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In this paper we examine the cardinal structure of inner models that
satisfy GCH but do not contain 0#. We show, assuming that 0# exists, that
such models necessarily contain Mahlo cardinals of high order, but without
further assumptions need not contain a cardinal κ which is κ-Mahlo. The
principal tools are the Covering Theorem for L and the technique of reverse
Easton iteration.

Let I denote the class of Silver indiscernibles for L and 〈iα | α ∈ ORD〉 its
increasing enumeration. Also fix an inner model M of GCH not containing
0# and let ωα denote the ωα of the model M [0#], the least inner model
containing M as a submodel and 0# as an element.

Theorem 1 Suppose that α is greater than 0. (a) iω1·α is an M-cardinal,
and unless α is a limit ordinal of countable M [0#]-cofinality, so is its L-
cardinal successor.
(b) If β is less than i

ω
L[0#]
1 ·ω

then there is a proper inner model M of L[0#]

satisfying GCH in which the only ordinals between ω and β which are M-
cardinals are those which are required to be by part (a).

It follows from (a) that for finite n, ωM
2n+1 is at most iω1·(n+1) and that

ωM
2n+2 is at most the L-cardinal successor to iω1·(n+1). It follows from (b) that

these bounds are optimal. The restriction in (b) on β cannot be weakened,
as otherwise an increasing ω-sequence of Silver indiscernibles, and hence 0#
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itself, would belong to M . In fact the supremum of the iω1·n’s must be large
in M :

Theorem 2 (a) iω1·α is inaccessible in M for limit α.
(b) If β is less than i

ω
L[0#]
1 ·ω·ω

then there is a proper inner model M of

L[0#] satisfying GCH in which the only ordinals less than β which are M-
inaccessible are those which are required to be by part (a).

It follows from (a) that for finite n, the n-th M-inaccessible is at most
iω1·ω·n. It follows from (b) that these bounds are optimal. As before, the
restriction in (b) on β cannot be weakened, as otherwise 0# would belong to
M .

We can also obtain Mahlo cardinals of high order in M . Define: κ is
0-Mahlo (or simply Mahlo) iff the set of inaccessible κ̄ < κ is stationary in
κ, κ is α + 1-Mahlo iff the set of α-Mahlo κ̄ < κ is stationary in κ, and for
limit λ, κ is λ-Mahlo iff κ is α-Mahlo for every α < λ.

Theorem 3 (a) iω1·β for β of M [0#]-cofinality at least ωα+1 is α-Mahlo in
M .
(b) Suppose that α is not L[0#]-inaccessible. If γ is less than i

ω
L[0#]
1 ·ω

L[0#]
α+1 ·ω

then there is a proper inner model of L[0#] satisfying GCH in which the only
α-Mahlo cardinals less than γ are those which are required to be by part (a).

It follows from (a) that for finite n > 0, the n-th α-Mahlo cardinal of M

is at most iω1·ωα+1·n. It follows from (b) that these bounds are optimal when
α is not M [0#]-inaccessible . And, as before, the bound on γ in (b) cannot
be improved. Part (a) of Theorem 3, when α = 0, was proved independently
by Amir Leshem.

Theorem 4 (a) If α is inaccessible in M [0#] then it is α-Mahlo in M .
(b) If there are only finitely many L[0#]-inaccessibles less than β then there
is a proper inner model of L[0#] satisfying GCH in which the only cardinals
α less than β which are α-Mahlo are inaccessible in L[0#]. If there are no
inaccessibles in L[0#] then there is a proper inner model M of L[0#] satisfying
GCH which contains no α which is α-Mahlo.
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Thus we have reached the limit of large cardinal properties which must
hold in M , in the theory ZFC+0# exists. Of course if 0## exists, then much
stronger large cardinal properties, such as n-subtlety, are witnessed in inner
models of L[0#], as these properties are witnessed in L[0#] and are downward
absolute to inner models. The next result implies that the assumption of 0#

plus an ω + ω-Erdős cardinal maximizes the large cardinal properties that
must hold in inner models which are generic extensions of L.

