Post's Problem without Admissibility

SY D. FRIEDMAN

Department of Mathematics, University of Chicago, Chicago, Illinois 60637

INTRODUCTION

This paper is a contribution to β -recursion theory; i.e., recursion theory on arbitrary limit ordinals. The basic definitions, motivation, and results were set forth in [4]. In brief, the setting for β -recursion theory is S_{β} , the β th level of Jensen's S-hierarchy for L (see [1, p. 82]) and β -recursively enumerable (β -r.e.) sets are those subsets of S_{β} which are Σ_1 -definable over $\langle S_{\beta}, \epsilon \rangle$. $A \subseteq S_{\beta}$ is β -recursive if both A and $S_{\beta} - A$ are β -r.e. and is β -finite if $A \in S_{\beta}$. As in α -recursion theory, there is a β -r.e. enumeration $\{W_e\}_{e\in S_{\beta}}$ of the β -r.e. sets and using this we define: A is weakly β -recursive in B ($A \leq_{w\beta} B$) if for some e

$$\begin{aligned} &x \in A \leftrightarrow \exists K_1 \ \exists K_2[\langle 0, x, K_1 \ , K_2 \rangle \in W_e \text{ and } K_1 \subseteq B \text{ and } K_2 \subseteq S_\beta - B], \\ &x \in S_\beta - A \leftrightarrow \exists K_1 \ \exists K_2[\langle 1, x, K_1 \ , K_2 \rangle \in W_e \text{ and } K_1 \subseteq B \text{ and } K_2 \subseteq S_\beta - B], \end{aligned}$$

where K_1 , K_2 vary over β -finite sets. A is β -recursive in B $(A \leq_{\beta} B)$ if $\{Z \in S_{\beta} \mid Z \subseteq A\}$ and $\{Z \in S_{\beta} \mid Z \subseteq S_{\beta} - A\}$ are both weakly β -recursive in B. \leq_{β} is transitive and the β -degree of $A = \{B \mid A \leq_{\beta} B, B \leq_{\beta} A\}$.

The program of β -recursion theory is to generalize theorems of ordinary recursion theory to arbitrary limit ordinals. This paper focuses on the β -degrees of β -r.e. sets and provides a partial solution to:

POST'S PROBLEM. Show that there are $\leq_{w\beta}$ -incomparable β -r.e. sets.

Post's problem was solved in ordinary recursion theory by Friedberg [2] and Muchnik [10] independently, and generalized to α -recursion theory (i.e., recursion theory on admissible ordinals) by Sacks and Simpson [14]. (Purely "syntactic" techniques suffice to solve the following weaker formulation of Post's problem for every inadmissible β : Find a β -r.e. set of β -degree strictly between 0 and 0', the largest β -degree of a β -r.e. set. See Theorem 3.4 of [4].)

Sacks and Simpson used ideas from the structure of L devised by Gödel to prove the Generalized Continuum Hypothesis in L [6]. We extend the application of techniques from the fine structure of L to recursion theory by making use of Jensen's \diamondsuit -principle in our solution to Post's problem. An effectivized version of Fodor's theorem is also developed and used in our proof. For background material on \diamondsuit and stationary sets, see [1]. In Section 1, Fodor's theorem, \diamond , and other facts about stationary sets are reviewed. Section 2 uses these ideas to solve Post's problem in the special case when $\beta^* = \aleph_1^L$. Finally, in Section 3 the material of the first section is effectivized and applied to the case where β^* is only regular with respect to functions Σ_1 over S_β . Thus Post's problem is solved if β^* is a successor β -cardinal. Also, the generalization of the construction to Σ_n predicates is discussed in Section 4.

1. REVIEW OF STATIONARY SETS AND THE O-PRINCIPLE

We begin by recalling some basic definitions and facts from combinatorial set theory.

DEFINITION. Let $\kappa > \omega$ be a regular cardinal. $C \subseteq \kappa$ is closed if for all $\gamma < \kappa$, $C \cap \gamma$ unbounded in $\gamma \rightarrow \gamma \in C$. $S \subseteq \kappa$ is stationary if $S \cap C \neq \emptyset$ for every closed unbounded $C \subseteq \kappa$.

PROPOSITION 1. Suppose $\{C_{\alpha}\}_{\alpha < \gamma}$ is a collection of closed unbounded sets and $\gamma < \kappa$. Then $C = \bigcap_{\alpha < \gamma} C_{\alpha}$ is closed and unbounded.

Proof. Let $\beta_{0,0}$ be arbitrary. Inductively, define

$$\beta_{n,0} =$$
some member of C_0 greater than $\bigcup_{\alpha < \nu} \beta_{n-1,\alpha}$,

$$\beta_{n,\delta} = \text{some member of } C_{\delta} \text{ greater than } \bigcup_{\alpha < \delta} \beta_{n,\alpha} \text{ if } \delta > 0.$$

Then $\beta = \bigcup_n \beta_{n,0} = \bigcup_n \beta_{n,\alpha}$ for all α . So $\beta \in \bigcap_{\alpha} C_{\alpha}$. Thus C is unbounded. But $C \cap \delta$ unbounded in δ

$$\rightarrow C_{\alpha} \cap \delta$$
 unbounded in $\delta, \forall \alpha$

$$\rightarrow \delta \in C_{\alpha}$$
 for all α

$$\rightarrow \delta \in C.$$

COROLLARY 2. If $C \subseteq \kappa$ is closed and unbounded, then C is stationary.

Proof. Just apply Proposition 1 when $\gamma = 2$.

FODOR'S THEOREM. Suppose $S \subseteq \kappa$ is stationary, $f: S \rightarrow \kappa$, and $f(\alpha) < \alpha$ for every $\alpha \in S$ (that is, f is regressive on S). Then for some γ , $\{\alpha \in S \mid f(\alpha) < \gamma\}$ is a stationary subset of S.

Proof. Suppose not. Let $\gamma_0 < \kappa$ be arbitrary. Choose a closed unbounded C_0 so that $\alpha \in C_0 \cap S \to f(\alpha) \ge \gamma_0$. Let $\gamma_0 < \gamma_1 \in C_0$. Choose a closed unbounded $C_1 \subseteq C_0$ so that $\alpha \in C_1 \cap S \to f(\alpha) \ge \gamma_1$ (by Proposition 1). Choose

 $\gamma_0 < \gamma_1 < \gamma_2 \in C_1$. Continuing in this way define $\gamma_0 < \gamma_1 < \cdots, C_0, C_1, \dots$ so that for all $\beta < \kappa$

- (a) $\gamma_{\beta} \in C_{\beta'}$ for all $\beta' < \beta$,
- (b) $\beta \text{ limit} \rightarrow \gamma_{\beta} = \bigcup_{\beta' < \beta} \gamma_{\beta'}, C_{\beta} = \bigcap_{\beta' < \beta} C_{\beta'},$
- (c) $\alpha \in C_{\beta} \cap S \rightarrow f(\alpha) \geqslant \gamma_{\beta}$.

This is possible as $\beta \text{ limit} \rightarrow \gamma_{\beta} \cap C_{\beta'}$ unbounded in γ_{β} for $\beta' < \beta \rightarrow \gamma_{\beta} \in C_{\beta}$. Then $\gamma_{\beta} \in S$ for some limit β , as S is stationary and $\{\gamma_{\beta} \mid \beta \text{ limit}\}$ is closed, unbounded. But then $\gamma_{\beta} \in C_{\beta}$ and so $f(\gamma_{\beta}) \ge \gamma_{\beta}$ by (c), contradicting the hypothesis that f is regressive on S.

Jensen's \diamond -principle (see [7]) is a strong axiom true in Gödel's L which can be used to diagonalize over subsets of κ in only κ -many steps. Jensen used it to construct a Souslin Tree in L.

Let κ be a regular cardinal. \diamondsuit_{κ} says: There is a sequence $\langle S_{\alpha} \mid \alpha < \kappa \rangle$ such that

- (i) $S_{\alpha} \subseteq \alpha$ for each α ,
- (ii) If $X \subseteq \kappa$, then $\{\alpha \mid S_{\alpha} = X \cap \alpha\}$ is stationary.

PROPOSITION 3. (a) \diamondsuit_{κ^+} implies that $2^{\kappa} = \kappa^+$.

(b) \diamondsuit_{κ} implies that there is a collection $\{X_{\alpha} \mid \alpha < \kappa\}$ of stationary subsets of κ such that $\alpha_1 \neq \alpha_2$ implies $X_{\alpha_1} \cap X_{\alpha_2} = \emptyset$.

Proof. (a) Define $f: 2^{\kappa} \to \kappa^+$ by $f(Y) = \text{least } \alpha > \kappa$ such that $S_{\alpha} = Y$. Then f is well defined and 1-1.

