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INTRODUCTION 

This paper is a contribution to /&recursion theory; i.e., recursion theory on 
arbitrary limit ordinals. The basic definitions, motivation, and results were set 
forth in [4]. In brief, the setting for p-recursion theory is S, , the 13th level of 
Jensen’s S-hierarchy for L (see [I, p. 821) and /3- recursively enumerable (/3-r.e.) 
sets are those subsets of S, which are Z;-definable over <Se , 6). A C S, is 
&recursive if both A and S, - A are /3-r.e. and is p-finite if A E S, . As in 
a-recursion theory, there is a /3-r.e. enumeration {IV,},,, of the p-r.e. sets and 
using this we define: A is weakly p-recursive in B (A Gws B) if for some e 

x E AH 3K, 3Ka[(O, x, Kl, K2) E W, and Kl C B and K, C S, - B], 

xESB-At,3K13K,[(1,x,K,,K,)~W,andK,CBandK,C&-B], 

where Kl , K, vary over B-finite sets. A is p-recursive in B (A Gs B) if 
(2 E S, 1 2 C A} and {Z E S, 1 Z 2 Se - A} are both weakly p-recursive in B. 
<a is transitive and the p-degree of A = {B ( A & B, B C& A). 

The program of ,&recursion theory is to generalize theorems of ordinary 
recursion theory to arbitrary limit ordinals. This paper focuses on the ,&degrees 
of p-r.e. sets and provides a partial solution to: 

POST'S PROBLEM. Show that there are &,,B-incomparable p-r.e. sets. 

Post’s problem was solved in ordinary recursion theory by Friedberg [2] and 
Muchnik [IO] independently, and generalized to a-recursion theory (i.e., 
recursion theory on admissible ordinals) by Sacks and Simpson [14]. (Purely 
“syntactic” techniques suffice to solve the following weaker formulation of 
Post’s problem for every inadmissible /? Find a /3-r.e. set of p-degree strictly 
between 0 and 0’, the largest p-degree of a ,&r.e. set. See Theorem 3.4 of [4].) 

Sacks and Simpson used ideas from the structure of L devised by Gijdel to 
prove the Generalized Continuum Hypothesis in L [6]. We extend the applica- 
tion of techniques from the fine structure of L to recursion theory by making 
use of Jensen’s O-principle in our solution to Post’s problem. An effectivized 
version of Fodor’s theorem is also developed and used in our proof. For back- 
ground material on 0 and stationary sets, see [I]. 
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In Section 1, Fodor’s theorem, 0, and other facts about stationary sets are 
reviewed. Section 2 uses these ideas to solve Post’s problem in the special case 
when ,!I* = ttrL. Finally, in Section 3 the material of the first section is effectivized 
and applied to the case where p* is only regular with respect to functions Zr 
over Ss . Thus Post’s problem is solved if /I* is a successor j3-cardinal. Also, 
the generalization of the construction to &, predicates is discussed in Section 4. 

1. REVIEW OF STATIONARY SETS AND THE O-PRINCIPLE 

We begin by recalling some basic definitions and facts from combinatorial 
set theory. 

DEHNITION. Let K > w be a regular cardinal. C C K is closed if for all 
Y<K, Cnrunboundediny-+yEC. SCKisstationaryifSnC#a, for 
every closed unbounded C C K. 

PROPOSITION 1. Suppose (Cm}a<<v is a collection of closed unbounded sets and 
y < K. Then c = n.<, C, is closed and unbounded. 

Proof. Let j3s.s be arbitrary. Inductively, define 

j?,,s = some member of C’s greater than u &,-l,u , 
Or<V 

/3n,B = some member of CI, greater than u fin,= if 6 > 0. 
a<8 

Then p = lJn /In,,, = Un pn.. for all a. So p E n.. C, . Thus C is unbounded. 
But C n 8 unbounded in 6 

3CornS unbounded in 6, Va 

-+8EC, for all a 

-tSEC. 1 

COROLLARY 2. If C G K is closed and unbounded, then C is stationary. 

Proof. Just apply Proposition 1 when y = 2. 1 

FODOR'S THEOREM. Suppose S C K is stationary, f: S -+ K, and f (a) < a for 
every a E S (that is, f is regressive m S). Then for some y, {a E S 1 f(a) < r} is 
a stat&nary subset of S. 

Proof. Suppose not. Let y,, < K be arbitrary. Choose a closed unbounded 
Co so that ore CO n S-+f(a) > yO. Let y. < yle Co. Choose a closed 
unbounded C, C Co so that a E C, n S -+ f (a) 3 yl (by Proposition 1). Choose 

607/35/r-3 
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y,, < y1 < ya E C, . Continuing in this way define ys < yr < ..., CO, C, ,... 
so that for all ,k? < K 

(a) y8 E C,, for all /I’ < /3, 

(b) B limit--f ye = UY<B ye’ , CB = hcB CB* , 

(4 ~+nS+f(4a+ 

This is possible as /3 limit ---f ‘ys n C,, unbounded in “/a for /3’ < ,!3 + ys E C, . 
Then yB E S for some limit B, as S is stationary and {ya ] /3 limit} is closed, 
unbounded. But then ys E C, and so f(ys) > yB by (c), contradicting the 
hypothesis thatf is regressive on S. 1 

Jensen’s O-principle (see [7]) is a strong axiom true in GBdel’s L which can 
be used to diagonalize over subsets of K in only K-many steps. Jensen used it 
to construct a Souslin Tree in L. 

Let K be a regular cardinal. OK says: There is a sequence (S, 1 (I: < K) such 
that 

(i) S, _C 01 for each 01, 

(ii) I f  X_C K, then {a ] S, = X n a} is stationary. 