Theorem 5 Suppose that 0# exists, there is an ω+ω-Erdős cardinal and M

is an inner model generic over L. Suppose that ϕ is a sentence true in M .
Then ϕ is also true in an inner model of L[R] for some real R such that R#

exists.

To see the implications of Theorem 5, suppose that P is a property down-
ward absolute to inner models, and that P is witnessed in L[R] whenever R

is a real and R# exists. An example of such a property is the existence of α-
Erdős cardinals for α countable in L. Then by Theorem 5, P is also witnessed
in all inner models which are class-generic extensions of L. This applies to
the strongest large cardinal properties that hold in L. It follows from the last
statement of Theorem 4 (b) that the hypothesis of an ω + ω-Erdős cardinal
cannot be deleted in Theorem 5.

Proof of Theorem 1. (a) We show that if κ is an indiscernible of the
form iω1·α, α > 0 then κ is a cardinal of M , and if κ is an indiscernible of
uncountable cofinality in M [0#] then its L-cardinal successor is a cardinal of
M .

Lemma 6 Suppose that κ is L-regular and has uncountable M [0#]-cofinality.
Then κ is a limit of indiscernibles and κ+ of M equals κ+ of L.

This is proved as follows. For each finite n consider Cn = {κ̄ < κ | No
ordinal between κ̄ and κ is L-definable from ordinals less than κ̄ together
with n indiscernibles ≥ κ}. For each n, Cn is CUB in κ, by the L-regularity
of κ. And the intersection of the Cn’s is equal to I∗ = I ∩ κ, since every
ordinal is L-definable from finitely many indiscernibles. As κ has uncountable
L[0#]-cofinality, it follows that I∗ is unbounded in κ, and hence κ is a limit of
indiscernibles. Now if κ+ of L were collapsed in M , then there would be in M

only κ-many constructible CUB subsets of κ. By taking diagonal intersection,
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there would then be in M a CUB subset C of κ which is almost contained in
(i.e., contained in except for a bounded subset of κ) each constructible CUB
subset of κ. But then since κ has uncountable cofinality in M [0#] and I∗

is the countable intersection of constructible CUB subsets of κ, C is almost
contained in I∗. It follows that M contains an infinite set of indiscernibles,
and therefore 0# belongs to M .

Lemma 7 If κ is both L-regular and at least ωM
2 , then the cofinality of κ in

M equals its cardinality in M .

This is proved as follows. By the Covering Theorem ([2]), there is a
constructible cofinal subset of κ of M-cardinality at most the maximum of
ωM

1 and the M-cofinality of κ. By hypothesis, the M-cardinality of κ is
greater than ωM

1 . Therefore if the M-cofinality of κ were less than the M-
cardinality of κ, it would follow that κ would be singular in L, against our
hypothesis.

Now we show by induction on κ, that if κ is an indiscernible of the form
iω1·α, α > 0 then κ is a cardinal of M . The base case is where κ equals ω1

of M [0#]; clearly κ is a cardinal of M since M is contained in M [0#]. The
result follows immediately by induction if κ is of the form iω1·λ, λ limit. So
we may assume that κ is of the form iω1·α+ω1, α > 0. Now κ is L-regular
and also at least ωM

2 , since by Lemma 6 the latter is the L-cardinal successor
to ω1. Therefore by Lemma 7, the cardinality of κ in M is equal to its
cofinality in M . In particular, the cardinality of κ in M is regular in M and
has cofinality ω1 in M [0#]. Now assume that κ is not a cardinal of M . Then
γ = the M-cardinality of κ is an L-regular ordinal in the interval [iω1·α, κ)
of uncountable M [0#]-cofinality. By Lemma 6, γ is a limit of indiscernibles,
but every limit of indiscernibles in this interval, with the possible exception
of iω1·α, has L[0#]-cofinality ω. It follows that γ equals iω1·α, and that the
latter has uncountable M [0#]-cofinality. But then Lemma 6 implies that the
L-cardinal successor to iω1·α is an M-cardinal, and this is a contradiction. So
κ is a cardinal of M .