(b) For each $\alpha < \kappa$, let $X_{\alpha} = \{\beta > \alpha \mid S_{\beta} = \{\alpha\}\}$. Then each X_{α} is stationary and the X_{α} 's are pairwise disjoint.

THEOREM 4 (Jensen). \bigotimes_{κ} is true in L. Moreover, there is a \bigotimes_{κ} -sequence which is Σ_1 -definable over $\langle L_{\kappa}, \epsilon \rangle$.

Proof. We define S_{α} by induction on α . $S_0 = \emptyset$. $S_{\alpha+1} = \emptyset$ for all α . If S_{α} has been defined for all $\alpha < \lambda$, λ limit, we define S_{λ} as follows: Let $\langle X, C \rangle$ be the least (in the canonical well-ordering of L) pair so that

- (i) $X, C \subseteq \lambda$,
- (ii) C is closed, unbounded in λ ,
- (iii) $\alpha \in C \rightarrow S_{\alpha} \neq X \cap \alpha$.

Define $S_{\lambda} = X$ if such a pair exists, and $S_{\lambda} = \emptyset$ otherwise. Clearly, $\langle S_{\alpha} | \alpha < \kappa \rangle$ is Σ_1 -definable over $\langle L_{\kappa}, \epsilon \rangle$.

We claim that $\langle S_{\alpha} | \alpha < \kappa \rangle$ satisfies \diamondsuit_{κ} . If not, let $\langle X, C \rangle$ be the least (in the canonical well-ordering of L) pair so that

(i) $X, C \subseteq \kappa$,

(ii) C is closed, unbounded in κ ,

(iii) $\alpha \in C \to S_{\alpha} \neq X \cap \alpha$.

Now, $\langle X, C
angle \in L_{\kappa^+}$. Let $M \prec L_{\kappa^+}$ so that

- (a) M has (L-) cardinality $<\kappa$.
- (b) $\kappa, \langle X, C \rangle \in M, \kappa \cap M$ is an ordinal.

By Gödel Condensation, there is a unique $\pi: \langle M, \epsilon \rangle \cong \langle L_{\alpha}, \epsilon \rangle$, $\alpha < \kappa$. Then let $\pi(\kappa) = \lambda$. It is easily seen that $\pi \mid \lambda = \mathrm{id} \mid \lambda$, so $\pi(\langle X, C \rangle) = \langle X \cap \lambda, C \cap \lambda \rangle$. Moreover, $\pi(S_{\alpha}) = S_{\alpha}$ for $\alpha < \lambda$. Thus, since π is an isomorphism,

 $\langle X \cap \lambda, C \cap \lambda \rangle$ is the least (in the canonical well-ordering of L)

pair so that

- (i) $X \cap \lambda, C \cap \lambda \subseteq \lambda$,
- (ii) $C \cap \lambda$ is closed, unbounded in λ ,
- (iii) $\alpha \in C \cap \lambda \rightarrow S_{\alpha} \neq X \cap \lambda \cap \alpha = X \cap \alpha$.

But then by definition, $S_{\lambda} = X \cap \lambda$. But since C is closed and $C \cap \lambda$ is unbounded in $\lambda, \lambda \in C$. This contradicts $\alpha \in C \to S_{\alpha} \neq X \cap \alpha$.

Let *E* be a stationary subset of κ . We relativize \diamondsuit_{κ} to *E*. $\diamondsuit_{\kappa}(E)$ says: There is a sequence $\langle S_{\alpha} | \alpha \in E \rangle$ so that

- (i) $S_{\alpha} \subseteq \alpha$ for $\alpha \in E$,
- (ii) If $X \subseteq \kappa$, then $\{\alpha \in E \mid S_{\alpha} = X \cap \alpha\}$ is a stationary subset of E.

THEOREM 5 (Jensen). $\diamondsuit_{\kappa}(E)$ is true in L. Moreover, there is a $\diamondsuit_{\kappa}(E)$ -sequence which is Σ_1 -definable over $\langle L_{\kappa}, \epsilon, E \rangle$.

Proof. Define S_{α} for $\alpha \in E$ by induction on α . $S_0 = \emptyset$. $S_{\alpha+1} = \emptyset$ for every α . If S_{α} has been defined for $\alpha < \lambda$, λ limit, let $\langle X, C \rangle$ be the least pair such that

- (i) $X, C \subseteq \lambda$,
- (ii) C is closed, unbounded in λ ,
- (iii) $\alpha \in C \cap E \rightarrow S_{\alpha} \neq X \cap \alpha$.

If such a pair exists, let $S_{\lambda} = X$; $S_{\lambda} = \emptyset$ otherwise. Clearly $\langle S_{\alpha} \mid \alpha \in E \rangle$ is Σ_1 -definable over $\langle L_{\kappa}, \epsilon, E \rangle$.

Suppose $\langle S_{\alpha} \mid \alpha \in E \rangle$ does not satisfy $\Diamond_{\kappa}(E)$. Let $\langle X, C \rangle$ be the least pair so that

- (i) $X, C \subseteq \kappa$,
- (ii) C is closed, unbounded in κ ,
- (iii) $\alpha \in C \cap E \rightarrow S_{\alpha} \neq X \cap \alpha$.

We define a κ -sequence $M_0 < M_1 < \cdots < M_{\alpha} < \cdots$ of elementary submodels of L_{κ^+} as follows:

 M_0 = an elementary submodel of L_{κ^+} such that $E, X, C, \kappa \in M_0$ and $M_0 \cap \kappa$ = an ordinal less than κ ,

 $M_{\alpha+1} =$ an elementary submodel of L_{κ^+} such that $M_{\alpha} \cup \{M_{\alpha}\} \subseteq M_{\alpha+1}$ and $M_{\alpha+1} \cap \kappa =$ an ordinal less than κ ,

$$M_\lambda = igcup_{lpha < \lambda} M_lpha$$
 for limit $\lambda.$

Let $\beta_{\alpha} = M_{\alpha} \cap \kappa$. Then $\{\beta_{\alpha} \mid \alpha < \kappa\}$ is a closed unbounded subset of κ , so there is a $\lambda = \beta_{\alpha} \in E$, since E is stationary. Let $\pi: M_{\lambda} \cong L_{\gamma}$. Then $\pi(E) = E \cap \lambda$, $\pi(\langle X, C \rangle) = \langle X \cap \lambda, C \cap \lambda \rangle$ since $\pi(\kappa) = \beta_{\alpha} = \lambda$. So $\langle X \cap \lambda, C \cap \lambda \rangle$ is the least pair so that

- (i) $X \cap \lambda, C \cap \lambda \subseteq \lambda$,
- (ii) $C \cap \lambda$ is closed, unbounded in λ ,
- (iii) $\alpha \in C \cap \lambda \cap E \cap \lambda \rightarrow S_{\alpha} \neq X \cap \lambda \cap \alpha$.

But then $S_{\lambda} = X \cap \lambda$ by definition and $\lambda \in C$. As before this contradicts the choice of $\langle X, C \rangle$.

2. Post's Problem When $\beta^* = \aleph_1^L$

The theory of stationary sets and \diamondsuit can be useful in a priority construction. In this section we prove

THEOREM 6. Suppose β is a limit ordinal and $\beta > \beta^* = \aleph_1^L$. Then there exist β -r.e. sets $A, B \subseteq \aleph_1^L$ such that $A \leq_{w\beta} B, B \leq_{w\beta} A^1$.

Proof. As in any construction to solve Post's problem, we wish to satisfy the requirements

 $R_e^A: \aleph_1^L - B \neq W_e^A, \qquad R_e^B: \aleph_1^L - A \neq W_e^B, \qquad e \in S_B.$

¹ The argument that we present will also handle the case $\beta = \aleph_1^L$, or $\beta^* =$ any successor *L*-cardinal.

Here, $W_{e^{A}} = e$ th set β -r.e. in A. If $\{W_{e}\}_{e\in S_{\beta}}$ is a uniformly β -r.e. listing of the β -r.e. sets, then

$$W_{e^{A}} = \{x \mid \exists z_{1} \exists z_{2}[z_{1}, z_{2} \in S_{\beta}, \langle x, z_{1}, z_{2} \rangle \in W_{e} \text{ and } z_{1} \subseteq A, z_{2} \subseteq S_{\beta} - A]\}.$$

In this construction, there will be added requirements to ensure that A, B are simple and weakly-t.r.e.

DEFINITIONS. $A \subseteq \beta^*$ is simple if A is β -r.e., $\beta^* - A$ is unbounded in β^* , and A intersects any β -r.e. B which is unbounded in β^* .

 $A \subseteq \beta$ is tamely-r.e. (t.r.e.) if $\{z \in S_{\beta} \mid z \subseteq A\}$ is β -r.e. A is weakly-t.r.e. if $\{z \in S_{\beta} \mid z - A \text{ is bounded in } \beta^*\}$ is β -r.e.

