PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 9, September 2008, Pages 3327–3330 S 0002-9939(08)09275-7 Article electronically published on April 29, 2008

PARAMETER-FREE UNIFORMISATION

SY-DAVID FRIEDMAN

(Communicated by Julia Knight)

ABSTRACT. This article was motivated by two questions, one in the theory of infinite-time Turing machines and the other a fine-structural question posed by Wayne Richter. The answers to both turn on a question of parameter-free uniformisation, which I prove for all locally countable, limit initial segments of $L_{\rm c}$

Let α be a limit ordinal. We say that the partial function f on L_{α} uniformises the binary relation R(x,y) on L_{α} iff for all $p \in L_{\alpha}$: $p \in \text{Dom}(f)$ iff $\exists y R(p,y)$ iff R(p,f(p)). Then L_{α} satisfies Σ_n uniformisation iff every binary relation R(x,y) which is Σ_n definable over L_{α} with parameters can be uniformised by a function f which is Σ_n definable over L_{α} with parameters. A stronger statement is parameter-free Σ_n uniformisation, which asserts the same for relations and functions without parameters. Jensen proved that each L_{α} satisfies Σ_n uniformisation (see [3]). There are examples of L_{α} 's which do not satisfy parameter-free Σ_2 uniformisation (see [1]). Every L_{α} satisfies parameter-free Σ_1 uniformisation.

We say that β is Σ_1 stable in α iff β is less than α and L_{β} is Σ_1 elementary in L_{α} . We say that β is above x iff x belongs to L_{β} .

Theorem 1. Suppose that α is a limit ordinal and L_{α} is locally countable (i.e., $L_{\alpha} \vDash every \ set \ is \ countable$). Then $L_{\alpha} \ satisfies \ parameter-free \ \Sigma_n \ uniformisation$.

Proof. By induction on n. We may assume that n is greater than 1. For the sake of clarity, we assume that n equals 2; the proof below readily generalises to arbitrary n, given the result for n-1.

We first discuss Σ_1 Skolem functions. Let U be the set of pairs $(\langle n, x \rangle, y)$ in L_{α} such that $\varphi_n(x,y)$ holds in L_{α} , where φ_n is the n-th Σ_1 formula. Then U is parameter-free Σ_1 and can be uniformised by a parameter-free Σ_1 function h_1 . Thus the domain of h_1 consists of those pairs $\langle n, x \rangle$ such that $\varphi_n(x,y)$ holds for some y, and for such a pair, $\varphi_n(x,h_1(\langle n,x\rangle))$ holds $(h_1$ is a Σ_1 Skolem function for L_{α}). It is easy to verify that for any $A \subseteq L_{\alpha}$, the range of h_1 on $\omega \times [A]^{<\omega}$ is the smallest Σ_1 elementary submodel of L_{α} containing A as a subset, the Σ_1 Skolem hull of A. For any $A \subseteq L_{\alpha}$ and $x \in L_{\alpha}$, the Σ_1 Skolem hull of $A \cup \{x\}$ is equal to the set of all $h_1(n,\langle x,a\rangle)$, $n \in \omega$ and $a \in [A]^{<\omega}$.

Received by the editors February 28, 2007, and, in revised form, July 17, 2007.

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary\ 03E35,\ 03E45,\ 03E55.$

Key words and phrases. Descriptive set theory, large cardinals, innermodels.

The author was supported by Grants P 16790-NO4 and P 19375-N18 of the Austrian Science Fund (FWF).

As L_{α} is locally countable, the Σ_1 Skolem hull of A in L_{α} is transitive for any $A \subseteq L_{\alpha}$: If this hull contains x, then it also contains an injection of x into ω , all elements of ω and therefore all elements of x. It follows that the Σ_1 Skolem hull of $\{\beta, x\}$ equals the Σ_1 Skolem hull of $\beta + 1 \cup \{x\}$ for any $\beta < \alpha$ and $x \in L_{\alpha}$.