(b) We use reverse Easton forcing. To simplify notation, assume that V =
L[0#]. First consider the reverse Easton iteration with Easton supports,
where P (≤ α) = P (< α) ∗ P (α) and at an L-regular stage α, P (α) is the
forcing with finite conditions for collapsing α to ω. Thus P = P (< ω1)
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makes every ordinal less than ω1 countable in the generic extension. We
claim that there exists a P -generic. Notice that for any indiscernible i < ω1

there does exist a P (< i)-generic, because i+ of L is countable. And if
j0 < j1 < · · · is an increasing ω-sequence of indiscernibles with supremum j,
Gn is P (< jn)-generic over L and Gn ⊆ Gn+1 for each n, then G = ∪{Gn |
n ∈ ω} is P (< j)-generic over L, since the Mahloness of j in L implies that
constructible antichains in P (< j) have L-cardinality less than j. It is now
straightforward to build a generic for P as the union of generic P (< j) for
countable indiscernibles j. In the resulting generic extension M , ωM

1 = ω1

and ωM
2 is the L-cardinal successor to ω1.

Now repeat the same forcing construction on the interval between the L-
cardinal successor to ω1 and iω1+ω1 , collapsing every L-regular cardinal in this
interval to the L-cardinal successor to ω1, using conditions of size ≤ ω1. As
this forcing is ≤ ω1-distributive and for each indiscernible i between ω1 and
iω1+ω1, i+ of L is the countable union of sets of L-cardinality ω1, there exists a
P (< i)-generic for each indiscernible i between ω1 and iω1+ω1 . By taking the
union of such generics, we get a P (< iω1+ω1)-generic, which ensures that in
the resulting extension M , ωM

3 = iω1+ω1 and ωM
4 is the L-cardinal successor

to iω1+ω1.
Continue in this way to obtain, for any fixed finite m, a generic extension

of L in which ω2n+1 = iω1·(n+1) and ω2n+2 is the L-cardinal successor to
iω1·(n+1) for each n ≤ m. The fact that GCH holds in these models follows by
standard techniques. (One cannot achieve this for all finite n simultaneously,
because defining the forcing would need an infinite sequence of indiscernibles
as a parameter, not available in the ground model L). 2

Proof of Theorem 2. (a) Let λ be of the form iω1·α, α limit. In the proof of
Theorem 1 we showed that each iω1·α, α > 0 is an M-cardinal, and therefore
λ is a limit M-cardinal. As λ is regular in L, it is also regular in M by the
Covering Theorem, and therefore λ is inaccessible in M .

(b) Assume that V = L[0#]. We show that there is a generic extension M of
L such that κ = iω1·ω is the least M-inaccessible.

First we force a CUB subset C of κ, containing the iω1·n’s for 0 < n ∈ ω,
whose limit points are L-singular. Consider the forcing P whose conditions
are bounded closed subsets of κ with L-singular limit points. This forcing is
< κ-distributive. And κ+ of L is the countable union of constructible sets
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Xn, n ∈ ω of L-cardinality less than κ. Moreover we can choose Xn to be
L-definable from κn = iω1·(n+1) together with n indiscernibles ≥ κ. Thus we
can build an ω-sequence p0 ≥ p1 ≥ · · · of conditions in P such that the union
of the pn’s is P -generic, the maximum of pn is less than κn+1 and κn is an
element of pn. It follows that C = the union of the pn’s is a CUB subset of
κ containing each κn whose limit points are L-singular.

Now over this generic extension as ground model, force to collapse each
L-regular β < κ not in C to α+ of L where α is ω ∪ the maximum of C ∩ β.
A generic for this reverse Easton iteration can be obtained almost as in
the proof of part (b) of Theorem 1, by successively choosing generics for the
≤ κn-distributive part of the iteration between κn and κn+1. However we now
need a new argument to ensure that the union of the generics below the κn’s
produces a generic for the entire forcing, since the Mahloness of κ has been
destroyed. So proceed as follows: Let Sn consist of all dense constructible
subsets of this forcing which are definable in L from n indiscernibles ≥ κ

together with parameters less than κn. At stage n of the construction, extend
what has already been chosen to a generic for the forcing up to κn, and also
meet all dense sets in Sn. After ω steps the result is the generic for the entire
forcing.

