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We work in Godel-Bernays class theory. And we say that a structure (M, A)
is a model of ZFC if M is a model of ZFC and obeys replacement for formulas
which are permitted to mention A C M as a unary predicate. An inner model M
is minimal if there is a class A such that (M, A) is amenable yet has no transitive
proper elementary submodel. M is strongly minimal on a club if there is a club C
such that (M, C) is amenable and a € C — (V.M. C N a) is not a model of ZFC.
Strong minimality on a club implies minimality, but not conversely. It is consistent
for L to be strongly minimal on C = ORD and if 0% exists, L is not minimal yet
L[0#] may or may not be minimal.

If My C M, are inner models then M, is a locally generic extension of M,
if every x € M, belongs to a set-generic extension of M;. Our main result states
that if V' is strongly minimal on a club and 0% exists then some inner model is
both minimal and a locally generic extension of L. V' can always be made strongly
minimal on a club by forcing a strongly minimalizing club without adding sets
(Theorem 1). Thus if 0% exists then there does exist an inner model which is both
minimal and a locally generic extension of L, definable in a forcing extension of V
that adds no sets. A special case is when V = the minimal model of ZFC + 0#
exists, in which case there is an inner model which is minimal and does not contain

0#%. This answers a question of Mack Stanley.

Theorem 1. (Folklore) There is a class forcing to add a club C such that (V,C)
is @ model of ZFC and a € C — (V,,C N a) 1s not a model of ZFC.

Proof. Conditions are bounded closed sets p such that o € p — (V,,p N a) is
not a model of ZFC'. Conditions are ordered by end extension. To preserve ZFC
it’s enough to show that if (D;|i < ) is a ¥,, definable sequence of open dense

classes then the intersection of the D;’s is dense. Given a condition p, first extend if
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necessary so that p contains an ordinal greater then A and the parameters defining
(D;|i < A) and then build a canonical ¥,-elementary chain of models (V,, |t < )

and extensions p; of p in V,, , — V4, such that p; meets D;. Then at limit stages

i1
A <\, py is a condition since ay is V,, -definably singularized by (a;]i < A). n
Theorem 2. Suppose V is strongly minimal on a club and 0% ezists. Then there

18 a minimal locally generic extension of L.

Theorem 2 is proved using backwards Easton forcing, where 0%, C are used
to select the appropriate (minimal) almost generic extension, C being a strongly
minimalizing club. We first describe the building blocks of this backwards Easton

iteration, which are designed to produce “generic stability systems”.

Definition. A stability system p consists of a successor ordinal |p| = a(p) + 1
and functions fr = ff.k > 0 such that

(a) Dom fi = Limnlpl, fi(a) < a for a € Dom fi, fi(a) = lim (fi(a)]a €
LimNa) for a € Lim*N|p|. Define o <; f# <= a < Band a <y < B, 7 €
Dom f1 — fi(y) = a. Then a € Dom f; — fi(a) <4 a.

(b) Dom fr+1 = {a < |p|laa <g-limit}, fry1(a) < a for a € Dom fit1,

fr+1(@) = im (frt1(@)|a <k a, a € Dom fr41) for a < |p|, a €<i —lim?%. Define
a <p41 B — a < fand a <y < B, v € Dom fry1 — frtr1(y) > a. Then
a € Dom fr41 — frt1(a) <g41 a.

Intuitively, fr(a) represents the supremum of the ordinals which are “Xj stable

in a”, but only in a formal sense.

Definition. Suppose « is regular, £ > 0, v < k. The forcing P(k, £, ~) consists
of all stability systems p such that v <, a(p) < k. Extension of conditions is defined
by: ¢ < p +— fl D f¢ for all k and a(p) <] | a(q), where <{=<. We will see

that < is transitive.

Lemma 1. For any stability system and k;: <} is a tree ordering and a < 8 <} ~,
a<i v —a<i,, B Also {ala <j B} is closed in [3.

