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THE flI-SINGLETON CONJECTURE 

SY D. FRIEDMAN 

INTRODUCTION 

L, the universe of constructible sets, was introduced by Godel to establish 
the relative consistency of the Axiom of Choice and Continuum Hypothesis 
with the usual axioms for set theory. The class of constructible sets forms the 
smallest inner model, by which we mean a subuniverse of the universe of all 
sets that contains all ordinal numbers and in which the axioms for set theory 
are true. This minimality for L is a consequence of the fact that constructible 
sets are totally absolute, in that they each can be defined from ordinal numbers 
via a definition that is independent of the inner model in which this definition 
is interpreted. 

Cohen produced nonconstructible sets using the method of forcing. However 
it is in the nature of this method to produce "generic" sets that cannot be explic- 
itly defined. Let us say that a set x is absolute if it can be defined from ordinal 
numbers via a definition that defines x in every inner model containing x. We 
are particularly interested in the case where x is a set of nonnegative integers, 
what we call a real. Thus we may ask: is there an absolute, nonconstructible 
real? 

Silver and Solovay produced such a real using large cardinal theory. If there is 
a measurable cardinal then the uncountable cardinal numbers w1, I1)2 ... form 
a nonconstructible sequence. By listing sentences 0 1 02' ... in the language 
of set theory (augmented by names for ow1I, 2 S . . . ) they obtain the absolute, 
nonconstructible real 01 = {n I On is true in L}. 

Is 00 the "least" such example? If x, y are sets then x is constructible from 
y if x belongs to L(y), the smallest inner model containing y. Our question 
then becomes: is 00 constructible from every absolute, nonconstructible real? 

As no real generic in the sense of Cohen can be absolute, a positive answer to 
our question would follow from the statement that 00 is constructible from ev- 
ery real which is not Cohen-generic. However Jensen refuted this last statement 
by discovering a new kind of generic real. This key result opened up the pos- 
sibility of obtaining a negative answer to our question. The strongest possible 
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772 S. D. FRIEDMAN 

negative answer would consist of a nonconstructible flI-singleton from which 
00 is not constructible. Solovay's I72-Singleton Conjecture asserts the existence 
of such a real. 

In this paper we construct a Jensen-generic H'-singleton, thereby establishing 
the HI-Singleton Conjecture. 

Theorem. There is a `2-singleton R, 0 <L R L 0 

We construct an L-definable partial order 9 such that there is a unique 
3-9-generic real, and that real belongs to L[O#]. Using David's trick (see [D]) 
we can express this uniqueness in a [4 way. 

A generic for 3 consists of a real R and a class-sized predicate A such 
that 

(1) R codes A, Jensen style (see [BJW]); and 
(2) A (together with 0#) "guarantees" that R is the unique 3Y-generic. 

Moreover, such a pair (R, A) is definable in L[O#]. Indeed: 
(3) There is a total X1 (L) "procedure" (i1, .. ., in) i ) p(i1, . n. , i) such 

that the generic determined by (R, A) is {plp(i1, ..., in), p are com- 
patible in SD for all i1 <... < in in I}, where I = the Silver Indis- 
cernibles for L. 

The construction of SD requires a S1 index for the function described in (3). 
Such an index is obtained via the Recursion Theorem. 

To construct 3 we use both Forward Easton (Jensen Coding) and Backward 
Easton methods. The latter is needed to create the predicate A. Property (2) is 
achieved as follows: Think of (i1, ..., in) as a "guess" at an n-tuple of Silver 
indiscernibles. We develop a method of "killing" such guesses (by generically 
adding certain CUB sets); no correct guess (i1, .I. ., in) e In can be killed when 
i1 is regular. A is designed to kill any guess (i1, .. ., in) that produces via (3) 
a condition p(i1, ..., in) incompatible with our generic real R. Thus there 
is a unique 9-generic since any other would lead us to killing correct guesses 
(i, ... , in) E In for regular il. 

How TO KILL A GUESS (i,n..., in) 

As the procedure (i, ...n, i) p(iI, ...n, i) is X1(L) we will see that 

killing (i, ...n, i) is equivalent to killing (i 1 n ... , i,) the image of (i1 ... 

in) under the transitive collapse of an elementary submodel of L containing 
iU {il, .. , in . Thus we will only kill sequences (i1, ... , in) E Li+ where il+ 

denotes (i+) L. (The sequence (i I' ... , in) can be thought of as a guess at the 
collapse of an n-tuple of indiscernibles.) 

Conventions. For X C ORD, Xn = all increasing n-tuples from X. And a&+ 
denotes (a+) for all a. 
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Fix ni < < i , n > 1 and define I(i, I...,in+1)= {i < illi is L- 
inaccessible and i, i1 satisfy the same S1 properties in Li1 with parameters 
from i U {i2' ... , in}}. A guess (i I... in+l) is acceptable if: 

(a) i1 is L-inaccessible and n > 1 and 
(b) I < k <lI<n ik E I(il ... in+l)' 

Lemma 1. (a) n > 1 and (il, ...n, fl) c n+1 
I (i .. in+1) is accept- 

able. 
(b) Suppose (i', ... , in+1) is acceptable. Then (ji . , in)cJ(i1 **n+l). 

n 

(ji, * ... in) and ('II ..., in) satisfy the same S1 properties in 
Lin , with parameters from jl. 

(c) For any (i, ..., n+1 ORDn+l there exists (i, i2 en+l) 

(il+)n+l such that I(il,*, i+)= ( 1*- n) 

Proof. (a)If (j, jm)I)(k1, km) EIm, ji < k then (jl 'jm) 
(kl, ... , kmi) satisfy the same ;1 properties in Li with parameters < j, for 
any i E I greater than jm U km. This does it. 

(b) By induction on n > 1. If n = 1 this is clear from the definition of 
I(il, i9. Suppose n > 1 and the property holds for smaller n. Note that as 
2' . - in E I(i1, ... , in+1) we certainly have '2 ' n E I(ij, i3 . , in+l) 
andhencesince i? E I(i2, ?1 3.. , in+I) weget '2 ijn E I(i2 ,3 * n+l) 
By induction (2' ... , Jn)), (i2, ..., in) satisfy the same X1 properties in Li 
with parameters < '2 and hence with parameters < jl. But (1l i2, ..., i'n) 
and (i1, i2, ..., in) satisfy the same X1 properties in Li with parameters 
< 11. Putting these last two facts together we get the desired result. 

(c) Just let (i I .. ., in+l) be the image of (i, 21 ... , in+l) under the 
transitive collapse of an elementary submodel of L of size i1 containing i1 U 
{il , *. **, n+l}. O 

A condition in Y9 will be a pair p = (s, q) where s is a function that 
assigns a perfect tree s(s) C 2<@ to each s E (2<')<' = all finite sequences 
of finite strings of 0's and l's. In this case we write po = s. A sequence s = 

(so, ...,Sn) E (2<w)<) is incompatible with s : (2<w)<W - Perfect Trees if 

so does not lie on s(0) or for some i < n, si+I does not lie on s((s0, ... . Si 

Otherwise s lies on s. 
Definition. Fix s E (2<')<'. A guess (i1, ..., in+1) is s-bad if (i, ...n+) 
is acceptable, in+I < il+, p(i , ..., in) E Li and s is incompatible with 

.~~~~~~~~~~~~~~~~~~~~~~~n I 

p(i1 , in)0? 
Our desired generic real R is defined from I = Silver Indiscernibles as 

follows: Let R(0) = unique path through the trees 
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and inductively for 
si+? C R((sO i ,)) 

R((sO, ...,si+)) = unique path through the trees 

{P(ll * in)O((SO, * ,Si+l))Il , - nEI} 

Then 
R = (sO, . Sn) ISOC R(0) and for all i < n, Si+l Ic R((sO, *,SiM). 