Now let M be the generic extension of L resulting from this last forcing.
Then in M , the only limit cardinals less than κ are limit points of C and hence
are L-singular. It follows that κ is the least M-inaccessible. By a similar
construction, we can obtain, for any fixed finite m, a model M , generic over L,
in which the first m inaccessibles are the ordinals iω1·ω·n for 1 ≤ n ≤ m. Again
the fact that GCH holds in these models follows by standard techniques. 2

Proof of Theorems 3, 4. (a) Note that part (a) of Theorem 3 implies
part (a) of Theorem 4. We prove part (a) of Theorem 3 by induction on α.
If α = 0, we must show that iω1·β is Mahlo in M when β has uncountable
cofinality in M [0#]. Suppose that C ∈ M is CUB in iω1·β; then C has an
element of the form iω1·γ, γ limit, using the uncountable M [0#]-cofinality of
β. By part (a) of Theorem 2, this element of C is inaccessible in M , and
therefore we have established the Mahloness of iω1·β when β has uncountable
M [0#]-cofinality. If α is a limit ordinal, then (a) follows easily by induction.
Finally, suppose that α = α′ + 1 and β has M [0#]-cofinality at least ωα′+2;
we must show that iω1·β is α′ +1-Mahlo in M . If C ∈ M is CUB in iω1·β then
C has an element of the form iω1·γ, where γ has M [0#]-cofinality at least
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ωα′+1; it follows by induction that this element of C is α′-Mahlo in M , and
therefore we have shown that iω1·β is α′ + 1-Mahlo in M , as desired.

(b) Assume V = L[0#]. We first consider the case α = 0 of Theorem 3
and begin by constructing a generic extension M of L in which κ = iω1·ω1 is
the least Mahlo cardinal of M . We would like to perform a reverse Easton
iteration of length κ, in which the Mahloness of cardinals less than κ is
destroyed; unfortunately it is not possible to obtain a generic for the natural
such iteration at ordinal stages of uncountable cofinality. Our solution is to
first add a generic CUB C ⊆ κ containing no such ordinal as a limit point,
ensure that all limit cardinals less than κ are limit points of C and finally kill
the Mahloness of elements of Lim C by a reverse Easton iteration indexed
by Lim C.

To add C, use the reverse Easton iteration P where at an L-regular stage
α ≤ κ, P (α) either forces a closed unbounded subset of α using bounded
closed conditions or chooses a closed bounded subset of α. Then build a
P -generic G meeting the following requirements:

1. At an indiscernible i not of the form iω1·α, α > 0, G(i) chooses the empty
set.
2. At an indiscernible i of the form iω1·α, α limit, G(i) is the union of G(iω1·β),
β < α.
3. At an indiscernible i of the form iω1·(λ+n), λ limit or 0, n ∈ ω, G(i) is
taken to be the least condition p in the forcing P (i) for adding a CUB subset
of i such that: (a) p extends G(iω1·(λ+n)) ∪ {iω1·(λ+n)}. (b) p meets all dense
subsets of P (i) which are definable in L[G(< i)] from ordinals less than or
equal to iω1·(λ+n) together with the first n + 1 indiscernibles greater than or
equal to i.

Notice that in Step 3 the maximum of G(i) is less than the least indiscernible
greater than iω1·(λ+n). The result is that if C = G(κ) then Lim C ∩I consists
of the indiscernibles of the form iω1·α, α limit, α < ω1. Notice that the
Mahloness of these indiscernibles, as well as of κ, has been preserved.

