
Equivalence Relations in Set Theory, Computation Theory

and Complexity Theory

De�nable Equivalence relations constitute a popular topic in

Classical Descriptive Set Theory

Some examples:

• (Non-turbulent): Isomorphism relations for classes of countable

linear orders, groups, graphs, �elds, trees, Boolean algebras

• (Turbulent): Conjugacy of homeomorphisms of the unit square

Conjugacy of ergodic, measure-preserving transformations

Unitary equivalence of unitary operators

Conformal equivalence of Riemann surfaces

These are analytic (Σ1

1
with parameters) equivalence relations on

Polish spaces (think of the reals)



Equivalence Relations in Set, Computation and Complexity

Theory

Such equivalence relations are compared using Borel reducibility:

E0 is Borel reducible to E1 i� there is a Borel function f : X0 → X1

such that

xE0y i� f (x)E1f (y)

Recent work: Three new contexts for this study

1. E�ective Theory of Borel reducibility: E0,E1 are now Σ1

1
without

parameters and f is Hyp (= Hyperarithmetic = ∆1

1
without

parameters = e�ectively Borel).



Equivalence Relations in Set, Computation and Complexity

Theory

2. Σ1

1
equivalence relations on the natural numbers N : The

reduction f : N → N is required to be Hyp. Key examples:

Isomorphism relations on the computable models of a Hyp theory

(Hyp classes of computable groups, computable graphs,

computable �elds, · · · )

3. NP equivalence relations on the set Σ of �nite strings: The

reduction f : Σ → Σ is required to be Polytime computable. Key

examples: Isomorphism relations on classes of �nite structures which

are invariant (closed under isomorphism) and Polytime-de�nable

(�nite linear orders, �nite vector spaces over a �xed �nite �eld,

�nite Abelian groups, �nite connected graphs with a �xed bound on

the degree, · · · )



Equivalence Relations in Other Contexts: E�ective Borel

reducibility

E�ective Theory of Borel Reducibility

Joint work with Katia Fokina and Asger Törnquist (postdocs at the

KGRC)

First a review of the classical, non-e�ective theory. We focus on the

case of Borel (not arbitrary analytic) equivalence relations

Object of study: B = Degrees of Borel equivalence relations under

Borel reducibility



The E�ective Theory of Borel Equivalence Relations

Work of Silver and of Harrington-Kechris-Louveau identi�es an

interesting initial segment of B:

Theorem

B has an initial segment

1 < 2 < · · · < ω <=R< E0

where:

n = Borel equivalence relations with exactly n classes

ω = Borel equivalence relations with exactly ℵ0 classes

=R is (ωω,=) (equality on reals)

E0 is the equivalence relation xE0y i� x(n) = y(n) for all but
�nitely many n

In fact: Any Borel equivalence relation is Borel equivalent to one of

the above or lies strictly above E0 under Borel reducibility.



The E�ective Theory of Borel Equivalence Relations

Question: What happens if we replace �Borel� by �Hyp�? We de�ne:

If E and F are Hyp equivalence relations on the reals then

E is Hyp reducible to F , written E ≤H F , i�

For some Hyp function f , x E y i� f (x) F f (y)

≤H is re�exive and transitive

E ≡H F i� E ≤H F and F ≤H E (equivalence relation)

[E ]H = the equivalence class of E under ≡H

Object of study: H = Degrees of Hyp equivalence relations on the

reals under Hyp reducibility

There are some surprises!



The E�ective Theory of Borel Equivalence Relations

Again we have degrees

1 < 2 < · · · < ω <=R< E0

de�ned as follows:

n is represented by xEny i� x(0) = y(0) < n − 1 or

x(0), y(0) ≥ n − 1

ω is represented by xEωy i� x(0) = y(0)
=R , E0 are as before:

xRy i� x = y

xE0y i� x(n) = y(n) for all but �nitely many n

Proposition

There are Hyp equivalence relations strictly between 1 and 2!



The E�ective Theory of Borel Equivalence Relations

Explanation:

Let E be a Hyp equivalence relation. Recall that the H-degree n is

represented by the equivalence relation En where:

xEny i� x(0) = y(0) < n − 1 or x(0), y(0) ≥ n − 1

Fact 1. En is Hyp reducible to E i� at least n distinct

E -equivalence classes contain Hyp reals

Proof. Suppose that En Hyp reduces to E via the Hyp function f .