Remark. It would be simpler and more natural to instead arrange our forcing 
SD so that conditions are pairs (s, q) where s E 2<' and thus our generic 
R is just u{p(i1, ..., in)ojil < *.. < in in I}. However with this simplified 
approach I do not see how to carry out the construction of a 39-generic from 
0. 

By Lemma 1 (a), (b) we see that if (il, ..., im+l) is s-bad where s = 

P(1i, III im)oI (i I,.. ', im) E I then I(i1, ..., im+) n I has cardinality 
< m. Also by Lemma 1(c) if (i,., im) E Im and s E (2<')<' is in- 

compatible with p(j1, ... jm)o then there exists (i2' ... I im+1) such that 

(il 'i2' .. I' im+1) is s-bad and I(i, i2, ... ,I m+,) 2 I) n j,. 
In order to kill an acceptable guess (i1, ... , in+l) we add a CUB to i1 - 

I(i1, ..., in+1). The forcing Q(s), s E (2<w)<", kills all s-bad guesses (i1, .... 
in,+1) Form the Backward Easton iteration (Q'(s)la E ORD) as follows. 
Q?(s) = {0} and Qa+I(s) = Qa(s) * { } unless a is L-inaccessible. In the 
latter event Q+1 (s) = Qa (s) * IRa where Qa (s) If- IRa is the forcing which adds 
a CUB subset to a - I(a, i2, ... , in+l) for s-bad (a, i2, ..., i n), with 
< a-support. (Thus a condition in IRa specifies a bounded closed subset of 
a-I(a, i2, ... I in+l ) for each of < a-many s-bad (a, i2, .. ., in+).) For limit 

A, Q A(s) = Direct Limit ((Qa(s)Ia < A) for regular A and Q?(s) = Inverse Limit 
(Qa(s) la < 2.) for singular A (there are natural embeddings Q'S (s) Qf (s) 
for a < fi). And Q(s) = Direct Limit (Q'(s)la E ORD). 

Remark. A simpler way to kill s-bad guesses would be to define IR so as to 
add a CUB to a - U{I(a, i2, ..., in )nd(a, i2, ... , in+l)s-bad }. However we 
need to kill the different s-bad (a, i2I ... in+l) "independently" for the sake 
of our later construction of the desired generic real R. 

For any a, Q(s) naturally factors as Qa(s) * Qa(s). 

Lemma 2. (a) For a regular, Qa+l (s) is a+ - CC (antichains are of size < a). 
(b) For all a, Q?+ 1 (s) RF A dense subset of Qa+I (s) is < a-closed (decreasing 

sequences of length < a have lower bounds). 
(c) Qa (s) preserves cofinalities, for all a. 
(d) Qa(s) n La+ is dense in Qa(s), for all a. Moreover, for any fi < a 

and p E Qa(s), p t fi e Lfl+ there exists q < p, q E Qa(s) n La+ such that 
q tAf=p K/B. 
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Proof. By simultaneous induction on a. (a) It suffices to show that Q? (s) 1F R1 
is a+ - CC since Qa+1 (s) = Q?a(s) * ]R and by an inductive use of (d), Qa(s) = 

Direct Limit (Q8l(s)jI3 < a) has a dense subset of size a. By (c), Q(s) F- a 
regular. Now suppose G' is Qa(s)-generic and L[G] I= X C IRa is predense 
(any condition is compatible with an element of X.) We can choose ,B < a+ 
of cofinality a such that L. -< L a+ and L[G] a X n Lf[Ga] is predense in 

Ra n L8[Ga] But L[Ga] 1= p E IRt -R p E Lfi[Ga] where p = p Lfl[Ga] since 

Domain (p) has size < a. Thus if q < p in n17 r Lf[GI extends an element 

of X n Lf[Ga, we get q A p < p in IRc' extends an element of X n L,[Ga. 
So X n L,l[Ga] is predense in IRa, proving the a+ - CC. 

(b) Note that for acceptable (i , ... ., +I ), i must be L-inaccessible for any 
i E I(il ... , in+1). The forcing Qa+1(s) adds CUB sets to i I-I(i , ... in+l) 
for s-bad i1 where i1 > a. So if D = all conditions in Qa+i (s) such that any 
CUB set mentioned is forced to contain an ordinal > a, then D is dense in 
Q+1 (s) and D is < a-closed. 

(c) Suppose fl < a is regular. By an inductive use of (a), we get that Qfl+l (s) 
is ,B+ - CC and by (b), Qf+l (s) is < fl-distributive (the intersection of < /1- 
many open dense sets is dense). So any ordinal of cofinality > ,B still has 
cofinality > ,B after forcing with Qfl+1 (s) *Qfl+1 (s) = Q(s) and hence in Qa(s), 
since G Q(s)-generic - G n Qa(s) is Qa(s)-generic. If lal is regular we 
therefore have that all cofinalities are preserved since by an inductive use of 
(d), Qa(s) has a dense subset of size lal. 

If Icel is singular then cofinalities > a+ are preserved by (d) and cofinality 
a+ is preserved since otherwise cofinality > ,B would not be preserved for some 
fl < al. 

(d) If a = ,B + 1 with ,B regular then the result follows by an inductive use 
of (a). If a is regular then the result follows by induction. And if a is singular 
argue as follows: Let A = cof(a) < a and factor Qa(s) as QA+1 (s) * Q. By an 
inductive use of (b) we know that Q,+I(s) 1F- Q has a dense, < A-closed subset. 
Moreover if ? is a name for this dense, < A-closed subset, we have by (a) for 
a = A that for any p in Qa(S) there exists q < p such that q A + 1 IF- q [ 
(A, a) E and q t A + l = p t A + 1. Now given p e Q(S) we can make A- 
many successive extensions pi of p on (A, a) to guarantee that pi [ ai E Lai+ 

for i < A, where (ai I i < A) is cofinal in a and A < a,. The resulting extension 
q = pA belongs to L,+, proving the density of Qa(s) n La+. 

So we get that Q(s) is (cardinal and) cofinality-preserving, by the argument 
in (c) of the lemma. Note that a Q(s)-generic cannot exist if s is incompatible 
with some p(i1, ... , i,)0, (i , ... , i,n) E In, for that would lead to a CUB 
subset of co, (in the real world) disjoint from I n o I. This last property is the 
source for the uniqueness of our 9-generic real R. 
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THE FORCINGS 9(S) 

Let G(s) denote a generic for Q(s). Then 9~(s) is the iteration Q(s) * IRs 
where IRs is the Jensen coding of G(s) by a subset of w) (see [BJW]). We 
want to refine IR so that we will get a 1J12-singleton, via David's trick (see [D]). 
Thus in Jensen coding G(s) modify the definition of Sa, a > co: t E Sa if 
t+[a, ltl)2, Itl <a+, and V < ltlVr, L t G(s) a] F (ZFIO+ 
a - Each s-bad guess (i1, ..., in+1) has been killed), where ZF1O = ZF 
but with only X10-replacement. (We actually could work with full ZF here.) 
Then Rs denotes the modified Jensen coding of G(s) into (wfL where S. is 
defined in this way and 9(s) = Q(s) * Rs. David's arguments show that 9(s) 
is cofinality-preserving. We sketch a proof here. 

Lemma 3. (a) Q(s) W- Rs preserves cofinalities, and hence 9(s) preserves cofi- 
nalities . 

