New Σ_3^1 Facts

Sy D. Friedman*

M.I.T.

Assume that $0^{\#}$ exists and that M is an inner model of ZFC, $0^{\#} \notin M$. Then of course M is not Σ_3^1 -correct: the true Σ_3^1 sentence " $0^{\#}$ exists" is false in M. In this article we use a result about L-definable partitions (which may be of independent interest) to show that in fact this effect can be achieved by forcing over M. We work in Morse-Kelly class theory.

Theorem 1 Assume that $0^{\#}$ exists. There exists an ω -sequence of true Σ_3^1 sentences $\langle \varphi_n \mid n \in \omega \rangle$ such that if M is an inner model, $0^{\#} \notin M$:

- (a) φ_n is false in M for some n.
- (b) For each n, some generic extension of M satisfies φ_n .

Moreover if M = L[R], R a real then these generic extensions can be taken as inner models of $L[R, 0^{\#}]$.

The above result is based on the next result, concerning L-definable partitions.

Theorem 2 There exists an L-definable function n: L-Singulars $\to \omega$ such that if M is an inner model, $0^\# \notin M$:

- (a) For some $n, M \models \{\alpha \mid n(\alpha) \leq n\}$ is stationary.
- (b) For each n there is a generic extension of M in which $0^{\#}$ does not exist and $\{\alpha \mid n(\alpha) \leq n\}$ is non-stationary.

Remark "Stationary in M" means: intersects every M-definable (with parameters) CUB.

^{*}Research supported by NSF Contract #9625997-DMS

Proof: We define $n(\alpha)$. Let $\langle C_{\alpha} \mid \alpha L$ -singular be an L-definable \square -sequence: C_{α} is CUB in α , $otC_{\alpha} = \text{ordertype } C_{\alpha} < \alpha$ and $\bar{\alpha} \in \lim C_{\alpha} \to C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$. If otC_{α} is L-regular then $n(\alpha) = 0$. Otherwise $n(\alpha) = n(otC_{\alpha}) + 1$.

(a) is clear, as otherwise there is a CUB $C \subseteq L$ -regulars amenable to M, contradicting that Covering Theorem and the hypothesis that $0^{\#}$ does not belong to M.

Now we prove (b). Fix $n \in \omega$. In M let P consist of closed, bounded $p \subseteq$ ORD such that $\alpha \in p \to \alpha$ L-regular or $n(\alpha) \ge n+1$, ordered by $p \le q$ iff p end extends q.

We claim that P is ∞ -distributive in M. Suppose that $p \in P$ and $\langle D_{\alpha} \mid \alpha < \kappa \rangle$ is a definable sequence of open dense subclasses of P, κ regular. We wish to find $q \leq p$, $q \in D_{\alpha}$ for all $\alpha < \kappa$. Let $C = \{\beta \mid \beta \text{ a strong limit cardinal, for all } \alpha < \kappa : r \in V_{\beta} \to \exists s \leq r(s \in V_{\beta}, s \in D_{\alpha})\}$, a CUB class of ordinals. It suffices to show that $C \cap \{\beta \mid n(\beta) \geq n+1\}$ has a closed subset of ordertype $\kappa + 1$, for then p can be successively extended κ times meeting the D_{α} 's, to conditions with maximum in $\{\beta \mid n(\beta) \geq n+1\}$; the final condition (at stage κ) extends p and meets each D_{α} .

Lemma 3 Suppose $m \geq n$, α is regular and C is a closed set of ordinals greater than α^{+m} of ordertype $\alpha^{+m} + 1$ (where $\alpha^{+0} = \alpha$, $\alpha^{+(k+1)} = (\alpha^{+k})^+$). Then $C \cap \{\beta \mid n(\beta) \geq n\}$ has a closed subset of ordertype $\alpha^{+(m-n)} + 1$.

Proof of Lemma 3: By induction on n. Suppose n = 0. Let $\beta = \max C$. Then β is singular and hence singular in L. So C_{β} is defined and $\lim(C_{\beta} \cap C)$ is a closed set of ordertype $\alpha^{+m} + 1$ consisting of L-singulars. So $\lim(C_{\beta} \cap C) \subseteq C \cap \{\gamma \mid n(\gamma) \geq 0\}$ satisfies the lemma.

Suppose the lemma holds for n and let $m \geq n$, C a closed set of ordertype $\alpha^{+(m+1)} + 1$ consisting of ordinals greater than $\alpha^{+(m+1)}$. Let $\beta = \max C$. Then C_{β} is defined and $D = \lim(C_{\beta} \cap C)$ is a closed set of ordertype $\alpha^{+(m+1)} + 1$. Let $\bar{\beta} = (\alpha^{+m} + \alpha^{+m} + 1)$ st element of D. Then $\bar{D} = \{otC_{\gamma} \mid \gamma \in D, (\alpha^{+m} + 1)$ st element of $D \leq \gamma \leq \bar{\beta}\}$ is a closed set of ordertype $\alpha^{+m} + 1$ consisting of ordinals greater than α^{+m} . By induction there is a closed $\bar{D}_0 \subseteq \bar{D} \cap \{\gamma \mid n(\gamma) \geq n\}$ of ordertype $\alpha^{+(m-n)} + 1$. But then $D_0 = \{\gamma \in D \mid otC_{\gamma} \in \bar{D}_0\}$ is a closed subset of $C \cap \{\gamma \mid n(\gamma) \geq n + 1\}$ of ordertype $\alpha^{+(m-n)} + 1$. As $\alpha^{+(m-n)} = \alpha^{+((m+1)-(n+1))}$ we are done.

By the lemma, $C \cap \{\beta \mid n(\beta) \geq n\}$ has arbitrary long closed subsets for any n, for any CUB $C \subseteq ORD$. It follows that P is ∞ -distributive. Now to prove (b), we apply the forcing P to M, producing C witnessing the nonstationarity of $\{\alpha \mid n(\alpha) \leq n\}$, and then follow this with the forcing to code $\langle M, C \rangle$ by a real, making C definable. Of course this will not produce $0^{\#}$ as every successor to a strong limit cardinal is preserved in the coding.

We also note that in Theorem 2 the generic extension can be formed in $L[R, 0^{\#}]$ in the case M = L[R], R a real, using the fact that in $L[R, 0^{\#}]$, generics can be constructed for P (an "Amenable" forcing) and for Jensen coding (see [99, Friedman]).

Proof of Theorem 1: We use David's trick (see [98, Friedman]). Let φ_n be the Σ_3^1 sentence: $\exists R \forall \alpha(L_\alpha[R] \models ZF^- \to L_\alpha[R] \models \beta$ a limit cardinal $\to \beta$ L-regular or $n(\beta) \geq n$). By Theorem 2(b) and cardinal collapsing (to guarantee that limit cardinals β are either L-regular or satisfy $n(\beta) \geq n$), M has a generic extension $L[R] \models \beta$ a limit cardinal $\to \beta$ L-regular or $n(\beta) \geq n$ (inside $L[S, 0^{\#}]$ if M = L[S], S a real). By David's trick we can in fact obtain φ_n in L[R].

Question Can the generic extensions in Theorem 1(b) be taken to have the same cofinalities as M, in case M satisfies GCH?

References

- [98] Sy D. Friedman, David's Trick, to appear, Proceedings of the European Summer Meeting of the ASL, Leeds, England, 1998.
- [99] Sy D. Friedman, Fine Structure and Class Forcing, book, rough draft.