MINIMAL UNIVERSES

Sy D. Friedman* M.I.T.

We work in Gödel-Bernays class theory. And we say that a structure $\langle M, A \rangle$ is a model of ZFC if M is a model of ZFC and obeys replacement for formulas which are permitted to mention $A \subseteq M$ as a unary predicate. An inner model M is minimal if there is a class A such that $\langle M, A \rangle$ is amenable yet has no transitive proper elementary submodel. M is strongly minimal on a club if there is a club C such that $\langle M, C \rangle$ is amenable and $\alpha \in C \longrightarrow \langle V_{\alpha}^{M}, C \cap \alpha \rangle$ is not a model of ZFC. Strong minimality on a club implies minimality, but not conversely. It is consistent for L to be strongly minimal on C = ORD and if $0^{\#}$ exists, L is not minimal yet $L[0^{\#}]$ may or may not be minimal.

If $M_1 \subseteq M_2$ are inner models then M_2 is a locally generic extension of M_1 if every $x \in M_2$ belongs to a set-generic extension of M_1 . Our main result states that if V is strongly minimal on a club and $0^\#$ exists then some inner model is both minimal and a locally generic extension of L. V can always be made strongly minimal on a club by forcing a strongly minimalizing club without adding sets (Theorem 1). Thus if $0^\#$ exists then there does exist an inner model which is both minimal and a locally generic extension of L, definable in a forcing extension of V that adds no sets. A special case is when V = the minimal model of $ZFC + 0^\#$ exists, in which case there is an inner model which is minimal and does not contain $0^\#$. This answers a question of Mack Stanley.

Theorem 1. (Folklore) There is a class forcing to add a club C such that $\langle V, C \rangle$ is a model of ZFC and $\alpha \in C \longrightarrow \langle V_{\alpha}, C \cap \alpha \rangle$ is not a model of ZFC.

Proof. Conditions are bounded closed sets p such that $\alpha \in p \longrightarrow \langle V_{\alpha}, p \cap \alpha \rangle$ is not a model of ZFC. Conditions are ordered by end extension. To preserve ZFC it's enough to show that if $\langle D_i | i < \lambda \rangle$ is a Σ_n definable sequence of open dense classes then the intersection of the D_i 's is dense. Given a condition p, first extend if

^{*}Research supported by NSF contract # 8903380.

necessary so that p contains an ordinal greater then λ and the parameters defining $\langle D_i | i < \lambda \rangle$ and then build a canonical Σ_n -elementary chain of models $\langle V_{\alpha_i} | i < \lambda \rangle$ and extensions p_i of p in $V_{\alpha_{i+1}} - V_{\alpha_i}$ such that p_i meets D_i . Then at limit stages $\bar{\lambda} \leq \lambda$, $p_{\bar{\lambda}}$ is a condition since $\alpha_{\bar{\lambda}}$ is $V_{\alpha_{\bar{\lambda}}}$ -definably singularized by $\langle \alpha_i | i < \bar{\lambda} \rangle$.

Theorem 2. Suppose V is strongly minimal on a club and $0^{\#}$ exists. Then there is a minimal locally generic extension of L.

Theorem 2 is proved using backwards Easton forcing, where $0^{\#}, C$ are used to select the appropriate (minimal) almost generic extension, C being a strongly minimalizing club. We first describe the building blocks of this backwards Easton iteration, which are designed to produce "generic stability systems".

Definition. A stability system p consists of a successor ordinal $|p| = \alpha(p) + 1$ and functions $f_k = f_k^p, k > 0$ such that