(b) If X(s) C w1 is 9(s)-generic then X(s) codes G(s) and V4Vq, 
LJ[X(s) n f] I= (ZFIO + 4 = -* Each s-bad guess has been killed). 
Proof sketch. (a) We use notation as in [BJW]. The key is to show that 34 is 
< T-distributive where T E Card n K, S E SK. Suppose K = T+ so we are dealing 
with the successor coding Rs whose conditions are pairs (t, t) for almost 
disjointly coding s, with t E ST. We can think of Rs as a 2-step iteration 
where first we code s by D C K = T+ without the restriction that D U E ST, 

< T+ and then we add E C T+ so that (D V E) E ST for 4 < T+. The 
former forcing is < T-closed. Then note that Vq > T+ LI[D] k (ZF0O Each 

s-bad guess has been killed). But then if L [D n L] - L,[D] where T < 4 we 
'I 

get that L. [Dnfl] k (ZFO Each s-bad guess has been killed). Now consider 
the forcing to add E, via initial segments u such that u v (D [lul) E ST. 
Extendibility is easy. If we are given a T-sequence (Ai i < T) of predense sets to 
meet then successively make extensions uo C u 1 C, .. in the least possible way 
but guaranteeing that luil is the T+ of the collapse of an elementary submodel 
of L[D] containing T U {(AiIi < T))}. The net effect is that D uIU E ST for 
limit A, so U. is a condition. 

Now for K not of the form 3+, j limit we can get the distributivity of 
34 by factoring, using the above and induction. We must show that 34 is 
< T-distributive when s E SY+ y limit, T < y. Follow the proof of [BJW], 
where conditions po > pl > are successively chosen to meet the A 's in a 
T-sequence (Aili < T) of predense sets and in addition arrange that for limit 

pj is generic over an appropriate collapsed hull Ma for 3 E Card n [T, y). 

But the genericity of p A guarantees that p A E S,,, since paA codes conditions P15 (5P5 
in the collapse of the various SV,. 

(b) If ' < co then this is guaranteed by the definition of S.,. If 4 = , then 
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this holds by reflection to a countable elementary submodel of L,JX(s)]. n 

Next we want to present some properties of 3(s) = Q(s) * Rs which do not 
take advantage of the fact that this forcing factors as an iteration. This approach 
will generalize to a later context where such a factoring is not available. 

If A is a set of conditions, q a condition then q meets A if q < r for some 
r E A. If G is a set of conditions then G meets A if some q E G meets A. 

Definition. A C 9(s) is predense on the Q(s)-component if p = (p , p ) E 
Y(s) 3q < p, q meets A, and q1 =p1. Suppose G C Y(s). Then G is 
9(s)-generic on the Q(s)-component if whenever A C p(s) is predense on the 
Q(s)-component then G meets A. 

Lemma 4. Suppose G is Y@(s)-generic. Then G is J7(s)-generic on the Q(s)- 
component. 
Proof. Obvious. E 

Definition. A C P(s) is predense on the Rs-component if p C 97(s) 3q < 

p, q meets A, q0 = p0. G C 9'(s) is Y?(s) -generic on the RS-component if 
whenever A C 9(s) is predense on the RlS-component then G meets A. 

Lemma 5. Suppose G is 3Y(s)-generic. Then is 3Y(s)-generic on the RS-compo- 
nent. 
Proof. Obvious. a 

Lemmas 4 and 5 have a converse. 

Lemma 6. Suppose G c 9(s) is compatible (p, q E G 3r E G, r < p, q) 
and closed upwards (p E G, p < q - q E G). Suppose G is 3Y(s)-generic on 
both the Q(s)-component and the RS-component. Then G is 3V(s)-generic. 
Proof. Suppose A C 9A(s) is predense; we want to show that some q E G meets 
A. Consider Al = {pjQ(s) 11 (q?, pl) meets A for some q E G(s)}. We claim 
that A' is predense on the IRS-component. Indeed, suppose p e LA(s) and let 
q= least q1 < p1 such that (q0, ql) meets A for some q? E G(s), if exists, 
- pI otherwise. Clearly (p0, qI) < (po, p') = p. We must show that Q(s) IF 
For some q0 E G(s) there is q' such that (q0, qI) meets A and q' <?p in 
Rs. But this is equivalent to: {q0 E Q()I3q1(q0 q1) < (q? p1) meets A} is 
dense, and the latter follows from the predensity of A. So Al is predense on 
the IRS-component. 

Choose p = (p0, pI) E GnAl. Thus Q(s) 11 (q?, p') meets A for some qo E 
G(s). Now consider A = {ql(q 0 pI) meets A}. We claim that AO is predense 
on the Q(s)-component. Indeed, given (q?, qI) we can choose r? < qo so that 
(r?, pI) meets A, since this property of r0 is dense in Q(s). Then (r0, qI) < 
(q , ql) belongs to A0. As G is L(s)-generic on the Q(s)-component, we can 
choose q < p in G n A. But then q meets A. El 

Now we consider the reduction of predense sets, a weakening of genericity. 
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Definition. Suppose p E I(s) and A C 9(s) is predense. Then p reduces A 
below y on the Q(s)-component if Vq < p3r < q ( r meets A, rl = q1 and 
r? t (y, x?) = qo t (y, oo)). And p reduces A below y on the IRS -component if 
Vq < p3r < q ( r meets A, r? 0 q0, and Q(s) 1F- rl (y', xo) = q1 (y', oo) 
for some < y). 

Lemma 7. Suppose p E 9'(s) and (A,)i < a) are predense on the Q(s)-compo- 
nent (Rs-component, respectively), a a regular L-cardinal. Then there exists 
q < p such that q reduces each A/ below a on the Q(s)-component (R5- 
component, respectively). 
Proof. First consider reduction on the Q(s)-component. By Lemma 2, Q{t1 (S) 
is a+ - CC and Q+1'(s) 1- Q1(s) is < a-distributive. And for each i < a, 
A* = {q0 E Q(s)I(qo, q) meets Ai} is dense on Q(s). Using the above properties 
of Q?a+ (s), Q7 1 (s) we can now easily extend p to q reducing each Ai below 
a on the Q(s)-component. 

Now consider reduction on the Rs-component. If a = co then the result 
holds by < w-distributivity of IRS. If a is a successor L-cardinal then the 
result holds by the < a-distributivity of IRs (the coding of G(s) into a ) and 
the a+ - CC of the coding into a. For inaccessible a the result follows from 
A-distributivity: if Ai is predense on IRs for i < a then {r E IR51(r)i+ meets 
Ai for all i < a} is dense on iRs. (See [BJW].) o 

We generalize the above to H5s Y (s). It will be necessary to deal with the 
equivalent forcing Y* = (fls Q(s)) * (Hs Rs) = all pairs (p0, pI) where p?0 
FL5 Q(s) = Q and pI is a Q-term, Q 1H Dom(pl) = (2<w)<w and Vs(pI(S) E 
L[G(s)] is a condition in the Jensen coding of G(s). Note that Q is < w(- 
distributive so a dense subset of Q* (tls Rs) consists of (p?, p l ) where po E Q, 
for some constructible f: (2<w)<w - Terms, Vs(Q HF p'(s) = f(s) and f(s) 
is a Q(s)-term). Thus H5s?(s) is isomorphic to a dense subset of i7'= 
Q*fsRs =Q*IR. 

