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PARAMETER-FREE UNIFORMISATION

SY-DAVID FRIEDMAN

(Communicated by Julia Knight)

Abstract. This article was motivated by two questions, one in the theory of
infinite-time Turing machines and the other a fine-structural question posed
by Wayne Richter. The answers to both turn on a question of parameter-free

uniformisation, which I prove for all locally countable, limit initial segments
of L.

Let α be a limit ordinal. We say that the partial function f on Lα uniformises
the binary relation R(x, y) on Lα iff for all p ∈ Lα: p ∈ Dom(f) iff ∃yR(p, y) iff
R(p, f(p)). Then Lα satisfies Σn uniformisation iff every binary relation R(x, y)
which is Σn definable over Lα with parameters can be uniformised by a function f
which is Σn definable over Lα with parameters. A stronger statement is parameter-
free Σn uniformisation, which asserts the same for relations and functions without
parameters. Jensen proved that each Lα satisfies Σn uniformisation (see [3]). There
are examples of Lα’s which do not satisfy parameter-free Σ2 uniformisation (see
[1]). Every Lα satisfies parameter-free Σ1 uniformisation.

We say that β is Σ1 stable in α iff β is less than α and Lβ is Σ1 elementary in
Lα. We say that β is above x iff x belongs to Lβ.

Theorem 1. Suppose that α is a limit ordinal and Lα is locally countable (i.e.,
Lα � every set is countable). Then Lα satisfies parameter-free Σn uniformisation.

Proof. By induction on n. We may assume that n is greater than 1. For the sake of
clarity, we assume that n equals 2; the proof below readily generalises to arbitrary
n, given the result for n − 1.

We first discuss Σ1 Skolem functions. Let U be the set of pairs (〈n, x 〉, y) in
Lα such that ϕn(x, y) holds in Lα, where ϕn is the n-th Σ1 formula. Then U
is parameter-free Σ1 and can be uniformised by a parameter-free Σ1 function h1.
Thus the domain of h1 consists of those pairs 〈n, x 〉 such that ϕn(x, y) holds for
some y, and for such a pair, ϕn(x, h1(〈n, x 〉)) holds (h1 is a Σ1 Skolem function for
Lα). It is easy to verify that for any A ⊆ Lα, the range of h1 on ω × [A]<ω is the
smallest Σ1 elementary submodel of Lα containing A as a subset, the Σ1 Skolem
hull of A. For any A ⊆ Lα and x ∈ Lα, the Σ1 Skolem hull of A ∪ {x} is equal to
the set of all h1(n, 〈x, a 〉), n ∈ ω and a ∈ [A]<ω.

Received by the editors February 28, 2007, and, in revised form, July 17, 2007.
2000 Mathematics Subject Classification. Primary 03E35, 03E45, 03E55.
Key words and phrases. Descriptive set theory, large cardinals, innermodels.
The author was supported by Grants P 16790-NO4 and P 19375-N18 of the Austrian Science

Fund (FWF).

c©2008 American Mathematical Society
Reverts to public domain 28 years from publication

3327



3328 SY-DAVID FRIEDMAN

As Lα is locally countable, the Σ1 Skolem hull of A in Lα is transitive for any
A ⊆ Lα: If this hull contains x, then it also contains an injection of x into ω, all
elements of ω and therefore all elements of x. It follows that the Σ1 Skolem hull of
{β, x} equals the Σ1 Skolem hull of β + 1 ∪ {x} for any β < α and x ∈ Lα.

Lemma 2. Suppose that y belongs to Lα. Then for some n ∈ ω, y equals h1(n, β)
where β is either 0 or Σ1 stable in α. More generally, for any x ∈ Lα, there exists
n ∈ ω such that y equals h1(n, 〈β, x 〉) where β is either 0 or both Σ1 stable in α
and above x.

Proof. Given y, let β be least so that y belongs to the Σ1 Skolem hull of β + 1 in
Lα (= the Σ1 Skolem hull of {β} in Lα). Then β is either 0 or Σ1 stable in α, as
otherwise β belongs to the Σ1 Skolem hull of β′ + 1 for some β′ < β and hence
so does y, contradicting the choice of β. Also, y is of the form h1(n, β) for some
n ∈ ω. More generally, given both y and x in Lα, let β be least so that y belongs
to the Σ1 Skolem hull of β + 1∪ {x} in Lα (= the Σ1 Skolem hull of {β, x} in Lα).
As the Σ1 Skolem hull of 1 ∪ {x} is transitive, it follows that β is either 0 or Σ1

