A1-Definability

Sy D. Friedman* Boban Veli¢kovié¢!

Jensen’s Coding Theorem provides a method for making a class of ordinals
As-definable in a real. In this paper we explore the possibility of obtaining a
Aj-definition. While this is not possible in general, we show that by assuming
enough condensation, a class can be made A; in a real parameter in a class-
generic extension. Our main application is the following.

Theorem There is a real R class-generic over L such that L — cof w = {a :
L —cofla) =w} is Ay over L[R] in the parameter R. Fvery L-cardinal, with
the exception of R remains a cardinal in L[R]. Moreover the existence of
such a real R follows from the existence of OF.

Every L-definable class is A;-definable over L[O#]. The following result
shows that conversely if every L-definable class is Aj-definable in a real
parameter than O# exists.

Proposition 1 Suppose L-card = {a : a is a cardinal in L} is ¥y in a real
parameter. Then OF exists.

PROOF: N, ,; € L-card so if L-card were ¥; in a real, by reflection there
would be unboundedly many a < R,y also in L-card. So N5 > (R,)*F
and by Jensen’s Covering Theorem, O# exists. .

An L-amenable class A is Xi-complete if every ¥1(L) class is Aq(L, A).

An example of a ¥;-complete class is L-card. It follows from Proposition 1
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that no X -complete class can be A; in a real, unless O# exists. L-cof w, the
class of ordinals which have countable cofinality in L. is a nice example of a
class which is neither A;(L) nor ¥;-complete.

Now we turn to a sufficient condition for an L-amenable class A to be
Aj-definable in a real R not constructing O¥.

Definition 1 Suppose z is an extensional set (i.e. z satisfies the axiom of
extensionality) and let z denote the transitive collapse of z. For A C ORD
we say that x preserves A if (z, €, AN z) is isomorphic to (z, €, AN z).

Proposition 2 Suppose A is L-amenable and Ai-definable in a real R nol
constructing O% and & is an uncountable cardinal. Suppose (T, €,...) € L is
a transitive structure of size at least k for a countable language. Then there
is (x,€,...) <(T,€,...) such that card(z) =k, x € L, and x preserves A.

PROOF: By the Strong Covering Lemma (see [Sh, chapter XIII], or [C]) we
can choose y of cardinality x such that T" € y, (y,€) is Xj-elementary in
(L[R].€) and 2o =yN L € L. Then x = 2o N T is as desired. .

Our sufficient condition is an elaboration of the necessary condition stated
in Proposition 2.

Definition 2 If z is a set and ¢ is an ordinal then z[6] = {f(y) : 7 <4, [ €
z, f afunction,y € Dom(f)}. We say that = strongly preserves A if z[d]
preserves A for each cardinal §. A sequence tg.1y,... of sets is tight if it is
continuous, ¢; € ¢;41 for each 7 and for each i, (¢; : j < i) belongs to the least
ZF~-model which contains {; as an element and correctly computes card(¢;),
where as before ¢; =the transitive collapse of ¢;.

Condensation Condition. Suppose ¢ is transitive, & is regular, k € ¢, and
x € t. Then:

(a) Thereis a tight k-sequence ty < t; < ... <t such that card(?;) = &
all 7, x € {9 and each ¢; strongly preserves A.



(b) If x is inaccessible then there exists {g < ¢; < ... <t as above but
where card(?;) = ;.

Theorem 1 Assume V=L and that A C ORD obeys the Condensation Con-
dition. Then A is Ay in a real parameter in a cofinality preserving class-
generic extension of L.

PROOF: We describe a refinement of the forcing to code A by a real R found
in Beller-Jensen-Welch [BJW] so as to obtain that in fact A is Ay over L[R].
This work is similar in many respects to the work found in David [Dal].

The key is to use a modified version of S, = the “reshaped strings”
s:la,ls]) = 2, a <|[s| < at. For s to belong to S, we require:

1. Whenever a < 2y < |s|, v € A if and only if s(2y) = 1.

2. Whenever Lg[ANa,s [n] EZF~ +n=at (or B =nand Lz[ANa,s |
n] E ZF~ + a is the largest cardinal) then A N [, 3) = Even Part (X)
where X C [a, ) is decoded in Lg[ANa,s [ n] from ANa,s [ nasin
Jensen Coding.