Definitions. A C 3* is predense on the Q-component (R-component, respec- 
tively) if p E -* 3q < p, q meets A, and qI = p I(qo = po, respectively). 
G C Y* is 9*-generic on the Q-component if whenever A c Y* is predense 
on the Q-component, then G meets A. G C Y* is 9*-generic on the R- 
component if whenever A C 93* is predense on the R-component, then G 
meets A. 

Lemma 8. (a) Suppose K is 9*-generic. Then K is 9*-generic on the Q- 
component and on the R-component. 

(b) Conversely, if K C 9* is 9*-generic on the Q, R-components and K is 
compatible, closed upwards then K is 9*-generic. 
Proof. Exactly as in Lemmas 4, 5, 6. 

We also consider the reduction of predense sets for Y*. 
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Definitions. Suppose p E 3* and A C Y* is predense. Then p reduces A 
below y on the Q-component if Vq < p3r < q (r meets A, rl = ql, and 
r0(s) [ (y, x) = qo(s) [ (y, X) for all s). And p reduces A below y on the 
R-component if Vq < p3r < q (r meets A, r0 = q0, and Q F For some y < y, 
Vs r (s) [ (y', oo) = q (s) [(y, oX)). 

Lemma 9. Suppose p E 3* and (AiIi < a) are predense on the Q-component 
(R-component, respectively), a a regular L-cardinal. Then there exists q < 
p such that q reduces each Ai below a on the Q-component (R-component, 
respectively). 
Proof. The proof turns on two claims. 

Claim 1. Q - Q'+1 x Q1a+i where Q'+1 is a+ - CC and Qc'+' 1F Q12+, is 
< a-distributive. 

As Q = Hls Q(s) = Hls Q,+l (s) * Q?1+I (s) we take 

Qa+ = I Qa+ 1 (s), Qa+C = Qa+ I (s) 
s s 

= {f E L[G+l ]lDomain(f) = (2<w)<w and 

Vs(f(s) E Qc,a+I (s) C L[Ga+ (s)])}. 

Thus Q = {(pO, p 1) Ip? E Q and p 1 is a Q-term, Q IF Dom(p I) = (2<w)<w and 
Vs(pl(s) is a condition in Qc+1(s) C L[Ga+ (s)])}. Note that in the previous, 
pI(s) names an element of L[Ga+l(s)], not an arbitrary element of L[G+ 1]. 

Claim 1 is proved as was Lemma 2, with one new twist: To see that Q'+1 IF 

Qa+ is < a-distributive we must show that if G+ 1 is Q?+ 1 -generic and (Ai I i < 

a) are predense on QG'+ (Aili < a) E L[Gc+] then Vp E QG+' 3q < p (q 
meets each Ai). If we successively extend p = pO > p1 > to meet the Ai 's, 
there is the danger that for limit A, p,(s) no longer belongs to L[Ga+ (s)], 
only to L[Ga+], since the (pili < A)-sequence is defined in L[G'+]. To 
overcome this difficulty, as stage i + 1 instead choose pi+, by first selecting 
a condition qo in Q+I such that for some pqo41, qo IF pq'4I meets A, and 
Qa+ I1F p' I < pi, then q1 incompatible with qo such that for some pq, 

qF Pi1 meets A/ and Q'+1 1H Aq < pq+ , etc. Then after ,B < a+ stages 
we get pil = greatest lower bound {p qj I I < ,} so that Q+l IF P1+1 ? Pi and 

pi+1(s) E L[G'+ (s)] for all s. (Lemma 2(b) guarantees that we can arrange 
that lower bounds exist at limit stages.) This proves the < a-distributivity of 
Q1;+,. The a+ - CC of Q+1 is as in the proof of Lemma 2, using the fact 
that conditions in Qf+ have support size < a = a o. This proves Claim 1. 

Claim 2. Q FI R DIR * Ia where R = {p [a [e, o) lp E RI} is < a- 
distributive (and A-distributive for L-inaccessible a) and RI is a+ - CC for 
successor L-cardinals a. 
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For the first part it suffices to show that Qa+1 1F- ?S+ * RRa is <_ a-distributive. 
But we can prove this as in Claim 1, by guessing over an antichain in Q+1. 
(Given the < fl-distributivity of IRfi for ,L < a inaccessible, the A distribu- 
tivity of IRI is easy.) The second part is clear, using a cO = a. 

Now we are in a position to repeat the proof of Lemma 7. a 

Corollary 10. 3* preserves cofinalities, and hence so does Hfs (s). 

THE FORCING 9 

Now we use a method for creaiing(local) Hi1-singletons (see [JS]). We write 
a Hl i9(s)-generic as Hls(G(s), Xs) (where G(s) is Q(s)-generic, Xs is a sub- 

L set of w1 coding G(s)). We introduce a forcing ' 
over the ground model 

L[Hls(G(s), Xs)]. F = rls (s) where &9(s) is a forcing for coding Xs by a 
real using perfect trees. 

For X C wL define ordinals ,u(X), a < C L, inductively as follows: 

u0(X) = o 1U(X) = U{8fu(X)Ifl < a}, 

,u(X) = least ,u > ,u(X) such that L,f [X n a] is admissible and locally count- 
able (that is, L[JX n a] k E1-replacement and every set is countable). And let 
v (X) denote the structure Lu (x)[X n a]. A real R codes X below a if for all 
B < a, ,E E X iff sl (X)[R] is admissible. 

A perfect tree T: 2<' 2<w is such a function satisfying: T(u * O), T(u * 1) 
are incompatible extensions of T(u), for all u E 2<w. The stem of T, denoted 
stem (T), is T(q). A real R is a path through T, R E [T], if R = U{T(u)Iu C 
S} for some S E 2w. 

A condition in F(s) is a perfect tree T such that each path R through T 
codes Xs below I TI, where I TI = least a such that T E wX (X). Extension 
is defined by T1 < T2 iff T1 = T2 o T for some tree T. Finally ' = ls &9(s). 

Lemma 11. (a) T E F(s), a < oL 3T' < T, IT /I > a. 
(b) F is a cofinality-preserving forcing. 

Proof. (a) By induction on a. If a = ,B + 1 we can assume by induction 
that TI = ,B and hence T E V(Xs). If ,B 0 Xs then we can thin T to 
T E fl+1(Xs) so that with the help of T, each R E [T'] codes some real 
coding Jpt(X). If , E Xs then we use the fact that ,uf(X) is countable in 

l+ I (X) to thin T to T' E f+1(X) so that each R E [T'] is generic over 
f (X) for the Cohen-like forcing defined by the nodes of T. 

For limit a, apply induction and the fact that u (X) is countable in v (X). 
(b) Note that F(s) obeysfusion: if Dn C F(s) is open and n-dense for each 

n then f{DnIn < co} is dense, where D is n-dense if VT3T' < T(T' E D and 
T'(u) = T(u) for u of length < n ). To show that F preserves cofinalities it 
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suffices to observe that F obeys fusion for the following notion of n-dense: D 
is n-dense iff for every c E F there is c' < c, c' E D such that c'(sk)(u) = 
C(sk)(U) for k < n, length (u) < n where (sklk E w) enumerates (2<w)<w. 