- (a) Dom $f_1 = \text{Lim} \cap |p|$, $f_1(\alpha) \leq \alpha$ for $\alpha \in \text{Dom } f_1$, $f_1(\alpha) = \underline{\text{lim}} \langle f_1(\bar{\alpha}) | \bar{\alpha} \in \text{Lim} \cap \alpha \rangle$ for $\alpha \in \text{Lim}^2 \cap |p|$. Define $\alpha <_1 \beta \iff \alpha < \beta \text{ and } \alpha < \gamma \leq \beta, \ \gamma \in \text{Dom } f_1 \longrightarrow f_1(\gamma) \geq \alpha$. Then $\alpha \in \text{Dom } f_1 \longrightarrow f_1(\alpha) \leq_1 \alpha$.
- (b) $\operatorname{Dom} f_{k+1} = \{ \alpha < |p| | \alpha a <_{k}\text{-limit} \}, f_{k+1}(\alpha) \leq \alpha \text{ for } \alpha \in \operatorname{Dom} f_{k+1}, f_{k+1}(\alpha) = \underline{\lim} \langle f_{k+1}(\bar{\alpha}) | \bar{\alpha} <_{k} \alpha, \bar{\alpha} \in \operatorname{Dom} f_{k+1} \rangle \text{ for } \alpha < |p|, \alpha \in <_{k} \lim^{2}. \text{ Define } \alpha <_{k+1} \beta \longleftrightarrow \alpha <_{k} \beta \text{ and } \alpha < \gamma \leq_{k} \beta, \gamma \in \operatorname{Dom} f_{k+1} \longrightarrow f_{k+1}(\gamma) \geq \alpha. \text{ Then } \alpha \in \operatorname{Dom} f_{k+1} \longrightarrow f_{k+1}(\alpha) \leq_{k+1} \alpha.$

Intuitively, $f_k(\alpha)$ represents the supremum of the ordinals which are " Σ_k stable in α ", but only in a formal sense.

Definition. Suppose κ is regular, $\ell > 0$, $\gamma < \kappa$. The forcing $\mathcal{P}(\kappa, \ell, \gamma)$ consists of all stability systems p such that $\gamma \leq_{\ell} \alpha(p) < \kappa$. Extension of conditions is defined by: $q \leq p \longleftrightarrow f_k^q \supseteq f_k^p$ for all k and $\alpha(p) \leq_{\ell-1}^q \alpha(q)$, where $\leq_0^q = \leq$. We will see that \leq is transitive.

Lemma 1. For any stability system and k; \leq_k^p is a tree ordering and $\alpha \leqslant \beta \leq_k^p \gamma$, $\alpha \leq_{k+1}^p \gamma \longrightarrow \alpha \leq_{k+1}^p \beta$. Also $\{\alpha | \alpha <_k^p \beta\}$ is closed in β .

Proof. We first prove that $\leq_k = \leq_k^p$ is a tree ordering, by induction on k. For k = 0 we define $\leq_0 = \leq$ and the result is clear. Suppose that the result holds for k and

we wish to show that \leq_{k+1} is a tree ordering. Reflexivity is clear since we mean \leq_{k+1} to include =. Antisymmetry is clear since $\alpha \leq_{k+1} \beta \longrightarrow \alpha \leq \beta$. Suppose $\alpha \leq_{k+1} \beta \leq_{k+1} \gamma$ and we want $\alpha \leq_{k+1} \gamma$. Since we have by definition $\alpha \leq_k \beta \leq_k \gamma$ by induction we know $\alpha \leq_k \gamma$. Suppose $\alpha < \delta \leq_k \gamma$, $\delta \in \text{Dom } f_{k+1}$. If $\delta > \beta$ then since $\beta \leq_{k+1} \gamma$ we have $f_{k+1}(\delta) \geq \beta \geq \alpha$. If $\delta \leq \beta$ then $\delta \leq_k \beta$ since $\delta \leq_k \beta$ is a tree ordering and both δ and β are $\delta \leq_k \gamma$. Since $\delta \leq_{k+1} \beta$ we have $\delta \leq_{k+1} \gamma$. So we have shown that $\delta \leq_k \beta$ is transitive. Now suppose $\delta \leq_k \beta$ are both $\delta \leq_k \gamma$. By induction $\delta \leq_k \beta$. If $\delta \leq_k \beta$ is $\delta \in_k \beta$, $\delta \in_k \beta$ and we have shown that $\delta \leq_k \gamma$ since $\delta \leq_k \beta$ is transitive so $\delta \leq_{k+1} (\delta) \geq \alpha$ since $\delta \leq_{k+1} \gamma$. So $\delta \leq_{k+1} \beta$ and we have shown that $\delta \leq_{k+1} \gamma$ is a tree ordering.

If $\alpha \leq \beta \leq_k \gamma$, $\alpha \leq_{k+1} \gamma$ then $\alpha \leq_k \beta$ since \leq_k is a tree ordering. If $\alpha < \delta \leq_k \beta$, $\delta \in \text{Dom } f_{k+1}$ then $\delta \leq_k \gamma$ since \leq_k is transitive so $f_{k+1}(\delta) \geq \alpha$ since $\alpha \leq_{k+1} \gamma$. So $\alpha \leq_{k+1} \beta$.