Proof. We first prove that <;=<% is a tree ordering, by induction on k. For k =0
we define <g=< and the result is clear. Suppose that the result holds for & and



we wish to show that <ji; is a tree ordering. Reflexivity is clear since we mean
<k+1 to include =. Antisymmetry is clear since o <;41 f — a < (. Suppose
o <g41 0 <k4+1 v and we want a <y41 7. Since we have by definition o <; 3 < ~
by induction we know a < ~. Suppose a < § <r v, § € Dom fr41. If § > 3 then
since 3 <g41 v we have fry1(6) > 3 > a. If § < 3 then § <i 3 since <j is a tree
ordering and both ¢ and 3 are <; 7. Since a <gy; [ we have fr11(J) > a. So
we have shown that <jyq is transitive. Now suppose a < 3 are both <;4; 7. By
induction a < 8. If a < § < 3. 6 € Dom fr41 then § <; v since <j is transitive
so fr+1(6) > a since @ <gy1 v. So a <p41 B and we have shown that <py; is a
tree ordering.

Ifa <8 <kpvy, a<gy1ythen a < §since <i is a tree ordering. If a < § <; 3,
d € Dom fr41 then § < v since <y is transitive so fr41(d) > a since a <gy41 ~v. So
a <g4 .

Finally we show that {a]a <x B} is closed in (3, by induction on k. This is
clear for & = 0. Suppose it holds for k and a is a limit of {a]a <g41 B}, a < 3.
Then a <j (8 by induction. Suppose a < v <; 3.~ € Dom fr+1. Then fri11(y) > o
for all @ <p41 B, a < ~. In particular this holds when a < a so fr11(y) > a since

@ 1s a limit of such a. So a <g4+1 G. -

Lemma 2. Let fi, <g arise from a stability system. If a € Dom fi, fr(a) < «
then fr(a) = largest a < a. If a €<;, — lim?, fr+1(@) = a then {ala <gy1 a} is

unbounded 1 «.

Proof. Suppose a € Dom fi. fi(a) < a. We know that fr(a) <i a, by definition of
condition. If fr(a) < B < a then 8 £ a since fr(a) # B. So fr(a) = largest a <y
a. Suppose a €<}, — Lim?, fr+1(a) = a. Then fiyi1(a) = a = im{ fiy1(a)|a <k
a, a €< —Lim}. So a = lim{frt+1(a)la < a,a €< —Lim}. For any ag < o
there must be ag <x a, ag €<g —lim such that fryi(a) > fiy1(ao) > ap for all
a <p a,a €<t —lim, a > ag. (For, we need only first choose af to guarantee
fr+1(a) > ag for all @ beyond af and then minimize fr41(ag) to get ag.) Then
fr+1(ao) <k a since either fry1(a@o) <k41 @0 <k a or frri1(ag) = ag <k a.
Suppose frri(ao) < B <t a, 3 € Dom fry1. If 3 < ag then fri1(8) > fryi1(ao)
since fry1(ao) <g41 ao. If ag < 3 then ag <y f and fr4+1(8) > frt1(ao) by choice
of ag. So fr+1(ao) <k41 @ and fry1(ag) > ag. So {a|a <g41 a} is unbdd in a. A



Lemma 3. Suppose r < g < p in P(k,l,7). Then r < p.

Proof. We need to check that a(p) <j_, a(r). But a(p) <{_, a(q) andso a(p) <j_,
a(q), and a(q) <j_, a(r). So the result follows from Lemma 1. -

Lemma 4. Suppose p € P(k,£,~) and a(p) < a < k. Then there exists ¢ < p,
a(q) = a.

Proof. For limit A € (a(p),a] define fI(\) = A. It is routine to verify that the

resulting ¢ is a condition and extends p. =

Lemma 5. Suppose pg > p1 > -+ is a sequence of conditions in P(k,£,~) of length
< k. Then there s p < each p;, a(p) =] a(p:).

