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The purpose of the present paper is to establish the following strengthening of
Jensen’s Coding Theorem.

Theorem. Suppose V = L[A] where A < ORD and GCH holds. Then there is a
cofinality and cardinal preserving forcing for producing a real R such that
V[R]=L[R] and A is L[R]-definable from R. Moreover we can require R to be
minimal over V: if x « ORD belongs to V[R], then either x € V or R € V[x].

The first part of the Theorem is Jensen’s Coding Theorem (see Beller—Jensen—
Welch [1]). Thus our goal is to establish the Coding Theorem using branching
conditions, which are suitable for showing minimality. Minimal reals were first
constructed by Sacks [6] using forcing with perfect trees. Our forcing conditions
are obtained by replacing the building blocks R® of Jensen’s forcing by forcings
constructed out of perfect trees. A peculiarity is that our notion of ‘path’ p
through such a tree of height x does not require that p | y belong to V for y < k.
This is necessary as it is easily shown that if R is minimal over V, p: k— 2 belongs
to V[R]—Vand k> X,, thenp [ vy ¢ V for some y <k.

Our Theorem has some coroliaries concerning reals which are minimal over L.

Corollary. There is an L-definable forcing for producing a real R which is minimal
over L but not set-generic over L.

Proof. Let Q be the forcing that adds a Cohen subclass of ORD using
constructible conditions p: y— 2, vy € ORD. Consider Q * P where P arises from
the Theorem applied to (L, A), A = the generic class added by Q. Note that A is
not L-definable. We now show that if R denotes the generic real added by Q * P,
then R is not set-generic over L: Suppose ¢(x, R) is a formula such that p c A iff
L[R]E ¢(p, R) and that LIR] = L{G] where G is generic for a set of conditions
R e L. By the Truth Lemma pc A iff 3re Grigr¢(p, R) and thus for some
fixed rye G, rylbgr ¢(p, R) for class-many p. Thus p c A< 3p’ rylkgr ¢ (p’, R) and
p cp' and we have contradicted the fact that A is not L-definable. O
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It was shown by Jensen [5] that if 0% exists, then there exists a real R e L[0%]
which is not set-generic over L. By imitating that construction we can obtain the
following.

Corollary (to proof of Theorem). If 0% exists, then there is a real R which is
minimal over L but not set-generic over L.

Our proof will be presented in stages. Initially we shall assume that A ¢ ;.
then we consider the cases where w, is replaced by w, and w,, ., before turning to
the general case, where A < ORD is a class.

Some Notation. (a) We use * to denote concatenation of sequences. Thus
o*1(i)=0(i) for i<length(oc) and = 7(i —length(o)) for length(o)<i<
length(o) + length(t). Also, %0, o*1 denote o*(0), o*(1).

(b) We confuse sets with their characteristic functions. Thus B(i)=1if i e B,
=0ifi¢B.

(c) For R c w, (R), denotes {m | 2"3™ e R}.

1. Minimally coding a subset of o,

Assume that A ¢ w,. In this section, we shall establish the theorem in this
special case. (This was done independently by Groszek under the extra
hypothesis that 2“ < L.)

For this purpose we use a technique called ‘canonical coding’: To each real R
we will define a canonical sequence of perfect trees T for an initial segment of
ordinals @. R will be a path through T2 whenever it is defined, and in fact 7% will
be defined for all & < w, for the desired real R. Then we code A by: a e AR
‘goes right’ at large enough even levels of T (this is defined precisely below).

This strategy does lead to success if we make an extra assumption about 4. We
say that A is efficient if B < w,— B is countable in L[A N B]. Our assumptions do
not imply that an efficient A exists. If A is efficient, then we can use conditions
which are perfect trees T such that for some o (called the rank of T),
R € [T]= {paths through T}— T =TRX and (B <a— B €A iff R ‘goes right’ at
large enough even levels of TF). The efficiency of A is used to show that for
a’'>a, T can be extended to a condition T’ of rank «'; we need that «' is
countable in L[A N a'] to inductively fuse countably many extensions of T to
conditions of ranks unbounded in &' (for limit a').

If we cannot assume that A is efficient, then the coding must be modified. The
idea now is to arrange that our generic real code not A but instead an efficient
Bg < o, such that A =even(Bg) = {a |2« € Br}. Thus a condition should be a
perfect tree T on  such that if R is a branch through 7, then R codes some
Br N |T| which is efficient through |T| and such that {a |2« € Bz N|T}} is an
initial segment of A.
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Note that our forcing is very ‘thin’ in the sense that if R is a branch through
some condition T, rank(T) = a, then T = T% is uniquely determined. The way in
which this is done is to use the L[Bg N a]-least counting of a to construct TR as a
fusion of finite unions of ‘canonical’ conditions T3, < a. We also use a {-like
construction to anticipate fusion sequences that must be considered to show that
our forcing preserves w, and produces a minimal real.

We are ready to begin the definition of the forcing R* for minimally coding A.
Perfect trees on w are defined to be collections T of finite functions s : |s| — 2 with
the properties that

seT—3t,LeT (sctyNt,, t1(n) #ty(n) for some n)

and
seT,tcs—teT.

A real R c w is a branch through T if
Re[T]={S|cs I neTfor all n}

where cs = the characteristic function of S. If T is a perfect tree and s € T, then
(T), is the perfect tree {te T | tcsorsct} and (|s|| denotes the cardinality of
{t|tcsandt%0,tx1eT}.

We define R%, the collection of conditions of rank <a, by induction on
a < w,. We then define the desired forcing R* as the union of the R4, a < w,,
and for T € R” we write |T| = a if T € R4 — R .. The notion of extension for R4
is defined to be inclusion: T, is stronger than 7, if T} ¢ T, (in which case we write
I,<T,) Alsodefine I, <, Lif Ty<sT,andseT,, |s| <k—seT,.

Simultaneously with the R% we shall define for certain reals R a canonical
condition T§e R,. The condition T% is defined whenever R e[T] for some
T e R; — RZ,. We say that T is canonical if T = TX for all R € [T].

We also want certain closure properties for the R}, @ < ,. In fact, R? is
obtained by closing R%,U R4 under the operations (%), (**) where R%, =
\U{R7 | B<a} and R, = the canonical conditions in R% — R%,. (%), (* *) are
defined by:

() TeR,, seT—(T),eR%,

(**) T,,..., T,eRE>T,U---UT, e RA.

We will also need to make use of a {(E)-sequence where Ec Ey={a < w, | a
is countable in L[A N «]} is defined below.

Lemma 1.1. E, is stationary.

Proof. If C is closed unbounded, let M be the least elementary submodel of
L,,[A] containing A and C as elements. If a=M N w,, then o € C and a € E,
since there is a counting of @ in Ls,,[A N «] where Ls[ANal=M. O
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A ordinal « is A-locally countable if § < «— B is countable in L,[A]. Now let
E=EyN{a|ais p.r. closed and A-locally countable}. Then E is stationary and
we let (S, | @€ E) be the canonical {(E)-sequence from [2]. Thus S, c & for
aeE and if X c w,, then X N o« = §, for stationary-many o« € E. We also have
good definability properties for (S, |a e E): If aeE, then (S3|fe ENa) is
definable over L,[A] and S, € L,[A N «] where y is the least p.r. closed ordinal
greater than « which is A N a-locally countable.

We can now begin the inductive definition of the R4, o < w,.

Case 1: «=0. If s,,...,s, are finite strings, then (2°%), U---U(27%),
belongs to R and these are the only elements of R§. For any real R, T§{ =2<¢,
so R3 = {27“}.

Case 2: =B +1. Let T € R5. We describe the extensions of T in R%. Let
Split(T)={aeT |a*0,a*1e T} and let f:2=“— Split(T) be bijective so that
f(a*0)2f(a)*0 for all a (fis unique). Define T, T; to be T, = {a | a c f(b) for
some b €2<%, b(2i)=j for 2i<|b|}. We now define T¥ for k € w, i<2%, by
induction: To define T¥, i <2* first list all subsets x of {a € 2= | length(a) = k}
as xg, X4, - - - for each x; choose subtrees T'(i) <, T so that no T(i) shares a path
with any T%', k' <k, nor with any other T(i"), and so that

aexi—>(T)mcTh, ae2 —x—>(TM))wc T

Then add all the T(i) to R% if B is not even and if B =2y, then add T (i) to R iff
(x;=2% yeA or x;=0, y¢A). Set Tf¥=T(i). To obtain R% close R2,UR:
under (*), (* *).

Case 3: « limit, a ¢ E. Our goal here is to extend each canonical T € R4, =
U {R% | B < a} to a canonical condition in R} — RZ,. (It then follows easily that
every condition in R%, can be extended to a condition in R — R%,.) Thus it is
important to arrange that if 7* is added to R%, then T* can be recovered
canonically from each path R € [T*] (so that T* will be canonical). We achieve
this by insisting that a final segment of Bg N & is constant for R € [T*] and that
Br N @ codes the construction of T*, where Bz N « is the predicate coded by R:
BeBrNa< B<aand R goes right at large enough even levels of T§, where R
goes right at level ion TifaeT, acR, |la]| =i—a*1cR.

Given a real R we first define what it means for Bz N « to code an w-sequence
af<a® <. .. cofinal in a. Define R* = {n | 2(A + 2"3") + 1 € By for unboundedly
many 2(A+2"3)+1<a, A limit or 0}. Note that R* depends only on a final
segment of B N {2+ 1| B <a}. If a is countable in L[R*] and 0 ¢ R* say that
Br N a codes the w-sequence af<af<--- defined by: (af|i<w) is the
L[R*]-least increasing w-sequence cofinal in a such that « a limit of limit ordinals
— aF a limit ordinal for all i. This extra condition on the a’s will be useful in the
proof of extendibility.
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Now pick an ordinal B < & and an integer k € w. Let n be least so that g < a¥
and define T,= T, = - - as follows: To = L[A N &, R*]-least canonical T <T§ in
R? such that T<; T§ and S € [T]— Bs and By agree on [B, &F). If Ty is defined,
then Ty, = L[A N &, R*]-least canonical T <T, in Rje,, ., such that T<g,,,, T}
and S e[T]— Bs and By agree on [af,, af,,,)). Let T*(B, k)= {T; | k<
w}.

Now include in R? all perfect trees T such that T € Lg[A] where B is least so
that 8 > a and B is both p.r. closed and A-locally countable, and for some B < «,
kewandall Re[T], T=TR(B, k) as built above. If R € [T} for such a T, then
TR=T. Note that TX is uniquely determined as ({TX |no<new} for
sufficiently large no. Then R% is obtained from R%, U R4 by closing under (*),

(%),

Case 4: & limit, o € E. We treat this case as in Case 3 but with one change.
First see if S,, obtained from the ((E)-sequence (S, |a€E), is of the form
U{{i} x D, |ie w} U{T;} where T, € RZ,, D; is open dense on R%, and in fact
|IT|<a—3T' =, T, |T'| < « such that T’ € D;. (We identify L,[A] with « so that
the previous set can be viewed as a subset of a.) If not, proceed exactly as in
Case 3. If so, proceed as in Case 3 except add to R4 an additional condition T,
described as follows: Let ay<a; <--- be the L{A N a]-least w-sequence cofinal
in « and inductively define T,., to be the L[AN a}least T=<, T, such that
{T|= ay, T € D, and for some limit A= ay, 2(A+3") + 1€ Bg for all R e [T}, for
all n<k. The purpose of the last clause is to guarantee that if T=\{T; |k <
w}, then Re[T]—>0eR* (R* as defined in Case 3). Now add T to R and
obtain R% by closing R2,URZ under (), (**). For Re[T], T®=T. This
completes the construction of the R%, «<w;, and hence that of R”=
UA{RS | a<wy}.

Remark. We claim that the tree TX (and hence AN a) can be recovered
uniformly from R in L[R], for all R such that R € [T] for some T e R4 —R2_. Of
course T§ is just 2= If a=p+1, then given T} it is easy to compute
T8, =T~

If « is a limit ordinal, then first test o € E using ANa. If ¢ E, then TR is
easily determined from Br N a, as described in Case 3. If o € E, then compute
R* from Br N « as in Case 3 and see if 0 € R*. If not, then TX is computable from
R as in the case « ¢ E. If so, then TX can be computed if we know S,, Bz N & and
AN a. But all three of these can be determined from B N « in L[Bg N «] due to
the facts that S, e L[ANa], AN a=even part(Bg Na). As Bz Na can be
computed in L{R] we are done.

The main things to show about R* are Extendibility and Fusion.

Lemma 1.2 (Extendibility). Suppose T € R* and |T|< a < w,. Then for any l € »
there exists T' <, T, |T'| = .
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Proof. By induction on a. Obviously we can assume that ¢ #0. We can also
assume that T is canonical, as otherwise write T =(Ty), U---U(T,), where
s; € T, and T is canonical; then choose ' = max({, ||soll, . .., lis.|) and let T/ <, T;
for each i, |T/|=a. Then T' = (Ty),, U - - - U(T,),, is as desired.

To successfully carry out our induction we must prove somewhat more than
what is stated in the lemma. We inductively define the notion “b c[|T], &) is
T-special at «” and prove by induction on « that T canonical, |T|< a<w,,
b c[|T], &) T-special at @—> there exists a canonical T’ =<, 7, [T’| = a such that
R e[T']|— BxN[|T|, a) =b. (We shall also have to prove the existence of such
b)

If « =|T|, then ¢ is T-special at a.

Suppose a = + 1. Then b c[|T|, ) is T-special at « iff b-{f} is T-special at
B and B=2y— (B eb iff ye A). By induction we can extend T to a canonical
T*<,T such that |T*|=p8 and Re[T*]=>BxN[|T|,B)=bNp. So we can
assume that |T| = § and we must show that

(a) B odd implies there are canonical T, T1 € R, such that T; <, T, R € [Ty)
(R €[T1], respectively)— R goes right at large enough even levels of T (R goes
left at infinitely many even levels of T, respectively), and

(b) B=2y implies that if yeA (if y¢ A, respectively), then there exists
Ti<,T (To<,T, respectively) in R4, such that R € [T1]— R goes right at large
enough even levels of T (R € [To]— R goes left at infinitely many even levels of
T, respectively). But an inspection of the construction of Case 2 reveals that
conditions T, T, <; T were added to R'§+1 so as to meet the above requirements
on Ty, Ti.