If |s| = a then % = a and otherwise p? = (J{us;, : 7 < |s|}. For all s, pu, =
least p > p2 such that s € L,, (L,, A) is amenable and (L,, A) F ZF ™+
card(]s]) < a + the Condensation Condition holds for A.

Define the successor coding R® using the above definitions (in particular,
As = (L,.. A) where y; is as above). Note that it is easy to show that for any
s € S, and § < a* there exists ¢ extending s,t € S,, |t| > §; this is because
we can use the freedom to kill models of ZF~ to prevent new instances of 2.
from occurring, when extending from s to ¢t. If s € S,+ then we must show
that R* is < a-distributive in A,. Let ¥ < a be a regular cardinal, t € A,
and = = {(u,u),ANa*,s,(D;:i < k)} €, where (u,u) € R* and open
dense sets D;.1 < k are given. Apply the Condensation Condition in A, to
t, K,z to obtain a tight k-sequence tg < ¢; < ... < tasin (a) of the condition.
As in the usual distributivity proof build (u, u) = (ug, o) > (u1,uy) > ... so
that (w1, uiy1) € tiy1 meets D; and for limit A < k, AN a, u, decodes the
images A,5 of AN at,s under the transitive collapse of ¢,. Then u, obeys
the requirement 2. for membership in S,. with A replaced by A. But t,
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preserves A so in fact A is an initial segment of A and 2. is satisfied by u,.
The final condition (u,u,) extends (u, u) and meets each D;, for 1 < k.
Extendibility for the limit coding is as in Beller-Jensen-Welch [BJW] (see
David [Da]). In the proof of Distributivity for the limit coding a sequence (p; :
i < k) of conditions is constructed and we must verify that p, is a condition
for limit A\. The only new point is to check that p,, codes the collapse of
A relative to an elementary submodel of ¢ € A;; again the Condensation
Condition guarantees that we can arrange for this elementary submodel to
collapse A to an initial segment of itself, as it can be made to equal ¢,[v] where
lo < t; < ... <1 € A strongly preserve A. Part (b) of the Condensation
Condition is used to handle A-Distributivity at inaccessibles. a

The technique of the proof of Theorem 0.2 of Beller-Jensen-Welch [BJW]
also shows that if in addition I = Silver Indiscernibles are indiscernibles for

(L, A) then Ais A; in a real R € L[O#], R class-generic over L.

Theorem 2 There is a real Ry, class-generic over L, such that in L[ Ry the
Condensation Condition holds for A = L — cof w. Moreover LIR¥] = L[O#]

and every L-cardinal, with the exception of NI, remains a cardinal in L[Ry).

PROOF: Starting from L first Lévy collapse Rl to w and over the result-
ing extension M perform a reverse Easton iteration (with Easton support)
which at each uncountable regular cardinal k adds C' (&), a closed unbounded
subset of k consisting of ordinals of uncountable L-cofinality (see [Fr]). It
is straightforward to show that in M[(C(R) : K < k)] the forcing to add
C(k) is < k-distributive and, in fact, the same is true for the forcing to si-
multaneously add (C(k*) : k* > k). So M[(C(k)|k regular)] has the same
cardinals as L. with the sole exception of RE. Let Ry be a real coding this
model (obtained from Jensen coding): M[(C(k)|x regular)] C L[Ry| and
every L-cardinal with the exception of RF remains a cardinal in L[ Ry)].

Now we verify the Condensation Condition for A = {a: L — cof(a) > w}
in L[Ry]. Let t be transitive, k regular, € {. We may assume that card

(1) > k.
First choose a regular a > k% such that ¢ € L,[Ro] and let &, Ry, z.t €
ug < up < ... < L,[Ro] be a continuous tight sequence of length x* where

card(u;) = k and (u; : j <) € usqq for each i < k™. Let u=|J{u; : 1 <t}
and note that for regular A € wu, sup(u N A) has cofinality x*. Since L[Ry]
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and L have the same cofinalities (above N; = RI') we have that sup(u N )
has L-cofinality x*.