1

Proof. Assume that the p;’s are distinct. Let a = [Ja(p;). We must define f}(a).
We do so by induction on k& > 0. If a ¢ Lim, fF(a) is undefined. If a € Lim?, let
fP(a) = lim (ff(a)la < a(p;), a limit). If o € Lim — Lim® then let f’(a) = a.
Assuming f}(a) is defined (and f; | a = |J ff) it makes sense to ask if a €<}

—lim. If not then f} () is undefined. if a €<t —lim® then set fiiila) =
lim (ff, (a)la <} a,aa <} —limit). If o €<} —lim— <} —1lim® then set
f,‘f+1(a) = a.

Now we show that a(p;) <{_, a. defined in terms of the above f}’s. Suppose
a(pi) <} o for all i, where k < £ — 1 and we want a(p;) <}, a. Suppose a(p;) <
B <ta pe Domf,f_i_l. If 3 < a then we can choose j so that 3 <}’ a(p;) and
then f,ffi_l(ﬁ) > a(p;) since p; < p;. If f=a then f{_,(8) < a(p;) can only result
if fi i(a) < a(p;) for some a <} a, a > a(p) but then a <47 a(pj) for large j,
contradicting p; < p;. So a(p;) §]Z_1 a for all 1.

Now it is easy to verify that p is a condition extending each p;. since any

violation created by o = a(p) would imply a violation at some a(p;) <¥_, a(p). -

Now we describe the backwards Easton iteration used to create our minimal
inner model. P is the iteration with Easton supports over L where Py = the trivial
forcing, Py = inverse limit at singular A, direct limit at regular A\, P41 = Py * Q,{
where Q is a term for the trivial forcing unless « is regular. For regular &, Q. is a

term for the following forcing in L[G], G, denoting the P,-generic: choose a pair
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(Ly,vx) with £, > 0, v« < k and apply the forcing P(x,lx.vx). Now Py IF Qy is
< k-closed and has cardinality x, so P preserves cofinalities.
Our goal is to build G = (G4 la € ORD ) so that G, is P,-generic over L and

to select ordinals a; € [1,1%), 1 < ¢* adjacent Silver indiscernibles such that (writing

Ga_|_1 = Ga *ga) .

1. i < jin I = Silver indiscernibles, p € g;. q € g, a(q) > i — fi C f for
all k. let fr = U{f{|p € ¢; for some i € I}.

2. Fori € I,{; = least ¢ such that the (0%, C),7 — ¥ stables in C are bounded
in 7, where C = the given strongly minimalizing club for V. (a is B, — X/ stable if
(Lo[B], BNa) is a Xy-elementary submodel of (Lg[B], BN 3)). Also v; = a; where
3 = U{(0%,C),i — %y, stables in C} > 0. (By convention, ag = 0.)

3. Forv eI, fr(t) =1 if k < {; and f, (1) = vi.

4. For « € I.1 <4, «o; (where <; is defined from the fi’s) and
a; € Dom fi; 41, fr;41(c;) = o where j = U{(0#.C),i — 4,41 stables in C}.

Suppose that the fi’s have been constructed to obey 1-4 above and we now
prove Theorem 2. The desired minimal, locally generic extension of L is L[{G,|a €
ORD)], witnessed by the amenable class (fi|k € w). The reason for minimality is
roughly as follows: there are unboundedly many a <j; oc (defined from the fi’s)

yet no ordinal a is <j oc for all k& simultaneously. More precisely:

Lemma 6. let i < j be indiscernibles, i(0% C),j — Sy stable, i € C and (j a limit
of (0%.C), j—g_o stables or k < 2). Theni <y a; <x j, where <y is defined from
the fi’s.

Proof. By induction on k and for fixed & by induction on j. By property 4, 1 <, a;
and clearly £; > k since i is a limit of (0%, C),i — X;_; stables (k > 1) and so {; > k
follows by property 2. So we only need to check that a; <i j.