stable and above x. Also, y is equal to h1(n, 〈β, x 〉) for some n. �
Now let ψn(x, y) be the n-th Π1 formula with free variables x, y and define

f(n, x) = (m, β) iff the following hold in (Lα,∈):
(i) Either β is 0 or both Σ1 stable and above x.
(ii) h1(〈m, 〈β, x 〉 〉) = y is defined.
(iii) ψn(x, h1(〈m, 〈β, x 〉 〉)) holds.
(iv) ψn(x, y′) fails for any y′ of the form h1(〈m′, 〈β′, x 〉 〉), β′ < β, m′ < ω.
(v) m′ < m → h1(〈m′, 〈β, x 〉 〉) is undefined or ψn(h1(〈m′, 〈β, x 〉 〉)) fails.

Clauses (i)-(iii) are easily seen to be equivalent to a Boolean combination of Σ1

formulas, using the fact that Σ1 stability is a Π1 notion. Clause (iv) is vacuous if
β is 0 and otherwise, by the fact β is Σ1 stable and above x, holds in (Lα,∈) iff
it holds in (Lβ,∈); it follows that clause (iv) is Σ1. Also, clause (v) is a Boolean
combination of Σ1 formulas preceded by a bounded number quantifier; it follows
that this clause is Σ2. So f is a partial function from Lα to Lα which is parameter-
free Σ2.

If f(n, x) is defined, then ψn(x, y) holds for some y, as we may take y to be
h1(〈m, 〈β, x 〉 〉), where f(n, x) = (m, β). Conversely, if ψn(x, y) holds for some y,
then by the lemma, y is of the form h1(〈m, 〈β, x 〉 〉) for some β which is either
0 or both Σ1 stable and above x. By minimising the pair (β, m), we see that
f(n, x) is defined. Thus f(n, x) is defined iff for some y, ψn(x, y) holds, in which
case ψn(x, h1(〈m, 〈β, x 〉 〉)) holds, where f(n, x) = (m, β). For each (n, x) define
f ′(n, x) to be h1(〈m, 〈β, x 〉 〉), where f(n, x) = (m, β). Then f ′ is parameter-free
Σ2 with the same domain as f , and f ′(n, x) is defined iff for some y, ψn(x, y) holds,
in which case ψn(x, f ′(n, x)) holds.

Now suppose that R(x, y) is a binary relation on Lα which is Σ2 definable over Lα

without parameters. Let R(x, y) be defined over Lα by the Σ2 formula ∃zψ(x, y, z),
where ψ is Π1. Now let R′ consist of all pairs (x, 〈 y, z 〉) such that ψ(x, y, z) holds
in Lα; then R′ is Π1 definable over Lα. Choose n so that R′ is defined over Lα by
the Π1 formula ψn. Then f ′(n, x) is defined iff (x, 〈 y, z 〉) belongs to R′ for some
y, z, in which case (x, f ′(n, x)) belongs to R′. Let g be the partial function defined
by

g(x) = y iff for some z, f ′(n, x) is the pair 〈 y, z 〉 .
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Then g is parameter-free Σ2 and x is in the domain of g iff f ′(n, x) is a pair
〈 y, z 〉 where (x, 〈 y, z 〉) belongs to R′ iff (x, 〈 g(x), z 〉) belongs to R′ for some z iff
R(x, g(x)) holds. So g uniformises R, as desired. �

Remark. The hypothesis of local countability can be weakened slightly. All that
was needed for the proof was the transitivity of Σ1 Skolem hulls, which holds iff Lα

is locally countable or is the Σ1 Skolem hull of {ωLα
1 } in itself.

Applications
Wayne Richter asked the following question: Suppose that α is least so that for

some κ < α, Lκ and Lα have the same Σn theory. Then is Lκ a Σn elementary
submodel of Lα?

The answer is Yes, as was independently verified by Leo Harrington and myself
in 2003. Here I give a new proof based on Theorem 1.

Corollary 3. Suppose that α is least so that for some κ < α, Lκ and Lα have the
same Σn theory. Then Lκ is a Σn elementary submodel of Lα.