The requirements for simplicity are

$$\begin{split} S_e^{A_*} & W_e \text{ unbounded in } \aleph_1^L \to A \cap W_e \neq \varnothing, \\ S_e^{B_*} & W_e \text{ unbounded in } \aleph_1^L \to B \cap W_e \neq \varnothing, \qquad e \in S_{\beta} \end{split}$$

Of course, we must also guarantee that $\beta^* - A$ is unbounded in β^* .

T.r.e.-ness is automatic when β is Σ_1 -admissible. However, we cannot hope to build t.r.e. sets when $\Sigma_1 cf\beta = \omega$ (see [4, p. 36]). As a result, our attempts at R_e^A will not only keep ordinals out of A, but put ordinals into A. Weakly-t.r.e.-ness is essential in that it allows the positive part of these attempts to be countable. The requirements for weakly-t.r.e.-ness are

 $T_e^{A}: e - A \text{ bounded in } \aleph_1^L \to \exists \text{ stage } \sigma[e - A^{\sigma} \text{ is bounded in } \aleph_1^L],$ $T_e^{B}: e - B \text{ bounded in } \aleph_1^L \to \exists \text{ stage } \sigma[e - B^{\sigma} \text{ is bounded in } \aleph_1^L]$

for $e \in S_{\theta}$. A^{σ} = the part of A enumerated by stage σ of the construction.

Remark about stages. Unless $\omega^{\beta} = \beta$ (for example, β primitive-recursively closed), one cannot naturally identify members of S_{β} with ordinals less than β . However, there is always a canonical β -recursive well-ordering $<_{\beta}$ of S_{β} with the property that $pr_{\beta}(x) = \{x \mid x <_{\beta} x\}$ is a β -recursive function from S_{β} into S_{β} (see [1, p. 84]). Accordingly, we can identify stages σ with members of S_{β} , viewed as positions in the canonical well-ordering $<_{\beta}$.

Let $f: S_{\beta} \to \aleph_1^L$ be β -recursive and 1-1. f can be used to arrange the above requirements into a list of order type \aleph_1^L , assigning each requirement a "priority" less than \aleph_1^L . For example, we can assign:

$$\begin{split} f'(R_{e^{A}}) &= f(\langle 0, e \rangle), \qquad f'(R_{e^{B}}) = f(\langle 1, e \rangle), \\ f'(S_{e^{A}}) &= f(\langle 2, e \rangle), \qquad f'(S_{e^{B}}) = f(\langle 3, e \rangle), \\ f'(T_{e^{A}}) &= f(\langle 4, e \rangle), \qquad f'(T_{e^{B}}) = f(\langle 5, e \rangle). \end{split}$$

This assigns a single priority to each requirement. However, this is not good enough for our purposes. We would like to allow each requirement to have a *stationary set* of different priorities.

By Theorem 4, let $\langle S_{\alpha} | \alpha < \aleph_1^L \rangle$ be a β -finite $\Diamond_{\aleph_1^L}$ -sequence. As in Proposition 3(b), $\{\alpha | S_{\alpha} = \{\gamma\}\}$ is stationary for each $\gamma < \aleph_1^L$. Define $g: \aleph_1^L \to \{\text{Requirements}\}$ by $g(\delta) = R$ if and only if $S_{\delta} = \{f'(R)\}$; $g(\delta)$ undefined if no such R exists. Then each requirement R has the stationary set of priorities $g^{-1}(\{R\})$. Note that $f' \circ g$ is partial β -recursive.

Thus each requirement R can be viewed as the whole stationary collection of auxiliary requirements R_{δ} , $g(\delta) = R$. The reason for arranging this is that unlike priority arguments in the admissible case, we will not be able to guarantee that every auxiliary requirement R_{δ} can eventually be satisfied. Instead, we can argue (rather easily) that a closed unbounded collection of auxiliary requirements R_{δ} will be satisfied and in fact will never be injured. Then since $g^{-1}(\{R\})$ is stationary, there will be an auxiliary requirement R_{δ} , $g(\delta) = R$ which will be satisfied and hence so will R.

We now describe how an attempt is made at an auxiliary requirement R_{δ} . All attempts will be of the form (K, H) where $K, H \in L_{\aleph_1^L}$; if (K, H) is an *A*-attempt then the members of *K* will be put into *A* by the attempt, and the attempt tries to preserve $A \cap H = \emptyset$. Similarly for *B*-attempts. In addition, if (K, H) is an attempt at R_{δ} , then $K \cup H$ will contain no ordinals $< \delta$. Finally (much in contrast to the admissible case):

(1) At most one A-attempt and at most one B-attempt will be made at each R_{δ} .

(2) If (K, H) is an attempt at R_{δ} at stage σ , then no attempt can be made after stage σ at any $R_{\delta'}$, $\delta < \delta' \leq \sup(K \cup H)$.

A consequence of (2) is that if $\delta < \delta'$, then no attempt at $R_{\delta'}$ can ever injure an attempt at R_{δ} . (The *A*-attempt (K_1, H_1) injures the *A*-attempt (K_2, H_2) if $K_1 \cap H_2 \neq \emptyset$. Similarly for *B*-attempts.)

Having laid the groundwork, we are now ready to examine the separate cases $g(\delta) = R_e^A$, S_e^A , T_e^A . The cases R_e^B , S_e^B , T_e^B are handled similarly.

If $g(\delta) = S_e^A$, then an A-attempt is made at R_δ at stage σ if $g(\delta)$ is defined by stage σ and

(a) No attempt has already been made at R_{δ} .

(b) No attempt (K, H) at some $R_{\delta'}$, $\delta' < \delta$ has been made such that $\sup(K \cup H) \ge \delta$;

(c) $A^{\sigma} \cap W_{e}^{\sigma} = \emptyset$, but $\exists \gamma \ (\gamma \in W_{e}^{\sigma} \land \gamma > \delta)$.

Then the A-attempt at R_{δ} at stage σ is ({ γ_0 }, \emptyset), where $\gamma_0 = \mu \gamma (\gamma \in W_e^{\sigma} \land \gamma > \delta)$. No B-attempts are ever made at R_{δ} .

If $g(\delta) = T_{\sigma}^{A}$, then an A-attempt is made at R_{σ} at stage σ if $g(\delta)$ is defined by stage σ and

- (a) As before,
- (b) as before,
- (c) $e \not\subseteq A^{\sigma} \cup (\delta + 1)$.

Then the A-attempt at R_{δ} at stage σ is $(\emptyset, \{\gamma_0\})$ where $\gamma_0 = \mu \gamma (\gamma \in e - A^{\sigma} \land \gamma > \delta)$. No B-attempts are ever made at R_{δ} .

The case $g(\delta) = R_e^A$ requires an extended discussion. We would like to find an argument $x > \delta$ and a pair (z_1, z_2) of β -finite sets such that $A^{\sigma} \cap z_2 = \emptyset$ and $\langle x, z_1, z_2 \rangle \in W_e^{\sigma}$. If we can make the A-attempt (z_1, z_2) and the B-attempt $(\{x\}, \emptyset)$, then (assuming $z_2 \cap A = \emptyset$ is preserved):

$$x \in B$$
 and $x \in W_{\epsilon}^{A}$.

Thus R_e^A will be satisfied. Requirements $\{S_e^A, T_e^A\}_{e\in S_\beta}$ guarantee that A will be both simple and weakly-t.r.e., so it suffices to look for (z_1, z_2) as above where $z_1 \subseteq A^{\alpha} \cup z'_1$ and z'_1 , z_2 are disjoint and countable. Then we would like to make the A-attempt (z'_1, z_2) .

Unfortunately, it may happen that $z'_1 \cup z_2$ contains ordinals less than δ (and hence (z'_1, z_2) cannot qualify as an attempt at R_{δ}). We can, however, make the A-attempt $(z'_1 - \delta, z_2 - \delta)$. What is needed is some way to "guess" $A \cap \delta$.²

This guessing procedure is provided by $\diamondsuit_{\mathbf{R}_1} L(E)$. Let $\langle S_{\delta} | \delta \in E \rangle$ be a β -finite $\diamondsuit_{\mathbf{R}_1} L(E)$ -sequence, where $E = \{\delta | g(\delta) = R_{\delta}^A\}$, provided by Theorem 5. We use S_{δ} as our guess at $A \cap \delta$. Since $\{\delta \in E | A \cap \delta = S_{\delta}\}$ is a stationary subset of E, this guess will be correct for stationary-many δ 's.