Suppose k = 1. If a; £1 j then choose a; < # < j so that f1(3) < «a;. Then
B < j as properties 2, 3 imply that fi(j) > a;, since i is (0%,C),j — ; stable and
belongs to C'. There are no indiscernibles between ( and j as otherwise we can
apply induction on j. So 7 < 3 < j where j = I-predecessor to j. In fact j < 3 < j
since otherwise a; < 3 = 7 and again 2, 3 imply that fi(j) > a,. If fi(j) < 3 then
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since f1(j) <1 j we have £1(j) < f1(8) and hence f1(8) > fi(j) > a, contrary to
assumption. So fi(j) > B > j and by 3, fi(j) = ;.7 is (0%,0),j — X stable and
belongs to C'. And j < 3 < aj. But 7 < a; so fi(B) > 7 and j > a; since 8 < a;
and 3 > a;. So fi(3) > a;, contradicting our assumption.

Suppose the lemma holds for & and we prove it for k + 1. If a; €41 J then
choose a; < # <j j so that 3 € Dom fry1. fr+1(3) < a;. By 2. 3 we have 8 <y j.
By induction on j there can be no j such that 3 < j and j is (0%, C),j — ¥4 stable
and in C., as otherwise induction on k implies j <, a; <k J soj <t jand B <
by Lemma 1. By 2, 3 fi(j) is defined and equal to o; where j = U{(0#.C), 5 — ¢
stables in C'} and since 3 <3 j we have 3 < aj. And j < B < aj since there is no
7 such that 3 < j and j is (0%,C),j — I stable, j € C. Now a; = fi(j3) <k j so
since 3 < j we have 3 <t aj by Lemma 1. Now let £ = (;. Clearly { > k since j is
(0%,C), j— X stable, 5 € C and hence j = [ J{(0¥,C),j—X,_; stablesin C}. But if
(> kthenby4. j <pi1 a; and this contradicts fr11(8) < a; < 7. Sol =k, j <y a;
and by 4, fr+1(a;) is defined and equal to as where 7 = J{(0%.C), j — T4y stables
in C}. But i is (0%, C),j — Sy stable, i € C and j is (0%, C), j — ¥4 stable, j € C
and 7 < j soiis (0%,C), j— Y41 stable and we get i < j Thus a; < fry1(aj) < .
This contradicts 3 <y aj, fr+1(8) < a; since fry1(a;) <k+1 aj. 5

Corollary 7. Define o < oc ¢— a < 3 for cofinally many 5 <x_1 oc (where

B <o oc is vacuous). Then for each k there are cofinally many o <j oc.

Proof. By Lemma 6 if 7 is (0%, C') — X}, stable and belongs to C then i <; o (by

induction on k). The class of all such ¢ is cofinal in the ordinals. =
Corollary 8. No a s <y oc for all k.

Proof. Choose k large enough so that i = the least (0%, C) — X}, stable in C is larger
than a. Then ¢ <; oc is fi(i) = ag = 0. So a £j oc. 4

Thus we have minimality, since if (L[(Gqo|a € ORD)]. (fix|k € w)) had a tran-
sitive elementary submodel, by Corollary 7 its height a would be <} oc for each k,

in contradiction to Corollary 8.

It remains to construct the G,’s so as to obey 1-4.

6



The Construction. We build G417 = G; * ¢; by induction on ¢ € I. When

defining G« 41 we also specify a; € [i,1*), where ¢* denotes the I-successor to 1.

Gi,+1,10 = minI Choose G, to be the L[0#]-least generic for P;,, using the count-
ability of ig. Set £;, = 1,7;, = 0 = ao and choose g;, to be the L[0#]-least generic
for P(ip,1,0) as defined in L[G;,].

Gi:11.i €I First choose Gy+ to be the L[0%, C]-least generic for Py« extending
Glit1. using the < i-closure of Pjyq i+ in L[G;41], where Pi» = Piyq % Piyq.i=. (Note
that the dense sets in P;41 4+ can be grouped into countably many collections of
size 1, enabling an easy construction of a generic.) The key step involves the choice
of g;».