To show that fJs 97(s) * F (s) preserves cofinalities. But this can be estab- 
lished as in Claim 2 of Lemma 9, using the fact that Rs * F(s) obeys fusion 
instead of < wi-distributivity. o 

Suppose (R(s)js E (2<')<w) is '-generic over L[fHs(G(s), Xs)]. Let R = 
{(s 0 ...Sn)Iso C R() and for all i < n, si+I C R((so, *--, Si))}. Thus we 
have: 

R E L [1J(G(s), Xs)] [(R(s)Is E (2'O)<w)], 

a generic extension of L, preserving cofinalities. 
Our desired forcing is ?7, a forcing that produces the generic extension L[R] 

of L. We will show that a ?7-generic exists in L[O#]. But note that no Hls ?(s)- 
generic can exist (in the presence of O# ) as that would lead to a CUB subset of 
01 disjoint-from I. (Indeed no Q(s)-generic can exist for s incompatible with 
R.) Thus we can think of L[R] c L[O#] as a generic extension of L, obtained 
as an inner model of a generic extension L[Hfs(G(s), Xs), (R(s)Is E (2<w)<wJ 
which "lies outside the real universe." 

We give an explicit description of Y. A condition is a pair (s, q) where 
s: (2<w)<w - Perfect Trees, q E HltY(t) and for each t, q(t) 1F s(t) E 

(F(t). A condition ( t, r) extends (s, q) if whenever t lies on t, t(t) < s(t) 
and r(t) < q(t). (We do not require the latter conditions when t is incompatible 
with t.) A ?-generic G is completely determined by the real R = {s E 
(2<w)<'Is lies on s for all (s, q) E G}. Moreover (fHls(s)) * F-generics 
yield ?7-generics, so Y preserves cofinalities: 

Lemma 12. Suppose (K, J) is HlsY(s) * '-generic. Let G = {(s, q)I For 

some r E K, t E J we have that r(s), t (s) agree with q(s), s (s) for s which 
lie on s }. Then G is ?-generic. 
Proof. G is clearly compatible and closed upwards. Suppose A C ? is pre- 
dense. Consider A* = {(q', T)j For some (s, q) meeting A , q' I T = s and 
q(s) = q'(s) for s lying on s}. Then A* is dense on (17J ?7(s))*F so (K, J) 
meets A*. So G meets A. o 

Corollary 13. ? preserves cofinalities. 

- Our treatment of ? is greatly facilitated by embedding it, as we did 1ls ?7 (s), 
as a suborder of a larger partial order. Let 93 consist of all pairs (s, q) where 
5: (2<()<( - Perfect Trees, q = (q?, ql) E ?* = HfQ(s) * HsJRs and for 
each s, q0 1 (ql(s), 5(S)) E Rs * (s). And (t, r) < (s, q) in 39 if for all 
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t lying on t, r0(t) < qo(t) in Q(t), t(t) is a perfect subtree of s(t) and 
r?[t] 1F r1(t) < q1(t), where r?[t](s) = 0 if s is not an initial segment of 
t = r (s) otherwise. 

Lemma 14. 3 and 39 are equivalent forcings. 
Proof. As in Lemma 12, we have the following: Suppose G is Hls Q(s) * Rls * 

F(s)-generic and write an element of this forcing as (q?0 (q1, s)) where qo E 
fHs Q(s), q? IF- (q1(s), s(s)) E Rs * (s) for all s E (2<w) <. Then G is 3- 
generic where G = {(s, q)I For some (r0, (r1, in) in G we have that qo(s) = 
r?(s), q 1F- (q1 (s), s-(s)) = (rl (s), t(s)) for all s lying on s-. 

Now notice that both Hls (s) * Hls (s) and HlsQ(s) * HlsIRs * (s) sit 
densely inside Hls Q(s) * Hl Rs * fHs (s) = 95. If H is 95-generic then in 
L[H] we define therefore a real R which is both 3 and 19 generic. It follows 
that the 9-generic reals are the same as the 95'-generic reals. o 

Remarks. (1) I do not see how to densely embed 3 into 19 and suspect that 
no such embedding exists. The difficulty is that in order to specify q I(t) as a 
Q(t)-term as a constructible function of t, we may need to consider more than 
q0[t]. 

(2) The necessity of using 39, where qI is viewed as a ls Q(s)-term, is 
revealed in the proof of Lemma 15. 

Our goal is to build a 95-generic in L[O*]. By Lemma 14 it suffices to build a 
97-generic in L[O#]. The advantage of working with 3 is that the component- 
genericity and predensity reduction techniques that we developed for 3* can 
be adapted. What we need, are analogues of Lemmas 8(b) and 9. First some 
definitions. 

Definitions. For p E 35 write p = (s(p), q(p)). A c 3 is predense on the 
Q-component if p c 3p- < p, p0 meets A and q(po)1 = q(p)l. A c 7 

is predense on the R-component if p E 3,9~ - po ? p, p0 meets A, and 

q(po)0 = q(p)0, Q 1W q(p0)1 < q(p)1. 
K C ,9 is iF9A-generic on the Q-component if whenever A C 19 is predense 

on the Q-component, K meets A. K is 9&-generic on the R-component if 
whenever A C 35 is predense on the RI-component, K meets A. 

Lemma 15. Suppose K C 39 is compatible, closed upwards, and 9-generic on 
the Q, R-components. Then K is iFA-generic. 
Proof. We argue as in the proof of Lemma 6. Suppose A C 35 is predense; we 
want to show that some p c K meets A. For each t consider A1 (t) = {plQ 1F 
There is s < t such that (s, (q0, q(p)1)) meets A for some qo E G} where 
Q = Hl Q(s), G denotes a Q-generic. We claim that Al(t) is predense on 
the RI-component. Indeed, suppose p E 6 and let ql be the Q-term defined 
by: q1 = least ql < q(p)l such that for some s < t, (s, (q0, q1)) meets A 
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for some qo e G, if exists; q' = q(p) otherwise. Clearly QF ql < q(p)1. 
And Q 1F- (There is ql < q(p) such that (s, (q , q1)) meets A for some 
q? E G, s < t0, as this is a dense property of q0 (due to the predensity of A). 
So A' (I is predense on the IR-component. 

For each t choose (s, (p0(t0, p1 (t0)) E K meeting Al (i, by the 3'-generi- 
,city of K on the R-component. Thus for each t, Q F- There is s < t such 
that (s, (q0, p'(t0)) meets A for some qo E G. Now consider A0(t) = {pj 
For some s < t, (s, (q(p)0, p1 (t))) meets A}. AO(t) is predense on the Q- 
component for each t. Moreover AO(z) = {r0p E A 0(I)} is dense open on Q for 
each t and hence by < w1 -distributivity of Q, A = fnl{A0 (T IT: (2<w) < 

Perfect Trees } is predense on the Q-component. Now choose (0, (r0, r1)) E K 
meeting A0, by the 39-genericity of K on the Q-component. Finally let A0 = 
{pI(s(p), (r0, pI(5(p)))) meets A}. Then A0 is predense on the Q-component 
(and IR-component) so we can choose (s, (o, q)) E K meeting A0. As K 
is compatible and closed upwards we get (s, (r0, pI (5))) E K and the latter 
condition meets A. o 

Remark. The use of < (1-distributivity of Q can be eliminated if we redefine 
SD so as to allow s to be a Q-term. 

Definition. Suppose p E 39 and A c Y is predense. Then p reduces A 
below y on the Q-component if Vq < p3r < q (r1 = q , r meets A, r0(u) 
(y, oo) = q0(u) [ (y, ox) for all u). And p reduces A below y on the R- 
component if Vq < p3r < q (r0 = q0, r meets A, QIF- For some y' < y, 
rI(u) [ (y', oo) = q(u) [ (y', oo) for all u). 