We are now ready to describe how attempts are made at R_{δ} when $g(\delta) = R_{\epsilon}^{A}$. Attempts are made at stage σ if $g(\delta)$ is defined by stage σ and

- (a) As before,
- (b) as before,

(c) there is an $x > \delta$ and a pair (z_1, z_2) such that $\langle x, z_1, z_2 \rangle \in W_s^{\sigma}$, $A^{\sigma} \cap z_2 = \emptyset, z_1 \cap \delta \subseteq S_{\delta}, z_2 \cap S_{\delta} = \emptyset, z_1 - A^{\sigma}, z_2$ are disjoint and countable.

Then the A-attempts $\langle z_1 - A^{\sigma} - \delta, z_2 - \delta \rangle$ and the B-attempt $\langle \{x\}, \emptyset \rangle$ are made at R_{δ} at stage σ .

Having described how attempts are made at the auxiliary requirements R_{δ} , one may describe the construction as follows: Let $L: S_{\delta} \to \aleph_1^L$ be an enumeration

² In the admissible case, one can simply use the guess $A^{\sigma} \cap \delta$. Then for σ large enough, $A^{\sigma} \cap \delta = A \cap \delta$.

SY D. FRIEDMAN

of \aleph_i^L (in the sense of [4, p. 19]) such that $L^{-1}(\{\delta\})$ is unbounded in $<_{\beta}$, for all $\delta < \aleph_1^L$. For example,

$$L(z) = \delta, \quad z = \langle x, \delta \rangle \quad \text{for some } x,$$

= 0, otherwise.)

Then at stage σ , attempts are made at $R_{L(\sigma)}$ subject to the conditions described above. If the *A*-attempt (K, H) is made at stage σ , then members of *K* are put into *A* and $A^{\sigma+1} = A^{\sigma} \cup K$. Similarly for *B*.

We are now ready to verify that the requirements S_e^A , T_e^A , R_e^A will be satisfied (the argument for S_e^B , T_e^B , R_e^B is similar).

CLAIM 1. For
$$\delta < \aleph_1^L$$
, let
 $h(\delta) = \max\{\sup(K \cup H) \mid (K, H) \text{ is an attempt at } R_\delta\}$
 $= \delta$ if no attempts are made at R_δ .

Then $h: \aleph_1^L \to \aleph_1^L$ and $C = \{\delta \mid h[\delta] \subseteq \delta\}$ is a closed unbounded set.

Proof. Since $\{(K, H) | (K, H) \text{ is an attempt at } R_{\delta}\}$ is a set of cardinality ≤ 2 , clearly $h: \aleph_1^L \to \aleph_1^L$. C is certainly closed: if $\gamma_0 < \gamma_1 < \cdots$ and $\gamma = \bigcup_n \gamma_n$, then

$$h[\gamma_n] \subseteq \gamma_n \ \forall n \Rightarrow h[\gamma] = \bigcup_n h[\gamma_n] \subseteq \bigcup_n \gamma_n = \gamma.$$

Now define $h'(\delta) = \mu \gamma [h(\gamma) \ge \delta]$. Clearly $h'(\delta) \le \delta \forall \delta$. But also, $\{\delta \mid h'(\delta) < \gamma\}$ is bounded by sup $h[\gamma] < \aleph_1^L$. So by Fodor's theorem, $\{\delta \mid h'(\delta) < \delta\}$ is not stationary, so certainly $\{\delta \mid h'(\delta) = \delta\}$ is unbounded. But this latter set is C.

Let $A = \bigcup_{\sigma \in S_R} A^{\sigma}$, $B = \bigcup_{\sigma \in S_R} B^{\sigma}$.

CLAIM 2. $\aleph_1^L - A$, $\aleph_1^L - B$ are unbounded in \aleph_1^L .

Proof. We just consider $\aleph_1^L - A$. Let $S = \{\delta \mid g(\delta) = S_0^A\}$. Then S is stationary (by the definition of g) and hence $S' = S \cap C$ is unbounded.

SUBCLAIM. If (K, H) is an A-attempt, then $K \cap S' = \emptyset$.

Proof. Let $\delta' \in S'$. Let (K, H) be an attempt at R_{δ} . If $\delta > \delta'$, then $K \cap \delta = \emptyset \to \delta' \notin K$. If $\delta < \delta'$, then since $\delta' \in C$, $\sup(K \cup H) < \delta'$ and so again $\delta' \notin K$. If $\delta = \delta'$, then $\delta' \notin K$ by construction (see definition of attempts at R_{δ} when $g(\delta) = S_{\varepsilon}^{A}$).

But of course $A = \bigcup \{K \mid K \text{ is an } A \text{-attempt}\}$. Thus $A \cap S' = \emptyset$.

CLAIM 3. The requirements S_e^A , S_e^B are satisfied for all $e \in S_\beta$.

Proof. We just consider $S_{e^{A}}$. Suppose W_{e} is unbounded in $\aleph_{1^{L}}$. Let $S = \{\delta \mid g(\delta) = S_{e^{A}}\}$. As S is stationary, let $\delta \in S \cap C$.

Let σ be a stage such that $L(\sigma) = \delta$, $g(\delta)$ is defined by stage σ and $W_{s}^{\sigma} - (\delta + 1) \neq \emptyset$. σ exists since W_{s} is unbounded in \aleph_{1}^{L} and $L^{-1}(\{\delta\})$ is unbounded in $<_{\beta}$. If an A-attempt is made at R_{δ} at stage σ , then some member of W_{s}^{σ} is put into A and so S_{s}^{A} is satisfied. If not, then either

(a) An attempt has already been made at R_{δ} , or

(b) an attempt (K, H) has been made at some $R_{\delta'}$, $\delta' < \delta$ such that $\sup(K \cup H) \ge \delta$.

Condition (b) contradicts the assumption $\delta \in C$. Condition (a) implies $A^{\sigma} \cap W_{e}^{\sigma} \neq \emptyset$, so again S_{e}^{A} is satisfied.

CLAIM 4. The requirements T_e^A , T_e^B are satisfied for all $e \in S_\beta$.

Proof. We just consider T_e^A . Suppose e - A is bounded in \aleph_1^L (where $e \subseteq \aleph_1^L$). Let $S = \{\delta \mid g(\delta) = T_e^A\}$. As S is stationary, $S \cap C$ is unbounded in \aleph_1^L .

Let $\delta \in S \cap C$, and let σ be a stage such that $g(\delta)$ is defined by stage σ and $L(\sigma) = \delta$. If $e \subseteq A^{\sigma} \cup (\delta + 1)$, then $e - A^{\sigma}$ is bounded and T_e^A is satisfied. Otherwise, as $\delta \in C$, either an A-attempt at R_{δ} has already been made or one will be made at stage σ . Let $(\emptyset, \{\gamma_0\})$ be an A-attempt at R_{δ} made at some stage $\sigma' \leq \sigma$.

SUBCLAIM. If (K, H) is an A-attempt made after stage σ' , then $\gamma_0 \notin K$.

Proof. Let (K, H) be an A-attempt at $R_{\delta'}$. If $\delta' < \delta$, then $\sup(K \cup H) < \delta < \gamma_0$ since $\delta \in C$. If $\delta' > \delta$, then since $\sup(\emptyset \cup \{\gamma_0\}) = \gamma_0$, we must have $\gamma_0 < \delta'$ (otherwise no A-attempt could be made at $R_{\delta'}$). But then $K \cap \delta' = \emptyset \rightarrow \gamma_0 \notin K$. No A-attempts at R_{δ} can be made after stage σ' since one has already been made.

But then $\gamma_0 \notin A = \bigcup \{K \mid (K, H) \text{ is an } A \text{-attempt}\}$. So we have shown that either

- (a) $\exists \sigma [e A^{\sigma} \text{ is bounded}], \text{ or }$
- (b) $\forall \delta \in S \cap C[\exists \gamma_0 > \delta \text{ s.t. } \gamma_0 \in e A].$

Condition (b) contradicts the assumption that e - A is bounded.

CLAIM 5. Each R_e^A , R_e^B is satisfied, $e \in S_\beta$.

Proof. We just consider R_e^A . Let $E = \{\delta \mid g(\delta) = R_e^A\}$, a stationary subset of \aleph_1^L .

Let $\langle S_{\delta} | \delta \in E \rangle$ be the $\langle E_{E}$ -sequence chosen earlier (and used in our attempts at R_{δ} , $\delta \in E$). Then $E' = \{\delta | \delta \in E \text{ and } S_{\delta} = A \cap \delta\}$ is a stationary subset of E. Now pick any $\delta \in E' \cap C$.

Suppose $\aleph_1^L - B = W_e^A$. We work now toward a contradiction. By Claim 2, choose $x \in \aleph_1^L - B$ such that $x > \delta$. Then there is a pair (z_1, z_2) such that

- (i) $z_1 \subseteq A, z_2 \subseteq \aleph_1^L A,$
- (ii) $\langle x, z_1, z_2 \rangle \in W_{\bullet}$.