PROPOSITION 3. (a) OK+ @dies that 2” = K+. 

(b) OK implies that there is a collection {X, 1 01 < K} of stationary subsets 
of K such that aI # 01~ implies Xa, n Xz, = 0. 

Proof. (a) Define f: 2K -+ K+ by f(Y) = least 01 > K such that S, = Y. 
Then f is well defined and l-l. 

(b) For each 01 < K, let X, = (/3 > 011 Ss = {a}}. Then each X, is 
stationary and the Xol’s are pairwise disjoint. 1 

THEOREM 4 (Jensen). 0, is true in L. Moreover, there is a OK-sequence 
which is ZI-dejkable over (L, , e>. 

Proof. We define S, by induction on 01. S,, = PI. S,,, = @ for all 01. If  S, 
has been defined for all 01 < A, X limit, we define S,, as follows: Let <X, C) be 
the least (in the canonical well-ordering of L) pair so that 

(i) X, CC A, 

(ii) C is closed, unbounded in A, 

(iii) 01 E C -+ S, # XI? 0~. 

Define S,, = X if such a pair exists, and S, = o otherwise. Clearly, 
(S, 1 01 < K) is &-definable over (L, , 6). 
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We claim that (S, 1 Q < K) satisfies OK. If not, let (X, C) be the least (in 
the canonical well-ordering of L) pair so that 

(i) X, CC K, 
(ii) C is closed, unbounded in K, 

(iii) 01 E C + S, # X n 01. 

Now, <X, C) EL,+ . Let M <L,+ so that 

(a) M has (L-) cardinality <K. 

(b) K, (X, C) EM, K n M is an ordinal. 

By Giidel Condensation, there is a unique V: (M, E) 2 <L, , E), 01 < K. 

Then let T(K) = A. It is easily seen that ?T 1 h = id 1 A, so P((X, C)) = 
<X n A, C n A). Moreover, ~(5’~) = S, for 01 < A. Thus, since v is an 
isomorphism, 

(X n A, C n A) is the least (in the canonical well-ordering of L) 

pair so that 

(i) X n A, C n h C A, 

(ii) C n X is closed, unbounded in A, 

(iii) ctECnA3Su#Xnhn~=Xna. 

But then by definition, S, = X n A. But since C is closed and C n h is 
unbounded in A, X E C. This contradicts OL E C + S, # X n 0~. 1 

Let E be a stationary subset of K. We relativize OK to E. OK(E) says: There 
is a sequence (S, 1 01 E E) so that 

(i) S,CaforolEE, 

(ii) If XC K, then {a E E 1 S, = X n a} is a stationary subset of E. 

THEOREM 5 (Jensen). OK(E) is true in L. Moreover, there is a O,(E)-sequence 
which is Z;-deJinable over (L, , E, E). 

Proof. Define S, for 01 E E by induction on 0~. SO = %. S,,, = o for every 0~. 
If S, has been defined for OL < A, X limit, let (X, C) be the least pair such that 

(i) X, CGA, 
(ii) C is closed, unbounded in A, 

(iii) aECnE+S,#Xna. 

If such a pair exists, let S,, = X, S, = a otherwise. Clearly <S, 1 01 E E) is 
&-definable over (L, , E, E). 
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Suppose (S, / a: E E) does not satisfy O,(E). Let (X, C) be the least pair 
so that 

(i) X, C_C K, 

(ii) C is closed, unbounded in K, 

(iii) ~EC~E-+S~#X~(Y. 

We define a K-Sequence MO < i& < ... < M, < ... of elementary sub- 
models of&+ as follows: 

MO = an elementary submodel of Lx+ such that E, X, C, K EM,, and 
M,, n K = an ordinal less than K, 

M a+1 = an elementary submodel of LK+ such that Ma u {Mu} C M,,, and 
Me+, n K = an ordinal less than K, 

iMA = u M, for limit A. 
&<A 

Let /?= = M, n K. Then {& 1 a! < K is a closed unbounded subset of K, so > 
there is a h = ,& E E, since E is stationary. Let m: M,, 3 L, . Then n(E) = E n A, 
r((X, C)) = (X n A, C n A) since 77(K) = ,!3a = A. So (X n A, C n A) is the 
least pair so that 

(i) Xnh, Cnh_Ch, 

(ii) C n h is closed, unbounded in h, 

(iii) aeCnhnEnh+S,#XnXna. 

But then S, = X n /\ by definition and h E C. As before this contradicts the 
choice of <X, C>. g 

2. POST'S PROBLEM WHEN F* = K,~ 

The theory of stationary sets and 0 can be useful in a priority construction. 
In this section we prove 

THEOREM 6. Suppose B is a limit ordinal and /3 > /3* = K,~. Then there 
exist &r.e. sets A, B C &L such that A gwB B, B &,,s A.l 

Proof. As in any construction to solve Post’s problem, we wish to satisfy 
the requirements 

R,A: K,= - B # WeA, ReB: NIL - A # Wee, eESB. 

1 The argument that we present will also handle the case p = &L, or fl* = any successor 
L-cardinal. 
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Here, W*A = eth set /?-r.e. in A. If {W,),,, is a uniformly j?-r.e. listing of the 
8-r-e. sets, then 

In this construction, there will be added requirements to ensure that A, B are 
simple and weakly-t.r.e. 

DEFINITIONS. A C/I* is simple if A is j&r.e., /I* - A is unbounded in b*, 
and A intersects any /%r.e. B which is unbounded in /I*. 