Now force to collapse each β < κ not in C to α+ of L where α is the
maximum of C ∩ β. (This is as in the proof of part (b) of Theorem 2,
except it is easier here, since the Mahloness of κ has been preserved). The
result is that each limit cardinal less than κ belongs to Lim C, and again the
Mahloness of elements of Lim C ∩ I has been preserved.
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Finally we force to kill the Mahloness of elements of Lim C. This uses the
reverse Easton iteration where at regular stages α < κ in Lim C, one forces a
CUB subset of α consisting of singular cardinals. It is possible to inductively
choose generics G(≤ i) for i ∈ Lim C ∩ I, using the Mahloness of i to obtain
the genericity of G(< i) and the countable cofinality of i to select G(i). The
result is that no cardinal less than κ is Mahlo, and therefore κ is the least
Mahlo cardinal in the final model M . A similar argument produces a generic
extension M of L (contained in L[0#]) in which iω1·ω1, iω1·ω1·2, . . . , iω1·ω1·n are
the first n Mahlo cardinals of M . The GCH can be easily verified in these
models. This proves part (b) of Theorem 3 when α = 0.

We next treat the case α = 1 of Theorem 3. Let κ now denote ω2. We
show that there is a generic extension M of L satisfying GCH such that κ

is the least 1-Mahlo in M . A similar argument will give the existence of a
generic extension M of L contained in L[0#] and satisfying GCH in which
κ, iκ·2, . . . , iκ·n are the first n 1-Mahlo cardinals, which will therefore establish
part (b) of Theorem 3 when α = 1.

We would like to use a reverse Easton iteration to kill the 1-Mahloness
of each cardinal less than κ, by adding CUB sets of non-Mahlos. Once
again, we have difficulty choosing a generic G(i) at an indiscernible i < κ of
uncountable cofinality. The solution is to use a 2ω1-sequence to obtain G(i)
as the union of generic G(̄i), for ī < i of countable cofinality. However, we
must be sure that such ī are not Mahlo, before they can be included in G(i).
Thus we must also kill the Mahloness of indiscernibles of countable cofinality.

We perform the following reverse Easton iteration of length κ: At an L-
regular stage α we either add only a CUB subset D1(α) of α consisting of
ordinals which are not Mahlo, or both D1(α) and D0(α), a CUB subset of
α consisting of ordinals which are not regular. Our intention is to add only
D1(i) if i is an indiscernible of uncountable cofinality and both D0(i) and
D1(i) if i is an indiscernible of countable cofinality. To build a generic for
this forcing, we make use of a 2ω1 sequence 〈Cα | ω1 < α < ω2, α limit〉.
Thus, Cα is CUB in α of ordertype at most ω1 and Cᾱ = Cα∩ ᾱ if ᾱ is a limit
point of Cα. Also assume that if α is a limit of indiscernibles then Cα consists
only of indiscernibles. Now inductively build generics G(≤ i), i ∈ I ∩ κ with
the property that if i > ω1 and ī is a limit point of Ci then D1(i) extends
D1(̄i). Note that if Ci is undefined or does not have unboundedly many limit
points then i has cofinality ω and therefore it is straightforward to build G(i).
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We must of course guarantee in this case that D1(i) extends D1(̄i) where ī

is the largest limit point of Ci. But as ī is not Mahlo in G(< i) it can be
included as an element of D1(i). Also note that we obtain a generic G(< i)
at limit stages i (and a generic G(≤ i) when Ci is unbounded in i) using the
fact that for any constructible dense D ⊆ G(≤ i), there is ī < i such that
D ∩ G(≤ ī) is dense on P (≤ ī).

The final result is that κ is the least 1-Mahlo in the resulting generic
extension M . M can be shown to satisfy the GCH using standard techniques.

New problems arise when α = 2. We must construct a generic extension
M of L in which κ = ω3 is the least 2-Mahlo. As in the previous case, we
can kill the Mahloness of indiscernibles of countable cofinality. We would
also like to kill the 1-Mahloness of indiscernibles of cofinality ω1 using 2;
the difficulty is that the ordertype of the usual 2-sequence at an ordinal of
cofinality ω1 can be greater than ω1, which makes it impossible to cohere
generics along this sequence when forcing to kill 1-Mahloness. The solution
is to use a different form of 2.