Finally we show that $\{\alpha | \alpha <_k \beta\}$ is closed in β , by induction on k. This is clear for k = 0. Suppose it holds for k and $\bar{\alpha}$ is a limit of $\{\alpha | \alpha <_{k+1} \beta\}, \bar{\alpha} < \beta$. Then $\bar{\alpha} <_k \beta$ by induction. Suppose $\bar{\alpha} < \gamma \leq_k \beta, \gamma \in \text{Dom } f_{k+1}$. Then $f_{k+1}(\gamma) \geq \alpha$ for all $\alpha <_{k+1} \beta, \alpha < \gamma$. In particular this holds when $\alpha < \bar{\alpha}$ so $f_{k+1}(\gamma) \geq \bar{\alpha}$ since $\bar{\alpha}$ is a limit of such α . So $\bar{\alpha} <_{k+1} \beta$.

Lemma 2. Let f_k , $<_k$ arise from a stability system. If $\alpha \in \text{Dom } f_k$, $f_k(\alpha) < \alpha$ then $f_k(\alpha) = \text{largest } \bar{\alpha} <_k \alpha$. If $\alpha \in <_k - \lim^2$, $f_{k+1}(\alpha) = \alpha$ then $\{\bar{\alpha} | \bar{\alpha} <_{k+1} \alpha\}$ is unbounded in α .

Proof. Suppose $\alpha \in \text{Dom } f_k$, $f_k(\alpha) < \alpha$. We know that $f_k(\alpha) <_k \alpha$, by definition of condition. If $f_k(\alpha) <_{\beta} <_{\alpha}$ then $\beta \not<_k \alpha$ since $f_k(\alpha) \not\geq_{\beta}$. So $f_k(\alpha) = \text{largest } \bar{\alpha} <_k \alpha$. Suppose $\alpha \in <_k - \text{Lim}^2$, $f_{k+1}(\alpha) = \alpha$. Then $f_{k+1}(\alpha) = \alpha = \underline{\lim} \{ f_{k+1}(\bar{\alpha}) | \bar{\alpha} <_k \alpha, \bar{\alpha} \in <_k - \text{Lim} \}$. So $\alpha = \lim \{ f_{k+1}(\bar{\alpha}) | \bar{\alpha} <_k \alpha, \bar{\alpha} \in <_k - \text{Lim} \}$. For any $\alpha_0 < \alpha$ there must be $\bar{\alpha}_0 <_k \alpha$, $\bar{\alpha}_0 \in <_k - \text{lim}$ such that $f_{k+1}(\bar{\alpha}_0) \geq f_{k+1}(\bar{\alpha}_0) \geq \alpha_0$ for all $\bar{\alpha} <_k \alpha, \bar{\alpha} \in <_k - \text{lim}$, $\bar{\alpha} \geq \bar{\alpha}_0$. (For, we need only first choose $\bar{\alpha}'_0$ to guarantee $f_{k+1}(\bar{\alpha}_0) \geq \alpha_0$ for all $\bar{\alpha}$ beyond $\bar{\alpha}'_0$ and then minimize $f_{k+1}(\bar{\alpha}'_0)$ to get $\bar{\alpha}_0$.) Then $f_{k+1}(\bar{\alpha}_0) <_k \alpha$ since either $f_{k+1}(\bar{\alpha}_0) <_{k+1} \bar{\alpha}_0 <_k \alpha$ or $f_{k+1}(\bar{\alpha}_0) = \bar{\alpha}_0 <_k \alpha$. Suppose $f_{k+1}(\bar{\alpha}_0) <_k \alpha$, $\bar{\beta} \in \text{Dom } f_{k+1}$. If $\bar{\beta} \leq \bar{\alpha}_0$ then $f_{k+1}(\bar{\beta}) \geq f_{k+1}(\bar{\alpha}_0)$ since $f_{k+1}(\bar{\alpha}_0) <_{k+1} \bar{\alpha}_0$. If $\bar{\alpha}_0 \leq_k \beta$ then $\bar{\alpha}_0 \leq_k \beta$ and $f_{k+1}(\beta) \geq_k f_{k+1}(\bar{\alpha}_0)$ by choice of $\bar{\alpha}_0$. So $f_{k+1}(\bar{\alpha}_0) <_{k+1} \alpha$ and $f_{k+1}(\bar{\alpha}_0) \geq_{\alpha_0}$. So $\{\bar{\alpha} | \bar{\alpha} <_{k+1} \alpha\}$ is unbdd in α . \exists

Lemma 3. Suppose $r \leq q \leq p$ in $\mathcal{P}(\kappa, \ell, \gamma)$. Then $r \leq p$.