A -C/3 is rumeZ’-r.e. (t.r.e.) if (2 E Se 1 2 CA} is /3-r.e. A is weakly-t.r.e. if 
(2 E S, 1 z - A is bounded in /3*} is /3-r.e. 

The requirements for simplicity are 

S,*: IV, unbounded in K,L + A n, W, # o , 

SeB: W, unbounded in NIL -+ B n W, # m , eESe. 

Of course, we must also guarantee that p* - A is unbounded in /3*. 
T.r.e.-ness is automatic when p is &admissible. However, we cannot hope 

to build t.r.e. sets when &$3 = w (see [4, p. 361). As a result, our attempts at 
R,* will not only keep ordinals out of A, but put ordinals into A. Weakly-t.r.e.- 
ness is essential in that it allows the positive part of these attempts to be 
countable. The requirements for weakly-t.r.e.-ness are 

T,*: e - A bounded in ~~~ + 3 stage u[e - Aa is bounded in NIL], 

TOB: e - B bounded in t$L’ + 3 stage o[e - Bo is bounded in N,L] 

for e E S, . A0 = the part of A enumerated by stage u of the construction. 

Remark about stages. Unless wa = /I (for example, j3 primitive-recursively 
closed), one cannot naturally identify members of S, with ordinals less than fi. 
However, there is always a canonical p-recursive well-ordering <a of S, with 
the property that pre(x) = {z 1 s <a x} is a p-recursive function from S, into 
S, (see [l, p. 841). Accordingly, we can identify stages u with members of Sa , 
viewed as positions in the canonical well-ordering <B . 

Let f: S, + K,= be p-recursive and l-l. f can be used to arrange the above 
requirements into a list of order type K,~, assigning each requirement a “priority” 
less than K,~. For example, we can assign: 

f’(R*) = f(<O, e>), 

f’(&.*) = f(<Z e>), 

f’(TeA) = f(<4, e>), 

f’(RdB) = f(<l, e>), 

f’(SeB) = f(<3, e>), 

f’(TsB) = f(<5,e>). 
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This assigns a single priority to each requirement. However, this is not good 
enough for our purposes. We would like to allow each requirement to have a 
stationary set of different priorities. 

By Theorem 4, let (S, 1 ti < w,~) be a p-finite OxlL-sequence. As in Proposi- 
tion 3(b), {a j S, = {r>} is stationary for each y < NIL. Defineg: NIL -+ (Require- 
ments} by g(S) = R if and only if S, = {f’(R)}; g(S) undefined if no such R 
exists. Then each requirement R has the stationary set of priorities g-‘({R}). 
Note that f’ 0 g is partial /?-recursive. 

Thus each requirement R can be viewed as the whole stationary collection 
of auxiliary requirements R, , g(S) = R. The reason for arranging this is that 
unlike priority arguments in the admissible case, we will not be able to guarantee 
that every auxiliary requirement R, can eventually be satisfied. Instead, we 
can argue (rather easily) that a closed unbounded collection of auxiliary require- 
ments Ii, will be satisfied and in fact will never be injured. Then since g-l((R}) 
is stationary, there will be an auxiliary requirement R, , g(S) = R which will 
be satisfied and hence so will R. 

We now describe how an attempt is made at an auxiliary requirement R, . 
All attempts will be of the form (K, H) where K, HE LK,~ ; if (K, H) is an 
A-attempt then the members of K will be put into A by the attempt, and the 
attempt tries to preserve A n H = 0. Similarly for B-attempts. In addition, 
if (K, H) is an attempt at R, , then K U H will contain no ordinals < S. 
Finally (much in contrast to the admissible case): 

(1) At most one A-attempt and at most one B-attempt will be made at 
each R, . 

(2) If (K, H) is an attempt at R, at stage u, then no attempt can be made 
after stage u at any R,, , S < 6’ ,< sup(K u H). 

A consequence of (2) is that if S < S’, then no attempt at R,l can ever injure 
an attempt at R, . (The A-attempt (Kr , HI) injures the A-attempt (K, , H2) 
if Ki n Hz # ,@. Similarly for B-attempts.) 

Having laid the groundwork, we are now ready to examine the separate 
cases g(S) = ReA, SeA, T&A. The cases ReB, SGB, TeB are handled similarly. 

Ifg(S) = SaA, then an A-attempt is made at R, at stage u ifg(S) is defined by 
stage u and 

(a) No attempt has already been made at R, . 

(b) No attempt (K, H) at some Rae , 6’ < S has been made such that 
sup(K u H) 3 6; 

Then the A-attempt at R, at stage u is ((3/o}, o), where y,, = py(y E Wea A 
y > S). No B-attempts are ever made at R, . 
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If g(6) = T,A, then an A-attempt is made at R, at stage u if g(S) is defined 
by stage u and 

(a) As before, 

(b) as before, 

(c) egAw(S+ 1). 

Then the A-attempt at RB at stage u is (O , {*/o)) where ~a = py(y E e - Au A 
y > 6). No B-attempts are ever made at Ra. 

The case g(6) = Re-4 requires an extended discussion. We would like to find 
an argument x > 6 and a pair (zi , a z ) of ,%finite sets such that Au n z, = o 
and <x, x1 , a,) E Weu. If we can make the A-attempt (zl , z,) and the B-attempt 
({x}, o), then (assuming z, n A = 0 is preserved): 

xeB and XE w,A. 

Thus R,A will be satisfied. Requirements {Se*, T,,“}a.se guarantee that A will 
be both simple and weakly-t.r.e., so it suffices to look for (zl, za) as above 
where a, C A0 U z; and z; , z, are disjoint and countable. Then we would lie 
to make the A-attempt (z; , z,). 