2
cof≤λ
κ (λ ≤ κ infinite cardinals):

There exists 〈C∗
α | κ < α < κ+, α limit, cof α ≤ λ〉 such that C∗

α is CUB in α

of ordertype ≤ λ and C∗
ᾱ = C∗

α ∩ ᾱ if ᾱ is a limit point of C∗
α.

Lemma 8 Assume Global 2: There exists 〈Cα | α a singular limit ordinal〉
such that Cα is CUB in α of ordertype < α and Cᾱ = Cα ∩ ᾱ if ᾱ is a limit
point of Cα. Then 2

cof≤λ
κ holds for each λ ≤ κ.

This is proved as follows. For a limit ordinal α > λ of cofinality ≤ λ,
define: α0 = α, αk+1 = ordertype of Cαk

(if αk is greater than λ) and let k(α)
be least so that αk+1 ≤ λ. Let fl : αl+1 → αl be the increasing enumeration
of Cαl

for each l ≤ k(α). Then define C∗
α to be the range of f0f1 · · ·fk on

{γ < αk+1 | fk(γ) > λ} if k(α) > 0 and C∗
α = Cα otherwise. Note that the

value of k is the same for elements of C∗
α as it is for α. It is straightforward

to verify that the C∗
α’s for κ < α < κ+ provide a 2

cof≤λ
κ -sequence, using

the coherence properties of the given Global 2-sequence and the fact that
k(α) = k(ᾱ) for ᾱ in C∗

α.

As Global 2 holds in L[R] for each real R, it follows that 2
cof≤λ
κ holds in

V = L[0#] for each pair of infinite cardinals λ ≤ κ.
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Now we present the construction of the desired model M in which κ = ω3

is the least 2-Mahlo, using a 2
cof≤ω1
ω2

-sequence. Let
〈C∗

α | ω2 < α < ω3, α limit, cof α ≤ ω1〉 be such a sequence, and for
limit α ∈ (ω1, ω2) let C∗

α be Cα, where 〈Cα | α limit, ω1 < α < ω2〉 witnesses
2ω1 . Also let 〈Cα | α limit, ω2 < α < ω3〉 witness 2ω2 . We assume that if
both C∗

α and Cα are defined then C∗
α ⊆ Cα, and if i is a limit of indiscernibles

then C∗
i and Ci (when defined) consist only of indiscernibles.

At an L-regular stage α we either add only D2(α), a CUB subset of α

consisting of ordinals which are not 1-Mahlo, or both D2(α) and D1(α), a
CUB subset of α consisting of ordinals which are not Mahlo, or D2(α), D1(α)
and D0(α), a CUB subset of α consisting of ordinals which are not regular.
Our intention at an indiscernible stage i is to add D0(i) only if i has countable
cofinality and D1(i) only if i has cofinality at most ω1. To build a generic
for this forcing, we respect the coherence properties: If ī is a limit point of
C∗

i then D1(i) and D2(i) extend D1(̄i) and D2(̄i), respectively; if ī is a limit
point of Ci then D2(i) extends D2(̄i). We must guarantee that when C∗

i has
a largest limit point ī, then ī can be included in D1(i) and D2(i). But ī has
countable cofinality and therefore is not Mahlo in G(< i); it follows that ī

can be put into D1(i) and D2(i). We must also ensure that when Ci has a
largest limit point ī, then ī can be included in D2(i). But in this case ī has
cofinality ≤ ω1 and therefore is not 1-Mahlo in G(< i); it follows that ī can
be put into D2(i). As before we obtain generics at limit stages, and in the
resulting model M , κ is the least 2-Mahlo cardinal.

The general case of Theorem 3 is based upon the previous one. First
assume that there is no inaccessible in V = L[0#]. Define the function F on
indiscernibles by F (i) = α where ωα is the cofinality of i. Note that F (i) < i

is either 0 or a successor ordinal for every i, as we have assumed that there
are no inaccessibles.