Each of the n equivalence classes of En contains a Hyp real; let

x0, . . . , xn−1 be Hyp, pairwise En-inequivalent reals. Then the reals

f (xi ), i < n, are Hyp, pairwise E -inequivalent reals.

Conversely, if y0, . . . , yn−1 are Hyp, pairwise E -inequivalent reals

then send the En-equivalence class of xi to the real yi ; this is a Hyp

reduction of En to E . �



The E�ective Theory of Borel Equivalence Relations

Fact 2. E is Hyp reducible to E 2 i� E has at most 2 equivalence

classes.

Proof. If E is Hyp reducible to E 2 then E has at most 2

equivalence classes because E 2 has only 2 equivalence classes.

Conversely, suppose that the equivalence classes of E are A0 and

A1. We may assume that A0 has a Hyp element x . Then A0 is Hyp

as it consists of those reals E -equivalent to x and A1 is Hyp as it

consists of those reals not E -equivalent to x . Now we can reduce E

to E 2 by choosing E 2-inequivalent Hyp reals y0, y1 and sending the

elements of A0 to y0 and the elements of A1 to y1. �

So to get a Hyp equivalence relation between 1 and 2 we need only

�nd one with two equivalence classes but with all Hyp reals in just

one class. This follows from a classical fact from Hyp theory:



The E�ective Theory of Borel Equivalence Relations

Fact 3. There are nonempty Hyp sets of reals which contain no Hyp

element.

Proof. Let A be the set of non-Hyp reals. Then A is Σ1

1
and

therefore the projection of a Π0

1
subset P of Reals × Reals. P is

nonempty. A Hyp real h = (h0, h1) in P would give a Hyp real h0 in

A, contradiction. �

Now we ask a harder question: Are there incomparable degrees

between 1 and 2?

To answer this we prove:



The E�ective Theory of Borel Equivalence Relations

Theorem

There exists Hyp sets of reals A,B such that for no Hyp function F

do we have F [A] ⊆ B or F [B] ⊆ A.

Given this Theorem, de�ne EA to be the equivalence relation with

equivalence classes A and ∼ A (the complement of A); de�ne EB
similarly. Note that the sets A,B contain no Hyp reals, else there

would be a constant Hyp function F mapping one of them into the

other. So a Hyp reduction of EA to EB would have to send the

elements of ∼ A (which contains Hyp reals) to elements of ∼ B ,

and therefore the elements of A to elements of B , contradicting the

Theorem. Similarly there is no Hyp reduction of EB to EA.



The E�ective Theory of Borel Equivalence Relations

It remains to prove:

Theorem

There exists Hyp sets of reals A,B such that for no Hyp function F

do we have F [A] ⊆ B or F [B] ⊆ A.

Proof Sketch. First we quote a result of Harrington. For reals a, b
and a recursive ordinal α we say that a is α-below b i� a is

recursive in the α-jump of b.

Fact. For any recursive ordinal α there are Π0

1
singletons a, b such

that a is not α-below b and b is not α-below a.



The E�ective Theory of Borel Equivalence Relations

Now using Barwise Compactness, �nd a nonstandard ω-model M of

ZF− with standard ordinal ωCK
1

in which are there are Π0

1
singletons

a, b such that for all recursive α, a is not α-below b and b is not

α-below a (i.e., a and b are Hyp incomparable.)

Let a, b be the unique solutions in M to the Π0

1
formulas ϕ0, ϕ1,

respectively.

The desired sets A,B are {x | ϕ0(x)} and {x | ϕ1(x)}.
If F were a Hyp function mapping A into B , then it would send the

element a of A to an element F (a) of B ∩M;

but then F (a) must equal b and therefore b is Hyp in a,

contradicting the choice of a, b. �



The E�ective Theory of Borel Equivalence Relations

For the remainder of this talk, �x A,B as in the Theorem: there is

no Hyp function F such that F [A] ⊆ B or F [B] ⊆ A.

Using A,B we can also get incomparable Hyp equivalence relations

between n and n + 1 for any �nite n, by considering EA,EB where

the equivalence classes of EA are A together with a split of ∼ A

into n classes, each of which contains a Hyp real (similarly for EB).

We now consider Hyp equivalence relations with in�nitely many

equivalence classes.



The E�ective Theory of Borel Equivalence Relations

Recall the Silver and Harrington-Kechris-Louveau dichotomies:

Theorem

(a) (Silver) A Borel equivalence relation is either Borel reducible to

ω or Borel reduces =R .