Unfortunately, it may happen that z; u za contains ordinals less than 6 
(and hence (2; , za) cannot qualify as an attempt at R,). We can, however, 
make the A-attempt (2; - 8, z, - 6). What is needed is some way to “guess” 
A n ti2 

This guessing procedure is provided by Ok,@). Let (S, 1 6 E E) be a 
j-finite Ox,@)-sequence, where E = {S 1 g(6) = R,A}, provided by Theorem 5. 
We use Sb as our guess at A n 6. Since (8 E E 1 A n 6 = S,> is a stationary 
subset of E, this guess will be correct for stationary-many 8’s. 

We are now ready to describe how attempts are made at R, when g(6) = R,*. 
Attempts are made at stage o if g(6) is defined by stage o and 

(a) As before, 

(b) as before, 

(c) there is an x > 8 and a pair (zi , z2) such that (x, z, , z2) E W,u, 
Aa n z2 = 0, z, n 6 C S, , z2 n S, = 0, z, - Au, z2 are disjoint and countable. 

Then the A-attempts <zr - Au - 6, z2 - S> and the B-attempt <(x}, 0) 
are made at R, at stage a. 

Having described how attempts are made at the auxiliary requirements R. , 
one may describe the construction as follows: Let L: S, + ;K,~ be an enumeration 

a In the admissible case, one can simply use the guess Au n 6. Then for o large enough, 
AonS=An& 
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of NiL (in the sense of [4, p. 193) such that L-l({S}) is unbounded in <s , for 
all S < N,~. For example, 

L(z) = s, x = (x, s> for some x, 

z 0, otherwise.) 

Then at stage u, attempts are made at $(,,J subject to the conditions described 
above. If the A-attempt (K, H) is made at stage (T, then members of K are 
put into A and Aa+1 = A0 u K. Similarly for B. 

We are now ready to verify that the requirements SeA, TeA, ReA will be 
satisfied (the argument for SeB, TeB, ReB is similar). 

CLAIM 1. For 6 < KIL, let 

h(S) = max{sup(K u H) j (K, H) is un attempt at R8} 

=S zf no attempts are made at R, . 

Then h: NIL -+ N,~ and C = (6 1 h[S] C S} is a closed unbounded set. 

Proof. Since {(K, H) 1 (K, H) is an attempt at Rs} is a set of cardinality 62, 
clearly h: NIL + NIL. C is certainly closed: if yO < yr < ... and y = Un yn , 
then 

Now define h’(S) = py[h(y) > S]. Clearly h’(S) < 6 VS. But also, (6 / h’(S) < y} 
is bounded by sup h[y] < XrL. So by Fodor’s theorem, {S 1 h’(S) < S} is not 
stationary, so certainly (6 1 h’(S) = S} is unbounded. But this latter set is C. 1 

Let A = Unps6 Au, B = uOEsfl Be. 

CLAIM 2. xlL - A, xlL - B are unbounded in NIL. 

Proof. We just consider N,~ - A. Let S = (6 ) g(S) = SOA}. Then S is 
stationary (by the definition of g) and hence S’ = S n C is unbounded. 

SUBCLAIM. If (K, H) is an A-attempt, then K n 5” = 0. 

Proof. Let 6’ E S’. Let (K, H) be an attempt at R, . If 6 > S’, then K n 6 = 
% -+ 6’ $ K. If 6 < 8, then since 6’ E C, sup(K u H) < 6’ and so again 6’ $ K. 
If 6 = S’, then 6’ 6 K by construction (see definition of attempts at RG when 

g(S) = SeA)- I 

But of course A = u {K ) K is an A-attempt}. Thus A n S’ = ,D. 1 
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CLAIM 3. The requirements SeA, SeB are satisfied for all e E S, . 

Proof. We just consider S,A. Suppose W, is unbounded in XrL. Let 
S = (8 ] g(S) = Sa}. As S is stationary, let 8 E: S n C. 

Let a be a stage such that L(o) = 6, g(6) is defined by stage (I and 
W,o - (8 + 1) # O. u exists since W, is unbounded in NIL and L-l({S}) is 
unbounded in <a . If an A-attempt is made at R, at stage 0, then some member 
of W,o is put into A and so S,A is satisfied. If not, thEn either 

(a) An attempt has already been made at R, , or 

(b) an attempt (K, H) has been made at some R,p , 6’ < 6 such that 
sup(K u H) 2 6. 

Condition (b) contradicts the assumption 8 E C. Condition (a) implies 
Aa n Weu # o , so again S,A is satisfied. a 

CLAIM 4. The requirements T,A, T,B me satisfied for all e E S, . 

Proof. We just consider T,“. Suppose e - A is bounded in XIL (where 
e C &L). Let S = (8 1 g(S) = T,A}. As S is stationary, S n C is unbounded 
in XIL. 

Let 8 E S n C, and let u be a stage such that g(6) is defined by stage u and 
L(U) = 6. If e C Ae u (6 + l), then e - A* is bounded and TeA is satisfied. 
Otherwise, as 6 E C, either an A-attempt at R8 has already been made or one 
will be made at stage u. Let (0, {‘yO}) b e an A-attempt at R, made at some 
stage u’ < u. 

SUBCLAIM. If (K, H) is an A-attempt de after stage u', then ‘yO c$ K. 

