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Set-theorists have had great success in solving problems under the hypo-
thesis V' = L. Under this assumption, Gddel proved the Generalised Conti-
nuum Hypothesis and also precisely determined the behaviour of projective
sets of reals in L, with regard to regularity properties such as Lebesgue mea-
surabilty and the perfect set property. Further important work on L was
accomplished by Jensen.

But the fact remains that V' = L is not a theorem of ZFC: The forcing
method allows us to consistently enlarge L to models L[G] where G is a set
or class that is generic over L with respect to some forcing notion P. Thus it
is reasonable to suggest that V', rather than equal to L, should be in fact a
generic extension L|G] of L. But this then gives rise to the new and difficult
question: Which generic extension is it? Usually, a forcing notion P gives
rise not to one, but to many different generics G. Some hope is provided by:

Theorem 1 Assume some weak large cardinal axioms, consistent with V =
L (precisely: an n-ineffable cardinal for eachn). Then there is an L-definable
forcing notion P with a unique generic.

(Unless otherwise stated, we take “definable” to mean “definable without
parameters”.) But this does not solve our problem, for P is not the only
forcing notion satisfying this Theorem and there does not seem to be a ca-
nonical choice for P. Moreover, the hypothesis that generics exist for all
definable forcing notions is inconsistent:

Theorem 2 There exist forcing notions Py, P, which are definable over L
and which preserve ZFC, such that there cannot be generics for Py and Py
simultaneously.

So if we want V' to not be I we must decide for which forcing notions P
to allow generics. The needed criterion arises naturally through the conside-
ration of CUB-absoluteness:

Definition. A class C' of ordinals is CUB iff it is closed and unbounded.
V' is CUB-absolute over L iff every L-definable class of ordinals which has a
CUB subclass definable with parameters in a generic extension of V' has one
definable with parameters in V.



Theorem 3 V is CUB-absolute over L iff 0% exists.

07 is a special set of integers discovered by Silver and Solovay, whose
existence is a “transcendence principle for L” in the sense that it implies that
V is not a generic extension of L. The existence of 0% is equivalent to the
existence of a nontrivial elementary embedding of L into itself. If 0% exists
then there is a smallest inner model which satisfies “0% exists”, namely the
canonical model L[0%].

Thus as an alternative to V = L we could propose the hypothesis: 0%
exists and V = L[0#]. This allows for the existence of generic extensions of
L. Moreover we can now provide a generic existence criterion for L-definable
forcings, by declaring an L-definable forcing to have a generic iff it has one

definable in L[0%].

An open problem is to provide a more convincing characterisation of 07
in terms of forcing. One possibility is suggested by the following

Theorem 4 Assume a weak large cardinal axiom, consistent with V = L
(precisely: an w + w-Erdés cardinal). If 07 exists and an L-definable forcing
has a generic, then it has one definable in L[0¥].

Thus L[0#] is “saturated” with respect to L-definable forcings. A nice result
would be the converse to this, giving that 0% exists iff V is saturated with
respect to L-definable forcings.

A second possibility would be to define a new concept of forcing and prove
that the existence of 07 is equivalent to the statement that V is not “generic”
over L in this new sense. One cannot simply use the usual notion of class
forcing for this purpose; indeed there exist reals R in L[0#] which are not
class-generic over L and from which 0% is not constructible.

Cardinal-Preserving Extensions

By not assuming V' = L we can compare set-theoretic problems according
to their degree of nonconstructibility. We shall now examine a wide class of
such problems, under the assumption that 07 exists.

Definition A subset X of L is X¢? iff X can be written in the form

a € X iff p(a) holds in a cardinal-preserving extension of L



for some X formula ¢. (We intend our cardinal-preserving extensions of L
to satisfy AC and to be contained in a set-generic extension of V.)

Ezample: A classic result of Baumgartner-Harrington-Kleinberg [1] implies
that assuming CH a stationary subset of w; has a CUB subset in a cardinal-
perserving set-generic extension of V. This implies that the set

{X € L'| X CwFand X has a CUB subset in a cardinal-preserving extension
of L}

is constructible, as it equals the set of constructible subsets of w¥ which in
L are stationary.

Is there a similar such result for subsets of wl? Building on work of M.
Stanley [9], we show that there is not. We shall also consider a number of
related problems, examining the extent to which they are “solvable” in the
above sense, as well as defining a notion of reduction between them. We
assume throughout that 0% exists.

Theorem 5 If X is X7 then X is constructible from 0%.

Theorem 6 07 is X7, And there are {7 sets of constructibility degree
strictly between 0 and 07,

Theorem 7 The following X{T sets are equiconstructible with 0% :

(a) {T | T € L and T is a tree on k of height k with a cofinal branch in a
cardinal-preserving extension of L}, for k an uncountable successor cardinal
of L.