By Claim 3, z_2 is bounded in \aleph_1^L (i.e., is countable). By Claim 4, there is a stage σ such that $L(\sigma) = \delta$, $\langle x, z_1, z_2 \rangle \in W_e^{\sigma}$ and $z_1 - A^{\sigma}$ is countable. Also, since $S_{\delta} = A \cap \delta$, we have $z_1 \cap \delta \subseteq S_{\delta}$ and $z_2 \cap S_{\delta} = \emptyset$. Thus since $\delta \in C$, either a pair of attempts is made at R_{δ} at stage σ , or a pair of attempts at R_{δ} was already made at some earlier stage.

SUBCLAIM. Let the A-attempt $\langle z_1 - A^{\sigma} - \delta, z_2 - \delta \rangle$ and the B-attempt $\langle \{x\}, \emptyset \rangle$ be made at R_{δ} at stage σ . Then $z_2 \cap A = \emptyset$.

Proof. Otherwise some A-attempt (K, H) made at some R_{δ} , at some later stage has $K \cap z_2 \neq \emptyset$. If $\delta' < \delta$, this can't happen since $\delta \in C \Rightarrow \sup(K \cup H) < \delta$ and $z_2 \cap \delta \subseteq (\delta - S_{\delta}) = \delta - A$. If $\delta' = \delta$, then no attempt can be made at $R_{\delta'}$ at any stage after stage σ . If $\delta' > \delta$, then $\delta' > \sup((z_1 - A^{\sigma}) \cup z_2)$ since otherwise no attempt can be made after stage σ at $R_{\delta'}$. But then $K \cap \delta' = \emptyset \Rightarrow K \cap z_2 = \emptyset$.

The pair of attempts in the subclaim guarantees that $z_1 \subseteq A$, $z_2 \subseteq \aleph_1^L - A$, $\langle x, z_1, z_2 \rangle \in W_e$ and $x \in B$. Thus $W_e^A \neq \aleph_1^L - B$.

3 The General Case

In this section we treat the case: β^* is β -recursively regular. This means that every β -recursive function $f: \gamma \rightarrow \beta^*$, $\gamma < \beta^*$ has range bounded in β^* . By Theorem 3.13 of [4], we may assume that $\Sigma_1 cf\beta < \beta^*$; this assumption is actually not needed for our proof when β^* is a successor β -cardinal (or $\beta^* = \beta$ and there exists a largest β -cardinal).

PROPOSITION 7. If β^* is a successor β -cardinal, then β^* is β -recursively regular.

Proof. See [4, Proposition 1.18].

We begin by "effectivizing" Fodor's theorem and \Diamond to S_{β} . The proof of Theorem 6 suggests that the effective analog of "closed unbounded subset of $\aleph_1^{L^{\prime\prime}}$ should be " $\prod_{j=0}^{S_{\beta}}$ -definable closed unbounded subset of $\beta^{*\prime\prime}$ and "stationary"

should be replaced by "intersects every $\prod_{1}^{S_{\beta}}$ -definable closed unbounded subset of β^* ." However, with only the assumption of β -recursive regularity of β^* , it may be that there exist $\prod_{1}^{S_{\beta}}$ -definable unbounded subsets of β^* of order type ω ; in this case, sets having the above property analogous to stationary must be final segments of β^* . So we discard the concept of "stationary" and instead choose to effectivize the following weaker versions of Fodor's theorem and \diamondsuit

WEAK FODOR'S THEOREM. Suppose $\gamma < \kappa$ and $f: \kappa \times \gamma \rightarrow \kappa$. Then $\{\delta < \kappa \mid f[\delta \times \gamma] \subseteq \delta\}$ is a closed unbounded subset of κ .

WEAK \Diamond_{κ} -PRINCIPLE. There exists a sequence $\langle S_{\delta} | \delta < \kappa \rangle$ such that

- (i) $S_{\delta} \subseteq 2^{\delta}, \ \overline{S}_{\delta} < \kappa,$
- (ii) If $X \subseteq \kappa$, then $\{\delta \mid X \cap \delta \in S_{\delta}\}$ is a closed unbounded subset of κ .

Proof of Weak Fodor. Let

$$g(\delta) = \mu \delta' < \delta[f[\delta' \times \gamma] \not\subseteq \delta]$$

= δ , otherwise.

Clearly $g(\delta) \leq \delta$ for all $\delta < \kappa$, and also $g^{-1}[\delta]$ is bounded for all δ since κ is regular and f is a function. Applying Fodor's theorem to g, we get that $\{\delta \mid g(\delta) = \delta\}$ is certainly unbounded. But $g(\delta) = \delta \leftrightarrow f[\delta \times \gamma] \subseteq \delta$, and since $\{\delta < \kappa \mid f[\delta \times \gamma] \subseteq \delta\}$ is certainly closed, we are done.

The proof of Weak \bigotimes_{κ} will be deferred until the proof of its effective version.

We proceed to describe our effective versions of Weak Fodor and Weak \diamond . In our application of these effectivized principles to some particular β -recursive f (in Weak Fodor) and β -r.e. X (in Weak \diamond), it will be important to know that

$$\{\delta \mid f[\delta \times \gamma] \subseteq \delta\} \cap \{\delta \mid X \cap \delta \in S_{\delta}\}$$

is closed, unbounded. As these sets might have ordertype ω , we cannot simply argue that the intersection of two closed unbounded sets is closed unbounded (β^* is not regular *enough*). Instead our effective versions will specify the above sets exactly, given defining parameters for f as a β -recursive function and Xas a β -r.e. set.

DEFINITION. Let β^* be β -recursively regular and $p \in S_\beta$. Then $\delta < \beta^*$ is *p*-stable if $h_1[(\delta \cup \{p\}) \times \omega] \cap \beta^* \subseteq \delta$, where h_1 is a parameter-free Σ_1 Skolem function for S_β . (For a summary of the basic facts concerning Skolem functions, see [4, Chap. 1].)

Since $h_1[(\delta \cup \{p\}) \times \omega]$ is a Σ_1 -elementary substructure of S_β , we see that $\delta < \beta^*$ is *p*-stable if and only if there is an $H \prec_{\Sigma_1} S_\beta$ such that $H \cap \beta^* = \delta$. Let $C_p = \{\delta < \beta^* \mid \delta \text{ is } p\text{-stable}\}.$

LEMMA 8. For each $p \in S_{\beta}$, C_p is a closed unbounded subset of β^* .

Proof. Case 1. β^* is a successor β -cardinal. It is enough to show that C_p is unbounded. Let γ_0 = the largest β -cardinal less than β^* . Let $\gamma > \gamma_0$, $\gamma < \beta^*$ be arbitrary. Let $H = h_1[(\gamma \cup \{p\}) \times \omega]$. As h_1 is Σ_1 , $H \cap \beta^*$ must be bounded in β^* .

CLAIM. $H \cap \beta^* = an$ ordinal.

Proof. This is because $\delta \in H \cap \beta^* \to \exists f \in H[f: \delta \to 1^{-1} \gamma_0]$. Then $f^{-1}[\gamma_0] \subseteq H$ since $\gamma_0 \subseteq H$.

Let $\delta = H \cap \beta^*$. Then $\delta \ge \gamma$, $\delta \in C_p$.

Case 2. β^* is a limit β -cardinal. In this case, we use the assumption $\Sigma_1 cf\beta < \beta^*$. Let $\gamma_0 = \Sigma_1 cf\beta < \beta^*$ and let $f: \gamma_0 \rightarrow \beta$ be β -recursive, unbounded, and order preserving. As h_1 is Σ_1 , let h_1^{σ} be the part of graph (h_1) enumerated by stage σ (in some fixed β -recursive enumeration of graph (h_1)). Let $\delta_0 < \beta^*$ be arbitrary. Define, inductively,

$$\begin{split} \delta_1 &= \sup h_1^{f(0)}[(\delta_0 \cup \{p\}) \times \omega] \cap \beta^*, \\ \delta_{\gamma+1} &= \sup h_1^{f(\gamma)}[(\delta_{\gamma} \cup \{p\}) \times \omega] \cap \beta^*, \\ \delta_{\lambda} &= \sup \{\delta_{\gamma} \mid \gamma < \lambda\} \quad \text{ for limit } \lambda \end{split}$$

for $\gamma, \lambda < \gamma_0$. Then $\delta_{\gamma_0} = \sup\{\delta_{\gamma} \mid \gamma < \gamma_0\} < \beta^*$ and $\beta^* \cap h_1[(\delta_{\gamma_0} \cup \{p\}) \times \omega] \subseteq \delta_{\gamma_0}$. Then $\delta_0 \leqslant \delta_{\gamma_0} \in C_p$.

Case 3. $\beta^* = \beta$. Then $C_p = \{ \gamma < \beta \mid p \in S_{\gamma} \text{ and } \gamma \text{ is } \beta \text{-stable} \}$ which is unbounded in β .