Proof. Let (K, H) be an A-attempt at R,* . If 6’ < 8, then sup(K u H) < 

6 < y,, since 6 E C. If 8’ > 8, then since sup( % u {“/o)) = y0 , we must have 
‘yO < 6’ (otherwise no A-attempt could be made at R,f). But then K n 6’ = 
0 --t ~a 4 K. No A-attempts at R, can be made after stage u’ since one has 
already been made. 1 

But then ‘yO 4 A = (J {K 1 (K, H) is an A-attempt}. So we have shown that 
either 

(a) 3a[e - Au is bounded], or 

(b) V8 E S n C[3y, > 6 s.t. y,, E e - A]. 

Condition (b) contradicts the assumption that e - A is bounded. 1 

CLAIM 5. Each ReA, ReB is satisfied, e E S, . 

Pwof. We just consider R,,A. Let E = (6 1 g(S) = R,A}, a stationary subset 
of XrL. 
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Let (S, 1 6 E E) be the OE-sequence chosen earlier (and used in our attempts 
at R6, 6 E E). Then E’ = (6 1 6 c E and S, = A n S} is a stationary subset of E. 
Now pick any 6 E E’ n C. 

Suppose NIL - B = WGA. We work now toward a contradiction. By Claim 2, 
choose x E N,~ - B such that x > 6. Then there is a pair (zr , zJ such that 

(i) z~CA,Z,~N,~-A, 

(ii) (x, 3 , x2> E W,. 

By Claim 3, za is bounded in xIL (i.e., is countable). By Claim 4, there is 
a stage o such that L(o) = 6, ( x, z, , za) E W,= and x1 - Aa is countable. Also, 
sinceS,=AnS,wehavex,nSCS,andz,nSd=e(.ThussinceSEC, 
either a pair of attempts is made at R, at stage U, or a pair of attempts at Rs 
was already made at some earlier stage. 

SUBCLAIM. Let the A-attempt (xl - Aa - 6, x2 - S> and the B-attempt 
({xl, @) be made at Rs at stage u. Then z, r\ A = 0. 

Proof. Otherwise some A-attempt (K, H) made at some R, , at some later 
stage has K n za # 0. If  6’ < S, this can’t happen since 6 E C Z- sup(K u H) < S 
and z, n 6 C (6 - S,) = 6 - A. If  6 = 6, then no attempt can be made at R,? 
at any stage after stage a. If  6’ > 6, then 6’ > sup((.zr - Au) u ze) since other- 
wise no attempt can be made after stage u at R,, . But then K n 6’ = IZI * 
Knz,=a. a 

The pair of attempts in the subclaim guarantees that z1 C A, x2 _C N,~ - A, 
<x, z, , za) E W, and x E B. Thus WeA # xlL - B. 1 

3 THE GENERAL CASE 

In this section we treat the case: ,!I* is @recursively regular. This means 
that every p-recursive function f: y  +/I*, y  < /3* has range bounded in /I*. 
By Theorem 3.13 of [4], we may assume that &#I < /3*; this assumption is 
actually not needed for our proof when /3* is a successor p-cardinal (or 8% = fi 
and there exists a largest p-cardinal). 

PROPOSITION 7. If /3* is a successor /3-cardinal, then /I* is /l-recursively 
regular. 

Proof. See [4, Proposition 1.181. 1 

We begin by “effectivizing” Fodor’s theorem and 0 to S, . The proof of 
Theorem 6 suggests that the effective analog of “closed unbounded subset of 
NIL” should be “I-I?-definable closed unbounded subset of p*” and “stationary” 
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should be replaced by %rtersects every l-I?-definable closed unbounded 

subset of /I*.” However, with only the assumption of B-recursive regularity 
of /I*, it may be that there exist np-definable unbounded subsets of /3* of 
order type W; in this case, sets having the above property analogous to stationary 
must be final segments of /3*. So we discard the concept of “stationary” and 
instead choose to effectivize the following weaker versions of Fodor’s theorem 

andO 

WEAK FODOR’S THEOREM. Suppose y < K and f: K x y + K. Then (6 < 
K 1 f[8 x y] c 8) is a closed unbounded subset of K. 

WEAK O,-PRINCIPLE. There exists a sequence (S, 1 S < K) such that 

(i) s, c 28, 3, < K, 

(ii) IfXCK,then{8]Xf36ESs} is a closed unbounded subset of K. 

Proof of Weak Fodor. Let 

= 8, otherwise. 

Clearly g(8) < 8 for all 8 < K, and also g-l[S] is bounded for all 6 since K is 
regular and f is a function. Applying Fodor’s theorem to g, we get that 
(8 1 g(6) = S} is certainly unbounded. But g(6) = 8-f [S x y] _C 8, and since 
(6 < K 1 f [6 X y] c 8} is certainly closed, we are done. 1 

The proof of Weak OK will be deferred until the proof of its effective version. 
We proceed to describe our effective versions of Weak Fodor and Weak 0. 

In our application of these effectivized principles to some particular p-recursive f 
(in Weak Fodor) and /I-r.e. X (in Weak O), it will be important to know that 

{S 1 f [S x ~1 C S} n (6 I X n 6 E S,} 

is closed, unbounded. As these sets might have ordertype w, we cannot simply 
argue that the intersection of two closed unbounded sets is closed unbounded 
(/3* is not regular en&r). Instead our effective versions will specify the above 
sets exactly, given defining parameters for f as a p-recursive function and X 
as a /3-r.e. set. 

DEFINITION. Let /I* be /3-recursively regular and p E Se . Then 8 < p* is 
p-stable if h,[(6 u {p}) x W] n p* C 6, where h, is a parameter-free Zr Skolem 

function for S, . (For a summary of the basic facts concerning Skolem functions, 
see [4, Chap. I].) 
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Since h,[(S u {p}) x W] is a Zr-elementary substructure of SO , we see that 
S < /3* is p-stable if and only if there is an H -+ S, such that H n p* = S. 
Let C, = (6 < /3* 1 S is p-stable}. 