(b) (H-K-L) A Borel equivalence relation is either Borel reducible to

=R or Borel reduces E0.

How e�ective are these results?

Harrington's proof of (a) and the original proof of (b) show:

Theorem

(a) A Hyp equivalence relation is either Hyp reducible to ω or Borel

reduces =R .

(b) A Hyp equivalence relation is either Hyp reducible to =R or

Borel reduces E0.



The E�ective Theory of Borel Equivalence Relations

The sets A,B can be used to show that the Silver and

Harrington-Kechris-Louveau dichotomies are not fully e�ective:

Theorem

(a) There are incomparable Hyp equivalence relations between ω
and =R .

(b) There are incomparable Hyp equivalence relations between =R

and E0.



The E�ective Theory of Borel Equivalence Relations

Proof Sketch of (a): Consider the relations

EA(x , y) i� (x ∈ A and x = y) or (x , y /∈ A and x(0) = y(0))

EB : The same, with A replaced by B

Now Eω Hyp reduces to EA by n 7→ (n, 0, 0, ...).
Also EA Hyp reduces to =R via the map G (x) = x for x ∈ A,

G (x) = (x(0), 0, 0, ...) for x /∈ A (same for B)

There is no Hyp reduction of EA to EB :

If F were such a reduction then let C be F−1[∼ B].
As ∼ B is Hyp, C is also Hyp and therefore A ∩ C is also Hyp.

But A ∩ C must be countable as F is a reduction.

So if A ∩ C were nonempty it would have a Hyp element,

contradicting the fact that A has no Hyp element.

Therefore F maps A into B , which is impossible by the choice of

A,B . By symmetry, there is no Hyp reduction of EB to EA.



The E�ective Theory of Borel Equivalence Relations

The overall picture of the degrees is the following:

Call a degree canonical if it is one of 1 < 2 < · · · < ω <=R< E0.

For any two canonical degrees a < b there is a rich collection of

degrees which are above a, below b and incomparable with all

canonical degrees in between.

However at least one nice things happens: If a degree is above n for

each �nite n, then it is also above ω.



The E�ective Theory of Borel Equivalence Relations

Some remaining Open Questions:

1. If a Hyp equivalence relation is Borel reducible to E0 must it also

be Hyp reducible to E0? (This is true for �nite n, ω, =R .)

2. Are there any nodes other than 1? I.e., is there a Hyp equivalence

relation with more than one equivalence class which is comparable

with all Hyp equivalence relations under Hyp reducibility?

3. Is there a minimal degree? Are there incomparables above each

degree?

There is also a jump operation, which requires further study.



Analytic equivalence relations on the reals

So far we have considered only Borel equivalence relations.

But there are many interesting analytic (Σ1

1
with parameters)

equivalence relations which are not Borel:

Let T be any theory in �rst-order logic (or any sentence of the

in�nitary logic Lω1ω). Then the isomorphism relation on the

countable models of T is an analytic equivalence relation which

need not be Borel.

But there are many analytic equivalence relations which are not

reducible to such an isomorphism relation;

an example is E1, the equivalence relation on Rω de�ned by:

~xE1~y i� ~x(n) = ~y(n) for almost all n

Note that E1 is even Hyp.



Σ1

1
equivalence relations on the natural numbers

A motivating question for the study of Σ1

1
equivalence relations on

the natural numbers was the following:

Question. Is every Σ1

1
equivalence relation on the natural numbers

reducible to isomorphism on a Hyp class of computable structures?

The reducibility we use is: E0 ≤H E1 i� there is a Hyp function

f : N → N such that mE0n i� f (m)E1f (n).
(We say that E0 is Hyp-reducible to E1.)

Theorem

(Fokina-Friedman-Knight-Montalban et.al.) Every Σ1

1
equivalence

relation on N is Hyp-reducible to isomorphism on computable trees.

This answers the above Question positively.



Σ1

1
equivalence relations on the natural numbers

Theorem

(Fokina-Friedman-Knight-Montalban et.al.) Every Σ1

1
equivalence

relation on N is Hyp-reducible to isomorphism on computable trees.

Proof Sketch: Let E be a Σ1

1
equivalence relation on N and choose

a computable f : N 2 → Computable Trees such that ∼ mEn i�

f (m, n) is well-founded.