Lemma 2. Suppose that y belongs to L_{α} . Then for some $n \in \omega$, y equals $h_1(n, \beta)$ where β is either 0 or Σ_1 stable in α . More generally, for any $x \in L_{\alpha}$, there exists $n \in \omega$ such that y equals $h_1(n, \langle \beta, x \rangle)$ where β is either 0 or both Σ_1 stable in α and above x.

Proof. Given y, let β be least so that y belongs to the Σ_1 Skolem hull of $\beta+1$ in L_{α} (= the Σ_1 Skolem hull of $\{\beta\}$ in L_{α}). Then β is either 0 or Σ_1 stable in α , as otherwise β belongs to the Σ_1 Skolem hull of $\beta'+1$ for some $\beta'<\beta$ and hence so does y, contradicting the choice of β . Also, y is of the form $h_1(n,\beta)$ for some $n \in \omega$. More generally, given both y and x in L_{α} , let β be least so that y belongs to the Σ_1 Skolem hull of $\beta+1\cup\{x\}$ in L_{α} (= the Σ_1 Skolem hull of $\{\beta,x\}$ in L_{α}). As the Σ_1 Skolem hull of $1\cup\{x\}$ is transitive, it follows that β is either 0 or Σ_1 stable and above x. Also, y is equal to $h_1(n,\langle\beta,x\rangle)$ for some n.

Now let $\psi_n(x,y)$ be the *n*-th Π_1 formula with free variables x,y and define $f(n,x)=(m,\beta)$ iff the following hold in (L_α,\in) :

- (i) Either β is 0 or both Σ_1 stable and above x.
- (ii) $h_1(\langle m, \langle \beta, x \rangle) = y$ is defined.
- (iii) $\psi_n(x, h_1(\langle m, \langle \beta, x \rangle \rangle))$ holds.
- (iv) $\psi_n(x, y')$ fails for any y' of the form $h_1(\langle m', \langle \beta', x \rangle \rangle)$, $\beta' < \beta$, $m' < \omega$.
- (v) $m' < m \to h_1(\langle m', \langle \beta, x \rangle)$ is undefined or $\psi_n(h_1(\langle m', \langle \beta, x \rangle))$ fails.

Clauses (i)-(iii) are easily seen to be equivalent to a Boolean combination of Σ_1 formulas, using the fact that Σ_1 stability is a Π_1 notion. Clause (iv) is vacuous if β is 0 and otherwise, by the fact β is Σ_1 stable and above x, holds in (L_{α}, \in) iff it holds in (L_{β}, \in) ; it follows that clause (iv) is Σ_1 . Also, clause (v) is a Boolean combination of Σ_1 formulas preceded by a bounded number quantifier; it follows that this clause is Σ_2 . So f is a partial function from L_{α} to L_{α} which is parameter-free Σ_2 .

If f(n,x) is defined, then $\psi_n(x,y)$ holds for some y, as we may take y to be $h_1(\langle m, \langle \beta, x \rangle \rangle)$, where $f(n,x) = (m,\beta)$. Conversely, if $\psi_n(x,y)$ holds for some y, then by the lemma, y is of the form $h_1(\langle m, \langle \beta, x \rangle \rangle)$ for some β which is either 0 or both Σ_1 stable and above x. By minimising the pair (β, m) , we see that f(n,x) is defined. Thus f(n,x) is defined iff for some y, $\psi_n(x,y)$ holds, in which case $\psi_n(x,h_1(\langle m, \langle \beta, x \rangle \rangle))$ holds, where $f(n,x) = (m,\beta)$. For each (n,x) define f'(n,x) to be $h_1(\langle m, \langle \beta, x \rangle \rangle)$, where $f(n,x) = (m,\beta)$. Then f' is parameter-free Σ_2 with the same domain as f, and f'(n,x) is defined iff for some y, $\psi_n(x,y)$ holds, in which case $\psi_n(x,f'(n,x))$ holds.