Proof. Note that α is a limit ordinal; otherwise both κ and α are successor ordinals
and Lκ−1, Lα−1 have the same theory, contradicting the leastness of α. Also, Lα

is locally countable, as if β = (ω1)Lα exists, there are κ < β such that Lκ is
Σn is elementary in Lβ, again contradicting the leastness of α. So α satisfies the
hypotheses of Theorem 1. By that theorem, Lα has a parameter-free Σn Skolem
function, i.e., there exists a parameter-free Σn partial function hn from ω×Lα into
Lα such that for any A ⊆ Lα, the set of hn(m, a) for m ∈ ω and a ∈ [A]<ω is the
smallest Σn elementary submodel of Lα containing A as a subset, the Σn Skolem
hull of A. Let H be the Σn Skolem hull of ω in Lα. Then H is transitive and is Σn

elementary in Lα. Therefore H is an initial segment of L with the same Σn theory
as Lα, and it therefore must be either Lκ or Lα. Note that each element of H is a
Σn singleton in Lα (i.e., the unique solution to a Σn formula in Lα) as each element
of H is of the form hn(m, a) where (m, a) ∈ ω × ω<ω and hn is parameter-free Σn.
If H equals Lα, then κ belongs to H and so we can choose a Σn formula ψ(x) whose
unique solution in Lα is κ. But then the Πn theory of Lα is Σn definable over Lα:
ϕ belongs to the Πn theory of Lα iff for some β, ϕ is true in Lβ and ψ(β) holds.
The latter is a contradiction. So H equals Lκ and therefore Lκ is Σn elementary
in Lα. �

Our second application is to infinite-time Turing machines. In [2], the Theory
Machine is defined, which is a Turing machine which runs through the transfinite
and at stage ω2×(α+1) writes down the Σ2 theory of Jα. The machine can continue
doing this until it reaches a limit stage Σ such that there is no parameter-free Σ2

definable partial function from ω onto LΣ. This ordinal Σ is described as follows.

Corollary 4. Let Σ be least such that for some κ < Σ, Lκ is Σ2 elementary in
LΣ (by the previous corollary, this is the least Σ such that for some κ < Σ, Lκ and
LΣ have the same Σ2 theory). Then Σ is the least limit ordinal so that there is
no parameter-free Σ2 definable partial function from ω onto LΣ, and therefore the
Theory Machine can write down Σ2 theories for Σ steps.

Proof. Note that Lα is locally countable for α ≤ Σ, where if β = (ω1)Lα exists, then
there are κ < β such that Lκ is Σ2 elementary in Lβ , contradicting the definition
of Σ. So by Theorem 1, Lα has a parameter-free Σ2 Skolem function for each limit
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α ≤ Σ. For such α let H be the Σ2 Skolem hull of ω in Lα. Then H is a limit
initial segment of L and therefore if α is less than Σ, H equals Lα. It follows that
for limit α < Σ, there is a parameter-free Σ2 definable partial function from ω onto
Lα. There is no such function for Σ, as the range of any such function must be
contained in Lκ, where Lκ is Σ2 elementary in LΣ and κ is less than Σ. �
Remarks. (i) The previous corollary does not need the full power of Theorem 1.
It only needs that for limit α ≤ Σ there is a parameter-free Σ2 definable partial
function from ω onto the least Σ2 elementary submodel of Lα. (For any limit α,
there is a least Σ2 elementary submodel of Lα, namely the set of L-least elements
of nonempty Σ2 definable subsets of Lα.) This weaker property holds whenever Lα

is the Σ1 Skolem hull of {β}, where β is the largest Σ1 stable in Lα (should this
exist).

(ii) Regarding the κ and Σ of the previous corollary: κ must be the largest
Σ1 stable in Σ, as any larger Σ1 stable would yield the same Σ2 theory as Σ, in
contradiction to the leastness of Σ. Also, Σ is not Σ1 admissible, as otherwise there
would be an Σ̄ < Σ such that LΣ̄ satisfies all Π2 sentences true in LΣ (since this
set of sentences belongs to LΣ); but then LΣ̄, LΣ have the same Σ2 theory, again
contradicting the leastness of Σ. So in fact there is a bijection between ω and Σ
which is Σ1 definable over LΣ with parameter κ.

Question. For exactly which limit α does there exist a parameter-free Σn Skolem
function for Lα?

References

[1] Friedman, S. Fine structure and class forcing, de Gruyter, 2000. MR1780138 (2001g:03001)
[2] Friedman, S. and Welch, P.D., Two observations regarding infinite-time Turing machines,

preprint.
[3] Jensen, R. The fine structure of the constructible hierarchy, Annals of Mathematical Logic 4,

pp. 229-308, 1972. MR0309729 (46:8834)
[4] Welch, P.D. Eventually infinite time Turing machine degrees: infinite time decidable reals,

Journal of Symbolic Logic 65, no. 3, pp. 1193–1203, 2000. MR1791371 (2002b:03093)
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