Now associate to pairs m, n computable trees T (m, n) so that:

T (m, n) is isomorphic to T (n,m)
mEn implies that T (m, n) is isomorphic to the �canonical�

non-well-founded computable tree

∼ mEn implies that T (m, n) is isomorphic to the �canonical�

computable tree of rank α, where α is least so that f (m′, n′) has

rank at most α for all m′ ∈ [m]E , n
′ ∈ [n]E .



Σ1

1
equivalence relations on the natural numbers

Now to each n associate the tree Tn gotten by gluing together the

T (n, i), i ∈ ω.
If mEn then Tm is isomorphic to Tn as they are obtained by gluing

together isomorphic trees.

And if ∼ mEn then Tm, Tn are not isomorphic as they are obtained

by gluing together trees which on some component are

non-isomorphic. �



Σ1

1
equivalence relations on the natural numbers

It can be shown that the isomorphism relation on computable trees

(and therefore any Σ1

1
equivalence relation on N ) Hyp-reduces to

the isomorphism relation on each of the following Hyp classes:

1. Computable graphs

2. Computable torsion-free Abelian groups

3. Computable Abelian p-groups for a �xed prime p

4. Computable Boolean Algebras

5. Computable linear orders

6. Computable �elds

In the classical setting, the analogue of 2 is an open problem and

the analogue of 3 is false!



Σ1

1
equivalence relations on the natural numbers

Fokina and I show that the structure of Σ1

1
equivalence relations on

N under Hyp reducibility as a whole is very rich: it embeds the

partial order of Σ1

1
sets under Hyp many-one reducibility.

But it is not known if there is a single isomorphism relation on

computable structures which is neither Hyp nor complete under

Hyp-reducibility!

However we do have:



Σ1

1
equivalence relations on the natural numbers

Theorem

(Fokina-Friedman) Every Σ1

1
equivalence relation is Hyp bi-reducible

to a bi-embeddability relation on computable structures.

The proof is based on the analagous result in the non-e�ective

setting:

Theorem

(Friedman-Motto Ros) Every analytic equivalence relation on the

reals is Borel bi-reducible to a bi-embeddability relation on

countable structures.



NP equivalence relations on �nite strings

The motivation for this topic is the following:

Borel reducibility allows us to compare isomorphism relations on

Borel classes of countable structures. Is there an analogous

reducibility for �nice� classes of �nite structures?

Fix a �nite language L
Identify n with n = {0, 1, . . . , n − 1} for �nite n

Finmod = L-structures with universe n for some �nite n

Goal: Compare isomorphism relations on nice subclasses of Finmod



NP equivalence relations on �nite strings

Examples:

1. Finite Linear orders

2. Finite vector spaces over a �xed �nite �eld

3. Finite �elds

4. Finite linear orders with a unary relation

5. Finite Abelian groups

6. Finite cyclic groups

7. Finite groups with a �xed number of generators

8. Finite connected graphs with a �xed bound on the degree

9. Finite graphs with a �xed bound on the degree

10. Finite groups

11. Finite graphs

Except for 6,7,8: Above examples are �rst-order

Examples 6,7,8 belong to P (recognisable in polynomial time)

Nice subclass of Finmod = Invariant Polytime subclass



NP equivalence relations on �nite strings

If C0, C1 are invariant Polytime classes then C0 is reducible to C1 i�

there is a Polytime function F such that

M0 ' N0 i� F (M0) ' F (N0)

C is complete i� all invariant Polytime classes are reducible to it



NP equivalence relations on �nite strings

Analogies

Let Mod denote the class of (countable) models with universe ω

Nice (invariant Borel) subclasses of Mod ≈
Nice (invariant Polytime) subclasses of Finmod

' on a nice subclass of Mod is Σ1

1

' on a nice subclass of Finmod is NP

' on a nice subclass of Mod need not be Borel

' on a nice subclass of Finmod need not be in P? (Maybe P= NP!)

However, not assuming P 6= NP:

There are many inequivalent nice subclasses of Mod

There are indeed many inequivalent nice subclasses of Finmod!

For NP isomorphism relations, my reducibility is �ner than the

usual one.



NP equivalence relations on �nite strings

Potential Reducibility

C a nice subclass of Finmod.

C(n) = the set of models in C with universe m for some m ≤ n

#C is de�ned by:

#C(n) = # of isomorphism classes of models in C(n)

Proposition

Suppose that C0, C1 are nice subclasses of Finmod and C0 is

reducible to C1. Then #C0 is bounded by #C1 ◦ p for some

polynomial p.