LEMMA 8. For each p E S, , CD is a closed unbounded subset of /I*. 

Proof. Case 1. /3* is a successor #I-cardinal. It is enough to show that C, 
is unbounded. Let ya = the largest p-cardinal less than /I*. Let y  > y,, , y  < /3* 
be arbitrary. Let H = h,[(y u {p}) x w]. As h1 is ,Z’r , H n /3* must be bounded 
in /3*. 

CLAIM. H n ,6* = an ordinal. 

Proof. This is because S E H n j?* + 3f E H[f: S -r--l y,J. Then f  -l[y,,] C H 
since ya 2 H. # 

LetS=Hn/3*.ThenS>y,SEC,. 

Case2. p* is a limit b-cardinal. In this case, we use the assumption 
Z;cf/3 < /I*. Let yO = &cfL3 < ,k?* and let f :  y,, ---f /3 be #I-recursive, unbounded, 
and order preserving. As h, is .Zr , let h,O be the part of graph(h,) enumerated 
by stage o (in some fixed p-recursive enumeration of graph(h,)). Let 6, < /?* 

be arbitrary. Define, inductively, 

6, = SUP h:‘O’[(So u {p}) x W] n p*, 

s v+l = sup @‘)[(S, u 1~1) x 4 n Is*, 

6, = sup{% I Y < A> for limit h 

for y, h < y. . Then S~O = sup@, I Y < yoyo) < 8* andB* n hi&, u {P>) x ~1 L 
SYO . Then So < SYO E C, . 

Case 3. /3* = ,!I. Then C, = {y < /3 1 p ES, and y  is p-stable) which is 
unbounded in p. i 

EFFRCTIVIZED FODOR. Suppose y  < fl*, A C/3* x y  and the partial function 
f: A + ,3* is .Zl over S, with parameterp. Then S > y, S E CD implies f  [S x y] C 6. 

EFFECTIVIZED OB* . There exists a /3*-recursive sequence (S, 1 S < ,!I*) such 
that 

(i) S, _C 2a, p-card. S, < ,6*, 

xnysif XCP * is Z; over S, with parameter p, then S E CcD,o*l implies 

8. 

Proof of Efectivized Fodor. Let S > y, S E C, and H = h,[(S u {p}) x w]. 
ThenS x y_CHandsof[S x y]CHsincepEH. ButHnp* =S. 
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Roof of Effectiviked OS. . Case 1. There is a largest p-cardinal less than /I*. 
Then let this @ardinal be y,, . If 8 < y,, , set S, = 0. Otherwise, if y0 < 8 < p*, 
let S, = 2a n Ja , where 8 = py > S[J, + ‘% is not a cardinal”]. 

If 8E CcD.s.>, Xrfl* is ZI over S, with parameter p, then let H = A,[(8 U 

(~,8*))x~].Thusys~HandS=Hn8*.So~,<6. 
Let c: <H, c) Y (J,, , c) be the transitive collapse. Now J, + “8 is a cardinal” 

since 6 = c(p*). But X is .&definable with parameter p over S’s, and hence 
X n H is &-definable with parameter p over H. Since X n H = X n 6 and 
cIS=id\S, Xn8 is definable over J,.. But then XnssJ,,+lCJd. So 
XnSfsS,. 

Case 2. /3* is the limit of smaller #I-cardinals. Then if 6 < p*, let 
S, = 28 n Jo, . Since X /?-r.e., 8 < ,9* implies X n 6 E JB. , we. are done. [ 

We are now ready to prove: 

T-REM 9. If p* is @ecursinely regulur, then there exist p-r.e. A, B _C p* 
such that A &,o B, B =j& A. 

Proof. As before, we have the requirements 

R,A: /I* - B # WsA, Ran: jl* - A # WBB, 

SGA: We unbounded in /3* --t A n W,, # a, 

S,B: W, unbounded in /3* + B n W, # la, 

T,A: (e - A) bounded in j?* + 3a[e - A0 bounded in /I*], 

TeB: (e - B) bounded in fl* -+ 3o[e - B” bounded in /3*] 

for e E S, . Previously, we considered auxiliary requirements {Ra}-* so that 
each R, constituted an attempt at one of the above requirements, each of them 
being attempted by stationary-many Ris. In this construction, each 6 </I* 
will be responsible for a whole (size <j?*) collection of requirements, each 
requirement being attempted by a final segment of 6’s. 

More precisely, fix a 1-I b-recursive f: S, + /3* and let p’ be the parameter 
which defines f. ((p’, fl*> will be the parameter for the construction if /3* < /I.) 
Then 6 is responsible for Ra, ReB, SeA, &B, TeA, TeB where f(e) < 8. As 
before, “guesses” will have to be made at A n 6, B n 6 for the sake of require- 
ments ReA, R,B; as Qs. provides us with a collection of such guesses, the require- 
ments ReA, R,B will in fact be treated by 8 as collections of requirements, one 
for each guess given by oe. . 

The auxiliary requirements. Fix a /I*-recursive Oe* sequence (S, 1 6 < /3*)- 
Then the collection as of auxiliary requirements at level 8 consists of: 
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(a) {SyA I Y < 3 u {SyB I Y < % 
(b) {TyA I Y < 81” {TyB I Y < % 
(4 mAP ‘d I Y < 69 g E &I ” wJ*, Ld I Y < 6 g E x4* 

SYA (TVA) is intended to represent ‘SeA ( TeA) where f(e) = y. Similarly for S,,*, 
TV*. (RVA, g) represents R,A with the guess g for A n 6, where f(e) = y. 
Similarly for (R,*,g). Note that there may be y < 6 which are not in range f, 
in which case auxiliary requirements with subscript y will never be active. 