Even more is true: for any pair of cardinals § < A, A regular, if A € u[d]
then either § = u[d] N A or sup(u[d] N A) has cofinality k*. The reason is
the following. Suppose that § # u[6] N A and pick some 75 < k1 and v < §
such that A\ € w;[y] and w;,[y] N (A \ 0) # 0. Note that then for every
o <1 < j < kT sup(w[d] N A) < sup(u;[y] N A). Thus, sup(u[d] N A) is
the strict supremum of sup(u;[y] N A), for ig < ¢ < k¥, and therefore has
cofinality x*. Again we can write L-cofinality instead of cofinality.

Now build vg < v1 < ... < L,[Ro] just like the u;’s but with the additional
requirement that u is an element of vg. We claim that for each j < k%, v;Nu
preserves A = {3 : L — cof(3) > w}. Suppose 3 € v; Nu belongs to A and
let 3 be the image of 3 under the transitive collapse of v; Nu. Clearly 3,5
have the same L-cofinality, where v = L — cof(3) so we can assume that [ is
L-regular and hence regular (since 3 = 3 when 3 = RI'). Thus sup(un3) has
L-cofinality k* and therefore v; contains a constructible cofinal map from x*
into sup(u N 3); it follows that v; contains a constructible cofinal map from
&+ Nw; cofinal into ordertype (v Nwv; N 3) = 3. But kT Nv; is an element of
C(x*) and therefore has uncountable L-cofinality. So 3 € A.

In fact v;Nu strongly preserves A :if § < € ANv;Nu and ¢ is a cardinal
then again we may assume that 3 is regular. Thus either sup(u[d] N ) has
cofinality % and belongs to v;[d], hence the old argument applies (with
kT Nu[d]=kTifd > k) oru[d]NB =6 and v;Nuld]N G =06 € C(B), hence
(3 collapses to ¢, which has uncountable L-cofinality.

Finally let ¢; = v;Nunt for 1 < k. Then of course each ¢; strongly preserves
A since each v; Nu does and ¢ is transitive; we must show that (¢; : i < k)
is tight. Clearly ({; : j < i) belongs to the least ZF~ model containing v;
as an element which satisfies card(v;) = &, since (v; : i < k) is tight and
u,t € vg. But v; is of the form L;[Ry] and v; F ¢; has cardinality > . So
any ZF~ model containing ¢; as an element which satisfies card({;) = x must
also contain v; as an element and satisfy card(v;) = k. So (¢; : 1 < &) is tight.
This proves (a) of the Condensation Condition. To obtain (b) perform the
same argument, but where card(u;) = X; and v has cardinality &.

Standard arguments show that Ry can be found in L[O#] (see Friedman
[Fr], Beller-Jensen-Welch [BJW]). =

Corollary 1 There is a real R € L[{O#] such that R is class-generic over
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L and {a : L — cof(a) = w} is Ay over L[R] in parameter R. Also every
L-cardinal other than RF is a cardinal in L[R].

We now present some other applications of the above techniques. If R is
a real and « is an ordinal then we say that a is quasi R-admissible if the
ordertype of every wellordering that belongs to L,[R] is less than a. The
proof of the main result of David [Da] in fact shows the following.

Theorem 3 Suppose ¢(a) is 1 and L F ¢(k) whenever k is an L-cardinal.
Then there is a real R € L[O#], class-generic over L, such that L E ¢(a) for
every quasi R-admissible ordinal .

We can combine Theorem 3 with Theorems 1 and 2 to obtain the following
result.

Corollary 2 There is a real R € L[O¥] such thal R is class-generic over L
and every quast R-admissible has uncountable L-cofinality.

PROOF: Let Ry be as in Corollary 1 and for each L[Ry]-indiscernible « let C
be the L[Rg]-least CUB subset of £ consisting of ordinals of uncountable L-
cofinality. Then | J{C} : & an L[Ry]-indiscernible}= C is a closed unbounded
class of ordinals a such that L-cof(a) > w. Also C may be assumed to contain
kT (in L[Ro]) whenever & is a limit point of C. Note that the structure
(L[Ro)], C') is amenable.