Now suppose that R(x,y) is a binary relation on L_{α} which is Σ_2 definable over L_{α} without parameters. Let R(x,y) be defined over L_{α} by the Σ_2 formula $\exists z \psi(x,y,z)$, where ψ is Π_1 . Now let R' consist of all pairs $(x,\langle y,z\rangle)$ such that $\psi(x,y,z)$ holds in L_{α} ; then R' is Π_1 definable over L_{α} . Choose n so that R' is defined over L_{α} by the Π_1 formula ψ_n . Then f'(n,x) is defined iff $(x,\langle y,z\rangle)$ belongs to R' for some y,z, in which case (x,f'(n,x)) belongs to R'. Let g be the partial function defined by

g(x) = y iff for some z, f'(n, x) is the pair $\langle y, z \rangle$.

Then g is parameter-free Σ_2 and x is in the domain of g iff f'(n,x) is a pair $\langle y,z \rangle$ where $(x,\langle y,z \rangle)$ belongs to R' iff $(x,\langle g(x),z \rangle)$ belongs to R' for some z iff R(x,g(x)) holds. So g uniformises R, as desired.

Remark. The hypothesis of local countability can be weakened slightly. All that was needed for the proof was the transitivity of Σ_1 Skolem hulls, which holds iff L_{α} is locally countable or is the Σ_1 Skolem hull of $\{\omega_1^{L_{\alpha}}\}$ in itself.

Applications

Wayne Richter asked the following question: Suppose that α is least so that for some $\kappa < \alpha$, L_{κ} and L_{α} have the same Σ_n theory. Then is L_{κ} a Σ_n elementary submodel of L_{α} ?

The answer is Yes, as was independently verified by Leo Harrington and myself in 2003. Here I give a new proof based on Theorem 1.

Corollary 3. Suppose that α is least so that for some $\kappa < \alpha$, L_{κ} and L_{α} have the same Σ_n theory. Then L_{κ} is a Σ_n elementary submodel of L_{α} .

Proof. Note that α is a limit ordinal; otherwise both κ and α are successor ordinals and $L_{\kappa-1}$, $L_{\alpha-1}$ have the same theory, contradicting the leastness of α . Also, L_{α} is locally countable, as if $\beta=(\omega_1)^{L_\alpha}$ exists, there are $\kappa<\beta$ such that L_κ is Σ_n is elementary in L_{β} , again contradicting the leastness of α . So α satisfies the hypotheses of Theorem 1. By that theorem, L_{α} has a parameter-free Σ_n Skolem function, i.e., there exists a parameter-free Σ_n partial function h_n from $\omega \times L_\alpha$ into L_{α} such that for any $A \subseteq L_{\alpha}$, the set of $h_n(m,a)$ for $m \in \omega$ and $a \in [A]^{<\omega}$ is the smallest Σ_n elementary submodel of L_α containing A as a subset, the Σ_n Skolem hull of A. Let H be the Σ_n Skolem hull of ω in L_{α} . Then H is transitive and is Σ_n elementary in L_{α} . Therefore H is an initial segment of L with the same Σ_n theory as L_{α} , and it therefore must be either L_{κ} or L_{α} . Note that each element of H is a Σ_n singleton in L_α (i.e., the unique solution to a Σ_n formula in L_α) as each element of H is of the form $h_n(m,a)$ where $(m,a) \in \omega \times \omega^{<\omega}$ and h_n is parameter-free Σ_n . If H equals L_{α} , then κ belongs to H and so we can choose a Σ_n formula $\psi(x)$ whose unique solution in L_{α} is κ . But then the Π_n theory of L_{α} is Σ_n definable over L_{α} : φ belongs to the Π_n theory of L_α iff for some β , φ is true in L_β and $\psi(\beta)$ holds. The latter is a contradiction. So H equals L_{κ} and therefore L_{κ} is Σ_n elementary in L_{α} .