Suppose ‘T-special at §’ is defined for all B < & where « is a limit ordinal <w,
and for <a, B>|T| and b c[|T|, B) T-special at B, T canonical— there is a
canonical T'<, T, |T'|=8 and Re[T’]—= BxN[|T|, B)=b. Define R* as in
Case 3 with By replaced by b c[|T|, «). We require for b to be T-special at &
that « is countable in L[R*] and 0 ¢ R*. We also require that b N a,, is T-special
at a, where n is least so that B=|T|<a, and ap< &, <--- is defined as was
aR < aR<-..in Case 3. Let T, = L[A N a, R*]-least canonical <, T in R}, such
that R e [T]— Bz N[iT|, a,) = b N a,. Then we also require that b N [a,, &,.1)
is Ty-special at a, ;. Continue in this way to define (7, | k € @) and require that
b N\ [&yik> Xniis1) is Tr-special at &, ... Finally we insist that b € Lg[A] where
B> « is least so that § is p.r. closed and A-locally countable. This completes the
definition of ‘T-special at a’.

We must show that T can be <,-extended to a canonical T’ e R such that
Re[T']— BxN[|T|, @) = b, whenever b is T-special at «. But define To=T, >

. as in the preceding paragraph using b and let T'=\{T; |k<w}. If
R €[T’], then Bz N[|T|, &) =>b by construction. And clearly T* = T* where T
is defined as in Case 3; T' € Lg[A] when > ais p.r. closed and Lg[A] is locally
countable, since b € Lg[A] for such B. Thus by definition T'eR% and T’ is
canonical.
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Finally it remains to show that if | 7| < a, then there exists b < [|T|, a) which is
T-special at a. This is shown by induction on «. We can assume that « is a limit
ordinal. The first step is to define b N {2y | y e ORD} so that if 2y €[|T), a),
then y € A2y eb. Next define bN {2y +1|y e ORD} on an w-sequence so
that 0¢ R* = {n | 2(A +2"3') + 1 € b for unboundedly many 2(A +2"3) +1<a, 4
limit or 0} codes « and R* € Ls;[A] when 6 > & and 6 is p.r. closed, A-locally
countable. We have now determined the sequence @y < a,<--- cofinal in « as
we determined af < af - - - in Case 3.

Now let n be least so that |T| < &,. Consider b N «,,. We want to arrange that it
is T-special at a,,.

As we can assume that « is a limit of limit ordinals (otherwise the construction
of b is easy by induction and the definition of T-special at successor ordinals) we
know that a, <a,,,<--- are limit ordinals; also note that we have only
committed ourselves thus far on finitely many ordinals from {2y + 1|y < a,,} for
each m=n. Now fill in b N a, so as to be T-special at «,. We assume here
inductively that for B <a and |T| < there exists a T-special set bg < [|T|, B)
which agrees with a given finite assignment on {2y + 1 e{{T|, B) | y e ORD}. (It
is clear that this inductive hypothesis is being maintained at «.) Next define
Toe Ry to be L[A N a, R*]-least so that T; is canonical, T <, T and S € [T)]— Bs
and b N «, agree on [|T|, a,). The next step is to fill in b N [a,, a,,,) so as to be
Ty-special at a,.;. Then define 7;<,,, T, as before and make b N[a,.;, a,+2)
Ti-special at a,.,. After w steps one obtains the desired b. (One should also
avoid including any new ordinals in b N{a,,, a,.4,) of the form 2(2 +273) +1
for m <m, so as to not alter the definition of R*.) O

In order to state the Fusion Lemma we make a definition: A set D c R” is
n-dense below Tif T'<T—-3T7"<,T', T"e D.

Lemma 1.3 (Fusion). Suppose T € R* and for each n, D, c R* is n-dense below
T and open. Then there exists T' < T such that T' € D, for all n.

Proof. As we have insisted that T € R — T € Lg[A] where B> « is least so that
Lg[A] is locally countable and admissible, ¢(E) implies that we can obtain o € E
such that S, is U{{i} x(D,NL,[A))|iew}U{T} and R*NL,[A]=R2..
Then by the construction of Case 4 we added T'<T, T' € R% such that T' € D,
for all k. (Note that the technical restriction on the T;’s in Case 4 for
guaranteeing R*=w for Re[T]| can be satisfied, using the proof of the
Extendibility Lemma.) 0O

Using these lemmas we can complete the proof of Minimal Coding when
V =L[A], A c o,. Define R; c w for R*-generic G by the equation {Rs;}=
M {[T]| T € G}. By Lévy absoluteness we know that if R € [T], then a e A <
R goes right at unboundedly many even levels of TX¢ for all o <|T| and thus by
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Extendibility this holds for all o <®,. We can now define ANa, TR by a
simultaneous induction inside L[R;] and hence A € L[R]

Fusion can be used to show that w, is preserved by R; and that R is minimal.
For the former suppose TI-f:w— ; and let D, ={T'<T|seT', |s||=n—
(T")s Ik f(n) = a for some a}. Clearly D, is open and n-dense below T for each n
so by Fusion there exists T'<T, T'e D, for all n. But then 7" I+f is bounded.
For the latter suppose T IFx c ORD, x ¢ L[A] and let D, ={T'<T |s,,s,€ T,
lIs1ll = lls2ll = n, s,#s,— for some &, ((T'),,Fa@ex, (T'),,IFa¢x) or (T'),, I
a¢x and (T'),,F a €x)}. Then D, is open and n-dense below T for each n so
there exists T' < T, T' € D, for each n. But then T' I R; € L|x].

As cardinals >w, are clearly preserved, this completes the proof of our
Theorem when V = L[A], A c w,.

2. Minimally coding a subset of o,

Assume that A ¢ w,, V = L[A] and 2° ¢ L, [A]. In this section we show how
to minimally code A by a real. This construction reveals the main ideas in the
proof of the full theorem.

The basic approach is analogous to Jensen’s in that we will code A by a subset x
of w,, which in turn is coded by a real. Coding A by x could be accomplished
using a forcing analogous to the forcing of Section 1; however, the need to make
R minimal requires us to mix this with the forcing for coding x into R.

It is now clear that x cannot result from a forcing with w;-trees in the usual
sense, for such a forcing would produce an amenable y ¢ w,; i.e., a y with the
property that y N B e V for all 8 < w,. Instead we must simultaneously define the
‘generalized trees’ T for coding A into x, a ‘path through 7’ and the canonical
trees ¢ € RT of ‘rank a’ for coding AN a and a ‘T | a-path’ x® | ainto R. Then T
assigns to each condition ¢ € RT two ‘terms’ for strings gy, 0;. The idea is that if R
is generic, then R canonically recovers ¢ € R, such that R €[¢] and then R codes
either (x® | @) * gy(R) or (x® | @) * 0,(R). So in a sense T dictates possible ways
of extending a branch through 7 [ &, but where that branch may possibly fail to
belong to V; the condition ¢ in R completely describes a branch through T |
for each R € [¢].

The trees that comprise R” come from the ‘universal’ collection of trees R*,
used to code branches through any of the various ‘generalized trees’ T. The
inductive construction of R*=J{R} | a < w,} is similar in outline to the
construction of Section 1, but there are several major differences. We must
abandon the idea of using a ‘thin’ set of conditions, in the sense that we now have
that R, is uncountable for & = w. We also handle fusions quite differently, due to
the lack of {. Instead we make a more explicit guess at the collapse of an
elementary submodel that could arise in a fusion argument. The Recursion
Theorem is necessary both for guessing at the collapse of the final forcing #* and
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for coding an index for a fusion sequence into each path through the tree
resulting from that fusion.

The inductive construction of R* ={_J {R4% | @ < w,} is also close in outline to
that of Section 1, the major differences arising from the necessity of dealing with
ordinals of uncountable cofinality. For this purpose we use 0. In addition we
must anticipate fusions as outlined in the preceding paragraph. There are two
types of fusion here, the usual kind as well as those obtained by successively
thinning the extensions of nodes on a fixed level of a given generalized tree.

Now for the construction of R*. Let i, be an index for both the desired forcing
P* as a ,(L,,[A], A)-set with parameter ®,, together with a description of how
A is coded by a P*-generic real. The ‘canonical’ trees in R:— R%, form R%,
which yields R} when added to R*,=\J{R}|B <a} and closed under the
operations:

(*) teR;, aet—(t),€R}, and
(*%) tg,...,t,eRE=U{R;|B<a}—>tU---Ut, eR%

In Case 3 we will refer to ‘acceptable terms’. This notion will be defined at the
end of the construction.

Case 1: a=0. R consists of all trees of the form (2=%), U---U(2~%), where
a, - - - a, are finite strings. For any real R, t§ =2“so Rg = {2}.

Case 2: «=f+1. Let te R;. We describe the extensions of ¢ in R%. Let
Split(f)={aet|a*0,ax1er} and let f:2°— Split(r) be bijective so that
f(ax0)2f(a)*0 for all a (f is unique). Define ¢, t, to be t;={a|a = f(b) for
some b € 2<%, b(2i)=j for 2i <|b|}. Suppose the tf have been defined for all
O0<k'<k, i<2¥. To define the ¥, i<2%, first list all subsets x of {ae
2= ) length(a) = k} as x,, x,, . . . and for each x; choose subtrees t(i) <, ¢ so that
no (i) shares a path with any ¢, k' <k, j <2%, nor with any other ¢(i'), and so
that a € x;— (t()))yy S 11, @ €2° —x,— (t({));(a) = to- Then add all the (i) to R}
if B is not even and if B =2y, then add t(i) to R} iff (x,=2%, ye A or x; =9,
y ¢ A). Set tf = t(i).

To obtain R close R%,U R}, under (*), (* *).

Case 3: a limit, L,[A] is not locally countable. In this case we are not
concerned with fusions, only with guaranteeing extendibility to level a.

Given a real R define R*= {n|4(A+2"3")+3 e B® for unboundedly many
such ordinals <a, A limit or 0} where B” is defined as follows. If ¢ is an w-tree,
Re[t], then we say that R goes right at level i on ¢t if aet, |a| =i,
ac R—a+*1cR; otherwise R goes left at level i on t. Our new coding is given
by: 6 € BR iff R goes right at sufficiently large even levels of 5. (We are reserving
the ordinals 48 + 1 < « for coding an x ¢ @, which can be used to code A N w,.)
If « is countable in L[R*] and 0¢ R*, we define af<af<--- to be the
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L{R*}-least w-sequence cofinal in a such that « a limit of limit ordinals— each
«Ff is a limit ordinal.

Now pick B < &, k € , an acceptable term & and an ordinal & <, & limit or
0. Let a, denote aX. Choose n to be least so that B < a,, and define t,=1¢,= - -
as follows: £, = L[A ﬁ @, R*]-least canonical t=<¢¢5 in R% such that S € [t]— BY,
agree on [B, @,)— {4y +1|y€eORD} and BS(&+4y+1)=35()(y) for
4y + 1 <min(|5], &, oz) (if it ex1sts) If # is defined, then ., = L[A N a, R*]-
least canonical f<, ;. % in R} . such that Se[f]—BS5, Bf agree on
[@nii> @nirs1) — {4y +1|y € ORD} and BS(&+4y +1)=6(S)(y) for 4y +1<
min(|3], @41 — &). Let t2(B, K, 6, &) = {t, | k € ®} when all the ¢, exist.

Include in R* ll erfect trees ¢ such yhaf forscome B £ & & and all R e m

Aialaralan i1 vy ail errect tre (S 4 WL SV P& &, O, & ant an KT

t= tR(B, k, o, &) as bullt above. Then R} is obtained from R, U R by closmg
under the operations (*) and (* *).

T

DR
>

Case 4: o limit, L [A] is locally countable. Two kinds of conditions are added
to R in this case. First add conditions exactly as in Case 3. We now describe the

conditions of the second kind, needed to anticipate fusions.

Given a real R we first define what it means for R to code a fusion index i € w.
In order for this to be defined the following conditions must be met. Let n = « be
least so that « is not regular in J,,,[R]; we must have that 7 exists and k=2
where k =least k such that « is 2, (J,[R])-projectible. Now using the index i,
fixed at the start, we must be able to decode from R a predicate A c (w,)""*! so
that R is P4-generic over J [A]. (Here we use P4 to denote the forcing for
coding A into a real over J,,[A ]- Also we only require genericity for predense
D eJ,[A].) We also require that 3, _,-projectum(J, [A]) = (w,)"""! = (w,)""'% and
so we can form the X _,-Master code structure o for J,[A]. Thus X = & N ORD
is Xy(sf) iff X is Z,_,(J,[A]). Now let p be the least parameter for X, projecting
o into (w,)’"") and let B, < B, < - - - be the first w ordinals g < (wz)’ "4l such that

2+ L1 — Clrnlama hiill ~AF 11TRITSf 7Y in of Wa raanira tha ifrR

P v:llﬂ—al-onUlClu nun 0l ¥ v pu Py il &E. VW require tnat \ J i | 1< uif =

(w,)"4). Let H%=X,-Skolem hull of BU {q, p} in o and define a, < a; <

by ao=H)N wl, @, =H% . Nw,. We assume that U {a; |i<w}=a. Let
o' = 3,_;-Master Code structure for J,[A] and let & : (w,)""*)— @ be a canonical
3,(d")-injection.

For R to code a fusion index i when the conditions of

=Y
3"
D
»]
=
(’D

are met consider the sequence iy, i,,... defined by i, —least i<w such that
a1 € BR; we require that 0 € R* and that the i, are defined and equal to i
for sufficiently large k. Then the key requirement is that the X,(s{’)-set defined
by the X)-formula with index A~ I({) is a fusion sequence to=t,=,4,=, - of
(not necessarily canonical) conditions in RZ,

This completes the definition of “R codes the fusion index i”. If the above
conditions are met then we set ® =) {t li<w).

AT o sxrnimd b A wagi: P I N D* laiit saaic PRy .

1
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that an index for each such fusion ¢* can be canonically recovered fro
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will be able to show with help from the recursion theorem that the addition of
these fusions does suffice to establish the fusion lemma for 2.