Now we describe a reverse Easton iteration designed to guarantee that i

is not F (i)-Mahlo for each indiscernible i. At an L-regular stage α of this
iteration, we choose β(α) ∈ {−1} ∪ α and let P (α, β) be the forcing to add
a CUB subset C(α, β) of α consisting of ordinals which are not β-Mahlo,
for each β in the interval [β(α), α). (When β is −1, we interpret β-Mahlo
to mean regular.) Then P (α) is the forcing obtained by taking the product
of these P (α, β)’s, with < α support. Our intention is to choose β(i) to be
F (i) − 1 at each indiscernible i.
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We now build a generic for this iteration, with the desired choices of
F (i) for i ∈ I. Let 〈Cα | α limit〉 be a Global 2-sequence such that Cα

has ordertype at most the cardinality of α for each α and if i is a limit of
indiscernibles then Ci consists only of indiscernibles. Now as in the proof
of Lemma 8, if i is an indiscernible which is singular, define i0 = i, ik+1 =
ordertype Cik if ik is singular, k(i) the least k such that the ordertype of Cik

is regular. (The ik’s for k > 0 need not be indiscernibles.) Let C0
i be Ci

and for k < k(i), let fk : ik+1 → ik be the increasing enumeration of Cik and
Ck+1

i the image of Cik+1
under the composition f0f1 · · · fk. Also for k ≤ k(i)

let αk(i) be the α such that the ordertype of Cik has cardinality ωα.
Our generics G(≤ i) for P (≤ i) are defined by induction on i ∈ I to

have the following coherence property: If ī is a limit point of Ck
i then G(i, β)

extends G(̄i, β) for αk(i) ≤ β < ī. To choose G(i), we must first require that
G(i, β) extend G(̄i, β) for ī a limit point of Ci and α0(i) ≤ β < ī. For this to
be possible we need to know that ī is not β-Mahlo in L[G(< i)]; but ī is not
F (̄i)-Mahlo in this model, and therefore not β-Mahlo since F (̄i) ≤ α0(i) ≤ β.
For the same reason we may require that G(i, β) extend G(̄i, β) for ī a limit
point of Ck

i and αk(i) ≤ β < ī, for each k ≤ k(i). Therefore the desired G(i)
can be chosen, when some Ck

i has a largest limit point. If no Ck
i has a largest

limit point then by induction G(i) can be chosen as the union of the G(̄i),
for ī a limit point of Ci (or arbitrarily if Ci has ordertype ω).

So there exists a generic for this iteration. If we restrict this iteration to
ωγ+1, where γ is not inaccessible and the β(α) are required to take values less
than γ, then we produce a model M in which ωγ+1 is the least γ-Mahlo. By
a similar argument we can arrange that ωγ+1, iωγ+1·2, . . . , iωγ+1·n are the first
n γ-Mahlos. This proves part (b) of Theorem 3. If there is no inaccessible,
then we have obtained a generic extension M of L in which no cardinal κ

is κ-Mahlo. And if the above iteration is restricted to the least inaccessible,
then we obtain a model M such that the least κ which is κ-Mahlo in M is
the least inaccessible. By a similar argument we can arrange that the first n

cardinals κ which are κ-Mahlo in M are the first n inaccessibles. This proves
part (b) of Theorem 4. 2

Proof of Theorem 5. Suppose that M is a generic extension of L obtained
by the forcing P , and M is contained in L[0#]. If ϕ is true in M , then ϕ

is forced by some condition in P ; we may assume that ϕ is forced by the
weakest condition of P . By assumption, there is an ω + ω-Erdős cardinal
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in L[0#] = L[M, 0#]. It follows from the results of [1] that P has a generic
relative to which a periodic subclass of I is a class of indiscernibles, and
this generic can be generically coded by a real which belongs to a set-generic
extension of L[0#]. Since ϕ is a parameter-free sentence there is such a real
in L[0#], by absoluteness. It follows that ϕ is true in an inner model of L[R]
for some real R such that R# exists. 2
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