Lemma 16. Suppose p E 3 and (A Ii < a) are predense on the Q-component 
(R-component, respectively), a a regular L-cardinal. Then there exists q < p 
such that q reduces each Ai below a on the Q-component (q reduces each Ai' 
i < /B below ,B on the R-component for each L-cardinal ,B < a, respectively). 
Proof. As in Lemma 7, using the claims of Lemma 9 (and Fusion for ' when 
a =wc). 0 

BUILDING A A-GENERIC FROM 0 

We work with 3, rather than with Y7. Thus our goal is to produce a 11 (L) 
procedure (i1, ***, in) p(i,, ***, in) such that {p E Y lp is compatible 
with p(i,, . , in) for all (i,, ..., in) E In} is ,9'-generic. 

It is important to observe that the very definition of 32 made use of an index 
for this procedure. Thus we are really describing an index for (il, .. , in) 
p(il,... , in) given a "guess" at an index for this procedure. The Recursion 
Theorem tells us that we can know a proper guess. We must only observe that 
we are defining here a total procedure, even if our guess at an index for it defines 
a partial procedure. 
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Of course our procedure will produce a M~5-generic from the Silver Indis- 
cernibles I only given a correct guess for it; incorrect guesses would lead us to 
kill sequences (i .. , i+1) E In+1 f-r regular i1, an impossibility. 

We describe below how to construct a 90-generic using I (given a correct 
guess); this construction will easily be made into the desired S1 (L)-procedure. 
The construction is a mixture of Beller's refinement of Jensen's method for 
obtaining class-generic subsets of (w L in L[O#] (see [BJW, ??4.4, 5.1]), to- 
gether with a method for obtaining Backward Easton generics in L[O#] (see 
[Fl]). In the former case, conditions p(kl, ... , kn) are chosen of domain 
L-Card n [w, kt], where I = {kl < k2 < ..}, and the rest of the generic 
is determined by indiscernibility preservation: if p(k1, ..., kn) is chosen then 

the generic has all conditions p( k ), k E In (defined from k just as was 
p(kl n... , kn) from (k1, ..., kn)); the entire generic consists of conditions 

extended by some p( k), with restraint added at finitely many indiscernibles. 
In the latter case, conditions q(kl, ... , kn) are chosen successively of length 
< k2 + 1, with the restriction that G(k2) extend G(kl). The rest of the generic 
is determined by indiscernibility preservation, as it consists of all conditions ex- 

0 0 
tended by some q( k ), k E In (defined from k just as was q(k1, ..., kn) 
from (k1, ... , kn)). What we do here is to carry out these constructions simul- 
taneously, Jensen's on the JR-component and the Backward Easton method on 
the Q-component. The advantage of working with S is that we can use Lemma 
15 to build our 90-generic by performing the R-component and Q-component 
constructions independently. 

We make one more observation before beginning the construction: Note that 
the Jensen construction only produces a generic after restraint is added at finitely 
many indiscernibles. This is the main reason why we write our desired generic as 
{p E 01P is compatible with each p(i1, ..., isn) (i1, ..., i") E In}, rather 
than {p E 3 lp(i, ... , in) < p for some (ii, * , in) E In 

Here is the construction. Our goal is to produce a SD n Lk -generic Ko c Lk 
which is preserved by elementary embeddings Lk - Lk obtained by moving 
indiscernibles kn, n < w. Thus K0 = {p E 0 n Lk Ip is compatible with 

each p( k), k E (I n k,)<w} and the desired 09-generic is K = {P E 0jP 

is compatible with each p( k) k e I<'}. We define p0 ? p1 > P2 > in 
9 flLk by defining Pn = p(k1, ... , kn) by induction on n. Fix a recursive list 

(tn In E )) of terms so that (tn (k1, ..., kn) In even ) enumerates all elements 
of Lk. 

Let po = p= (I , (5, k)) Assume that Pn = (S n X (Pn pn)) has been defined 

and we wish to define pn+I = (S n I, (Pn+1 i P )) ?< Pn n > 1. There are two 
cases. 
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n ODD 

We assume inductively (as in Jensen's construction) that Q IF- Vu(p14(u) is a 
Jensen-style condition with domain [w, kt] n L-Card such that pn(u)(kt) = 
(x, ?) where if p* is defined from k2,..., kn as was pl_,(u) from k1,..., 
knil we have p+=x. 

Now using Lemma 16 choose Pn+I < Pn least so that for y E L-Card 

n[w, kl], Pn+I reduceseach AEX1 Skolemhull(yu{k1,...,kn}) in L be- 
low y on the R-component, provided A is predense on the Rl-component and 
A E Lk++. Also if n = 1 require that P2 reduces each A E Lk +1 below k1 on 
the Rl-component, provided A is predense on the IR-component for the forcing 
39 n Lk,. (The latter is possible using Beller's proof of Lemma 5.3, [BJW].) We 

also require that q(pn+ )? = Pn Now modify Pn+1 = q(Pn+l)1 to obtain Pn+I 
as follows: pI (u) [ kjj = Pn+I(u) [ k+, pI+I(u)(kt+) = (x, q) where if p 
is defined from k2, ... kn+i as was pl(u) from kl,..., kn then Pk+ = x. 

Then Pn+1 = (sn,7 (Pn I Pn+l)) = (sn+1 I (Pn+1 , Pn+l))- 

n EVEN 

Consider A = tn(k1, ..., kn). If A is predense on the Q-component, A E 

Lk+ then choose Pn+l < pn to be the least condition meeting A, q(Pn+1)1 = pI 

We would like to include Pn+1 in our generic, but doing so may contradict 
our desire to build a generic preserved by embeddings derived from shifting 
indiscernibles. In fact it is to solve this difficulty that we introduced e as a 
coding with perfect trees, rather than with finite conditions. 

First we may assume that Pn+l strongly meets A in the sense that it still 

meets A even after q(pn+l)0(u)(k2)(i,... , i,) [ k1 has been constructibly 

changed for u E (2<w)<w, (il, im) E Dom(q(pn+l)1Xu)(k2)). This is be- 
cause the forcing Q(k2) obeys < k+-distributivity. 

Now we would like to alter q(pn+l )(2)(k'(i1, ... , im) so that it is forced 

by Qk2 to extend Gk2(u)(kl)(i I im) whenever (i I i m) is defined 

from k1 u {kl, ... , kl,I} (some I) just as (i, ..., im) is defined from k1 U 
{k2, ... , k1}. Note that if (i1, ..., im) is definable from k1 U {k2, ..., kl} 

then since (we are assuming) (i', ..., im) E Dom(q(pn+l)0(u)(k2)) we have 
that (il, ..., im) is definable from k2 U {k2, ... , kn} and hence from klI U 
{k2, ... , kn}. (No ordinal in [k1, ck2) is definable from k2, ..., /c1.) Thus we 
can assume that / = n. 
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The problem is that the above change may not be legal for all u E (2<w)<w 
since it may require k1 , I(i i , . , ) for u-bad (i, in), il = k2. Thus 
we proceed as follows: Extend s (p'+ 1) to guarantee that the above changes can 
be made for u lying on s (p,n+) and then change q(p, lI )0(u)(k(i1, .2.., iM) 
accordingly for such u, if possible; otherwise (for technical reasons) extend 

s(p,+,) so as to guarantee that length (stem (s(pn 1)(u))) > n for all u C 

(2<w)<w and that xi is not a path through s(pn+1)(uj) for i, i < n, where 
(xi I i < c()) is a fixed enumeration of the constructible reals and (uj1lj < c) is a 
fixed enumeration of (2<w)<w. We refer to the former case as the good subcase 
and the latter as the bad subcase. 

Finally let Pn+i = (sn+ (Pn+1 l Pn+i)) be the result of the above changes. 
We will show that in fact the bad subcase does not occur (Lemma 17). 