We can now describe the second type of condition that must be added to R%.
Add ¢ if for all R € [¢] all of the above conditions hold and ¢ =, where " is
defined as above. Finally obtain R} by closing RXU R*, under the (*), (* *)
operations. .

This completes the construction of R*=|{J{R%|a<w,}. For teR* let
«(t) = unique « such that z € R; — RZX,.

As in Section 1 we can check that t € R*—t = (t,),,U - - - U (t,,),, where the ¢’s
are canonical and q; € f;. Also a real can belong to at most one canonical ¢ € R,
so t8 is well-defined (for any a < w,).

We now clarify the above construction by discussing acceptability.

Acceptable terms

A term o= o(R) is an L[R, Ry]-name for a string in 2=*', where R denotes a
real and R, is a real parameter. We also assume that there is a fixed ordinal
lo| < @R such that length(o(R)) = |o| for all reals R. The class of acceptable
terms is defined inductively as follows:

(a) Any constant term o(R) =S, (S, a fixed element of 2=*') is acceptable,
provided length(S,) is a limit ordinal.

(b) If 0,, o, are acceptable, |o,| = |0,| and a € 2%, then o is acceptable where
a(R)=0(R)ifacR, =0,(R)ifadR.

(¢) If o, is acceptable and o, is acceptable, then o, * g, is acceptable where
o, * 05(R) = 0(R) * 05,(R) and * denotes concatenation.

(d) If 0y, 0,, . . . are acceptable and o, c 0, for all n (i.e., 0,(R) < 0,,,(R)
for all R), then o is acceptable where o(R) = {0,(R) | n < w}.

We can establish extendibility for R* like we did for R* in Section 1, using the
notion ‘t-special at a’ for b c[|f|, ). We will need, however, a version of
extendibility that is stronger than what is established there, in order to facilitate
our study of the forcings R, T a generalized tree.

First we need to define the notion of a type 1 extension t =t* in R*. These are
extensions which arise by applying any of the cases in the construction of R* with
the exception of the second half of Case 4 (where fusions were added). For t € R*
recall that a(r) denotes the unique « such that t € R — R%,. We define “t=¢* is
type 1”7 by induction on «(t*) as follows. The trivial extension ¢ =¢* is type 1. If
a(t*) =P +1, then ¢ =¢* is type 1 if there is a sequence ¢ =t' =t* where t = ¢’ is
type 1 and a(t') = B. Finally, if a(t*) > a(?) is a limit ordinal, then ¢ = ¢* is type 1
if "= ¢=t* where t* arises from ¢’ as in Case 3 or as in the first part of Case 4
(the nonfusion case), but also where the conditions ¢, arising there have the
property that t =tf=¢,=¢,=--- are all type 1 extensions. An examination of
the proof of Lemma 1.2 yields the following.

Lemma 2.1. Suppose t € R*, k € o, o is acceptable and a<at) is 0 or a limit
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ordinal. Also suppose that R e[t]— BX(&+4y+1)=0(R)(y) for 4y +1<
min(|o|, &(t) — &). Then if « > a(t), there exists t* = R% such that t* <, t, t =t* is
a type 1 extension and Re[t*]—> Bf(a+4y+1)=0(R)(y) for 4y+1<
min(|o|, o — &).

Proof. We follow the outline of the proof of Lemma 1.2. First suppose that « is a
successor ordinal. Then the result is clear by induction unless ¢ falls under (b) in
the inductive definition of acceptable term. In that case the following Sublemma
shows that Case 2 of the construction of R* was designed so as to allow the
desired extendibility. '

Sublemma. If ¢ is an acceptable term, then for each « <|o| the function
R~ o(R)(«) is a continuous function from 2 to 2 and hence {R | o(R)(a) =0}
can be written [(2=°),,U - - - U (27?), ] for some a, . . . , a, € 27°.

Proof of Sublemma. Clear, by induction on the formation of 0. O

Finally, if « is a limit ordinal, then the existence of ¢* follows as in Lemma 1.2
using a ‘t-special at &’ set b < [«(t), @) to obtain ¢* so that R € [t*]— B, b agree
on [a(t),@)—{4y+1|yeORD}, BR(a+4y+1)=0(R)(y) for 4y+1<
min(|o], @ — &). Also as no reference is needed to Case 4 of the construction of
R*, all extensions as above are in fact type 1. O

Also the following can be checked by a simple induction.

Lemma 2.2. Suppose t=t* is a type 1 extension in R*. then for each «ae€
[a(t), a(t*)] there is a unique t' € R}, such that t =t' =t*.

The preceding lemma is needed to define an important equivalence relation on
elements of R*.

The equivalence relation ~. If ¢,, £, € R*, then t, ~t, provided a(t;) = a(t,) and
either t, = t, or there are 7,, f, € R* such that:

(a) =1, I,=1, are type 1 extensions,

(b) L~ 172,

(¢) R, S €[t;]U[t,]— B®, BS agree on [«(f,), a(f,)) — {4y + 1| y e ORD}.

Note. The previous is an inductive definition.
Lemma 2.3. ~ is an equivalence relation.

Proof. If {, =1, [, =1, are type 1 extensions, 7, =1t,, {3 =, are type 1 extensions
and 7, ~7,, i,~1,, then by Lemma 2.2 we must have 7, =1, or I, =7,. Without
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loss of generality assume the former. Choose 7; so that a(f})= a(f;) and
f, =1 =t,, again by Lemma 2.2. Then #,~7}, as witnessed by 7,, 7,. So I} ~1;
witnesses £, ~ ;. O

The relation ~ is needed to give the proper definition of generalized tree. Tis a
generalized tree if T = ((f;, 8,) | i < w,) where:

(a) f,, g:: RT— Acceptable Terms, where R] = canonical elements of R — RZ,.

(b) |f(t)] =igt)] is a limit ordinal for all reR] and all i. In addition
£o(25°) = go(2=*) and for i >0, t€ RT: £(1)(R)(0) = 0, g,(t)(R)(0) =1, for all reals
R.

(c) If t; ~ 1, belong to R, then fi(t;) = fi(t2), 8:(t) = g:(t2)-

To complete the above definition we must define R/, R]. We define R, R/ by
induction on i. If R is a real and R € [t] for some t € R%, « limit, then define
B® N a as we did earlier and set x® N &= {y |4y + 1€ B N a}. Now R} = {2}
and RY is the (*), (* =) closure of R]. If R] is defined, then ¢’ € R}, , if for some
teR], t=t'eR aty+n Where n=|f(¢)] and moreover we have that either
Re[]—x"(a(t) + 1) = fR)0') for n'<n or Relt]—>x (a(t)+1')=
g:()(R)(n') for n’' <n. (Note that 5 is a limit ordinal so x* N (a(r) +n) is
defined for R €[t'].) To obtain RY,,, close R,; UR! under the operations (*),
(* *). Finally to define R} for a limit ordinal A take all € R* which can be
written £ =(\{t; | i <w} where t,2>t,>---, a()=U{a(t) |i< o}, ,eRE, =
U{RT|i<A} and A=U{a|reRI—-RL, for some i}. And Rj is the (%),
(* *) closure of RJURZ,. For teR” let [t| denote the unique i such that
te RT—-RZ.

Finally set R” ={J {R] |i < o,}.

Lemma 2.4 (Extendibility for R"). Suppose te R}, ke w and i <j < w,. Then
there exists t' <.t such that |t'| =].

Proof. As in the proof of Lemma 1.2 it suffices to consider ¢t € RT. We show that
there is a type 1 extension ¢' <, t with ¢’ € R, by induction on j.

If j =i, there is nothing to show. If j > i is a successor ordinal, then the result is
clear by induction and Lemma 2.1.

If j>i is a limit ordinal, then choose a cofinal w-sequence i <j,<<j,<<--:-
below j and select a corresponding sequence f=,t,=,t;=--- of type 1
extensions so that #, e R]. Let b)={4y+3 € B®|ye[a(t), a(t,))} for R e|t,]
and R*(n)={m|4(A+2"3")+3eb; for unboundedly many such ordinals <
a(t,), A limit or 0}. We can also arrange the choice of t,’s so that for n<n’,
4A+273)+3ela(t,), a(t,)), we have (me(R*(n)),<4A+273)+3ebl)
and (R*(n)), codes the ordinal «(t,). The net effect is that o = {a(t,) | n € @}
is countable in L{R*(w)] where R*(w) is defined from b3, =\ {b} | n € 0}, @ as
was R*(n) from b}, a(t,). Also choose acceptable terms o, so that R € [t,]—
BR(a(t) + 4y + 1) = 6,(R)(y) for 4y + 1 <|0,| = a(t,) — al?).
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Now we see that b=5b3| {2y <« | y € A} is t-special at . The latter implies
that we can choose a type 1 extension t'<,¢, a(t')=a« so that Re[t']|—
BR(a(t) + 4y + 1) = 0,(R)(y) for y<a—a(t), 0,=U{0,|new} and BX, b
agree on [a(t), o) — {4y + 1| y € ORD}.

We claim that ¢' € RT. To see this, by Lemma 2.2 define , so that t=1¢,=¢',
a(t)) = a(t,). Then it suffices to show that ¢, € R for each n. As ¢, ~t, our proof
reduces to the following lemma. O

Lemma 2.5. Suppose t =1y, t =t, are type 1 extensions, t,~t,and t, t, € RT. Then
t,€ R | where |t;| = the unique j such that t, € R].

Proof. By induction on [t].

If [t,| = |¢], then t = ¢, = ¢, so there is nothing to show.

If |)/=j+1>]|t, then choose #,, t, so that t=¢=¢, t=f=t, and
a(f,) = a(f,) where 7, € R]. Then as 7,~7, we have that e R]. As Re[z),
S e[t,]— B%, B® agree on [a(7)), a(t;)) — {4y + 1| y e ORD} we see that Re
[t]— BR(a(f,) + 4y + 1) = o(R)(y) for y<a(t;) — a(f,) where o= (fi(f;) or
gi(1))) = (fi(%) or gi(#,)) since I, ~&,. So t, € R/, If |t;} = A is a limit ordinal >¢|,
then the result is clear by induction and the definition of RI. O

A useful fact is the ‘countable closure’ of the collection of generalized trees. If
T;, T, are generalized trees, then we define T, < T, if R < R™.

Lemma 2.6. Suppose Ty=T,=- - - are generalized trees. Then there is a general-
ized tree T so that T = greatest lower bound of (T, |i < w).

Proof. If T | y={(f, &) |i<y) has been defined and hence so has RT, define
LO=U{fr0|new}, g0=U{g () |new}, where teR]: and T,=
((fr, gD | i< ). If T'<T, for all n, then f}.(t') 2f,(t') follows for any ¢’ € R,
where ¢’ € RY; using this it is clear that T'< 7. 0O

Coding A into x c w,: the forcing R*

We turn now to a dicusssion of how generalized trees can be used to code A
into a subset of w,. Analogously to the construction of R* we will inductively
define collections R% of generalized trees for a <w,, as well as R4 =the
canonical elements of RA—R4,. If x:w,—R* is a ‘path through 7’ for some
T € R4 — R%,, then x canonically defines the unique 7% e R%Z such that x is a
‘path through 7T7,.°

Define [T | y]=the collection of paths through T [ vy as follows. Write
T={((f,g)|i<o)and T y=((f;, &) |i<y). f 0<y<w,, then x is a path
through T |y if there exists t€ RY and R e [f] such that Dom(x) = a(f) and
x(i)=tR for i< a(t). And x:w,— R* is a path through T, xe[T], if x l a €
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UA{IT I v]| y<w,} for unboundedly many « < ;. Note that T, < T,— [T} c
(T3]

Now suppose T% is defined for all @ < w,. Fix & < w, and let T = T%,. For each
B < w, let £ be the unique element of Range(x) N R}. We say that x goes left at B
on T% if R € [x(a(th) +2)]— a(tp) + 1 ¢ BX, x goes right at B on T, otherwise.
Note that in the latter case, a(ts) + 1 € B for all R € [x(a(t}) +2))], as in general:
teR*, a(t)=p +1— B®, B® agree at B for R, Se[t].

Then x codes B* ¢ w, defined by: a € B iff x goes right at §+1 on T7, for
sufficiently large f<w,. We code A into x cw; by requiring that A=
even(B*) = {y |2y e B*}.

We should comment on the fact that some of our definitions will appear to not
take place in V, due to the need to refer to paths R € [¢], x € [T] which may not
belong to V. If ¢ is an w-tree and ¢(R) is a formula of countable rank, then
VR €[t] ¢(R) holds in V iff it holds in all extensions of V, by Lévy—Shoenfield
absoluteness. The analogous property for generalized trees 7T is false. However,
we can talk about ‘truth in all extensions of V’ using the forcing I+ for
collapsing @, to @ with finite conditions. Thus if ¢(x) has rank <@, and T is a
generalized tree, then when we say ‘¢(x) for all paths x through 7° we actually
mean | ¢(x) for all paths x through T.

We are almost ready to begin the inductive definition of R}, o < w,. We shall
need a form of O0: let (C% | & limit, @, < a < (w,)""), y c &) be a sequence so
that C? is a closed subset of a of ordertype <w,, e C,— C3N B =C%LN B and
C’, is uniformly definable as an element of Lg,)[y] where B(«a) =least § such
that Lg[y]Fcard(a) = w,, | Ch<a—cof(a) = w in Lg,[y]

And we must introduce the operation (* * %) that generates R7 from
R2,URA. First define T(¢), for T a generalized tree and t € R” by: a(f) < a(r"),
[(]N[t')1#0 >t e T(t); t,~1ty, toe T(t)— ¢, € T(t). Note that t' e R"—>t' € T(¢)
for at most countably many ¢, as an induction on a(t") shows that ¢’ shares a path
with at most countably many ¢ € R” N R’ for each & < a(¢').