Proof. We need to check that $\alpha(p) \leq_{\ell=1}^r \alpha(r)$. But $\alpha(p) \leq_{\ell=1}^q \alpha(q)$ and so $\alpha(p) \leq_{\ell=1}^r \alpha(q)$, and $\alpha(q) \leq_{\ell=1}^r \alpha(r)$. So the result follows from Lemma 1.

Lemma 4. Suppose $p \in \mathcal{P}(\kappa, \ell, \gamma)$ and $\alpha(p) \leq \alpha < \kappa$. Then there exists $q \leq p$, $\alpha(q) = \alpha$.

Proof. For limit $\lambda \in (\alpha(p), \alpha]$ define $f_k^q(\lambda) = \lambda$. It is routine to verify that the resulting q is a condition and extends p.

Lemma 5. Suppose $p_0 \ge p_1 \ge \cdots$ is a sequence of conditions in $\mathcal{P}(\kappa, \ell, \gamma)$ of length $< \kappa$. Then there is $p \le each \ p_i, \ \alpha(p) = \bigcup \alpha(p_i)$.

Proof. Assume that the p_i 's are distinct. Let $\alpha = \bigcup_i \alpha(p_i)$. We must define $f_k^p(\alpha)$. We do so by induction on k > 0. If $\alpha \notin \text{Lim}$, $f_1^p(\alpha)$ is undefined. If $\alpha \in \text{Lim}^2$, let $f_1^p(\alpha) = \underline{\lim} \langle f_1^{p_i}(\bar{\alpha}) | \bar{\alpha} \leq \alpha(p_i), \ \bar{\alpha} \ \text{limit} \rangle$. If $\alpha \in \text{Lim} - \text{Lim}^2$ then let $f_1^p(\alpha) = \alpha$. Assuming $f_k^p(\alpha)$ is defined (and $f_k^p \upharpoonright \alpha = \bigcup_i f_k^{p_i}$) it makes sense to ask if $\alpha \in <_k^p$ — lim. If not then $f_{k+1}^p(\alpha)$ is undefined. If $\alpha \in <_k^p$ — lim² then set $f_{k+1}^p(\alpha) = \underline{\lim} \langle f_{k+1}^p(\bar{\alpha}) | \bar{\alpha} <_k^p \ \alpha, \bar{\alpha} \ a <_k^p - \text{limit} \rangle$. If $\alpha \in <_k^p - \text{lim} - <_k^p - \text{lim}^2$ then set $f_{k+1}^p(\alpha) = \alpha$.

Now we show that $\alpha(p_i) <_{\ell=1}^p \alpha$, defined in terms of the above f_k^p 's. Suppose $\alpha(p_i) <_k^p \alpha$ for all i, where $k < \ell - 1$ and we want $\alpha(p_i) <_{k+1}^p \alpha$. Suppose $\alpha(p_i) < \beta \le_k^p \alpha$, $\beta \in \text{Dom } f_{k+1}^p$. If $\beta < \alpha$ then we can choose j so that $\beta \le_k^{p_j} \alpha(p_j)$ and then $f_{k+1}^{p_j}(\beta) \ge \alpha(p_i)$ since $p_j \le p_i$. If $\beta = \alpha$ then $f_{k+1}^p(\beta) < \alpha(p_i)$ can only result if $f_{k+1}^p(\bar{\alpha}) < \alpha(p_i)$ for some $\bar{\alpha} <_k^p \alpha$, $\bar{\alpha} > \alpha(p)$ but then $\bar{\alpha} <_k^{p_j} \alpha(p_j)$ for large j, contradicting $p_j \le p_i$. So $\alpha(p_i) \le_{\ell=1}^p \alpha$ for all i.

Now it is easy to verify that p is a condition extending each p_i , since any violation created by $\alpha = \alpha(p)$ would imply a violation at some $\alpha(p_i) <_{\ell=1}^p \alpha(p)$.