EFFECTIVIZED FODOR. Suppose $\gamma < \beta^*$, $A \subseteq \beta^* \times \gamma$ and the partial function $f: A \to \beta^*$ is Σ_1 over S_β with parameter p. Then $\delta > \gamma$, $\delta \in C_p$ implies $f[\delta \times \gamma] \subseteq \delta$.

EFFECTIVIZED \diamondsuit_{β^*} . There exists a β^* -recursive sequence $\langle S_{\delta} | \delta < \beta^* \rangle$ such that

(i) $S_{\delta} \subseteq 2^{\delta}$, β -card. $S_{\delta} < \beta^*$,

(ii) if $X \subseteq \beta^*$ is Σ_1 over S_β with parameter p, then $\delta \in C_{\langle p,\beta^* \rangle}$ implies $X \cap \delta \in S_\delta$.

Proof of Effectivized Fodor. Let $\delta > \gamma$, $\delta \in C_p$ and $H = h_1[(\delta \cup \{p\}) \times \omega]$. Then $\delta \times \gamma \subseteq H$ and so $f[\delta \times \gamma] \subseteq H$ since $p \in H$. But $H \cap \beta^* = \delta$. Proof of Effectivized \Diamond_{β^*} . Case 1. There is a largest β -cardinal less than β^* . Then let this β -cardinal be γ_0 . If $\delta \leq \gamma_0$, set $S_{\delta} = \emptyset$. Otherwise, if $\gamma_0 < \delta < \beta^*$, let $S_{\delta} = 2^{\delta} \cap J_{\delta}$, where $\delta = \mu \gamma \ge \delta [J_{\gamma} \models ``\delta \text{ is not a cardinal''}].$

If $\delta \in C_{\langle p,\beta^* \rangle}$, $X \subseteq \beta^*$ is Σ_1 over S_β with parameter p, then let $H = h_1[(\delta \cup \{p,\beta^*\}) \times \omega]$. Thus $\gamma_0 \in H$ and $\delta = H \cap \beta^*$. So $\gamma_0 < \delta$.

Let $c: \langle H, \epsilon \rangle \cong \langle J_{\gamma}, \epsilon \rangle$ be the transitive collapse. Now $J_{\gamma} \models \text{``}\delta$ is a cardinal'' since $\delta = c(\beta^*)$. But X is Σ_1 -definable with parameter p over S_{β} , and hence $X \cap H$ is Σ_1 -definable with parameter p over H. Since $X \cap H = X \cap \delta$ and $c \mid \delta = \text{id} \mid \delta, X \cap \delta$ is definable over J_{γ} . But then $X \cap \delta \in J_{\gamma+1} \subseteq J_{\delta}$. So $X \cap \delta \in S_{\delta}$.

Case 2. β^* is the limit of smaller β -cardinals. Then if $\delta < \beta^*$, let $S_{\delta} = 2^{\delta} \cap J_{\theta^*}$. Since $X \beta$ -r.e., $\delta < \beta^*$ implies $X \cap \delta \in J_{\theta^*}$, we are done.

We are now ready to prove:

THEOREM 9. If β^* is β -recursively regular, then there exist β -r.e. $A, B \subseteq \beta^*$ such that $A \leq_{w\beta} B, B \leq_{w\beta} A$.

Proof. As before, we have the requirements

$$\begin{split} R_{e}^{A} &: \beta^{*} - B \neq W_{e}^{A}, \qquad R_{e}^{B} : \beta^{*} - A \neq W_{e}^{B}, \\ S_{e}^{A} &: W_{e} \text{ unbounded in } \beta^{*} \rightarrow A \cap W_{e} \neq \varnothing, \\ S_{e}^{B} &: W_{e} \text{ unbounded in } \beta^{*} \rightarrow B \cap W_{e} \neq \varnothing, \\ T_{e}^{A} : (e - A) \text{ bounded in } \beta^{*} \rightarrow \exists \sigma [e - A^{\sigma} \text{ bounded in } \beta^{*}], \\ T_{e}^{B} : (e - B) \text{ bounded in } \beta^{*} \rightarrow \exists \sigma [e - B^{\sigma} \text{ bounded in } \beta^{*}] \end{split}$$

for $e \in S_{\beta}$. Previously, we considered auxiliary requirements $\{R_{\delta}\}_{\delta < \beta^*}$ so that each R_{δ} constituted an attempt at one of the above requirements, each of them being attempted by stationary-many R_{δ} 's. In this construction, each $\delta < \beta^*$ will be responsible for a whole (size $<\beta^*$) collection of requirements, each requirement being attempted by a final segment of δ 's.

More precisely, fix a 1-1 β -recursive $f: S_{\beta} \to \beta^*$ and let p' be the parameter which defines $f. (\langle p', \beta^* \rangle$ will be the parameter for the construction if $\beta^* < \beta$.) Then δ is responsible for R_{e}^{A} , R_{e}^{B} , S_{e}^{A} , S_{e}^{B} , T_{e}^{A} , T_{e}^{B} where $f(e) < \delta$. As before, "guesses" will have to be made at $A \cap \delta$, $B \cap \delta$ for the sake of requirements R_{e}^{A} , R_{e}^{B} ; as \Diamond_{β^*} provides us with a collection of such guesses, the requirements R_{e}^{A} , R_{e}^{B} will in fact be treated by δ as collections of requirements, one for each guess given by \diamondsuit_{β^*} .

The auxiliary requirements. Fix a β^* -recursive \Diamond_{β^*} sequence $\langle S_{\delta} | \delta < \beta^* \rangle$. Then the collection \mathcal{R}_{δ} of auxiliary requirements at level δ consists of:

- (a) $\{S_{\gamma}{}^{A} \mid \gamma < \delta\} \cup \{S_{\gamma}{}^{B} \mid \gamma < \delta\},\$
- (b) $\{T_{\gamma}^{A} \mid \gamma < \delta\} \cup \{T_{\gamma}^{B} \mid \gamma < \delta\},\$
- (c) $\{(R_{\gamma}^{A},g) \mid \gamma < \delta, g \in S_{\delta}\} \cup \{(R_{\gamma}^{B},g) \mid \gamma < \delta, g \in S_{\delta}\}.$

 $S_{\gamma}^{A}(T_{\gamma}^{A})$ is intended to represent $S_{e}^{A}(T_{e}^{A})$ where $f(e) = \gamma$. Similarly for S_{γ}^{B} , T_{γ}^{B} . (R_{γ}^{A}, g) represents R_{e}^{A} with the guess g for $A \cap \delta$, where $f(e) = \gamma$. Similarly for (R_{γ}^{B}, g) . Note that there may be $\gamma < \delta$ which are not in range f, in which case auxiliary requirements with subscript γ will never be active.

Now for each $\delta < \beta^*$, \mathscr{R}_{δ} has β -cardinality less than β^* , so let $\{R_{\xi}^{\delta}\}_{\xi < \kappa < \beta^*}$ be a fixed well-ordering of \mathscr{R}_{δ} .

As before, each δ will make certain A-attempts and B-attempts of the form (K, H) where K, H are bounded in β^* and $K \cap \delta = \emptyset = H \cap \delta$. δ will make at most one A-attempt and one B-attempt at each R_{ε}^{δ} . Also, if δ makes the attempt (K, H) at stage σ , then no δ' such that $\delta < \delta' \leq \sup(K \cup H)$ can ever make an attempt at any later stage.

Two A-attempts (K_1, H_1) and (K_2, H_2) are compatible if $K_1 \cap H_2 = \emptyset = K_2 \cap H_1$. Similarly for B-attempts. At each stage σ , some $\delta < \beta^*$ will be examined, and then A- and B-attempts will be made successively at R_1^{δ} , R_2^{δ} , R_3^{δ} ,...; an attempt at $R_{\xi^{\delta}}$ at this stage must be compatible with attempts at $R_{\xi^{\ell}}^{\delta}$, $\xi' < \xi$ at this stage and all attempts at members of \mathcal{R}_{δ} at earlier stages. Thus no two attempts at members of \mathcal{R}_{δ} will ever conflict, and each member of \mathcal{R}_{δ} has an opportunity to act at each stage where δ is being examined.

We now describe exactly how attempts are made and how the construction proceeds. Let $L: S_{\beta} \to \beta^*$ be a fixed enumeration of β^* such that for each $\delta < \beta^*, L^{-1}(\{\delta\})$ is unbounded in $<_{\beta}$ and L is Σ_1 -definable over S_{β} with parameter β^* . (For example,

$$L(x) = \delta$$
 if $x = \langle \delta, y \rangle$, $\delta < \beta^*$
= 0, otherwise

is an example of such an L.)