Now suppose Ty, T, < T are generalized trees, t € R®N R and a € 2=, Define
T*=T(a,t, Ty, T,) ={(f}, &) | i< w,) as follows. Suppose (f}, g¥) is defined
for i <y so we have defined RI". Pick t* € T(t), t* € RI" and canonically choose
type 1 extensions t,, ¢, of £* in R™, R" so that a(t,) = a(t,), with corresponding
acceptable terms oy, o0; so that oo(R)(0)=0, o(R')0)=0 (for R e[,
R'€[t]). (If * ¢ RPN R or t* ¢ T(t), then ignore the previous.) Then f}(t*) is
defined to be o where o(R)=0o(R) if acR, =0,(R) if a¢R. Define g}
similarly, but with o,(R)(0)=1, o (R')0)=1. (If t*e T(r), t*¢R", then
fre*)=fy7'(t*) where t* € R}~ and T,={((f}, g) |j<w). If t*¢T(t), then
(F3(), g5(t7) = (f{1*), g:¢%)) where * € RY and T = ((f;, g) | i < @,).)

(* * *) is the operation that produces T* from a, ¢, Ty, T, T.

Now for the construction of the R%.a < w,.

Case 1: @< w,. R contains only one generalized tree T defined by T,=
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((f,, &) | i < w,) where f(£)}(R)=(0,0,...), g(t)(R)=(1,0,...) for i >0 and
teRE, f25°) =go(27*) =4.

Case 2: @ =B+ 1>w,. Let T € Rj. We shall describe the extensions of T in
R%. We first define two generalized trees T, T; < T so that x € [Ty]— x goes left
ati+1on T for all i<w,, x €[T}]—x goes right at i +1 on T for all i < w,.
Write T = ((f;, &) |i <w,) and suppose T, | y=((f?, g?) [i<y) is defined so
that R®c RY . To define f9, for each ¢ € R choose a sequence t =ty=1,=t,=
-+ - of type 1 extensions with the following properties: ¢, € RL .., Re[t, ]~
x®(a(t,) + 8) = furyanlt)(RI(S) for 8 <|f,.,+n(t.)l, for n=0. Then f¢) is
characterized by

IFSON= 2 | faryanlta)],

FUDR)a(t,) + 8) = fuoy4n(t.)(R)(S)  for & <|f, ,4n(t,)| and n =0.

To define g9, for each te Rf‘ choose a sequence t=t,=t,=--- of type 1
extensions as above, except that ‘n = 0" should be ‘n >0’ and R € [t,]— x®(a(t) +
8) = guDR)() for 8<|fu D), gUNRY(@() + 8) = g0 (O)R)(8) for &<
[fw-(£)]. The existence of the t,’s as well as the fact that the definitions of f, g9
do not depend on the choice of ¢,’s follow from Lemma 2.4 and the definition of
generalized tree.

Let T, = {(f?, &) | i < w,) and define T; analogously, with the roles of f and g
switched. Thus T, 7; have the property stated earlier (paths through 7; go left,
paths through 7; go right on T at successor ordinals). If § is not even, we put
both T, and 7, into RZ. If B =2y, we put T, into R4 iff y ¢ A, T, into R2 iff
y € A. Now repeat the above procedure as in Section 1, defining T¢, T =<, T by
induction on k<, (T'<, T if T'<T and R] =R for i <k. Equivalently:
T' ' k+1=Tk+1, T'<T): T)=T,, T}=T, are already defined. To obtain
TE, T* first choose T’ <, T so that [T"] is disjoint from {J {[T¥]| k' <k, i=0or
1}. This is easily accomplished by arranging that x € [T']— x goes left at i + 1, x
goes right at i + 2 for some large i < ;. Then apply the above procedure to T’
instead of 7T, but this time only modifying f}, g/ (where T' = ((f}, g |i<w))
for i>k. We thereby obtain T§, T% and x € [T§]—x goes left at i+ 1 for
k<i<w, xe[T{]—>xgoesrightati+1fork<i<w,.

If B is not even, we put T§, T% into R} for all k. If =2y, then we put T} into
R4 iff y ¢ A, T¥ into R% iff y € A. Then R is obtained from RZ, by including all
T% as above, i =0or 1, k < w, for all trees T € Rg, and closing under the (* * *)
operation described just before the start of the construction.

Case 3: « limit, a > w, but « is not of the form w,-A, A limit. Write a =+ 0
where 0<d<w, and w, divides B. Our goal is to extend each T e R%,=
U{R%|a'<a} to a condition T'eRj, arranging that 7' is canonically
recoverable from each xe[T’']. We are only concerned with T such that

Tl €8, ).
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Pick 6,<6 and 8;<w,. For any x define a sequence (T, |S,<y=<d) as
follows. T5, = T'g.5,- If T, is defined as an element of R’gﬂ,, then let T, ; be the
L[Ts,, AN «a]-least T<4.,T, in Rj.,.1 so that y e [T]— B’, B* agree on the
ordinal B +v. If T, is defined for all y <A where A< is a limit ordinal, then
T,=({T, | y<A} is the generalized tree characterized by [L]=M{[T5]|y <
A}. (See Lemma 2.6.) If the above inductive definition breaks down somewhere,
then we say that T7(8y, 6,) is undefined. Otherwise T*(d,, 8,) is defined to be
T;.

We include in R% all trees T such that for some 8,< 8, 6, < w,: T*(0p, 0)=T
for all x € [T]. Then R is obtained by taking the (* * *)-closure of R4 U R4 .

Case 4: a = w, - A, A limit and L,[A] ¥} , is the largest cardinal. In this case we
are not concerned with fusions, only with guaranteeing extendibility using the
form of O mentioned above.

Given x € [T], T € RZ, we first define x* = {5 <a |4-(8, 8') +3 € B* (where
6’ < &) for unboundedly many such ordinals <«} where (-, -) is an a-recursive

pairing on & X &. Then @< aj<-- - is defined if 0 ¢ x* and o < wi™"). Then C¥’
is defined as a closed subset of a. If C’; is unbounded in «, then let o)< a) <
be the increasing enumeration of C% . Otherwise let aj<a,<--- be the

increasing enumeration of C followed by the L[x*]-least w-sequence B, < f8; <

- cofinal in a such that | C% < B, and each B; is divisible by w,. Let y, be the
order-type of the sequence of ordinals a].

Now pick B< « and d < w,. Set T = T" and define ay<a;<--- to be the
final segment of ay< a;<--- defined by a,=least «; greater than B Define a
sequence (T, I O=<y= yo) as follows, where y, = ordertype of the a;’s.

To=L[ANa, x*|-least T'<sT in R% so that y € [T']— B”® and B* agree on
[ﬁ «y). If T, is defined as an element of R2 | then let T, 4+1 be the L{A N a, x*]-
least T' <;,, T, in RC, ., so that y e [T’ ]—>By B* agree on [a,, a,.y). If T, is
defined for all y <A <y, where A is a limit ordinal, then T, =) {T | y <A} is the
generalized tree characterized by [T]1={[T,] |y <A}. If the above inductive
definition breaks down, then T*(fB, 8) is undefined. Otherwise we set T, 9) =
T,
YWe include in R all trees T such that for some f<a, §<w,, T*(B, 8)=T
for all x € [T]. Obtain R} by closing R2,U R4 under (* * *).

Case 5: o= w, - A, A limit and L,[A]F w, is the largest cardinal. Two kinds of
conditions are added to R% in this case. First add conditions exactly as in Case 4.
We now describe the conditions of the second kind, needed to anticipate fusions.

Given x c w, we first define what it means for B* N a to code a fusion index
(, 6). Let (n, k) be least so that « is 2 (J,[A N a])-projectible; we suppose that
(n, k) exists and k = 2. Let & = 3, _,-Master Code structure for J,[A N «] and we
suppose that X-projectum(s) = a, I3-cofinality(a)=y,<w,. Actually we
suppose that the increasing enumeration of C is a 3,(«)-continuous sequence
oy <@, <--- cofinal in & of ordertype <w, where C consists of all &’ < & such
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that o’ ¢ H,. = 3,-Skolem hull of o' U {w,, p} in &, p =least p such that o is
3,-projectible to a with parameter p. Also let f:9'— w, be a canonical
3,(oA')-injection, where o’ = %, _;-Master Code structure for J,[A N a}.

Now consider the sequence <8, <- - - defined by 9, = least 6 < w; such that
4(a; + 8) + 3 € B*; we have a fusion index if &; eventually equals (0, (J, §)).
(Note that this implies 0 € x* and therefore these conditions are distinguished
from those of Case 4.) The idea is that (f, 3) codes a fusion Ty=;5, T, =5, L=
5.3 - - of length y, = ordertype{a,<a; <---}. For [, ' < w; we write T<,, T"' if
T<,T' and in addition te€ RI' —te R} or t e T'(t;) for some i, w - i =1', where
(| j < w,) is a canonical enumeration of R*. We assume that ;, ~t;, i <j—j—i
is finite. (Note that there exists a generalized tree which is a greatest lower bound
to this type of fusion sequence as ¢t € T(¢;) for at most countably many i.) We add
the results of such fusions to R4 but are careful to arrange that an index for each
such resulting T can be canonically recovered from every x € [T]. We can show
with the aid of the recursion theorem that the addition of these fusions suffices to
establish the Fusion Lemma for 24.

We can now describe the second type of condition that must be added to R4.
For any j < w, let S(j) = the Z,(4')-set with defining parameter f'(j). Add T to
R% if T is the result of a fusion Ty=;,T;=5,T,>3, -- of length y, where
|T41| = o, x €[T]— B*N & codes a fusion index (j, ) and S(j) = (T; | i < y,).
We do not require that the trees T; are canonical. Finally obtain R by closing
R4, U R4 under the operation (* * % ).

This completes the construction of R* =|J{R% | @ < w,}. As in Section 1 we
can show that if x € [T] for some T € R%, then T = T% is uniquely determined
and can be defined uniformly from x. Also any T € R% can be recovered from
elements of R4, U R% via finitely many applications of the operation (* * *). The
main thing that we wish to show now is extendibility for R*. For T e R*, |T|
denotes the unique « such that 7 € R — R%,..

Lemma 2.7 (Extendibility for R*, A ¢ w,). Suppose T € R* and |T|< « < w,.
Then for any l € w, there exists T' <, T, |T'| = a.

Proof. This is very much like the proof of Lemma 1.2, the major difference being
the use of [0 to handle cases where o has uncountable cofinality. We can assume
that T is canonical; for example if T =Ty(a, t, T, T,) where T,, T;, T, are
canonical, then T=,T' e R* where T'=T¢(a,t, T{,T3) and T;=,.T, k'=
max(/, ¢|).

We define the notion “b c|[|T|, &) is T-special at «” as follows. For any
ordinal Be(|T|, ] divisible by w, define by={5<pB|4-(8,86')+3eb for
unboundedly many such ordinals < 8}. We require that 0 ¢ bs and < (w,)"#
for all such B, that 2yeb iff yeA for 2y€e[|T|, «) and that whenever
0<8,<8,, |T|<4-(6,60)+3<4-(b,6,)+3<a then 4- (4, 8,) +3€b iff
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4-(6,6,)+3eb. The net effect is that if By, B;€(|T], «) are divisible by
i, Bo< P, then 5ﬁ0= 6},1 N B,. Clearly for any T € R* and a > |T| there exists
bc[|T|, ®) which is T-special at a. (We assume for this purpose that
y<w;— (8, y) <6+ w,.) In that case we show that there exists a canonical
T'<,T, |T'|= asuch that x € [T']—= B*N[|T|, a)=b.

If « = w,, then there is nothing to show. ¢ is T-special at w;.

Suppose & = + 1. Then b < [|T|, ) is T-special at « iff b-{B} is T-special at
B and B=2y— (B b« yeA). By induction we can extend T to a canonical
T*=<,T such that |T*|=f and xe[T*]—>B*N[|T|,B)=bNP. So we can
assume that |T'| = B in which case, Case 2 of the construction of R* makes it clear
that the desired T exists.

Suppose « = w, - y + 6 where 0 < d < w, is a limit ordinal. To see that T can
be l-extended to T’ € R so that x € [T']— B*N[|T|, &) = b, first choose T<,T
in R:‘,I.y such that x e [T]——> B*N “Tl,fU\ Y)=bNaw,-yif |T|<w,-y; T=T
otherwise. Then successively choose T'=T,=,T,=,,, - such that T;,, is the
L[Ty, AN a]-least T*<,,;T; in R% .5, so that x € [T*]— B* agrees with b at
the ordinal @,y + ¥. Then T, =glb{T; | ' <7} belongs to R% , ., for limit ¥ by
the definition of RZ in Case 3.

Suppose a = w, - 4, A limit. Define x* as we did in Case 4 but with B* replaced
by b. Then note that 0¢ x*, a<(w,)""’\. Define ay<a&,<--- as in Case 4,
where B= |T|. Let v, = ordertype{a,< a; <---}.

We note that for each i < y,, x* has the same value if in its definition B*, « are
replaced by b N a;, «;. Now define (T, |0 <y <y,) exactly as in Case 4 but with
T, 8, B replaced by T, I, b. We have that b N [a,, a,,,) is T,-special at a;, .
Now notice that for limit y, T, does in fact belong to R} as Ci Na, = Ci, and
x* has the same definition ‘at «,’ as it does ‘at a’. Thus we have proved that
there exists T’ <, T in R% such that x € [T']— B*N[|T|, @)=b, for such b. O

The forcing P*

Finally we can describe the desired forcing for minimally coding A by a real. A
condition in #* is a pair (1, T) where 1€ R" and T e R*. We write (¢, T)< (7, T)
if t<7in R" and T<T in R*. We clearly have extendibility for #* in the form
(L TeP, a<w,, B<w,—3AF T)<(, T) such that [{|=a, |T|=. Our
main goal now is to establish enough fusion for 2 so that we may show that %4
preserves cardinals and produces a minimal real. It is clear from extendibility that
a P*-generic real codes A.

We begin with fusion for R”. Fix a canonical enumeration (t; |j<w,) of R*,
as in Case 5 of the construction of R*. Recall that T’ <,, T means that T' <, T
and te RT—te R} unless te T(t;) for some i, w-i=1". A subset D of R* is
openif TeD, T'"<T—T'eD and is [, l'-dense below T, TeR* if T'<,T—
3T"=,, T' such that T" e D.

Lemma 2.8 (Fusion for R*). Suppose T € R*, | <w, and D, is I, I'-dense below
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T and open for every I' < w,. Then there exists T' < T such that T' € D, for every
' < w,.