Now we describe the backwards Easton iteration used to create our minimal inner model. \mathcal{P} is the iteration with Easton supports over L where \mathcal{P}_0 = the trivial forcing, \mathcal{P}_{λ} = inverse limit at singular λ , direct limit at regular λ , $\mathcal{P}_{\kappa+1} = \mathcal{P}_{\kappa} * \dot{\mathbb{Q}}_{\kappa}$ where $\dot{\mathbb{Q}}_{\kappa}$ is a term for the trivial forcing unless κ is regular. For regular κ , $\dot{\mathbb{Q}}_{\kappa}$ is a term for the following forcing in $L[G_{\kappa}]$, G_{κ} denoting the \mathcal{P}_{κ} -generic: choose a pair

 $(\ell_{\kappa}, \gamma_{k})$ with $\ell_{\kappa} > 0$, $\gamma_{\kappa} < \kappa$ and apply the forcing $\mathcal{P}(\kappa, \ell_{\kappa}, \gamma_{\kappa})$. Now $\mathcal{P}_{\kappa} \Vdash \dot{\mathbb{Q}}_{\kappa}$ is $< \kappa$ -closed and has cardinality κ , so \mathcal{P} preserves cofinalities.

Our goal is to build $G = \langle G_{\alpha} | \alpha \in \text{ ORD } \rangle$ so that G_{α} is \mathcal{P}_{α} -generic over L and to select ordinals $\alpha_i \in [i, i^*)$, $i < i^*$ adjacent Silver indiscernibles such that (writing $G_{\alpha+1} = G_{\alpha} * g_{\alpha}$):

- 1. i < j in I =Silver indiscernibles, $p \in g_i, q \in g_j, \alpha(q) \ge i \longrightarrow f_k^p \subseteq f_k^q$ for all k. let $f_k = \bigcup \{f_k^p | p \in g_i \text{ for some } i \in I\}$.
- 2. For $i \in I, \ell_i = \text{least } \ell$ such that the $\langle 0^\#, C \rangle, i \Sigma_\ell$ stables in C are bounded in i, where C = the given strongly minimalizing club for V. (α is $B, \beta \Sigma_\ell$ stable if $\langle L_\alpha[B], B \cap \alpha \rangle$ is a Σ_ℓ -elementary submodel of $\langle L_\beta[B], B \cap \beta \rangle$). Also $\gamma_i = \alpha_j$ where $j = \bigcup \{\langle 0^\#, C \rangle, i \Sigma_{\ell_i} \text{ stables in } C\} \geq 0$. (By convention, $\alpha_0 = 0$.)
 - 3. For $i \in I$, $f_k(i) = i$ if $k < \ell_i$ and $f_{\ell_i}(i) = \gamma_i$.
- 4. For $i \in I$, $i \leq_{\ell_i} \alpha_i$ (where \leq_k is defined from the f_k 's) and $\alpha_i \in \text{Dom } f_{\ell_i+1}, f_{\ell_i+1}(\alpha_i) = \alpha_j$ where $j = \bigcup \{\langle 0^\#, C \rangle, i \Sigma_{\ell_i+1} \text{ stables in } C\}$.

Suppose that the f_k 's have been constructed to obey 1–4 above and we now prove Theorem 2. The desired minimal, locally generic extension of L is $L[\langle G_{\alpha} | \alpha \in ORD \rangle]$, witnessed by the amenable class $\langle f_k | k \in \omega \rangle$. The reason for minimality is roughly as follows: there are unboundedly many $\alpha <_k \infty$ (defined from the f_k 's) yet no ordinal α is $<_k \infty$ for all k simultaneously. More precisely:

Lemma 6. let i < j be indiscernibles, $i\langle 0^{\#}, C \rangle, j - \Sigma_k$ stable, $i \in C$ and $(j \text{ a limit of } \langle 0^{\#}, C \rangle, j - \Sigma_{k-2} \text{ stables or } k \leq 2)$. Then $i \leq_k \alpha_i <_k j$, where $\leq_k i$ s defined from the f_k 's.

Proof. By induction on k and for fixed k by induction on j. By property 4, $i \leq_{\ell_i} \alpha_i$ and clearly $\ell_i \geq k$ since i is a limit of $\langle 0^{\#}, C \rangle, i - \Sigma_{k-1}$ stables (k > 1) and so $\ell_i \geq k$ follows by property 2. So we only need to check that $\alpha_i <_k j$.