This completes the construction of the pn's. We obtain a procedure by 
setting p(i1, ... , in) = that object defined from (il, ... , in) as was Pn de- 
fined above from k1, ..., kn, provided the construction above does not break 
down by stage n where (kl, ... , kn) is replaced by (UI ... , in). If the con- 
struction breaks down when (k1, ... , kn) is replaced by (il, ... , in) then set 
p(il ..., in) = 4. Thus we have defined a total procedure. To see that this 
procedure is E (L) note the following: In the odd case we refer to k<+ and 
1 Skolem hull (y U {kl, ... , kn}) in L but both of these are computable in 

Lk as n + 1 > 2, and Q 1H q' is definable over Lk for sentences o of 
?+ I n+I 

rank < kn+1* In the even case we refer to k+, which is computable in Lk 

since n + I > 3. And in all cases predensity of A E Lk on the appropri- 
ate component can be tested in Lk . So all quantifiers in the definition of 

n+I 
Pn+, = p(k1, ... , kn+ ) can be bounded by Lkn 

Assume henceforth that 3 was defined using a correct guess for a El(L) 
index for (i, * n , in) p(i, i * n*, i). This enables us to prove the following 
key lemma. 

Lemma 17. The good subcase occurs in the case n even. 

Proof. Suppose not. Then note that the bad subcase ensures that (s n I n < c() 
"converges" to a sequence of nonconstructible reals R(u) unique path through 
all of the sn(u), n < Co (whenever u lies on each sn). Consider Sn(0). We 
claim that s C R(O) implies that k1 0 I(il, * ... im) for (s)-bad (i, * ... * im)m 
i' = k2 which are definable from k1 U {k2, ... , kn}. For, otherwise define 
(ji, i -, im) from k U {kM+i, ... , km+nl1} just as (il, ..., im) is defined 
from k, U {k2, . .. , kn }. We have that (j,, . . ., im) is also (s)-bad and by in- 
discernibility k,, . ..., km E I(il , .I. , jm) Thus by Lemma 1(b), (k,, ... , km) 
is also (s)-bad. But since we are using a correct guess for an index for our Y. (L) 
procedure, p(k, . , km)o = sm and (s) lies on sm, contradiction. 

Thus sn(0) has a nonconstructible path whose finite initial segments s have 
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the property that the changes required in the good subcase can be successfully 
made for (s). A constructible tree with a nonconstructible path contains a con- 
structible perfect subtree, so we can thin sn (q$) as required by the good subcase. 
Similarly we can successively thin s,(u) for u lying on Sn to obtain the de- 
sired extension of s(p,+ ). We can preserve the condition sn (u) E (u) by 
first extending Sn so that the above thinnings do not increase constructibility 
rank. o 

Now define K = {p E pI is compatible with each p( k), k E I<@}. 

Lemma 18. K is 9-generic. 

Proof. We show that G = {(s(p), q(p)0)Ip E K}, H = {(S(P), q(p)1)lp E K} 
are 97A-generic on the Q, R-components, respectively. 

Notation. pG(11 .., 1)' denotes q(p(II , n))., 
First consider H. The inductive requirement in the case n odd guarantees 

that H is "determined" by a compatible class of conditions: indeed for any 
(li...,ln) E In, p(ll I) is forced to agree with Pn =p(kl k) 
below k1, p(l, in), lW)k(u)k = Pn(U)k, p(l, n, n (U)k+ = Pn(U)k+ for 

all u. We may have that p(ll,...,n) l1(u) , p(k, ...,kn) (u) impose differ- 
ent restraints, however, at kl, kt as the former must have 0 restraint at k1 (if 
1 > k, ) and the latter must have 0 restraint at kt. Nevertheless we see that 
they are compatible. Now suppose A E L ++ is predense on the R-component, 
K does not meet A and y E L-Card is least with this property for some A. 
If y 0 I then A E X1 Skolem hull (y U {ll, ..., ln}) in L for some large 
11,..., i,n E I and therefore p(11, . .i ,in)I reduces A, contradicting the least- 
ness of y, unless y = cl. (If y = c then A is met due to the 9-genericity 
of G on the Q-component.) Otherwise p(y, 12, ..., in)I reduces A for some 
(12, ..., In) E I, again contradicting the leastness of y. Genericity on the IR- 
component for L-definable classes now follows from our choice of P2. 

Now consider G. Suppose u E (2<W)<W; we claim that p(kl , ..., kn)0(U) 
p (k, ..., k1 )0(u) are compatible. Indeed, the only possible conflict would 
be between p(kl,..., kn)0(u)(k2) and p(k2, ..., kn+l)0(u)(k2) and these are 
compatible by choice of Pn+l (see Lemma 17). Also p(kl, ...,kn)(u) 

p(kl, k3, ..., kn+l)0(u) are clearly compatible, as well as p(kl, ...,kn)(u) 

p(k3 ..., k +2)k(u). It now follows that p( k )O, p( I)? are compatible in 

Q for all k , I E I'@. Suppose A E L,+ is predense on Q-coordinate, 
where (l,1l2, ..., in+I) E In+1 and A = tn(1, .., ln). Then p(ll, n+l) 
meets A, since p(kl, ..., kn+l) meets tn(k1, ..., kn). But now suppose A= 
tn(l, ...,bly+v ..., 1n) where A E LI+ is predense on the Q-component. 

J+e 
Then we see that for some a < ljt+1A* (all P E (AlnLa reducing each A in 
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{tn(ll *. j, Ij I1 . pin)ltn(l l i-i I , *.. I, In) is predense on the Q- 
component ana belongs to Li+ } below .j+ ) is predense on the Q-component, 
belongs to L1+ , is definable as t m (ly, Ib+ 1 ..., Ib+m- ) for some m and hence 
is met by K. (We have used the < 11-distributivity of Q,1 .) Thus if Ij+1 were 
chosen to be least so that some A E L1+ is predense on the Q-component 
but not met by K, we get a contradiction. So G is 91-generic on the Q- 
component, as any L-definable class predense on the Q-component contains a 
set which is predense on the Q-component. 

Finally we must see that K is compatible. Suppose (s, (p0, p )) E K. Then 
S n(U) < Sn (U) for u lying on s n (some n ) by genericity on the Q-component. 
And for u lying on Sn we must have p? I )?(u) < p?(u) for some / EI'@ 

since genericity on the Q-component implies that {r e Q(u)IP( 1) 0)(u) < r 
for some 7 E I<w} is Q(u)-generic. And for u lying on sn 5 for some 

I1' ...,' In E I' we have p( 1 )?[u] IF- p (u) > greatest lower bound 
(p( I) 1(u) 1 < i < n), since genericity on the Q, R-component guarantees 
that {(r?, rr)lp( I)0(u) < ro for some I E I<@, g.l.b. (p< that I (r d~~/ jW gl.. ,p )(U)j ? I< < 

n) < r1 for some / 1' ... I n E I<<W} is Q(u) * 1RU-generic. Moreover any 
two conditions obeying all of the above must be compatible with each other via 
a condition obeying all of the above. Thus K consists exactly of the conditions 
obeying the above properties and hence K is compatible. By Lemma 15 we are 
done. o 

Theorem 1. There is a f9-generic class K. If R = {u E (2<0)<w1u lies on s(p) 
for each p E K} then: 

(a) 0 <L R <L o# and L[R], L have the same cardinals. 
(b) R is the unique solution to a H2 formula. 