Now for each S </I*, 9, has /3-cardinality less than /3*, so let {R58}fc<K<B* 
be a fixed well-ordering of 92, . 

As before, each S will make certain A-attempts and B-attempts of the form 
(K, H) where K, H are bounded in /3* and K n 6 = ,D = H n 6. 6 will make 
at most one A-attempt and one B-attempt at each Rfg. Also, if 6 makes the 
attempt (K, H) at stage (T, then no 6’ such that 6 < 6’ < sup(K u H) can ever 
make an attempt at any later stage. 

Two A-attempts (Kl , HJ and (Ka , H,) are compatible if Kl n H, = o = 
K, n HI . Similarly for B-attempts. At each stage u, some 6 < /3* will be 
examined, and then A- and B-attempts will be made successively at R18, R,“, 

R,“,...; an attempt at RR,” at this stage must be compatible with attempts at Rz. , 
f’ < 5 at this stage and all attempts at members of 9J’s at earlier stages. Thus 
no two attempts at members of 9, will ever conflict, and each member of W8 
has an opportunity to act at each stage where S is being examined. 

We now describe exactly how attempts are made and how the construction 
proceeds. Let L: S, --f ,!I* be a fixed enumeration of /3* such that for each 
S < /3*, L-l({S}) is unbounded in <B and L is &-definable over S, with param- 
eter /3*. (For example, 

L(x) = 6 if x=(&y), S<p* 

= 0, otherwise 

is an example of such an L.) 

Stage (r. We consider L(o) = 6. If some attempt (K, H) has been made at 
some 6’ < 6 where sup(K u H) 3 6, go to the next stage. Otherwise, begin 
by making the A-attempt and B-attempt (0, (6)). (This is to ensure p* - A, 
p* - B unbounded in /3*.) Then successively make A- and B-attempts at 
Rls, Rz8,... as follows: Assume by induction that we have finished with Ri’ , 
[’ < 6. We describe how to act on R E8. If an attempt has already been made at 
R,a at some earlier stage u’, L(d) = 6, then go on to R&, . Now assume lit8 
is of one of the forms SYA, TVA, (RyA, g). The cases SYB, TyB, (RyB, g) are treated 
similarly. If y has not yet appeared in Range f (in some fixed enumeration of 
the p-r.e. set rangef), go on to Ri+l . Otherwise, letf(e) = y. 
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R,a = S,,A. If there is an A-attempt ({y’}, O) compatible with earlier 
A-attempts at members of Ws such that y’ > 8 and y’ E Wan, then make the 
A-attempt ({ye}, 0) where 7s is the least such y’. Otherwise go to Ri,, . Make 
no B-attempts. 

Rta = T,,A. If there is an A-attempt (0, (y’}) compatible with earlier 
A-attempts at members of W8 such that y’ > S and y’ r~ e - Au, then make 
the A-attempt (0, {y,,}) where y,, is the least such y’. Otherwise go to Ri, . 
Make no B-attempts. 

RE8 = (R,A, g). Suppose that there are x > 6 and a pair (zr , es) such that 

<x, 21, %> E wtTu, z,n8Cg, +ng= O,z,nA”= Izr and zr-Au, z, are 
disjoint and bounded in j3*. Then if such an x > 6 and (zl, za) can be found 
so that the A-attempt (zi - AU - 6, =a - 8) and the B-attempt ({xl, 0) are 
compatible with earlier attempts at members of W, , make the least such pair 
of attempts. Otherwise go to Ri,, . 

This ends the description of the construction. Note that the only parameters 
needed in the construction are p’ and /?*. Let p” be a parameter which defines 
a &recursive g: Z;cfp + /3, range g unbounded. Let p = (p’, /3, p”). 

CLAIM 1. Suppose 6 E C,, . Let (K, H) be an attempt at some member of We* , 
S’ < 6. Then sup(K u H) < 8. 

Proof. Case 1. There is a largest p-cardinal less than ,8*, y. Then each 
W,f is well-ordered in length y. Define the partial Zi function f by f (S’, y’) = 
m=+p(K u H) I (K H) is an attempt at R$}. Then by Effectivized Fodor, 
DECO, 8>y+f[S~y]CS. Butit iseasilyseen that6EC4,-+8>yand 
so we are done. 

Case 2. Otherwise. In this case we use the assumption .Elcft? < p*. Let 
y = .&cf@ and define f by 

f (S’, Y’) = SUP@UP(K u ff> I w, w is an attempt at some member of ~3~. 
made by stage g(y’)}. 

Then by Effectivized Fodor, 6 E C, + f [6 x y] C 6. So we are done. 1 

CLAIM2. IffSCC,,thenAn6,Bn6ES,. 

Proof. This is immediate from Effectivized OS*. 1 

Thus we see that any A-attempt (K, H) made at a member of W, , S E C,, is 
pemunent; i.e., K C A and A n H = 0. (Similarly, for B-attempts.) Moreover, 
by Claim 2, a correct “guess” was made at A n 6 and at B n 6. These facts 
make it easy to check that the desired requirements have been met. 
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CLAIM 3. /?* - A, /I* - B are unbounded in /3*. 