Proof. It is here that we show that the fusions added in Case 5 of the
construction suffice. Suppose the lemma fails and let § < w; be least so that there
is a least counterexample T,!<w,, (D, |!'’ <w,) definable over Js[A]. Let
k =2 be chosen so that this counterexample is X, _;(J3[A]) with parameter w, and
let B =2, _,-Master Code structure for Jg[A]. Note that X-projectum(f) equals
w, and let p be the least parameter such that B is X-projectible to ®, with
parameter p. Let ay<a,<--- be the first w, ordinals a’<w, such that
o' ¢ H, = X-Skolem hull of o’ Uw,U{p} in B and let «={J{a;|i<w,},
o = transitive collapse of H,. Then & = %, _,-Master Code structure for J,[A N
«] for some 7).

Now notice that we are exactly in the situation of Case 5 of the construction of
R%. Let o’ = 3, _;-Master Code structure for J,[A N «a); note that &' N ORD =
@, Z,-projectum({’) = w,. Now pick any j <w,. Form the sequence Tp=,,T;
2z, L,=,5--- as follows: Let T,=T. If T, has been chosen then let T;,, be
L[A]-least so that T,,,<,, T, |T;,|=a, T,,,€D,; and 8;= (0, {j, 1)) where §,
is least so that 4(o;+ @+ 6;)+3eB*, for all xe[T,,]. For limit 4 let
T, = glb{T; | i <A}. We assumed that (D, |!' < w,) is Z,_,-definable over Lz[A]
with parameter w, and therefore (T}, < &;.;.

We claim that j can be chosen so that the above sequence (7;|i<w,) is
well-defined. Indeed let h(j) be a Z,(s')-index for (7; | i < w,). By the recursion
theorem we may choose j so that J, h(j) define the same sequence (7; | i <w).
Now clearly if 7; is defined then so is T;,, as D,; is [,i-dense and we have the
freedom to [ + 1 + i-extend 7; to T, such that x € [T, ,]— (0, {j, 1)) is the least
4 so that 4(a; + @ + 8) + 3 € B* before [,i-extending T, , to the desired T, ;. But
notice that 7, € R, for limit A, precisely because of the definition of R in Case 5
of the construction of R* and because J, 4(f) define (T, |i <A) ‘at a; just as they
define (7T;|i<w,) ‘at «'. Finally, let T'=gIb(T;|i<w,) and we obtain a
contradiction to the fact that 7, [, (D, |l’<w1) is a counterexample. This
proves the lemma. [

Corollary 2.9 (Horizontal Fusion for R*). Suppose T € R*, a < w, and for each
teRL, D, is open and t-dense below T; i.e., T'<,T—3T"<,T' (T"€ D, and
t'eRT" —RT'—1t' e€T'(t)). Then there exists T'<,T such that T' € D, for all
te R,

Proof. Let D, = {T'<,T|T'eD,} and apply Lemma 2.8. O
Corollary 2.10 (Vertical Fusion for R*). Suppose T € R* and for each a < w,,

D, is open and a-dense below T; i.e., T'<T—3IT"<, T’ such that T"e D,,.
Then there exists T' < T such that T' € D, for all «.
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Proof. Let Dy, = D, and apply Lemma 2.8. O

Corollary 2.11 (Countable Distributivity for R*). Suppose T € R*, « < w, and D,
is a-dense below T and open for each i € w. Then there exists T' <, T such that
T’ e D; for each i.

Proof. Let D, ;. = D, for I' <w, =R* for I’ > w. Then apply Lemma 2.8. O

We now apply these results to the study of density reduction for P*. A set
De P is local if (¢, T')eD, (', T e P, T'(t')=T"t")— (', T")eD. If
TeR*and Dc P, then D" ={teR" |(t, T)e D}. If D < P is dense below
(¢, T), then T’ < T reduces D if t e R™ and D7 is dense below  on R”".

Lemma 2.12 (Countable Density Reduction). Suppose (1, T) e ?*, a < w, and
D, is local and dense below (t, T) for each i < w. Then there exists T' <, T in R*
such that (t, T'Y € P* and T’ reduces D, for each i < w.

Proof. It suffices to consider just one D, = D, by Corollary 2.11. Fix f <w,, $
greater than & and [t|. For any ¢' in RfN T(¢) the set D, = {T' < T | for some
'<st', (", T') extends an element of D} is ¢#'-dense below T as D is local and
dense below (¢, T) (we also use closure under (* * *)). So by Horizontal Fusion
for R* there exists T’ <, T such that D" is dense below ¢ on RZ;. Now apply
Vertical Fusion to the (8-dense below T) set of such T’ for f < w,, a U Jt|<B to
obtain the desired T'<,7. O

Corollary 2.13 (Density Reduction). Suppose (t, T)e P*, a<w,, and D; is
local, dense below (t, T) for each i < w,. Then there exists T' <, T in R" such that
(t, T') e P* and T’ reduces D; for each i < w,.

Proof. For each > « it is B-dense for T' to reduce D; for i <pf. Now apply
Vertical Fusion for R* to obtain T’ <, T reducing all of the D,, O

We now consider fusion for #*. A subset D of P* is n-dense below (t, T) if
whenever (¢, T') < (¢, T) there exists (¢", T") < (¢/, T') such that (", T") € D and

" <, t.

Lemma 2.14 (Fusion for #*). Suppose (t, T) € #* and D; is open and i-dense
below (t, T) for each i € w. Then there exists (t', T')<(t, T) such that t', T') e D;
for each i.

Proof. Suppose the lemma fails and as in the proof of Lemma 2.8 let < w; be
least so that there is a counterexample (¢, T), (D, |i <) definable over J4[A].
We choose the least such counterexample and let k =2 be chosen so that this
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counterexample is 2, _,(Js[A]) with parameter w;. Set 3B =23, ,-Master Code
structure for Jz[A]. Then X-projectum(%B)= w, and we let p be the least
parameter such that % is ,-projectible to w, with parameter p. Let 8,< B, <

be the first @ ordinals 8 < w, such that § ¢ Hz = X,-Skolem hull of w, U U {p}
in % and define B=J{p:|i<w}. Let H% = 3,-Skolem hull of « U {g, p} in B
and define ay<ao,<--- by ay=HoNw,, a,.,=HY, Nw,. We set a=
U {e | i <} and let & = transitive collapse of |_J {H‘f,:+1 | n € w}. Then o is the
3 _»Master Code structure for J,[A] for some n and A such that & = (w,)"4),
ANa=ANa

We are in the situation of Case 4 of the construction of R*. Let o' =3, _;-
Master Code structure for J,[A] and pick any pair (i,/) € X @,. Form the
sequence (ty, Tp) = (¢, )= - - as follows. Let (¢, T))=(t, T). If (t;, T,) has
been chosen, then let (¢, T;+,) be L[A]-least so that ¢, <;t;, (t;+,, T;+,) € D;,
\Te1l = Biy atic)) =, 8, =10, {j, 0)) where &, is least so that 4(8;+ 8,) + 3 €
B* (for all x €[T;,,]) and, if k, j are such that i =23/, so that ayy + 1 € BR (for
all Re[t,]) iff j=1.

In addition we require that 7;,,; reduces D' whenever D' e H’g?,"+1 is local and
dense below (t;, T;) on ?* and that s € Livi, |Is|l =i— (t,), belongs to the first i
open dense sets d' on R7 belonging to Haﬂ, in a canonical w-listing of Hﬁlﬂ
(for each j <i). (It is clear that ((s;, T}) | i < w) is well-defined using the i- den51ty
of D; and the definitions of «;, B;.)

We claim that (i, /) can be chosen so that (', T') = (M) {t; li<w}), gIb{T;|i<
w}) belongs to P*.

Notice that the sequence {(t;, T;) |i<w) is Z,(8’) where B’ = 3,_;-Master
Code structure for J5[A]. Therefore by the recursion theorem we can assume that
j is chosen so that f7!(j) is an index <pB for (T;|i< w) as a 3,(%')-sequence
where f: %' — w, is a canonical X,(%')- 1n]ect10n and A~'(i) is an index < for
(t]i<w) as a Z,(%B')-sequence where h: U {H? ralnewlNw,—w is a
canonical X,(%')-injection. But then A '(7) is an index <(w,)""! for (£ |i<w)
as a X,(o')-sequence where h:(w,)""*'— w is a canonical X,(#')-injection.
Thus we see that the conditions for T € R3, t€ RL are met with the possible
exception of the requirement that R €[¢f]— R decodes A c (w,)"®] and R is
PA-generic over J,[A], (0)"R = (w, )’ WAl (The requirement To=,, T, =, T, =

- is equivalent to To=T,=T,=---.) Inside J,[R] decode from R as A is
decoded from a ?“-generic real. It is eas1ly seen that A is the resulting subset of
(w141, 1If DeL,[A] is predense (i.c., ={peP?|p<some geD} is
dense), then for some i, T, reduces D* where D=nx"'(D) and
a:lJ {H%+1 | n € w} x7,[A]. But then by construction for some j, (f,), meets
(D*)% for each s €44, |Is|| = and s0 ((§+1)s, T41) = ((t),, T) meets D* where
s is an initial segment of cg. This proves the genericity of R. The fact that
(w,)""8) = (w,)"®) follows from this and the fact that, by the leastness of our
counterexample, the fusion lemmas all hold for ##. Cardinal preservation is a
consequence of fusion, as lemmas below demonstrate. This proves that (t, T) €
%, contradicting our choice of counterexample. O
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We are now ready to establish cardinal preservation and minimality for 24,
Corollary 2.15. P“ preserves cardinals and cofinalities.

Proof. Suppose (¢, T)If:w,— ORD. For each i<w, let D;,={(¢,T')<
(t, T) | for some «, (¢, T') I+ f(i) = &}. then D; is open dense below (¢, T) and
local.

So by Density Reduction there exists (¢, T') < (¢, T) such that T’ reduces each
D, But then (¢, T')IFRange(f)c\U{E;|i<w,}, where E,={a|for some
t, (', TYFfi)=a}. So (t, T')I-rRange(f) is contained in some xeV,
card” (x) = w,.

Now suppose (¢, T)IFf:w—>ORD. Then for each iew, D,={(t',T")<
(¢, T) | for some finite y, (¢', T') IF f(i) € y} is open and i-dense below (¢, T); this
uses closure under (*), (* *). So by Fusion there exists (¢', T') < (¢, T) such that
(t', T')eD; for all i. So (¢', T')IFRange(f) cx, for some x eV, card'(x)=
w. O

Corollary 2.16 (Minimality). If R is P“-generic, then R is minimal over V.

Proof. Suppose (¢, T)Ikx c ORD, x ¢ V, and let R; denote the generic real.

Claim. For all (¢', T')<(t, T) there exist (t;, T"), (t;, T"Yy<(t', T') so that for
some a, (t,, T aex, (¢}, T") Fa ¢ x.

Given the Claim, let D, ={(t', T")<(t, T) | so #s, in t', ||sol| = ||s,]| = i — for
some «a, ((t'),, T')Faexiff ((t'),,, T")IFa&x}. D, is i-dense below (¢, T) for
each i, where e varies over {¢, ¢}, {€} = {€, ¢} — {e}. So by Fusion for ?* there
exists (¢', T'Y=<(t, T) in (M {D; | i € w}. But then clearly (', T') I R € V|x].

Proof of Claim. Choose (ty, Tg), (t;, T7)<(t', T') so that for some a, (t;, T) I+
aex, (), T a¢x. We assume that 15=(t),,, ¢y =/(t,), where t,#t, are
elements of some R} and that s,, s, are incompatible. Now let T" =T’
(S0, 27%, TG, TY). Clearly (¢, T")F @ ex, (t;, T") IF a ¢ x so we are done. [

3. Minimally coding a subset of w,,,,

It is fairly straightforward to generalize the technique of Section 2 to obtain a
minimal coding for a given subset of w,.,, n finite. The notion of generalized
tree becomes generalized w,-tree, consisting of an ,-sequence T =
((f;, 8) | i < w,) where f, g;: Rf— ‘acceptable n-terms’ and R is a collection of
w,_, trees. We use O, to build R” c {generalized w,-trees}, where we use
collapses of elementary submodels of Lg[A], < w,,, to anticipate fusions of
length =w,. The major difference is that for i <n we must also consider such
models to anticipate fusions of w;-trees, these fusions of length <®;,. So even the



256 8.D. Friedman

definition of R*c {w-trees} must be modified when carrying out this
generalization.

Rather than discuss the minimal coding of subsets of w,.; for finite n, we
proceed directly to a discussion of the case of subsets of w,.,;. Of course the
above ideas need to be considered in this case as well; in addition we must now
discuss the way in which we code at the limit cardinal w,,. This coding is basically
like Jensen’s, where a ‘scale’ of functions through w,, is used to effect an almost
disjoint coding of A into w,. However as in [3] we greatly modify Jensen’s proof
of extendibility to cope with the fact that our forcings are so ‘thin’ (this alternate
approach also eliminates a split into cases according to whether or not 0% belongs
to V). As before we have two types of extensions at limit levels: extensions of
type 1 needed for extendibility, and of type 2 to anticipate fusions. In this case
the fusions have any possible length @,, 0 <n < w. Conditions are of the form
(T, |0<n<w) where T, is a generalized w,-tree. We require that the first n
components of the conditions in an w,-long fusion sequence remain constant.
Guaranteeing that we have a condition at limit stages is like the main
distributivity argument for Jensen Coding; we must take advantage of built-in
‘predensity reduction’ as in [3] to get genericity over the collapse. The remaining
details of the construction are natural generalizations of the corresponding ones
in Section 2.

We begin with the definition of R®, the appropriate generalization of the R* of
Section 2 to the present context. Then R' can be defined from R® much as was R*
from R* in Section 2. Continuing in this way we will have R% R ... and we
then can finally discuss ?*, whose conditions are sequences of elements of the
different R". :

We assume of course that V =L[A], A< w,,,; and in addition that 2“ c
L, [A] for 0<n=<w. As in Section 2 we will use the Recursion Theorem (in
two different ways). Fix iy, an index both for the desired forcing #* and for a
description of how B (where A =even(B®), B®cw,,,) is coded by a
P*-generic real R, as X (L, [A], A)-sets with parameter (w,|new)e
L, [A]. The forcing R is the union U {R}|a <e}; R is obtained from
R = the canonical elements of R%— R%, by closing R%,URY under: (*) te
RS, aet—>(1),€R) and (**) 1,..., 5, €RA=U{R}|B<a}—>tU---U
t, € R. We define R by induction on a.