Suppose k = 1. If $\alpha_i \not<_1 j$ then choose $\alpha_i < \beta \le j$ so that $f_1(\beta) < \alpha_i$. Then $\beta < j$ as properties 2, 3 imply that $f_1(j) \ge \alpha_i$, since i is $\langle 0^\#, C \rangle, j - \Sigma_1$ stable and belongs to C. There are no indiscernibles between β and j as otherwise we can apply induction on j. So $\bar{j} \le \beta < j$ where $\bar{j} = I$ -predecessor to j. In fact $\bar{j} < \beta < j$ since otherwise $\alpha_i < \beta = \bar{j}$ and again 2, 3 imply that $f_1(\bar{j}) \ge \alpha_i$. If $f_1(j) < \beta$ then

since $f_1(j) <_1 j$ we have $f_1(j) \le f_1(\beta)$ and hence $f_1(\beta) \ge f_1(j) \ge \alpha_i$, contrary to assumption. So $f_1(j) \ge \beta > \bar{j}$ and by 3, $f_1(j) = \alpha_{\bar{j}}, \bar{j}$ is $\langle 0^{\#}, C \rangle, j - \Sigma_1$ stable and belongs to C. And $\bar{j} < \beta \le \alpha_{\bar{j}}$. But $\bar{j} \le_1 \alpha_{\bar{j}}$ so $f_1(\beta) \ge \bar{j}$ and $\bar{j} > \alpha_i$ since $\beta \le \alpha_{\bar{j}}$ and $\beta > \alpha_i$. So $f_1(\beta) > \alpha_i$, contradicting our assumption.

Suppose the lemma holds for k and we prove it for k+1. If $\alpha_i \not<_{k+1} j$ then choose $\alpha_i < \beta \le_k j$ so that $\beta \in \text{Dom } f_{k+1}$, $f_{k+1}(\beta) < \alpha_i$. By 2, 3 we have $\beta <_k j$. By induction on j there can be no \bar{j} such that $\beta \le \bar{j}$ and \bar{j} is $\langle 0^\#, C \rangle, j - \Sigma_k$ stable and in C, as otherwise induction on k implies $\bar{j} \le_k \alpha_{\bar{j}} <_k j$ so $\bar{j} <_k j$ and $\beta \le_k \bar{j}$ by Lemma 1. By 2, 3 $f_k(j)$ is defined and equal to $\alpha_{\bar{j}}$ where $\bar{j} = \bigcup \{\langle 0^\#, C \rangle, j - \Sigma_k \}$ stables in C and since $\beta <_k j$ we have $\beta \le \alpha_{\bar{j}}$. And $\bar{j} <_k \beta \le \alpha_{\bar{j}}$ since there is no \bar{j} such that $\beta \le \bar{j}$ and \bar{j} is $\langle 0^\#, C \rangle, j - \Sigma_k \}$ stable, $\bar{j} \in C$. Now $\alpha_{\bar{j}} = f_k(j) <_k j$ so since $\beta <_k j$ we have $\beta \le_k \alpha_{\bar{j}}$ by Lemma 1. Now let $\ell = \ell_{\bar{j}}$. Clearly $\ell \ge k$ since \bar{j} is $\langle 0^\#, C \rangle, j - \Sigma_k \}$ stable, $\bar{j} \in C$ and hence $\bar{j} = \bigcup \{\langle 0^\#, C \rangle, \bar{j} - \Sigma_{k-1} \}$ stables in C. But if $\ell >_k \}$ then by $\ell >_k \}$ and this contradicts $\ell >_k \}$ where $\bar{j} = \bigcup \{\langle 0^\#, C \rangle, \bar{j} - \Sigma_{k+1} \}$ stables in $\ell >_k \}$. But $\ell >_k \}$ is defined and equal to $\ell >_k \}$ where $\ell >_k \}$ is $\ell >_k \}$ stable, $\ell >_k \}$ st

Corollary 7. Define $\alpha <_k \infty \longleftrightarrow \alpha <_k \beta$ for cofinally many $\beta <_{k-1} \infty$ (where $\beta <_0 \infty$ is vacuous). Then for each k there are cofinally many $\alpha <_k \infty$.

Proof. By Lemma 6 if i is $\langle 0^{\#}, C \rangle - \Sigma_k$ stable and belongs to C then $i <_k \infty$ (by induction on k). The class of all such i is cofinal in the ordinals.