Our second application is to infinite-time Turing machines. In [2], the *Theory Machine* is defined, which is a Turing machine which runs through the transfinite and at stage $\omega^2 \times (\alpha+1)$ writes down the Σ_2 theory of J_{α} . The machine can continue doing this until it reaches a limit stage Σ such that there is no parameter-free Σ_2 definable partial function from ω onto L_{Σ} . This ordinal Σ is described as follows.

Corollary 4. Let Σ be least such that for some $\kappa < \Sigma$, L_{κ} is Σ_2 elementary in L_{Σ} (by the previous corollary, this is the least Σ such that for some $\kappa < \Sigma$, L_{κ} and L_{Σ} have the same Σ_2 theory). Then Σ is the least limit ordinal so that there is no parameter-free Σ_2 definable partial function from ω onto L_{Σ} , and therefore the Theory Machine can write down Σ_2 theories for Σ steps.

Proof. Note that L_{α} is locally countable for $\alpha \leq \Sigma$, where if $\beta = (\omega_1)^{L_{\alpha}}$ exists, then there are $\kappa < \beta$ such that L_{κ} is Σ_2 elementary in L_{β} , contradicting the definition of Σ . So by Theorem 1, L_{α} has a parameter-free Σ_2 Skolem function for each limit

- $\alpha \leq \Sigma$. For such α let H be the Σ_2 Skolem hull of ω in L_{α} . Then H is a limit initial segment of L and therefore if α is less than Σ , H equals L_{α} . It follows that for limit $\alpha < \Sigma$, there is a parameter-free Σ_2 definable partial function from ω onto L_{α} . There is no such function for Σ , as the range of any such function must be contained in L_{κ} , where L_{κ} is Σ_2 elementary in L_{Σ} and κ is less than Σ .
- Remarks. (i) The previous corollary does not need the full power of Theorem 1. It only needs that for limit $\alpha \leq \Sigma$ there is a parameter-free Σ_2 definable partial function from ω onto the least Σ_2 elementary submodel of L_{α} . (For any limit α , there is a least Σ_2 elementary submodel of L_{α} , namely the set of L-least elements of nonempty Σ_2 definable subsets of L_{α} .) This weaker property holds whenever L_{α} is the Σ_1 Skolem hull of $\{\beta\}$, where β is the largest Σ_1 stable in L_{α} (should this exist).
- (ii) Regarding the κ and Σ of the previous corollary: κ must be the largest Σ_1 stable in Σ , as any larger Σ_1 stable would yield the same Σ_2 theory as Σ , in contradiction to the leastness of Σ . Also, Σ is not Σ_1 admissible, as otherwise there would be an $\bar{\Sigma} < \Sigma$ such that $L_{\bar{\Sigma}}$ satisfies all Π_2 sentences true in L_{Σ} (since this set of sentences belongs to L_{Σ}); but then $L_{\bar{\Sigma}}$, L_{Σ} have the same Σ_2 theory, again contradicting the leastness of Σ . So in fact there is a bijection between ω and Σ which is Σ_1 definable over L_{Σ} with parameter κ .

Question. For exactly which limit α does there exist a parameter-free Σ_n Skolem function for L_{α} ?

References

- [1] Friedman, S. Fine structure and class forcing, de Gruyter, 2000. MR1780138 (2001g:03001)
- [2] Friedman, S. and Welch, P.D., Two observations regarding infinite-time Turing machines, preprint.
- [3] Jensen, R. The fine structure of the constructible hierarchy, Annals of Mathematical Logic 4, pp. 229-308, 1972. MR0309729 (46:8834)
- [4] Welch, P.D. Eventually infinite time Turing machine degrees: infinite time decidable reals, Journal of Symbolic Logic 65, no. 3, pp. 1193–1203, 2000. MR1791371 (2002b:03093)

Kurt Gödel Research Center, Universität Wien, Währingerstrasse 25, A-1010 Wien, Austria

 $E ext{-}mail\ address: sdf@logic.univie.ac.at}$