Stage σ . We consider $L(\sigma) = \delta$. If some attempt (K, H) has been made at some $\delta' < \delta$ where $\sup(K \cup H) \ge \delta$, go to the next stage. Otherwise, begin by making the A-attempt and B-attempt $(\emptyset, \{\delta\})$. (This is to ensure $\beta^* - A$, $\beta^* - B$ unbounded in β^* .) Then successively make A- and B-attempts at $R_1^{\delta}, R_2^{\delta},...$ as follows: Assume by induction that we have finished with $R_{\delta'}^{\delta'}$, $\xi' < \xi$. We describe how to act on R_{ξ}^{δ} . If an attempt has already been made at R_{ξ}^{δ} at some earlier stage $\sigma', L(\sigma') = \delta$, then go on to $R_{\xi+1}^{\delta}$. Now assume R_{ξ}^{δ} is of one of the forms $S_{\gamma}^{A}, T_{\gamma}^{A}, (R_{\gamma}^{A}, g)$. The cases $S_{\gamma}^{B}, T_{\gamma}^{B}, (R_{\gamma}^{B}, g)$ are treated similarly. If γ has not yet appeared in Range f (in some fixed enumeration of the β -r.e. set range f), go on to $R_{\xi+1}^{\delta}$. Otherwise, let $f(e) = \gamma$. $R_{\xi}^{\delta} = S_{\gamma}^{A}$. If there is an A-attempt ($\{\gamma'\}, \emptyset$) compatible with earlier A-attempts at members of \mathscr{R}_{δ} such that $\gamma' > \delta$ and $\gamma' \in W_{\delta}^{\sigma}$, then make the A-attempt ($\{\gamma_{0}\}, \emptyset$) where γ_{0} is the least such γ' . Otherwise go to $R_{\xi+1}^{\delta}$. Make no B-attempts.

 $R_{\ell}^{\delta} = T_{\gamma}^{A}$. If there is an A-attempt $(\emptyset, \{\gamma'\})$ compatible with earlier A-attempts at members of \mathscr{R}_{δ} such that $\gamma' > \delta$ and $\gamma' \in e - A^{\circ}$, then make the A-attempt $(\emptyset, \{\gamma_0\})$ where γ_0 is the least such γ' . Otherwise go to $R_{\ell+1}^{\delta}$. Make no B-attempts.

 $R_{\varepsilon}^{\delta} = (R_{\gamma}^{A}, g)$. Suppose that there are $x > \delta$ and a pair (z_{1}, z_{2}) such that $\langle x, z_{1}, z_{2} \rangle \in W_{\varepsilon}^{\sigma}, z_{1} \cap \delta \subseteq g, z_{2} \cap g = \emptyset, z_{2} \cap A^{\sigma} = \emptyset$ and $z_{1} - A^{\sigma}, z_{2}$ are disjoint and bounded in β^{*} . Then if such an $x > \delta$ and (z_{1}, z_{2}) can be found so that the A-attempt $\langle z_{1} - A^{\sigma} - \delta, z_{2} - \delta \rangle$ and the B-attempt $\langle \{x\}, \emptyset \rangle$ are compatible with earlier attempts at members of \mathscr{R}_{δ} , make the least such pair of attempts. Otherwise go to $R_{\delta+1}^{\varepsilon}$.

This ends the description of the construction. Note that the only parameters needed in the construction are p' and β^* . Let p'' be a parameter which defines a β -recursive $g: \Sigma_1 cf\beta \rightarrow \beta$, range g unbounded. Let $p = \langle p', \beta, p'' \rangle$.

CLAIM 1. Suppose $\delta \in C_p$. Let (K, H) be an attempt at some member of $\mathcal{R}_{\delta'}$, $\delta' < \delta$. Then $\sup(K \cup H) < \delta$.

Proof. Case 1. There is a largest β -cardinal less than β^* , γ . Then each $\mathscr{R}_{\delta'}$ is well-ordered in length γ . Define the partial Σ_1 function f by $f(\delta', \gamma') = \max\{\sup(K \cup H) \mid (K, H) \text{ is an attempt at } R_{\gamma'}^{\delta}\}$. Then by Effectivized Fodor, $\delta \in C_p$, $\delta > \gamma \to f[\delta \times \gamma] \subseteq \delta$. But it is easily seen that $\delta \in C_p \to \delta > \gamma$ and so we are done.

Case 2. Otherwise. In this case we use the assumption $\Sigma_1 cf\beta < \beta^*$. Let $\gamma = \Sigma_1 cf\beta$ and define f by

$$f(\delta', \gamma') = \sup\{\sup(K \cup H) \mid (K, H) \text{ is an attempt at some member of } \mathcal{R}_{\delta'} \\ \text{made by stage } g(\gamma')\}.$$

Then by Effectivized Fodor, $\delta \in C_p \to f[\delta \times \gamma] \subseteq \delta$. So we are done.

CLAIM 2. If $\delta \in C_p$, then $A \cap \delta$, $B \cap \delta \in S_\delta$.

Proof. This is immediate from Effectivized \diamondsuit_{θ^*} .

Thus we see that any A-attempt (K, H) made at a member of \mathcal{R}_{δ} , $\delta \in C_{p}$ is *permanent*; i.e., $K \subseteq A$ and $A \cap H = \emptyset$. (Similarly, for B-attempts.) Moreover, by Claim 2, a correct "guess" was made at $A \cap \delta$ and at $B \cap \delta$. These facts make it easy to check that the desired requirements have been met.

CLAIM 3. $\beta^* - A$, $\beta^* - B$ are unbounded in β^* .

Proof. The first attempts made by $\delta \in C_p$ are the A-attempts and B-attempts $(\emptyset, \{\delta\})$. These attempts are permanent so $\delta \notin A \cup B$. C_p is unbounded by Lemma 8.

CLAIM 4. The requirements S_e^A , S_e^B are satisfied for all $e \in S_B$.

Proof. Let $f(e) = \gamma$. We just consider S_e^A . Choose $\delta \in C_p$, $\delta > \gamma$. If W_e is unbounded in β^* , there must be a stage σ such that

- (i) $L(\sigma) = \delta$,
- (ii) f(e) is defined by stage σ ,

(iii) there is an $x \in W_e^{\sigma}$, $x > \delta'$, where $\delta' = \text{least member of } C_p$ greater than δ .

Then by Claim 1, the A-attempt ($\{x\}, \emptyset$) must be compatible with earlier A-attempts at members of \mathscr{R}_{δ} . So either an attempt must be made at S_{ν}^{A} at stage σ or one must have already been made. But then $A \cap W_{e} \neq \emptyset$.

CLAIM 5. The requirements T_e^A , T_e^B are satisfied for all $e \in S_\beta$.

Proof. Let $f(e) = \gamma$. We just consider T_e^A . Suppose that for no stage σ , do we have $e - A^{\sigma}$ bounded. We show that e - A is unbounded. Let $\gamma' > \gamma$ be arbitrary and $\delta \in C_p$, $\delta > \gamma'$. Let σ be any stage such that $L(\sigma) = \delta$ and f(e) is defined by stage σ . Since $e - A^{\sigma}$ is unbounded, there must be an A-attempt $(\emptyset, \{\gamma_0\}), \gamma_0 \in e - A^{\sigma}$, which is compatible with all earlier A-attempts at members of \mathscr{R}_{δ} . Then either such an A-attempt was made at stage σ or an earlier attempt was made at T_{γ}^A . But this attempt is permanent since $\delta \in C_p$. So we have shown that $\exists x > \gamma' [x \in e - A]$. Since γ' was arbitrary, e - A is unbounded.

CLAIM 6. Each R_e^A , R_e^B is satisfied, $e \in S_\beta$.

Proof. We just consider R_e^A . Let $f(e) = \gamma$ and $\gamma < \delta \in C_p$. Let $\delta' = \text{least}$ member of C_p greater than δ . Since $\beta^* - B$ is unbounded choose $x \in \beta^* - B$, $x > \delta'$. Suppose $\beta^* - B = W_e^A$. Then there must be a pair (z_1, z_2) such that $(x, z_1, z_2) \in W_e$, $z_1 \subseteq A$, $z_2 \subseteq \beta^* - A$. Since A is simple (Claim 4) and weakly-t.r.e. (Claim 5), there is a stage σ such that

- (i) $L(\sigma) = \delta$, f(e) is defined by stage σ ,
- (ii) $z_1 A^{\sigma}$, z_2 are bounded in β^* .

Since $\delta \in C_p$, there is a $g \in S_\delta$, $g = A \cap \delta$. Then of course $z_1 \cap \delta \subseteq g$, $z_2 \cap g = \emptyset$. Then the A-attempt $(z_1 - A^{\sigma} - \delta, z_2 - \delta)$ and the B-attempt $(\{x\}, \emptyset)$ must be compatible with all earlier attempts since all of these attempts

are permanent. But then attempts at (R_{v}^{A}, g) must have been made at stage σ or some earlier stage. Since this attempt must be permanent, it guarantees $B \neq W_{e}^{A}$.