Corollary 8. No α is $<_k \infty$ for all k.

Proof. Choose k large enough so that i = the least $\langle 0^{\#}, C \rangle - \Sigma_k$ stable in C is larger than α . Then $i <_k \infty$ is $f_k(i) = \alpha_0 = 0$. So $\alpha \not<_k \infty$.

Thus we have minimality, since if $\langle L[\langle G_{\alpha} | \alpha \in \text{ORD} \rangle], \langle f_k | k \in \omega \rangle \rangle$ had a transitive elementary submodel, by Corollary 7 its height α would be $\langle k \rangle$ for each k, in contradiction to Corollary 8.

It remains to construct the G_{α} 's so as to obey 1–4.

The Construction. We build $G_{i+1} = G_i * g_i$ by induction on $i \in I$. When defining G_{i^*+1} we also specify $\alpha_i \in [i, i^*)$, where i^* denotes the I-successor to i.

 G_{i_0+1} , $i_0 = \min I$ Choose G_{i_0} to be the $L[0^{\#}]$ -least generic for \mathcal{P}_{i_0} , using the countability of i_0 . Set $\ell_{i_0} = 1$, $\gamma_{i_0} = 0 = \alpha_0$ and choose g_{i_0} to be the $L[0^{\#}]$ -least generic for $\mathcal{P}(i_0, 1, 0)$ as defined in $L[G_{i_0}]$.

 G_{i^*+1} , $i \in I$ First choose G_{i^*} to be the $L[0^\#, C]$ -least generic for \mathcal{P}_{i^*} extending G_{i+1} , using the $\leq i$ -closure of \mathcal{P}_{i+1,i^*} in $L[G_{i+1}]$, where $\mathcal{P}_{i^*} = \mathcal{P}_{i+1} * \mathcal{P}_{i+1,i^*}$. (Note that the dense sets in \mathcal{P}_{i+1,i^*} can be grouped into countably many collections of size i, enabling an easy construction of a generic.) The key step involves the choice of g_{i^*} .

Choose $n \geq 0$ so that the ordertype of the $\langle 0^{\#}, C \rangle, i - \Sigma_{\ell}$ stables in C is $\lambda + n$, λ limit or 0, where $\ell = \ell_i = \text{least } \ell$ such that the $\langle 0^{\#}, C \rangle, i - \Sigma_{\ell}$ stables in C are bounded in i. Let \overline{Q}_{i^*} be the forcing $\mathcal{P}(i^*, \ell + 1, \alpha_j)$ as defined in $L[G_{i^*}]$, where $j = \bigcup \{\langle 0^{\#}, C \rangle, i - \Sigma_{\ell+1} \text{ stables in } C\} \geq 0$. Let $p_0 \in \overline{Q}_{i^*}$ be the "condition" defined by $\alpha(p_0) = i$, $f_k^{p_0} \upharpoonright i = \bigcup \{f_k^p \mid p \in g_i\}, f_k^{p_0}(i) = i$ if $k < \ell$, $f_\ell^{p_0}(i) = \gamma_i = \alpha_{j'}$ where $j' = \bigcup \{\langle 0^{\#}, C \rangle, i - \Sigma_{\ell} \text{ stables in } C\} \geq 0$. We will verify later that p_0 is indeed a condition in \overline{Q}_{i^*} . Choose $p_1 \leq p_0$ in \overline{Q}_{i^*} to meet all dense Δ in $L[G_{i^*}]$ definable in $L[G_{i^*}]$ from G_{i^*} and parameters in $(i+1) \cup \{j_1 \cdots j_n\}$ where $j_1 \cdots j_n$ are the first $n \in \mathcal{P}(i^*)$. Also arrange that $\alpha(p_1)$ is a $\alpha(p_1)$ is a $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the condition $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ and $\alpha(p_1)$ are the generic for $\alpha(p_1)$ are the generic for α

 $G_{i+1}, i \in \text{Lim } I$ $G_i = \bigcup \{G_j | j \in I \cup i\}$. Let $Q_i = \mathcal{P}(i, \ell_i, \gamma_i)$ in $L[G_i]$ where ℓ_i is the least ℓ such that the $\langle 0^\#, C \rangle, i - \Sigma_\ell$ stables in C are bounded in i and $\gamma_i = \alpha_j$ where $j = \bigcup \{\langle 0^\#, C \rangle, i - \Sigma_{\ell_i} \text{ stables in } C\}$. Let $f_k \upharpoonright i = \bigcup \{f_k^p | p \in g_j \text{ for some } j \in I \cap i\}$. Then $g_i = Q_i$ -generic determined by $\langle f_k \upharpoonright i | k \in \omega \rangle$. We will verify later that $\langle f_k \upharpoonright i | k \in \omega \rangle$ does indeed determine a Q_i -generic over $L[G_i]$.