Case 1: a=0. R{ consists of all trees of the form (2<), U---U(25“), where
a,,...,a, are finite strings. For any real R, t§ =2“so R)= {2“}.

Case 2: a =B+ 1. Define R}, from R} exactly as we defined R}, from R} in
Section 2.

Case 3: « limit, but « is not a limit of limit ordinals. Write « = § + © where §
is 0 or a limit ordinal. Given a real R, B® is defined by: y € B iff R goes right at
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all sufficiently large even levels of the tree tX. Choose ordinals & < f < a (& limit
or 0), an acceptable term & and an integer k. Also assume that 8 < §.

Let t,=<;t§ be canonical and least in L[A N &, t§] such that S € [t,}— B®, B
agree on [B, a(ty)) — {4y + 1|y € ORD} and BS(& + 4y + 1) = 6(S)(y) for 4y +
1<min()6], a(ty) — &), where af(ty)=max(B, B). If ¢, is defined, then let
tys1 <fin+1l, be canonical and least in L[A N a, R*] such that S € [t,,,]— B®, BX
agree at a(t,) +n (if a(t,) + n is not of the form & +4y + 1) or BS(a +4y+1) =
8(S)(y) (f alty)+n=4a+4y+1, y<|5|). Define t*(B, k, &, &)=\ {t,|ne
w} if all the ¢, are defined.

We include in RY all trees t such that for some (B, k, &, &) as above,
t*(B, k, 6, &) =t for all R €[t]. Then RY, is the (*),(* *)-closure of R%, U RS,

Case 4: « is a limit of limit ordinals and L,[A] is not locally countable. In this
case we are concerned with extendibility, not fusion. Given a real R let
={n|A+4n+3eB” for unboundedly many such ordinals <a, A limit}.
Then ag<aj;<--- is defined if 0¢ R* and R* codes an ordinal =a. Set
ay< ap < - - - equal to the L[R*]-least w-sequence cofinal in « so that each «; is
a limit ordinal. Pick &, 7, &, B, Ai consisting of &<B< a (& limit or 0), an
acceptable term & and the integer A. Also set 7= tﬁ and let ag<a;<--- be the
final segment of ay << ay<- .- defined by a, = least &, greater than B
Now define (t,|0<n<w) as follows: t,=L[AN &, R*]-least t' <, in RY,
such that S e[t']— B, B® agree on [B, ap) — {4y + 1|y e ORD} and BS(& +
4y + 1) = 6(S)(y) for 4y + 1 <min(|6|, ap — &). If 1, is defined, then let ¢,,, be
the least t' <, ,t, in R so that S €[t']— B®, B® agree on [a,, a,,,) — {4y +
1|y € ORD} and B%(& +4y + 1) = 6(S)(y) for 4y + 1 <min(|8], &, ., — &). Set
56, & B, A)=N{t, |0<sn<w)}.
Include in RY all trees ¢ such that for some (&, & fB,A) as above
t*(&, &, B, i) = tfor all R € [t]. Obtain R, by closing R%,, U R% under (*), (* ).

Case 5: « is a limit of limit ordinals, L,[A] is locally countable. First add
conditions to R as in Case 4. We now describe the other conditions to be added,
which are needed to anticipate fusions.

Given a real R we define what it means for R to code a type A fusion. For this
to be defined the following conditions must be met. Let = « be least so that ais
not regular in J,,[R]; we assume that 7 exists and that R codes a predicate
B® ¢ (w,4,)""'®} via the index i, for decoding B® c w,,,, from P*-generic reals
R, using the parameter (@, |n e w), @, = (w,)"™. Let B = (w,4,)"¥'<n and
A =even(B). We assume that a is projectible in J,,,[B® — (w,)"™®] and
therefore let k® denote the least k so that « is projectible in

S((JABR = (e, )"51), CB7 o),

We require that J,, [R]E“B" — (w,)"®, (n, k®) gives rise to a canonical
w-sequence of quasiconditions po=p;=--- in P* and R satisfies p,.” The
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preceding will be defined later when we specify which sequences p =
(p(0), p(w), p(wy), . - . ) of generalized trees are to be put into 2.

For R to code a type A fusion we require that 5, B, k® as above are defined
and that 0 € R* (as defined in Case 4). In this case set 5 =) {,(0) | n < w}.

We also consider type B fusions. For R to code a type B fusion the following
conditions must be met. Let 7 be least so that « is not regular in J,,,[R]. Now
decode from R the canonical sequence of w-trees (5 | B < a) =x®. We require
that J,[R]Ffor some B,<wy!®l, x® is a path through the generalized tree
T® = T%, and R is R” -generic over L[A N &, T¥]. (B, is uniquely determined.)
We assume that « is singular in J, ,,[A N a, T%] and that k =2 where & is least so
that a is Z(J,[A N &, T*])-projectible. Let of = 3, _,-Master Code structure for
J,[AN a, T®] and we suppose that C has ordertype w, where C consists of all
a' < & such that o' ¢ H, = X;-Skolem hull of o' U {p} in &, p =least p such
that o is Z,-projectible to pj’ = a with parameter p. Let &' = 5,_,-Master Code
structure for J,[A N &, T%] and h: @ — w a canonical X',(#/')-injection.

For R to code a type B fusion we consider the sequence i, defined by i, = least
i < such that @+ 1€ BR where C={a,<a;<a,<---}. We insist that i,
is defined and equal to a fixed { for k sufficiently large. The key requirement then
is that the X,(£')-set defined by the X;-formula with index h~'(i) is a fusion
sequence fo=,t, =,1t,=5t;- -+ of conditions in R%,.. If in addition 0 e R* (as
defined in Case 4), then we set t* =" {#; | i <w}.

Add ¢ to RS if t = t® for every R € [t] where " is defined as above. Obtain R?,
by closing R%, U RS, under (*), (* *).

This completes the construction of R®=|J{R) | a<w,}. R® has properties
analogous to those held by R* in Section 2. In particular define v inductively by:
y® =least p.r. closed ordinal greater than w, y§ =least y >sup{y§ | B < a} such
that y is p.r. closed and L,[R]Fcard(a)<w (for a>0). Then ¢ is uniformly
definable as an element of L.z[R] (whenever t5 is defined).

Type 1 extension is defined just as in Section 2; these are the extensions which
arise from any of the cases in the construction of R® with the exception of the
latter parts of Case 5 (the fusion cases). We then have the following.

Lemma 3.1. Suppose t e R, k € w, 0 is acceptable and & < a(t) is 0 or a limit
ordinal. Also suppose that R e[t]— BR(&+4y+1)=0(R)(y) for 4y +1<
min(|o}, a(t) — &). Then if a > a(t), there exists t* € RS, such that t* <,t, t*<tisa
type 1 extension and

Re[t*]—= BX(&@+4y+1)=0o(R)(y) for 4y+1<min(|o], o~ &).

Proof. Much like the proof of Lemma 2.1. As some of the details are different
we give a complete proof. By induction on a we define the notion “b c [a(?), &)
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is t-special at «” and prove not only the existence of such b but also that for such
b there exists t* as desired so that R € [t*]— BX, b agree on [a(t), a) — {4y +
1|y e ORD}, B*(& + 4y + 1) = o(R)(y) for 4y + 1 <min(|0|, & — &).

Suppose a=f+1. Then b is t-special at « iff b NP is t-special at B and
B=2y—(BeB iff yeA). The existence of ¢* is clear by induction unless
B =4y + 1. In that case the Sublemma to Lemma 2.1 shows that the desired t*
exists, using Case 2 of the construction of R°.

If « =8+ w, B limit or 0, then b c [«(¢), &) is t-special at « if a(t)<f—>bN
B is t-special at B. Now it is clear that the desired ¢* <, ¢ exists, using Case 2 of
the construction of R".

Finally suppose « is a limit of limit ordinals. Given b c [«(f), &) define R* as
in Case 4 with B® replaced by b; for b to be t-special at a we first require that
0¢ R* and R* codes an ordinal =a. Set ay< a; <--- equal to the L[R*]-least
w-sequence of limit ordinals cofinal in a. Let ap<a;<<--- be the final segment
of @, < a) < - - defined by «, = least «; greater than «(¢). We also require that
bNa, is t-special at a,. Let ty=L[AN &, R*]-least ¢t'<,¢ in R‘;U such that
S e[t']— B, b agree on [a(t), ap) — {4y +1|7y€ ORD} and B5(&+4y+1)=
o(8)(y) for 4y + 1 <min(|o|, @y — &). We require that b N [ay, «;) is fy-special at
@,. Then define ¢, <, t, to be least so that a(t,) = a, and S € [t,]— BS, b agree
on [a, @)—{4y+1|y€eORD}, BS(a+4y+1)=0a(S)(y) for 4dy+1<
min(|o|, &; — &). Continue in this way for w steps. This completes the definition
of ‘t-special at a’ as well as the proof that the desired t* exists, using Case 4 of
the construction of R®.

We must show that a ¢-special at « set exists when ¢ € R, o is acceptable, & is
limit or 0, & < a(t) <a. The argument is as in the proof of Lemma 1.2: The
result is clear inductively except when « is a limit of limit ordinals. In that case
first correctly define b N {2y |y e ORD} and define b N{A+4n+3|4 limit,
new} so as to yield an R* as in Case 4. Note that the latter positive
commitments on b can be restricted to an w-sequence. Thus it is easy to fill in
b N «, successively as in the preceding paragraph (where a,< a; <--: arises
from R*, a(f) as in Case 4) so as to guarantee that b N «,,., is t,-special at «,_,
while honoring earlier commitments to b N {A +4n + 3 | A limit, n € @}. As in the
proof of Lemma 1.2 it is important to not include any new ordinals of the form
4(A+m)+3in b N @, for m <m, so as to not alter the definition of R* from
b. O

And as in Section 2 we also have:

Lemma 3.2. Suppose t=1* is type 1 and a € [a(t), a(t*)]). Then there is a unique
t' e R% such that t=¢' = t*.

This enables us to define an equivalence relation ~ just as in Section 2.
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Generalized w,, -trees

Our goal now is to extend the notions w-tree, R°, type 1 extension in R’, ~ on
R° to generalized w,-tree, R", type 1 extension in R”, ~ on R" for 0<n < .
The case n =1 will be treated very similarly to the way we handled the definition
of R” in Section 2. We begin with that case.

A generalized wy-tree is a sequence T = ((f;, ;) | i < ®,) obeying the definition
of generalized tree in Section 2. And as in Section 2 we have:

Lemma 3.3 (Extendibility for R”). Suppose teR], ke w and i<j<w,. Then
there exists t' <, t, t' € R].

Define T, < T, iff R c R, for generalized w;-trees T, T,. As in Section 2 we
have:

Lemma 3.4. Any w-sequence Ty=T,= - - - of generalized w\-trees has a greatest
lower bound.

And paths through generalized w,-trees are defined as in Section 2. What is
different now is the definition of R!, which is obtained from that of R* in Section
2 by introducing some new fusion sequences. We shall again need the O-
sequences (C% | & limit, w, < a <(w,)*""), y = a) as we did there and also the
operation (* * *) which introduces T(a, t, Ty, T;) when T, T, <T are general-
ized w,-trees, te RPN R" and g € 2.

In addition we must generalize the notion of acceptable term to acceptable
w;-term. An o-path is a function x:w,— R° such that for some real R,
x(a)=t% for all o<w, Acceptable w,-terms are certain functions o:w;-
paths— 2=“2 such that for some fixed limit |o| <w,, length(c(x)) = |o| for all
w,-paths x. They are defined inductively by:

(a) Any constant @,-term o(x) = 5o, §¢ a fixed element of 2=2 of limit length,
is acceptable.

(b) If o, o0, are acceptable, |o,| =|0,| and 7 is an acceptable w-term, then o is
acceptable where o(x) = 0,(x) if t € Range(x), R € [t{]— BR(4y + 1) = ©(R)(y) for
4y + 1 <min(|7|, a()); o(x) = 0,(x) otherwise.

' (c) If o, is acceptable and o, is acceptable, then o, * 0, is acceptable where
01 * 0,(x) = 0,(x) * 0x(x) and * denotes concatenation.

(d) If gy, 0, . . . are acceptable and g; c g; for all i <j < w, (i.e., 0;(x) € 0;(x)

for all x), then o is acceptable where o(x) = U {0,(x) | i < @,}.

As in the proof of Lemma 2.1 we have the following.
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Lemma 3.5. Let %, denote the collection of w-paths and for any acceptable
w-term 1 let P, (1) denote the collection of all wi-paths x such that t € Range(x),
R €[t]— B®(4y + 1) = ©(R)(y) for 4y + 1<min(|7|, a(¢)). If 0 is an acceptable
w,-term, o <|o|, then {x e P, | o(x)(«) =0} can be written as an finite Boolean
combination of sets of the form P, (1), T an acceptable w-term.

Proof. Clear, by induction on 0. [
Now we give the construction of R'.

Case 1: a<w,. R) contains only the generalized w,-tree T, defined by
Ty={(f,g)|i<w,) where f(2=°) ~=g0(2<“’) =@ and f(t)}(R)=(0,0,...),
gi(O(R)=(1,0,0,...) fori>0, teR].

Case 2: a=f+1>w,. Let T = R},. First define generalized w,-trees Ty, T} <
T exactly as in Case 2 of the construction of R* in Section 2. Now we define T¥
for k < w,, i <k by induction on k. To define {TF|i < w,) first fix a list of all
finite or cofinite subsets F of the set of acceptable w-terms in the sequence
(F,|i<@®,). For each i <k choose T(i)<,T so that no T(i) shares a path with
any T(j), j#i nor with any TF, k'<k and so that (a) oeF, teR],
Re[t]— B*@y +1)=0o(R)(y) for y<a(r), x €[T(i)], t € Range(x)—x [T,
(b) o€ F, teR], Re[t]— B*(dy +1)# o(R)(y) for some y < a(t), x € [T(i)],
t € Range(x)— x € [T;]. If B is not even, then add all the T(i), i <k, to R, and if
B =2y, then add T(i) to R iff (F =@, yeA or F=all acceptable w-terms,
y ¢ A). Set T¥=T(i).