We say that C0 is potentially reducible to C1 i� the above

conclusion holds.

So: reducible implies potentially reducible.



NP equivalence relations on �nite strings

Proposition

Suppose that C0, C1 are nice subclasses of Finmod and C0 is

reducible to C1. Then #C0 is bounded by #C1 ◦ p for some

polynomial p.

Proof: Suppose that F : C0 → C1 is in Polytime, M0 ' N0 i�

F (M0) ' F (M1). Let p be a polynomial such that if M ∈ C0 has

size at most n then F (M) has size at most p(n). Then #C0(n) is at
most #C1(p(n)). �

Examples: (1) If #C1 is polynomially-bounded and C0 is reducible to

C1 then #C0 is also polynomially-bounded.

So LOU (�nite linear orders with a unary relation) does not reduce

to �nite cyclic groups, �nite �elds or �nite vector spaces.

(2) Every C is potentially reducible to LOU, because LOU has the

maximum number of isomorphism types (up to a polynomial).



NP equivalence relations on �nite strings

Proposition

There are nice subclasses C0, C1 of Finmod such that for no

polynomial p is #C0 bounded by #C1 ◦ p or vice-versa. So C0, C1

are incomparable with respect to potential reducibility and therefore

incomparable with respect to reducibility.

Proof sketch: An increasing f : ω → ω is time constructible i� the

set of pairs (1n, 1f (n)), n ∈ ω is computable in Polytime. A pointed

linear order is a linear order together with a single constant. Now

choose f to be time constructible and to grow very fast, and let Ci
consist of all pointed linear orders of size f (2n + i) for some n.

Then #C0(f (2n)) is
∑

k≤n f (2k), #C1(f (2n)) =
∑

k<n f (2k + 1)
and for any polynomial p,

∑
k≤n f (2k) is greater than

p(
∑

k<n f (2k + 1)) for large n. So C0 is not potentially reducible to

C1. Similarly, C1 is not potentially reducible to C0. �



NP equivalence relations on �nite strings

A similar argument shows:

Theorem

(Buss-Chen-Flum-Friedman-Müller) There is a strong embedding

from (TC,≤∗) into the isomorphism relations on invariant Polytime

classes of pointed linear orders under (potential) reducibility, where

TC is the class of time-constructible functions and f ≤∗ g i�

Range(f ) is almost contained in Range(g).

It follows that there are in�nite chains and antichains in the

(potential) reducibility ordering. Also note that the isomorphism

relations used above are not only in NP but in fact in P.



NP equivalence relations on �nite strings

Do reducibility and potential reducibility coincide? We have:

Theorem

(Buss-Chen-Flum-Friedman-Müller) (a) Assume P= #P. Then

reducibility and potential reducibility coincide.

(b) Assume N2EXP ∩ co-N2EXP 6= 2EXP. Then reducibility and

potential reducibility are distinct.



NP equivalence relations on �nite strings

Finally, we consider NP equivalence relations as a whole.

As before, E0 is reducible to E1 i� there is a Polytime f : Σ → Σ
such that xE0y i� f (x)E1f (y).

Open Questions: (1) Is every NP equivalence relation reducible to

an isomorphism relation on an invariant Polytime class?

(2) Is there a maximal NP equivalence relation under the above

reducibility?

Regarding Question 1 there is some progress:



NP equivalence relations on �nite strings

Proposition

(Buss-Chen-Flum-Friedman-Müller) Assume that the Polytime

hierarchy does not collapse. Then not every NP equivalence relation

reduces to an isomorphism relation on an invariant Polytime class.

Proof. SAT can be turned into an NP equivalence relation:

xEy i� x = y or x , y ∈ SAT.

Then a reduction of E to graph isomorphism (which is maximal

among isomorphism relations) would imply that graph isomorphism

is NP-complete.

It is known that the latter implies that the Polytime hierarchy

collapses. �



Final remark

Another interesting context for equivalence relations:

Computably enumerable equivalence relations

First studied by Professor Ershov in 1971!

Further work:

Visser (1980), Bernardi-Sorbi (1983), Lachlan (1987), Nies (1994)

Question: Is there a computable F such that:

ZFC ` ϕ↔ ψ i�

PA ` F (ϕ) ↔ F (ψ)?

Congratulations to Professor Ershov on his 70th birthday!