Proof. The first attempts made by 6 E C, are the A-attempts and B-attempts 
(0, (6)). These attempts are permanent so 6 4 A u B. C, is unbounded by 
Lemma 8. 1 

CLAIM 4. The requirements SeA, SeE are satisjied for all e E Se . 

Proof. Let f(e) = y. We just consider SeA. Choose 6 E CD , 6 > y. I f  W, 
is unbounded in /3*, there must be a stage o such that 

(i) L(u) = 6, 

(ii) f(e) is defined by stage cr, 

(iii) there is an x E W,O, x > S’, where 6’ = least member of C, greater 

than& 

Then by Claim 1, the A-attempt ({x}, ~a) must be compatible with earlier 

A-attempts at members of 9, . So either an attempt must be made at S,,A at 
stage u or one must have already been made. But then A n W, # 0. # 

CLAIM 5. The requirements TeA, TeB are satis$ed for all e E S, . 

Proof. Let f(e) = y. We just consider TeA. Suppose that for no stage u, 
do we have e - Aa bounded. We show that e - A is unbounded. Let y’ > y  
be arbitrary and 6 E C, , S > y’. Let u be any stage such that L(a) = 6 and f  (e) 
is defined by stage cr. Since e - A0 is unbounded, there must be an A-attempt 

( @ y  {Y~H, YO E e - Au, which is compatible with all earlier A-attempts at 

members of 92’s . Then either such an A-attempt was made at stage u or an 
earlier attempt was made at T,,A. But this attempt is permanent since 6 E C, . 
So we have shown that 3x > y’[x G e - A]. Since y’ was arbitrary, e - A is 
unbounded. a 

CLAIM 6. Each R,A, ReB is satisJied, e E Se . 

Proof. We just consider R,A. Let f  (e) = y  and y  < 6 E C, . Let 6’ = least 
member of CD greater than 6. Since /3* - B is unbounded choose x E B* - B, 
x > 6’. Suppose /3* - B = W,A. Then there must be a pair (zr , za) such that 

( x, zr , x2) E W, , x1 C A, z2 C /3* - A. Since A is simple (Claim 4) and weakly- 
t.r.e. (Claim 5), there is a stage (r such that 

(i) L(u) = S, f  (e) is defined by stage u, 

(ii) z, - Au, zs are bounded in /3*. 

Since 6 E C, , there is a g E S, , g = A n 6. Then of course a, n 6 Cg, 
z2 n g = @. Then the A-attempt (zr - A0 - 6, za - S) and the B-attempt 
({x}, a) must be compatible with all earlier attempts since all of these attempts 
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are permanent. But then attempts at (&“, g) must have been made at stage u 
or some earlier stage. Since this attempt must be permanent, it guarantees 
B#W,A. I 

4. GENERALIZING TO .?& , n > 1 

Jensen’s master codes can be used to extend the above results to Z,, sets 
when the &projectum of /3, p,,e, is regular with respect to the functions ,Z,, 
over S, . 

Recall [7J 

THIZORRM (Jensen). For each n > 0~ there is a subset A,e of p,,e which is Z,, 
over s, such that 

for all m > 0. 

Thus, as far as subsets of p,,s are concerned, &+,-definability over S, reduces 
to 2,,,-definability over the amenable structure (S,.s , A,B>. 

Now for A, B 6 Se , define A <$ B if there are Z, predicates WI , W, 
such that 

THEOREM 10. Suppose p,,e is regulm with respect to functions Z,, over Se . 
Then there exist sets A, B c p ,e which are 2& over S, and such that A $$ B, 
B Gs A. 

DEFINITION. If 2l = (S’s , E, A) is an amenable structure, then if B, C C S, 
we define: B <x C if there are predicates WI , W, ZI over 9X such that 

Proof of Theorem 10. Let Ql = (S,,a-, , E, A!-,> (we can assume n > 2). 
A straightforward relativization of Theorem 9 yields: There are A, B C pig = p,,e 
which are ZI over 91 (hence 2, over Ss) such that A =&B, B $o[ A. If 
p,,e < Pact , then every p-finite subset of pne belongs to S# so <p[ = <$ 
for subsets of p,,e. Thus A 4:s B, B 4:s A. Otherwise, %I$ an admissible 
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structure (since then ptV1 = pn@ which is Zt-regular by assumption). Then 
do the usual construction [16] of incomparable Z; sets A, B over the admissible 
structure C!l, but in addition guaranteeing 

RG, Runboundedinpt-,+AnR# 0, B~R# 0. 

Then all p-finite subsets of SD!-, - A, Sol-, - B belong to St-, . Using this, 
it can be seen that A $5 B, B $$ A. 1 

Last, it is quite pertinent to ask for a stronger incomparability in Theorem 10: 
If A, B C S, , say that A is A,, in B if A is An-definable over (S,[B], E, B). 
Then do there exist 2, sets A, B such that neither is A, in the other ? Shore [I 51 
handles the case where p is &admissible. See [17] for progress on the case 
where pnB is regular with respect to functions Z, over S, . 

5. RECENT DEVELOPMENTS 

We have now produced ordinals for which Post’s problem has a negative 
solution: Let fi = ~5, + w. If cx = NE, then there are no or-degrees strictly 
between 0’ and 0”. These results will appear in a series of papers entitled 
“Some Negative Solutions to Post’s Problem,” the first of which is listed as [18]. 

However, the complete situation regarding Post’s problem is not fully under- 
stood. We end with some questions. 

(1) For which Jo? can Post’s problem be solved positively ? See [18] for 
a conjecture on this. 

(2) For which /3 are there incomparable &r.e. degrees? 

(3) For which B are the ,%r.e. degrees dense ? 
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