Then R, is obtained from RL, by including all T} as above for all trees T € R};
and closing under (* * *).

Case 3: «limit, « > w, but not of the form w; - A, A limit. Write a =  + & where
0<dé<w, and w, divides B. Given an w,-path choose countable ordinals
&< < & (& limit or 0), the acceptable w,-term & of countable length || and the
countable ordinal k. In that case we set & =8+ &, B=B+ ﬁ Let hr=T3 If T,
is defined, then let 7., <;,, T, be canonical and least in L[A N a, Ty] such that
y €[T,.,]— B’, B* agree at B+ v (if B+ yis not of the form & + 4y’ + 1) or
B(a+4y +1)=a(y)(y') (f B+y=a+4y' +1, y'< |6]), and such that
a(T,,,)=Pp+y+1 If T, is defined for all y<A where A<a—f is a limit
ordinal, then let 7, =greatest lower bound to (T,|y<A). Define
T*(&, B, 6, k)= {T,|y< o — B} if all the L,y<a- B, are defined.

Include in R. all generalized w,-trees T such that for some (&, B, 5, IE),
T*(&, B, 6, k) = T for all x € [T]. Then R, = (* * *)-closure of RL_ U R..

Case 4: a =, - A, Alimit and L,[A]} o, is the largest cardinal. In this case we
guarantee extendibility using 0. Given an o-path x define x*={6<
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a|4-(6,8')+3€B* for unboundedly many such ordinals <a}. Then ag<
&, <.+ is defined if 0¢x* and a <(w,)™*’l. Thus C% is defined as a closed
subset of a; if it is unbounded in «, then let ay < &} < - - - enumerate C%'. If C%
is bounded in «, then let &)< a;<--- be the increasing enumeration of C¥’
followed by the L[x*]-least w-sequence B,<fB,<--- cofinal in a such that
U C% < B, and each B; is divisible by w;.

Choose &, f so that & < B < a (& limit, & = w,), an acceptable w,-term & and
a countable ordinal £. In this case set T' = T} Also let ap<a;<<--- be the final
segment of ap<aj<--- defined by a,=Ileast & greater than B. Let y,=
ordertype{ g < a; <- - -}.

Now define (T, |0<y <y,) as follows. Ty=L[A N &, x*|-least T<; T in R},
so that y € [T]— B, B* agree on [B, a,) — {4y + 1| y e ORD} and B’ (& + 4y +
1) = 6(y)(y) for 4y + 1 <min(a, — &, |6]). If T, is defined as an element of R},y,
then let T,,, be the L[A N &, x*]-least T<¢,, T, in I?},YH such that y € [T]— B?,
B* agree on [a,, a,,1) —{4y'+1|y € ORD} and B’(&+4y’ +1)=8(y)(v')
for y' <min(a,., — &, |6]). For limit y =<y, let T, = greatest lower bound to
(T, |y’ <y). If all the T,,, ¥ < y,, are defined then let T*(&, B,o,k)=T,,

Include in RY all trees T such that for some (&, B, a, 13), T*(&, B, a, 13) =T for
all x € [T]. Obtain R, by closing RL,U R, under (* * *).

Case 5: a=wy- A, A limit and L [A])kw, is the largest cardinal. First add
conditions to R exactly as in Case 4. We now describe the other canonical
conditions to be added, needed for fusion.

Given an w,-path x we define what it means for x to code a type A fusion. For
this to be defined we require the following. Let n = a be least so that « is not
regular in J,.,[x]; we assume that n exists and that x codes a predicate
B* c[a, (w,+1)"™) via the index i, for decoding B¥ from ?*-generic reals R,
using the parameter (@, |n e ), @, = (w,)"").

Let & = (w,)""), B=(wy+1)""'<n and A =even(B*). We assume that « is
not regular in J,,,[B* — @] and then let k* denote the least k so that « is
projectible in Z,((Ja[B*—@&], C§~%)). We require that J,.,[x]F“B* — &,
(n, k*) gives rise to a canonical y-sequence of quasiconditions (5, |i <y) in P4
where v is a limit ordinal <(w,)""*], and x satisfies j,.” This will be defined later
when we complete the definition of ?*.

For x to code a type A fusion we require that n, B*, k* as above are defined
and 0 € x* (as defined in Case 4). In this case set 7° =) {p.(w) | i < v}

We also consider type B fusions. For x to code a type B fusion we must have
the following. Let 1 be least so that « is not regular in J,,.,[x]. Now decode from
x the canonical a-sequence of generalized w;-trees (T3 | B < a) = $*. We require
that J,[x]Ffor some B,, S* is a path through the generalized (w,)""-tree
T* = T3 and x is R"-generic over L[AN «, T], T = T§,

We assume that « is singular in J,, 41[A N a, T*] and that k =2 where k is least
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so that a is 2, (J,[A N a, T*])-projectible. Let of = X, _,-Master Code structure
for J,[A N &, T*] and we suppose that p¥ = a and C has ordertype <w; where C
consists of all &’ < a such that o' ¢ H, = X-Skolem hull of o’ U{p} in «,
p =least p such that & is X;-projectible to o with parameter p. Let &' =2, ;-
Master Code structure for J,[ANa, T*] and h:o— w, a canonical X\ (s')-
injection.

For x to code a type B fusion we consider the sequence §; defined by J; = least
6 < w, such that 4(a; + 8) +3 € B* where C = {a, < o, <---}. We insist that §;
equals a fixed 6 for i sufficiently large. The key requirement then is that the
3.(')-set defined by the X,-formula with index h~'(8) is a fusion sequence
To=;, T, =1, >3- - - of length y,=ordertype(C), where T, e RL,. If in addi-
tion 0 € x* (as defined in Case 4), we set T* =M {T; | i < yo}.

Add T to R, if T = T* for each x € [T] where T* is defined as above. Obtain
R! by closing RL, U R, under (x%*).

This completes the construction of R' = {R} | @ < w,}. For T e R' let a(T)
denote the unique « such that T e R, — R.,. As in Section 2 if x € [T] for some
T eR!, then T =T~ is uniquely determined and can be recovered uniformly
from x.

Type 1 extensions are defined for elements of R' just as they were for R’; we
give now the precise inductive definition. The trivial extension 7 < T is type 1. If
a(T)=p+1, then T<T* is type 1 if there is a sequence T<T'<T* where
a(T')y=Band T’ < T* is type 1. Finally, if &(T) is a limit ordinal, then T < T* is
type 1 if 7' = T* where T arises from T’ as in Cases 3, 4 or the first part of Case
5 (not involving fusion), but also where the extensions 7' =T, = T; = - - - arising
there are all type 1. We then have the following.

Lemma 3.6. Suppose T € R', k € w,, 0 is an acceptable w,-term and & < a(T) is
a limit ordinal zw,. Also suppose that x € [T]|— B*(& + 4y + 1) = o(x)(y) for
4y + 1<min(lo|, &(T) — &). Then if a> a(T) there exists T* € R. such that
T*<,T, T*<Tis atype 1 extension and x € [T*]— B*(& + 4y + 1) = o(x)(y) for
4y + 1 <min(|o|, a — &).

Proof. Similar to the proof of Lemma 2.7, using ideas from the proof of Lemma
3.1. We define the notion “b c[a(T), a) is T-special at a” exactly as in Lemma
2.7 and prove that for such b there exists 7* as desired so that x € [T*]— B, b
agree on [a(T), &) — {4y + 1| y e ORD}.

If @ < w,, then the result is trivial.

Suppose o= +1>w,. Then b c[a(T), o) is T-special at « iff bN B is
T-special at B and f=2y— (B eb iff y € A). The existence of T* now follows
from induction, Lemma 3.5 and the construction in Case 2 of the definition of R

Suppose & = w, - y + 6 where 0 <3 < w, is a limit ordinal. Choose some T<,T
in R, ., (if «(T)<w,-7v; T = T otherwise) such that x € [T]— B*, b agree on
[oAT), w,-y)— {4y +1]yeORD}, B (@+4y+1)=ox)(y) for y<
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min(|o|, @, -y — &). It is now clear that the desired T* <, T in R, exists in this
case, using Case 3 of the construction of R'.

Finally suppose & = @, - A, A limit. Define x* as in Case 4 with B* replaced by
b. Note that 0¢x* and a <(w,)**’\. Define ayj<aj<--- as in Case 4. Let
ap< a;<--- be the final segment of &y < aj<--- determined by o, = least «a;
greater than a(T). Let y, = ordertype{a, < a; <---}.

We note that for i <y, x* has the same value if in its definition B*, « are
replaced by b N &;, a;. Now define (T, | 0=<y <1,) as in Case 4 with B, B, k, T
replaced by b, «(T), k, T. We have that b N[a;, ;) is T;-special at a;,, for
each i < y,. Note that for i limit, 7; = greatest lower bound to (T; |j<i) does
belong to R, as C% N a; = C},, and x* has the same value ‘at a;’ as it does ‘at «’.
Thus we have proved the existence of the desired T*<,T. O

As in Section 2 we also have:

Lemma 3.7. Suppose T =T* is a type 1 extension in R' and a € [a(T), a(T*)).
Then there is a unique T' € R, such that T=T' = T*.

This enables us to define an analogue (for elements of R') of the equivalence
relation ~ of Section 2. If T;, T, € R" then T, ~,,, T provided a(T;) = a(T;) and
either T, = T, or there are T;, T, € R' such that:

(a) T,=T,, T,=T, are type 1 extensions,

(b) Tl T Tz,

(¢) x,y€[T,]U[L]— B, B” agree on [a(T;), a(T;)) — {4y + 1| y € ORD}.

Before going on to the case of generalized w,-trees for arbitrary finite n we
discuss the notion of generalized w,-tree and establish extendibility for R” when
T is a generalized w,-tree. Then the generalization of all of the above for
arbitrary finite # will indeed be straightforward.

We now will use lower case letters ¢, t;, . . . for generalized w,-trees and upper
case letters Ty, T;, ... for generalized w,-trees. A generalized w,-tree is an
wy-sequence T = ((f;, g) | i < w,) where:

(a) f,, g:: RT— Acceptable w,-Terms, where R/ =the canonical elements of
RT — RZ, (defined below).

(b) 1) = lg:(1)| is divisible by w, for all reR and all i. In addition
f(ts) = 8olty) (where ty=¢ for all teR') and for i>0, teR]:fi(1)(x)(0)=0,
g{()(x)(0) =1 for all w,-paths x.

(c) If £, ~,, ¢, belong to R, then f(1,) =fi(t2), &:(t)) = gi(%2).

We define RY, R! by induction on i < @, for a given generalized w,-tree T. If x
is an w,-path, define $* N &= {y |4y + 1€ B*} N a provided r} is defined for all
B < the limit ordinal @. Now R} = {ty} =R for i<w,. If R/, R are defined,
then t' € R%, if for some teR!,t=¢t € Rl ., where n=|[f(t)] and either

xe[t']=> S (a(t) +y)=fi()x)(y) for y<np or xe[]=>S(a()+7y)=
g:.()(x)(y) for y <. To obtain R, close R UR,, under (##+). Finally R] for
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limit A consists of all t* € R' which can be written t* =glb{t;|i <A} where
t=t;=---, U{a(t)|i<A}=a, t,eRL, for all i<A and A=U{j|teR] -
RZ, for some i <A}. R} =(* * *)-closure of RT,UR]. For teR" let || =the
unique i such that t e RT — RT,.

Lemma 3.8 (Extendibility for R, T a generalized w,-tree). Suppose te R/,
m € @y and i <j < @,. Then there exists t' <,,t such that |t'| = J.

Proof. It suffices to consider ¢ € R]. We show that there is a type 1 extension
t' <.t with t' € R, by induction on j. If j =i, there is nothing to show. If j > i is a
successor ordinal, then the result is clear by induction and Lemma 3.6.

Suppose j>i is a limit ordinal and choose j,<<j, <--- cofinal in j of length
Yo =< w,. Now by induction we can choose ¢, t;, . . . so that f,,, <1, <,,¢ for each
k and t, € RT (we do not insist that ¢; <¢, when [ — k is infinite). In fact we claim
that we can choose the f’s so that in addition k<!/-— B* B** agree on
[a(t), a(t)) — {4y + 1| y e ORD} for x, €[f], x,€[t]. To see this proceed as
follows. Let to=any t' <, tin R} so that (1,y) e b,={6|4- (8, 8') +3 e B for
unboundedly many such ordinals <a(t,), for all x €[]} iff y=a(r). If # is
defined, then choose #,1<,t in RY so that (1,y)eb.,, iff yve
{a(r), ao, @1, - .., ax} (Where by, is defined like by with 1, replaced by #. ).
For limit k<y, note that (J{b, |k'<k}=5h, has the property that
U{a(t) | k' <k} = & has cardinaltiy w, in L[b:]. Thus we can choose a
t-special at a; set by so that k' <k— b,, B* agree on [a(f), a(t)) — {4y +1|ye
ORD} for x €[t,-]. By Lemma 3.6 choose 1, so that t, <,.¢t and x € [t,] > B*, b,
agree on [a(t), o) — {4y + 1|y e ORD} and B*(a(t)+ 4y + 1) = 0,(x)(y) for
y<ay — a(t) (where o, =J{o |k'<k} and xe€[t]— B (a(t) +4y+1)=
0. (x)(y) for y < a(t,) — a(t)). Thus t, € R} as desired.

Finally, note that the last part of the preceding paragraph applied to k =y, as
well and so we have proved that there exists t' =¢, =,,t as desired. O

We can now proceed to the general case of finite n =2. Generalized w,-trees
are defined just like generalized w,-trees with w,, Acceptable w,-Terms, divisible
by w;, w,-paths, ~w, replaced by w,, Acceptable w,_,-Terms, divisible by
w,_, ©, -paths, ~e,_, respectively. The collection of generalized w,-trees is
<w,-closed. An ,-path is a function x:,— R"™' such that x(«)=1¢, for all
a < w,, where y is an w,_,-path. An w,-path x is a path through a generalized
w,-tree T is x(a) e RT for unboundedly many « < w,. [T]= collection of all
paths through 7. And B* for an w,-path x is defined as follows. Suppose T7, is
defined (this makes sense after the construction of R”" is given). For < w,
choose r§ € Range(x) N Rf*. Then x goes left at B on T% if y € [x(a(th + 2))]—
a(t5) + 1¢ B”, x goes right at B on T7, otherwise. Then a € B* iff x goes right at 8
on T7, for sufficiently large 8 < w,,.