Proof. R preserves cardinals since K does. The rI2 formula says: Va(L[R] k 
ZF1O For all u in R, each u-bad (i., im) has been killed). R obeys 
this by Lemma 3(b). Another solution would entail the existence of a CUB 
subset of true oil, disjoint from I. o 
Theorem 2. There is an L-defJnable forcing Y such that: 

(a) Y IF- Card = L- Card and V = L[R] for some real R 0 L 
(b) There is a unique i9-generic, which is definable over L[0#]. 

COUNTABLE fl2 SETS 

The following result answers a question of Kechris. 
Theorem 3. There is a nonempty countable i4 set X such that R E X R 
is not a 174-singleton. 
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Proof. Modify 9 to a forcing 3 where we now have a S1 (L) procedure that 
produces an co-sequence of conditions (p(m, iI, ... ., in) m < c()) at each guess 
(il in). Now for each s E (2<')<' and each m < co we have a Back- 
wards Easton iteration Q(m, s) for the purpose of killing (il ... , in) when 
s is incompatible with p(m, i1, ...1, i)0. Then IRi(m, s) codes the Q(m, s)- 
generic by X(m, s), a subset of w1f, and F(m, s) codes X(m, s) by a 
real using perfect trees. The procedure (il , ..., in) i p(m, iP, ... , in) is 
derived from the construction of the mth 9-generic, which can be thought 
of as a real R(m) where m is an index m < X and R(m) = {sfs lies on 
p(m, ii , ... ., i)0 for all i , ... , in E I} is designed to kill a guess ('I , .. ., in) 
whenever p(m', il, ... , in) is incompatible with R(m) for all m'. 

The construction of a 9-generic proceeds as follows: First choose a condi- 
tion p0 E 37 which reduces each r1I sentence below w (on both the Q and IR 
components). Thus to decide a rI2 sentence we need only extend s(po). Using 
fusion we can in fact arrange that this extension can be required to be of the 
form s(po), for some s E (2<w)<w (where s(po), is characterized by: t lies on 
s(po), iff t lies on .-(po) and t is compatible with s ). Now let (sm Im < c()) list 
all elements of (2<w)<w lying on s(po) and define R(m) as in the 9-generic 
construction but arrange that the generic G(m) determined by R(m) contains 
p0 and that R(m) extends Sm. We can also arrange at the first stage of the 
construction that the reals R(m), m < co code different information below 
a4L by making the X(m, q), m < w) distinct. 

Let X = {R(m)lm < }. Then X is [I2 as R E X iff R kills each 
(i1, ..., in) such that for all m, p(m, il , ..., in) is incompatible with R 
(iff this is true in all ZF1O models LJR]). Finally if R(m) satisfies a rI2 for- 
mula 0 then for some s lying on R(m), so does R(n) whenever sn extends 
s. This proves that R(m) is not a 112-singleton. a 

On the other hand, [KW] shows that any nonempty countable fll set X 
must contain a real R characterized by L[R] t q(R, t' ... n)' for some 
0 and n < w. Their result is best possible: 

Theorem 4. For each n there is a nonempty countable fll set Xn such that 
R E Xn R is not characterized by L[R] k (R, 8i I * .. ' n) for any $. 
Proof. As in the proof of Theorem 3, except choose p0 to be the least condition 
reducing sentences L[R] t /i(R, il, ..., 'in), when defining p(m, i I, ..., ian) 
(The construction of R(m) begins with p(m, ii ..., in)' ii ..., 'n E I-) 
Then any sentence of the form L[R] t $(R, t1 , n) true of R(m) is 
satisfied by other R(n) 's, as X,, ... 5 en are indiscernibles for any real. o 

Theorem 5. There is a real R such that: 
(a) For some 0, R is characterized by L[R] I= O(R, R). 

(b) R does not belong to any countable fIl set. 2 
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Proof. Build R as in the 112-singleton construction but only kill guesses 
(il,..., in) where i1 > t1 (and only apply David's trick at or above N,). 
Clearly (a) holds. For each s E (2`w)`w the forcing IR' = {P I [P1 oo)lp E RS} 
produces Y(s) C t1 (in the sense of L) so that Y(s) codes G(s) = generic for 
Q(s). Then R is generic over L. for the forcing 39 that adds a real S such 
that s lies on S if S codes Y(s). Now if L[R] k y(R) where V/ has only 
countable ordinals as parameters then this is true in L. [R] and is forced by 
some condition in 9 satisfied by R. We can build a perfect set of 93-generics 
below this condition, yielding uncountably many S such that L[S] I= V(S). o 
Remark. A similar result can be established with 0q(R, 5 1) rlIreplaced by 
O(R5 NI 5 .. 5 n+I )' X of the form ISIL[S] I=- V(S, NI 5 .. an)} 

Theorem 6. There exists a sequence ((RO(n), RI(n))In < co) of pairs of reals 
such that: 

(a) R <L RO(n), R L RI (n) R=L O. 
(b) The predicate "R =Ri(n)" is F12 in R, i, n. 
(c) neO# 0 OeRO(n) 0 - OeR,(n). 

Proof. Given n, construct a pair of 111-singletons RO(n), R1 (n) obeying (a) 
via the forcing 9?(n), a modification of .9'. The construction of Ro(n), R 1 (n) 
places 0 into these reals exactly if n belongs to 0*, codes n into the next n + 1 
places of Ro(n), RI (n) by putting k into Ro(n), RI (n) for 0 < k < n + 1 iff 
k = n + 1, and then builds Ro(n), R1 (n) to be 3 (n)-generic using the enu- 
meration of constructible reduction procedures in co steps given by 0* to guar- 
antee (a). Of course Ri(n) codes information to kill any guess at indiscernibles 
which (via a uniformly defined good indes f(n)) produces information about 
the 39(n)-generic contradicting Ri(n). So Ri(n) is a 111-singleton, uniformly 
in i, n. o 

Corollary 7. Consider X = {RIR is a 17-singleton and every v4-singleton is 
<L-comparable with R}. Then the L-degrees of elements of X are well ordered, 
with successor given by #. 

Proof. Suppose that for each n, either RO(n) ?L R or R,(n) <L R. Then 
n E 0# -L[R] = 3s3i[S = Ri(n) and O E S]. So O# L R. If R?L Ro(n), 
R?LRl(n) for some n then R=L 0. Thus L-degree (O#) is the successor to 
0 in the L-degrees represented by X. By relativization we get that the successor 
to any L-degree represented by an element of X is given by #. 

The L-degrees of elements of X are obviously linearly ordered. But an 
infinite descending chain would give a sequence (Rn n < w), R n+i L Rn 
leading to an infinite descending sequence of ordinals (WL[RnI n < wc), contra- 
diction. o 
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SOME OPEN QUESTIONS 

(1) Is there a flI-singleton of minimal L-degree? 
(2) Is there a ZFC-provable 112-singleton R, 0 <L R <L ?( R is a ZFC- 

provable 112-singleton if ZFC F q has at most one solution, where q 
is a fHl formula characterizing R. ) [SI has obtained a partial result in 
this direction. 

(3) Consider X as in Corollary 7. Is every flI-singleton constructible from 
an element of X? Are the L-degrees of sharps of 11I-singletons well 
ordered? 
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ABSTRACT. The real O# = Thy(L, 7 X K2, ...) is a natural example of a 
nonconstructible definable real. Moreover 0# has a definition that is absolute: 
for some formula O(x), 0# is the unique real R such that L[R] O q(R). 
Solovay conjectured that there is a real R such that 0 <L R <L 0 and R 
also has such an absolute definition. We prove his conjecture by constructing 
a H 2-singleton R, 0 <L R 0 L . A variant of our construction produces a 
countable nonempty 2 set of reals not containing a HI-singleton. The latter 
result answers a question of Kechris. 
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