(b)) {X Ck|X €L and X contains a CUB subset in a cardinal-preserving
extension of L}, for k reqular in L, k > wk.

(c){X C k| X €L and X is the set of ordinals < k which are admissible
relative to some real in a cardinal-preserving extension of L}, for k uncoun-
table in L.

(d) {X C k| X €L and X is the intersection with k of a class which is
Aq-definable over L[R| without parameters, for some real R in a cardinal-
preserving extension of L}, where k is at least w¥.

Theorem 7 is proved by “reducing” 0% to the sets mentioned. In fact we
shall need the following more general notion of “reduction”.
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Definition Suppose that (Xy, X;) and (Yo, Y1) are pairs of disjoint subsets
of L. Then we write

(Xo. X1) — 1 (Yo, Y1)

iff there is a function F'in L such that
ae Xg— Fla) €Yy

ae€X;— F(a) €Y.

We write X instead of (Xy, X;) in case X = X is the complement (within
some constructible set) of X, and similarly for the Y’s. It is clear that if
(Xo, X1) is nonconstructible and (Xy, X;) — 1 (Y0, Y1), then (Yp,Y7) is also
nonconstructible. In the proof of Theorem 7 we shall obtain reductions in
this sense of 0% to the sets mentioned.

Theorem 7 suggests that the Baumgartner-Harrington-Kleinberg result
should be viewed as a rare example of a nontrivial “solvable” X¢* problem.
However it is not the only such example:

Theorem 8 If x is wy in the set described in Theorem 7 (d), then the re-
sulting set is constructible.

About the Proofs of Theorems 5-8

To prove Theorem 5, one shows the following: If ¢ is a ¥ formula, a is
a constructible set and ¢(a) is true in a cardinal-preserving extension of L,
then this cardinal-preserving extension of L can be chosen as a set-generic
extension of L[0%]. The proof is based on ideas used to prove the Martin-
Solovay Basis Theorem.

Theorem 6 is proved using the techniques used to prove the II}-singleton
conjecture (see [3]).

The proof of Theorem 7 is based heavily on the notion of reduction in-
troduced above: The first step is to reduce 0% to the tree problem. Let
7 (k) denote the set of constructible trees on k of height x with a cofinal,
cardinal-preserving branch; i.e., a cofinal branch b such that L and L[b] have
the same cardinals. To each n we associate a tree T, on k (k an uncountable
successor L-cardinal) in such a way that n belongs to 0% iff T}, has a cofinal,



cardinal-preserving branch. Moreover, the sequence of trees 7},, n € w is con-
structible, so this proves 0% — 7 (k) for uncountable successor L-cardinals
K.

To reduce 07 to the CUB subset problem for L-regular cardinals greater
than wf it would suffice to reduce the tree problem 7 (k) to the CUB subset
problem C(x). However we do not know how to do this. Instead we work
with a modified version of the tree problem. Define

T*(kt) ={T € T(k") | T is Aj-definable over L.+ from the parameter s
and 7T has a cardinal-preserving, stationary, P(k)-preserving cofinal branch}
T*(kt) ={T € T(k") | T is As-definable over L+ from the parameter x
and T has a cardinal-preserving cofinal branch}

where b is stationary if in L[b] its intersection with cof  is stationary, and b is
P(k)-preserving if L and L[b] have the same subsets of k. We show: 0% —
(T*(wh), ~ T (wk)), and (T*(wk), ~ T™*(wl)) — 1 C(wk). Finally, using
the combinatorial principle O, which is true in L, we show that for any
L-regular cardinal greater than w¥, C(wl) — C(k).

A similar modification of the CUB subset problem is then reduced both
to the admissibility spectrum problem at uncountable L-cardinals, and to
the Aj-definability problem at L-cardinals greater than w?.

Theorem 8 is proved using a special type of coding construction.
Open Questions

Very simple questions concerning the notion of reduction — remain
unanswered. For example, is the tree problem at wl reducible to the CUB
subset problem at wX? Explicitly:

Is there a constructible function that associates to each constructible tree T’
on wf a subset X of wr such that T has a cofinal, cardinal-preserving branch
iff X has a cardinal-preserving CUB subset?

If so, the indirect arguments sketched could be avoided. Is the CUB
subset problem reducible to the problem of finding a cardinal-preserving ho-
mogenous set, for a given partition? One can easily formulate a host of similar
such open problems.



Other open questions concern a weakening of cardinal-preservation. An
example concerns the CUB subset problem: Is the following set constructible?

C'(wk)={X € L | X C wf and X has a CUB subset in an extension of L
which preserves wf, wt}

It is possible that the solution to this problem will require genuine use of a
gap 2 morass.
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