #-iteration? A #-
iteration is maximal if it cannot be continued to a larger extender model. An
extender model is maximal if it is the final model of a maximal #-iteration.
Do such models exist, and if so, how large are they?
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Theorem 4. There exists a maximal extender model, unless there is an
inner model with a superstrong cardinal.

Superstrength is a very strong large cardinal property, more than sufficient to
carry out most applications of large cardinals in combinatorial and descriptive
set theory. Thus if we are interested in showing that there are inner models
which satisfy useful large cardinal axioms, we may without harm assume that
there is a maximal extender model.

Now we turn to the question of largeness for maximal extender models. There
are two ways in which an extender model M can be maximal: Either there
is no # for M , i.e. M is rigid, or M is not enlarged through the addition
of a # for itself. The latter possibility also leads to an inner model with a
superstrong cardinal.

Theorem 5. Suppose that M is a non-rigid, maximal extender model. Then
in M there is a superstrong cardinal.

Thus to obtain an inner model with a superstrong cardinal, it suffices to
build a maximal extender model and then argue that it is not rigid.

But first we must address a central problem in the theory of extender
models: How can we ensure that our maximal extender models satisfy the
Gödel and Jensen properties, GCH and 2? Define an extender model to be
good iff it satisfies GCH and 2. The construction of good maximal extender
models is far more difficult than the construction of arbitrary maximal ex-
tender models. However using work of Steel ([7]) and Schimmerling-Zeman
([6]) we do have:

Theorem 6. Assume slightly more than GB (precisely: ORD is subtle).
Then there is a good maximal extender model, unless there is an inner model
with a Woodin cardinal.

Thus if we can argue for the non-rigidity of good maximal extender models,
we obtain an inner model with a Woodin cardinal, a property still strong
enough to carry out many applications of large cardinals to combinatorial
and descriptive set theory.

4. Completeness, again.
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Using CUB-completeness we argued that L is non-rigid. Can this argu-
ment be generalised to good maximal extender models?

Theorem 7. Suppose that the universe is CUB-complete over a good max-
imal extender model. Then there is an inner model with a measurable car-
dinal.

Measurable cardinals are much stronger than 0#, but still far weaker than
Woodin cardinals. To go further, we need to consider a variant of CUB-
completeness.

Definition. A class of ordinals C is CUB+ iff C is CUB and for each limit
cardinal α in C, C ∩ α+ is CUB in α+. X is large+ iff X contains a CUB+

subclass. X is potentially large+ iff X is large+ in a generic extension of the
universe.

Now we repeat what we did earlier for L, with CUB-completeness replaced
by CUB+-completeness.

Theorem 8. Suppose that M is a good maximal extender model. Then
there exists a sequence Xn, n ∈ ω of classes such that:
1. Each Xn belongs to M .
2. Xn ⊇ Xn+1 for each n and each Xn is potentially large+.
3. If each Xn is large+ then for some CUB class C: (α+ of M) < α+ for α

in C.

Thus if the universe is CUB+-complete over a good maximal extender model
M , it follows that α+ of M is less than α+ for α belonging to a CUB class.
Now we apply the following refinement of Theorem 6 (see [7]).

Theorem 9. Assume slightly more than GB (again: ORD is subtle). Unless
there is an inner model with a Woodin cardinal, there is a good maximal
extender model M with the following property: For no CUB class C is (α+

of M) < α+ for α in C.

Putting this all together:

Theorem 10. Assume slightly more than GB (again: ORD is subtle). Sup-
pose that the universe is CUB+-complete with respect to good maximal ex-
tender models. Then there is an inner model with a Woodin cardinal.
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In the sense of Theorem 10, completeness and iteration can be used to argue
in favour of the existence of inner models with large cardinals.

5. Speculations beyond One Woodin Cardinal

Further work of Andretta, Jensen, Neeman and Steel suggests that a good
maximal extender model should exist, unless there is an inner model with
many Woodin cardinals. But there have been serious obstacles to extending
this work up to the level of a superstrong cardinal.

Perhaps the difficulties come from definability. The good extender models
M that have been constructed until now satisfy:

(∗) M is a definable inner model (in the language of class theory).

Property (∗) is not used in our above discussion of CUB- and CUB+-completeness,
nor in many applications of inner models, and may have to be sacrificed if
one is to reach the level of a superstrong cardinal.

One way to approach this question is to ask: Assume that a superstrong
cardinal exists. What kinds of inner models with a superstrong cardinal can
one construct?

Conjecture. Suppose that there is a superstrong cardinal. Then:
(a) There is an inner model of GCH which has a superstrong cardinal.
(b) There need not be a definable such inner model.

If true, this conjecture implies that one should look not for “canonical” inner
models for large cardinals, but rather a family of inner models, any of which
could serve as a good approximation to the universe of all sets.

References

[1] Friedman, S., Generic saturation, Journal of Symbolic Logic. Vol.63,
No.1, pp. 158–162, 1998.

[2] Friedman, S., New Σ1
3 facts, Proceedings of the American Mathematical

Society. Vol. 127, pp. 3707–3709, 1999.

8



[3] Friedman, S., Fine structure and class forcing, de Gruyter Series in Logic
and its Applications, Vol. 3, 2000.
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