4. Generalizing to Σ_n , n > 1

Jensen's master codes can be used to extend the above results to Σ_n sets when the Σ_n -projectum of β , ρ_n^{β} , is regular with respect to the functions Σ_n over S_{β} .

Recall [7]

THEOREM (Jensen). For each n > 0, there is a subset A_n^{β} of ρ_n^{β} which is Σ_n over S_{β} such that

$$\Sigma^{S_{\boldsymbol{\beta}}}_{\boldsymbol{n}+\boldsymbol{m}} \cap 2^{\rho_{\boldsymbol{n}}^{\boldsymbol{\beta}}} = \Sigma^{\langle S_{\rho_{\boldsymbol{n}}}\boldsymbol{\beta}, \boldsymbol{A}_{\boldsymbol{n}}^{\boldsymbol{\beta}}
angle}_{\boldsymbol{m}}$$

for all m > 0.

Thus, as far as subsets of $\rho_n^{\ \beta}$ are concerned, Σ_{n+m} -definability over S_{β} reduces to Σ_m -definability over the amenable structure $\langle S_{\rho_n\beta}, A_n^{\ \beta} \rangle$.

Now for $A, B \subseteq S_{\beta}$, define $A \leq_{w_{\beta}}^{n} B$ if there are Σ_{n} predicates W_{1} , W_{2} such that

$$\begin{aligned} x \in A &\leftrightarrow \exists z_1 \exists z_2[\langle x, z_1, z_2 \rangle \in W_1 \land z_1 \subseteq B \land z_1 \subseteq S_\beta - B], \\ x \notin A &\leftrightarrow \exists z_1 \exists z_2[\langle x, z_1, z_2 \rangle \in W_2 \land z_1 \subseteq B \land z_2 \subseteq S_\beta - B]. \end{aligned}$$

Then $\leq_{w\beta} = \leq_{w\beta}^{1}$.

THEOREM 10. Suppose ρ_n^{β} is regular with respect to functions Σ_n over S_{β} . Then there exist sets $A, B \subseteq \rho_n^{\beta}$ which are Σ_n over S_{β} and such that $A \leq_{w\beta}^n B$, $B \leq_{w\beta}^n A$.

DEFINITION. If $\mathfrak{A} = \langle S_{\beta}, \epsilon, A \rangle$ is an amenable structure, then if $B, C \subseteq S_{\beta}$ we define: $B \leq_{\mathfrak{A}} C$ if there are predicates W_1 , $W_2 \Sigma_1$ over \mathfrak{A} such that

$$\begin{split} & x \in B \leftrightarrow \exists z_1 \exists z_2[\langle x, z_1, z_2 \rangle \in W_1 \land z_1 \subseteq C \land z_2 \subseteq S_\beta - C], \\ & x \notin B \leftrightarrow \exists z_1 \exists z_2[\langle x, z_1, z_2 \rangle \in W_2 \land z_1 \subseteq C \land z_2 \subseteq S_\beta - C]. \end{split}$$

Proof of Theorem 10. Let $\mathfrak{A} = \langle S_{\rho_{n-1}^{\beta}}, \epsilon, A_{n-1}^{\beta} \rangle$ (we can assume $n \geq 2$). A straightforward relativization of Theorem 9 yields: There are $A, B \subseteq \rho_1^{\mathfrak{A}} = \rho_n^{\beta}$ which are Σ_1 over \mathfrak{A} (hence Σ_n over S_{β}) such that $A \leq_{\mathfrak{A}} B, B \leq_{\mathfrak{A}} A$. If $\rho_n^{\beta} < \rho_{n-1}^{\beta}$, then every β -finite subset of ρ_n^{β} belongs to $S_{\rho_{n-1}^{\beta}}$, so $\leq_{\mathfrak{A}} = \leq_{w_{\beta}}^{w_{\beta}}$ for subsets of ρ_n^{β} . Thus $A \leq_{w_{\beta}}^{w_{\beta}} B, B \leq_{w_{\beta}}^{w_{\beta}} A$. Otherwise, \mathfrak{A} is an admissible

SY D. FRIEDMAN

structure (since then $\rho_{n-1}^{\beta} = \rho_n^{\beta}$ which is Σ_n^{β} -regular by assumption). Then do the usual construction [16] of incomparable Σ_1 sets A, B over the admissible structure \mathfrak{A} , but in addition guaranteeing

$$R \in \Sigma_1$$
, R unbounded in $\rho_{n-1}^{\beta} \to A \cap R \neq \emptyset$, $B \cap R \neq \emptyset$.

Then all β -finite subsets of $S_{\rho_{n-1}}^{\beta} - A$, $S_{\rho_{n-1}}^{\beta} - B$ belong to $S_{\rho_{n-1}}^{\beta}$. Using this, it can be seen that $A \leq w_{\beta}^{n} B$, $B \leq w_{\beta}^{n} A$.

Last, it is quite pertinent to ask for a stronger incomparability in Theorem 10: If $A, B \subseteq S_{\beta}$, say that A is Δ_n in B if A is Δ_n -definable over $\langle S_{\beta}[B], \epsilon, B \rangle$. Then do there exist Σ_n sets A, B such that neither is Δ_n in the other ? Shore [15] handles the case where β is Σ_n -admissible. See [17] for progress on the case where ρ_n^{β} is regular with respect to functions Σ_n over S_{β} .

5. RECENT DEVELOPMENTS

We have now produced ordinals for which Post's problem has a negative solution: Let $\beta = \aleph_{\omega_1}^L + \omega$. If $\alpha = \aleph_{\omega_1}^L$ then there are no α -degrees strictly between 0' and 0". These results will appear in a series of papers entitled "Some Negative Solutions to Post's Problem," the first of which is listed as [18].

However, the complete situation regarding Post's problem is not fully understood. We end with some questions.

(1) For which β can Post's problem be solved positively? See [18] for a conjecture on this.

- (2) For which β are there incomparable β -r.e. degrees?
- (3) For which β are the β -r.e. degrees dense?

References

- K. J. DEVLIN, "Aspects of Constructibility," Springer Lecture Notes in Mathematics No. 354, Springer-Verlag, Berlin/New York, 1973.
- R. FRIEDBERG, Two r.e. sets of incomparable degrees of unsolvability, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 236-238.
- 3. S. D. FRIEDMAN, "Recursion on Inadmissible Ordinals," Ph. D. thesis, M.I.T., 1976.
- 4. S. D. FRIEDMAN, β-Recursion Theory, Trans. Amer. Math. Soc., in press.
- S. D. FRIEDMAN AND G. E. SACKS, Inadmissible recursion theory, Bull. Amer. Math. Soc. 83, No. 2 (1977), 255-256.
- K. GODEL, Consistency proof for the generalized continuum hypothesis, Proc. Nat. Acad. Sci. U.S.A. 25 (1939), 220-224.
- 7. R. JENSEN, The fine structure of the constructible hierarchy, Ann. Math. Logic 4(1972), 229-308.

- 8. G. KREISEL AND G. SACKS, Metarecursive sets, J. Symbolic Logic 30 (1965), 318-338.
- 9. S. KRIPKE, Transfinite recursion on admissible ordinals, I, II (abstracts), J. Symbolic Logic 29 (1964), 161-162.
- A. A. MUCHNIK, Negative answers to the problem of reducibility of the theory of algorithms, Dokl. Akad. Nauk SSSR 108 (1956), 194-197.
- 11. R. PLATEK, "Foundations of Recursion Theory," Ph. D. thesis, Stanford University, 1966.
- 12. E. L. Post, R.E. sets and their decision problems, Bull. Amer. Math. Soc. 20 (1944), 641-642.
- G. SACKS, Post's Problem, admissible ordinals and regularity, Trans. Amer. Math. Soc. 124 (1966), 1-23.
- 14. G. SACKS AND S. SIMPSON, The α -finite injury method, Ann. Math. Logic 4 (1972), 323–367.
- 15. R. SHORE, Σ_n sets which are Δ_n incomparable, J. Symbolic Logic 39 (1974), 295-304.
- S. SIMPSON, Degree theory on admissible ordinals, in "Generalized Recursion Theory: Proceedings" (J. E. Fenstad and P. G. Hinman, Eds.), North-Holland, Amsterdam, 1974, 165-194.
- 17. S. D. FRIEDMAN, Forcing in β -Recursion Theory, to appear.
- S. D. FRIEDMAN, Some negative solutions to Post's problem, I, in "Proceedings of Second Oslo Conference on Generalized Recursion Theory" (J. E. Fenstad, Ed.), Springer-Verlag, New York/Berlin, 1978.