Choose n > 0 so that the ordertype of the (0%, C),i — ¥, stables in C is A +n,
A limit or 0, where ¢ = ¢; = least £ such that the (0%, C),i — ¥, stables in C are
bounded in i. Let @Q;. be the forcing P(:*,¢ + 1,a;) as defined in L[G;+], where
7 = U{(0%,C),i — Ty stables in C} > 0. Let py € Q;» be the “condition” defined
by alpo) =i, f1° 1i = U{flIp € gi}. F1°0) = i if b < €, f1°() = 5 = a where
3" = U{(0%,C),i — =, stables in C} > 0. We will verify later that py is indeed a
condition in @Q,+. Choose p; < pg in Q;. to meet all dense A in L[G;+] definable in
L[G;+] from G and parametersin (1 + 1)U {j1 - jn} where j; - - - j,, are the first n
indiscernibles > i*. Also arrange that a(p;)isa <}' —limit, f{},(a(p1)) = o;. Now
set a; = a(py) and £;x = 1, v« = a;. Choose g;+ to be generic for Qi+ = P(i*, 1, ;)
over L[G;+], extending the condition p; € Q;x.

Git1.i € LimI G; = |J{Gj|j € TU}. Let Q; = P(i.4;.v,;) in L|G;] where {; is
the least £ such that the (0%, C),i — ¥ stables in C are bounded in i and v; = a;
where j = [J{(0%,C),i — X, stables in C}. Let fr |+ = U{ff|p € g; for some
j €InNi}. Then g; = Q;-generic determined by (fi [ i|k € w). We will verify later
that (fi [ 1|k € w) does indeed determine a );-generic over L[G;].

Lemma 9. Assume that the verifications claimed in the construction can be carried

out. Then 1-4 hold.

Proof. Everything is clear, with the possible exception of the first statement in 4:

i <¢; a;. But note that in the construction of Gi»41 ¢ = a(po). a; = a(p;) where
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p1 < po in P(i*.4; + 1, ;) for some j. so we're done by the definition of extension

of conditions. =

Lemma 10. By induction on 1 € I :

(a) gi is well-defined and Q;-generic, where Q; = P(i,4;,7i) as interpreted
by G;.

(b) Define po by: alpo) =i, £1° i = ULfIp € 9ok, F1°0) = i if b < &,
Z,O(i) = ;. Then pg 1s a stability system.

(¢) Lemma 6 holds for indiscernibles < 1.

(d) If po is defined as in (b) then po € Q;», as defined in the construction.

Proof. (a) This follows by induction unless ¢; > 1 and there is a final segment
io <11 < -+ of the (0%, C),i—%,_; stables C of ordertype w. We may also assume
that 4 is big enough so that j = |J{(0%,C),i — %y, stables in C} = [ J{(0%,C), 4, —
Yy, stables in C} for all n. Note that ¢;, = ¢; — 1 and the ordertype of the
(0%.C),in — Yy, stables in C = A+ n' with n < n’ < w, X limit or 0. By
construction, pi' meets A in L[Gx ] defined from G+ and parameters in (i, + 1) [J
(least n indiscernibles > i% ) where A is dense on P(i}, {;,7;) and p7 is the condition
in g;» with a(p) = a;,. By an inductive use of (c), in <]Zio_1 a;, <Z,O_1 I
for all m > n, where pg is defined as in (b). So ay, <Z,O_1 a5, <]Zi0_1 --- and
py > pi > pi >+ in P(i,4;,7;) determine the generic g; containing the pJ'’s.

(b) The genericity of g; established in (a) implies that 7 is a <Z,O_1 —lim? and

2°(7) is determined correctly by fr°(vy), v <t°, i, v a <t°, —lim, for £ < {;. So

po obeys the requirements for a stability system.

(¢) The proof of Lemma 6 for indiscernibles <7 only used the facts that pg is
a stability system and 1-4 hold <. So we are done by Lemma 9 through .

e must verily that a; < 1 1n the definition of g;=. 1s follows from (c).
d) Wi ify th 153_1" he definiti f This foll f