Lemma 9. Assume that the verifications claimed in the construction can be carried out. Then 1-4 hold.

Proof. Everything is clear, with the possible exception of the first statement in 4: $i \leq_{\ell_i} \alpha_i$. But note that in the construction of G_{i^*+1} , $i = \alpha(p_0)$, $\alpha_i = \alpha(p_i)$ where

 $p_1 \leq p_0$ in $\mathcal{P}(i^*, \ell_i + 1, \alpha_j)$ for some j, so we're done by the definition of extension of conditions.

Lemma 10. By induction on $i \in I$:

- (a) g_i is well-defined and Q_i -generic, where $Q_i = \mathcal{P}(i, \ell_i, \gamma_i)$ as interpreted by G_i .
- (b) Define p_0 by: $\alpha(p_0) = i$, $f_k^{p_0} \upharpoonright i = \bigcup \{f_k^p | p \in g_i\}$, $f_k^{p_0}(i) = i$ if $k < \ell_i$, $f_{\ell_i}^{p_0}(i) = \gamma_i$. Then p_0 is a stability system.
 - (c) Lemma 6 holds for indiscernibles $\leq i$.
 - (d) If p_0 is defined as in (b) then $p_0 \in \overline{Q_{i^*}}$, as defined in the construction.
- Proof. (a) This follows by induction unless $\ell_i > 1$ and there is a final segment $i_0 < i_1 < \cdots$ of the $\langle 0^\#, C \rangle, i \Sigma_{\ell_i 1}$ stables C of ordertype ω . We may also assume that i_0 is big enough so that $j = \bigcup \{\langle 0^\#, C \rangle, i \Sigma_{\ell_i} \text{ stables in } C\} = \bigcup \{\langle 0^\#, C \rangle, i_n \Sigma_{\ell_i} \text{ stables in } C\}$ for all n. Note that $\ell_{i_n} = \ell_i 1$ and the ordertype of the $\langle 0^\#, C \rangle, i_n \Sigma_{\ell_{i_n}}$ stables in $C = \lambda + n'$ with $n \leq n' < \omega$, λ limit or 0. By construction, p_1^n meets Δ in $L[G_{i_n^*}]$ defined from $G_{i_n^*}$ and parameters in $(i_n + 1) \bigcup$ (least n indiscernibles $\geq i_n^*$) where Δ is dense on $\mathcal{P}(i_n^*, \ell_i, \gamma_i)$ and p_1^n is the condition in $g_{i_n^*}$ with $\alpha(p_1^n) = \alpha_{i_n}$. By an inductive use of (c), $i_n <_{\ell_i 1}^{p_0} \alpha_{i_n} <_{\ell_i 1}^{p_0} i_m$ for all m > n, where p_0 is defined as in (b). So $\alpha_{i_0} <_{\ell_i 1}^{p_0} \alpha_{i_1} <_{\ell_i 1}^{p_0} \cdots$ and $p_1^0 \geq p_1^1 \geq p_1^2 \geq \cdots$ in $\mathcal{P}(i, \ell_i, \gamma_i)$ determine the generic g_i containing the p_1^n 's.
- (b) The genericity of g_i established in (a) implies that i is a $<_{\ell_i-1}^{p_0} \lim^2$ and $f_k^{p_0}(i)$ is determined correctly by $f_k^{p_0}(\gamma)$, $\gamma <_{k-1}^{p_0} i$, γ a $<_{k-1}^{p_0} \lim$, for $k \leq \ell_i$. So p_0 obeys the requirements for a stability system.
- (c) The proof of Lemma 6 for indiscernibles $\leq i$ only used the facts that p_0 is a stability system and 1–4 hold $\leq i$. So we are done by Lemma 9 through i.
- (d) We must verify that $\alpha_j <_{\ell+1}^{p_0} i$ in the definition of g_{i^*} . This follows from (c).