Now force over (L[Ry],C') using the usual Easton product of Levy col-
lapses, to get a model M such that every uncountable cardinal of M is in C,
and then code M by a real Ry, Ry = Fven(R;). Thus every L[R;]-cardinal
> w is of uncountable L-cofinality and the latter is a A; property in param-
eter Ry and hence in parameter Ry. By Theorem 3 relativized to R; we get
the desired real R. Moreover all these steps can be carried out in L[O#]. -

With a little care we can improve Corollary 2 as follows.

Corollary 3 There is a real R € L[O¥] such thal R is class-generic over L
and the function f: ORD — L defined by f(a) = [a]* N L is Ay over L[R)|

in the parameter R.



PROOF: Proceed as in Corollary 2, obtaining R; such that every uncount-
able cardinal of L[R1] has uncountable L-cofinality and {a : L — cof(a) > w}
is Ay in Ry. Note that we can arrange that if a is quasi Ry-admissible then
the L-cardinality of a has uncountable L-cofinality by arranging R; to code
over L.+[R1] a well-ordering of ordertype at least the least element of C
greater than ™, for k € C.

Now f as defined in the statement of the Corollary is Ay in Ry: it suffices
to define g : ORD — ORD such that g is ¥; over L[R;] with parameter R,
and [a]* N L C Ly, for each a. Define g(a) to be the least 3 such that one
of the following holds:

(a) L —cof(a) >w and g > J{g(a'): ' < a}
(b) B > g(a') for some o < a, Lg F card(a) < o
(¢) B> a,pis quasi Ry-admissible.

Then either (a) or (b) holds for some 3 < (a*)® or a is an L-cardinal of
L-cofinality w, in which case any 3 obeying (c) is > (a™)E. So g is as desired.
_|

Our final application concerns immune partitions. A partition of the
ordinals is a class function F': ORD — 2. We say that I is immune if
neither {a : F(a) =0} nor {a: F(a) =1} contains an infinite constructible
set. The following is proved in Friedman [Fr].

Theorem 4 There is an immune partilion of the ordinals definable in L[R]
for some real R € L[O¥] which is class-generic over L.

Corollary 3 allows us to improve Theorem 4 as follows.

Corollary 4 There is an immune partition of the ordinals which is Ay over
L[R] with parameter R for some real R € L{O¥*] which is class-generic over
L.

PROOF: First select Ry as in Corollary 3 and then by Theorem 4 relativized
to Ro, choose R; generically over L[Ry| coding an immune (indeed L[Rql-
immune) partition. This can all be done in L[O#]. Note that in L[R;] the
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immunity of a partition f : k — 2 is a A property. As in Corollary 2 force
Ry so that every quasi Ry-admissible has uncountable L-cofinality. Thus
C={ala is quasi R — admissible} is a Ay closed unbounded class of ordinals
of uncountable L-cofinality. For each o in C' U {0} let F, be the L[R;]-least
immune partition of [a, @) where o' is the C-successor to a. Then the union
of the F,’s is a A; immune partition of ORD. -

Remark. M. Stanley [St] has shown that one can have an immune partition
of the ordinals in a cardinal preserving extension of L. Our next result
shows that if we want this partition to be Ay in a real parameter then some
L cardinals have to be collapsed.

Proposition 3 Assume that V and L have the same cardinals. Then there
is no immune partition of the ordinals which is Ay in a real.

PROOF: Assume towards contradiction that F' is an immune partition of
the ordinals which is A; in a real parameter R. Fix a well-ordering < of
Hy, 1. For Y < Hy_41 and an ordinal § let Y[d] denote the Skolem hull
of YU in Hy,41. By the Strong Covering Lemma there is X < Hy_ , of
cardinality Ny containing R such that X N ORD € L. We claim that the
sequence (X[N,]NORD : n < w) is in L. To see this, note that if Y,, is the
Skolem hull of (X "ORD)UR,, in Ly, then Y, NORD = X[X,]NORD and
therefore the sequence (X[X,] N ORD : n < w) can be computed in L.

Now, let 7, be the transitive collapse of X[R,]and let 6, = 7,(R,). Then,
by the fact that F'is Aj(R) and R € X, it follows that F(§,) = F(X,), for

all n. Therefore the sequence (d, : n < w) contradicts the immunity of F.
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