We define a version of the operation (* * %) for generalized w,-trees. We
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use capital letters T, T;, . . . for generalized w,-trees and small letters ¢, ¢, . . .
for w,_,-trees. If te RT define T(¢) by: a(t)<a(t'), [{]N[t']# 0>t € T(1);
to~w,_ t1, o€ T()—>t, € T(t). Now if T, T,<T, te R"NRT, 1 an acceptable
w,_pterm define T*=T(z,¢, Ty, T,) = ((f}, §7) | i <w,) as follows. Suppose
(fF, gF) is defined for i <y. Pick t* € T(¢), t*e RI"NR™N R" and canonically
choose type 1 extensions f, ¢, of t* in R™ R" so that a(ty) = a(t,), with
corresponding acceptable w,_;-terms 0y, 0; so that 0y(x)(0) =0, 0,(x")(0) =0 for
x €[ty), x" €[t;]. (That is, x € [t)] = B*(a(t*) + 4y + 1) = op(x)(y) for y < a(t,) —
a(t*); similarly for ¢,.) Then f}(¢t*) is defined to be o where o(x) = gy(x) if
x€?P, (1), =0,(x) otherwise. (2, (r)=all w,_,-paths x such that ze
Range(x), g € [z]—> BY(4y +1) = ©(q)(y) for 4y +1 <min(|7|, a(x)).) Define g;
similarly. If t* ¢ R™ but ¢* € T(¢), define (f3(t*), g*(¢*)) to agree with T,_, and if
t* ¢ T(¢), then define it so as to agree with T.

Acceptable w,-terms are defined inductively just as in the definition of
acceptable @;-term, with 2<%, w-term, U {a,(x)|i<w,} replaced 2<%,
w,_-term, U {0:(x) | i < @, }.

The construction of R”, R” is perfectly analogous to that of R!, R' using
O-sequences (C% | & limit, w, < & <(w,.1)*"), y c a). The cases are: a < w,;
a=p+1>w,; «limit, a> w,, « not of the form w, - A (A limit); o = w, - A, A
limit and L,[A]f w, is the largest cardinal; otherwise. In the part of Case S
discussing type A fusions we insist that the sequence (p; | i <y) have limit length
y<(w,)"™). In the type B fusions the set C should have ordertype <w,. As
before we can define type 1 extension, prove extendibility and define an
equivalence relation on elements of R". Then extendibility for R*, ¢ a
generalized w,, . -tree can be carried out just as in the case n = 1. This completes
our definition of R", R" for finite n.

The forcing $*

Now we build the desired forcing for minimally coding A by a real. Conditions
are of the form p = (p(w,) | n <) where p(w,) is a generalized w,-tree and
p(m,) € R (these are called quasiconditions). Set p < q if p(w,) < q(w,) for
all n. A path through p is a sequence {x, |n <) such that each x, is a path
through p(w,) and for all n, x, (@)=t for « <w,,,. An w,-path is a path
through py, the weakest quasicondition.

The construction P* requires the use of both 00 and ¢>. We assume for
convenience that o, divides o— L,(A) F w,, is the largest cardinal. As in Section
2 we have a natural system of [J-sequences (C{,| a limit, 0, < o < (0,
yca) and it will be useful below to define E={(a,y)|C% is defined and
bounded in &, @ is p.r. closed}. Also select a system of {O(E)-sequences
(D% | {a, y) € E). This system has the following property: For « p.r. closed let
v(a, y) = largest ordinal v such that « is regular in L,[y]. Then X ca,
XeL,n[yl=>XNB=D}"* for some (B, y N B)eE, B<a. This is possible to
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arrange because E is stationary in the sense that («, y) as above, C c « closed
unbounded in &, C € L, ,\[y]— (B, y N B) € E for some B € C.

We are now almost ready to define ?* =\ {?4 | e <w,,,,}. To each p € P*
will be assigned a pair (A(p), B(p)) such that B(p) = A(p), L;,)[B(p)lEw, is
the largest cardinal. Also set B*(p)={8<A(p)|4-(8,8')+3eB(p) for
unboundedly many such ordinals <A(p)}. The condition p will then be
Si({LamB(P)], CX5Y), when C(p) = C%§’ is unbounded in A(p). If A(p) =
A'+1, then C(p)=0. When C5 ¥’ is bounded in A(p), A(p) limit, we let
Cp)={w, A +7y' |y <y} if A(p) is of the fom w,-A"+y, y<w, and
otherwise C(p)= an w-sequence cofinal in A(p) such that [ C5 %’ < min C(p)
and Lemma 6.41 of Beller—Jensen—Welsch [1] holds for (A(p), B*(p)). If x is an
w,-path, then x satisfies p, x €[p], if x(n) e[p(w,)] for each n. The generic
w,,-path x will canonically give rise to conditions p?, for & < w,,,,. We define B*
as follows. For each n e w, o <w,,; let X =23-Skolem hull of w, U {w,} in
(Lyp[B(p)], C(p)) where p=p%, and let yi=XNw,,,. Then aeB* iff
4y + 3 € B*™ for sufficiently large n < w. Of course we will require that 2« € B*
iff oeA forall a <w,,;.

If p, g are quasiconditions, then p =<, q if p <q and p(w,,) = 9(w,,) for m<n.

Case 1: a< w,. P, contains only the weakest quasicondition pyg.

Case 2: «=B+1>w,. Let pe Py~ P_5 We assume inductively that for
sufficiently large n<w, |p(w,)|=X,N w,+, where X, =2,-Skolem hull of
w, U{w,} in {(Ly,»[B(p)], C(p)). We begin by defining p, <p to be the least
guasicondition so that x € [p;]— B*™(4y# + 3) =i for all n such that |p(w,)| =
X, 0\ @y = ¥E (for i =0, 1). Clearly p; is Z>(Ly[B(p)], C(p)).

Now we build a sequence of quasiconditions p, = p,=p, = - - such that p, is
3, 2({Ly[B(p), C(p))), uniformly in n. To define p, first let A(p) be a
3;-Master Code for (L,,,[B(p)], C(p)) and for each pair m <n let X872 =23 -
Skolem hull of w,, U {p} in (L, [A], A(p) N w,), p =standard parameter for
(L, [A], A(p)Nw,). Now define p,=pi=pi=--- successively as follows:
pi*! = L[A]-least quasicondition g < p% such that g(w,) = p%(w,) for I >k + 1 and
for [<k: g(w; 1) (g(w)) = q'(g(w,)) where ¢’ is canonical and g(e,) reduces all
predense % < R¥“+V which belong to X%y N Ly, mlg(@rs1(q(®))]. (See
Corollary 3.11 for a discussion of reduction of predense sets.) We also require
that pf*'(w) <, p{(w). Then set p, ,=glb{p} | k € w}. The type A fusion part of
Case 5 in the construction of the forcings R", n € w, will guarantee that p, , is a
quasicondition, as we now specify that B(p), (v(A(p), B(p)), 2) gives rise to the
canonical w-sequence p{=p|=pi=--- of quasiconditions.

Having defined p,, we now describe how to obtain p, , <p,,. Choose a
canonical listing (D;|i<w,) of all predense DcP(p,,), De
E(Laun[B(p)], C(p))) where %(p,q) = {quasiconditions g <p., | q(w,)=
p1o(w,) for sufficiently large n}. Also list all finite ¢ | w, for g € P(p,,) as
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(g;,]i<w,). Then p,, is built from p, , exactly as was p, , built from p,, with
the exception that A(p) is replaced by a ZX,-Master code for
(Lam[B(P)], C(p), p1,o) and we require that p, , <some element of D,. More
generally define p, ;. from p,; by using (L,,,[B(p)], C(p), p..:) and requiring
Pii+1 to obey the following: Suppose i= (i, i;) where ¢, has domain
{w, 0y, ..., w,}, i<w,. and g, (w,) € R7(@=+) - Also suppose that there exists
g <some element of D, such that g <p,; and q(w;) = q;(w,) for j <n. Then let
D1i+1<p1,; be least so that p, ;| agrees with such a g above w, and p, ;.| <, p, ;.
For limit 2, p,, =glb{p,,|i <A} and we specify that B(p), {v(A(p), B(p)), 2)
gives rise to the sequence (p,; | i<A), for A<w,. For A=w, we have the
sequence {p, ,, | n < ). Finally define p,=glb(p, ;| i < w, ). Note that we have
arranged that p, reduces all predense D € X,({L;,)[B(p)], C(p)))

Having defined p; we now describe how to obtain p, < p,. The construction is
perfectly analogous to that of p;. Define X% = 3,-Skolem hull of ,, U {5} in
{L, [A], A*(p) N w,) where a’*(p) is a Z,-Master Code for (L,,\[B(p)], C(p))
and p is the standard parameter. Then p$ = p, and p4*! = L[A]-least quasicondi-
tion g < p% such that g(w,) = p4(w,) for [ <k +1 and for I <k: qg(w; ., N q(w,)) =
q'(q(w,)) where g’ is canonical and g(w,) reduces all predense sets for R7(“+) jn
X221 N Lotgeorld(@0:1)(g(@,))]. Also require that p5*'(w) <, p5(w) and set
P2o=glb{p5| k € o}. We specify that B(p), (v(A(p), B(p)), 3) gives rise to the
canonical w-sequence p, =p3=p}=--- of quasiconditions. Then obtain p,,=
P21 = - - as before, but using Z,({L»[B(p)], C(p)))-predense sets.

Let pf=glb{p,|new}. We specify that B(p)=*i, (v(A(p), B(p))+1,1)
gives rise to p,=p,=p,=---; note that |p/(w,)| =y5 for sufficiently large n
where yy¥=X;Nw,,;, X5 =23-Skolem “hull of o, U{w,} in
(Lyaip).Boyn+1lB(P)], C), C=0. Now we put pg, p} into P4 if f is not even and
if B=2y, then plePs iff y¢A, pieP, iff yeA. Clearly p}! is
SiLanBD], Clp?)) where M(p!)=v(A(p), B(p)) +1, B(p})=B(p)*i
and C(p})=C.

To complete the description of P4 repeat the above construction for each
n € w, where all the extensions p, < p; (and p,, p, as well) are required to obey
pi(w,,) = p(w,,) for m <n. Also take care to arrange that the resulting extensions
have no paths in common, for the purpose of guaranteeing that each w,-path
goes through at most one of them. This completes the definition of %% in this
case.

Case 3: a> w,, is a limit ordinal not divisible by w, - w. Write a=+ 6
where 0< 8 < w,, and w,, divides B. Given an w,-path x and ordinal f € [B, ),
k € w proceed as follows. Let pPo=pg If p, is defined, then let p,,,<p, be
L[AN &, po}-least in P§,,., such that p . <z, p,, w,=card(y), and ye€
[py+1]— B”, B* agree at B+y If p, is defined for y<A limit, then let
p, =greatest lower bound of (p,|y<A). We specify that B(p,) (=
U{B(p,) | vy <A}), (v(A(po), B(po)) + A, 1) gives rise to the A-sequence p,=
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p1=---=p, =+, y<A Define p*(B, k) =g.l.b{p, | y<8}. If <w,, then
specify that B(p*(B, K)), (v(A(po), B(po)) + 8, 1) gives rise to (p,|y<9é). If
8 = w,, then the former gives rise to {p,, |n < ).

Now include in ?4 all p*(B, k) as above. For such a condition p we have

B(p)=U{B(p,) | v <8}, A(p) = v(A(po), B(po)) + 6.

Case 4: o= w,, - A, A limit and « is not p.r. closed. We are not concerned here
with E or with building in any special fusions; only with guaranteeing extend-
ibility. Given an w,-path x define x*={8<a|4-(5, 8')+3€B* for un-
boundedly many such ordinals <a}. then a< a;<--- is defined if 0 ¢ x* and
o < (w4,,1)**7). If C% is unbounded in «, then let ay< a; <- - - enumerate C%, .
If not, then let ay < a; <- - - enumerate C, where C is defined from «, x* as was
C(p) defined from A(p), B*(p).

Choose B < a and £ € . Also define oy < a; <- - - to be the final segment of
aj< @) <--- determined by o, =least o] greater than 3. Now define (p, |0<
y < yo) as follows where y,=ordertype of {ay<a;<---}. po=L[ANa, x*]
least p <;p} in P4, so that y € [p]— B, B* agree on (B, a). If p, is defined in
PZ , then let p,,, be the L[AN @, x*]-least p <g,,p,, ,=card(y), such that
pe®, ., and y €[p]— B’, B agree on [«,, a,.,). If p, is defined for y <A<
Yo, A limit, then let p, = greatest lower bound of {p, | y <A). We specify that
B(p,), {(v(as, B(py)), 1) gives rise to the A-sequence (p, |y <A). Define
P (B, k) =py,

Include in 22 all p*(B, k) as above. For such a condition p we have
B(p)=U{B(p,) |y <o}, Mp)=a.

Case 5: ais p.r. closed. First add conditions as in Case 4 but with an important
restriction: If p is added to 2% and (a, B(p)) € E, D3(p) is a dense subset of
P(5, B(p)) = {4 € P2, | 4 <P, B(g) and B(p) agree on [A(5), A(¢))}, for some
p=p, pe P2, then insist that p<qg<p for some q such that r<qg—3r' <r
(r' e DE@, r'(w;) = r(w,) for I = n), for some n. It will be easy to verify that this
restriction will not injure extendibility.

Now we also add conditions for the sake of anticipating certain fusions. Given
an o,-path x define what it means for x to code a fusion sequence py=p,=- - -
of length <w,. Let (1, k) be least so that « is 3, (L,[A N a])-projectible. We
suppose that (7, k) exists and k=2. Let & =3, _,-Master Code structure for
L,[A N a]; we suppose that pi* = & and C has ordertype <w,, where C consists of
all &' < a such that «’ ¢ H,. = 2;-Skolem hull of o' U{w,, p} in o, p = least
parameter p such that & is X,-projectible to « with parameter p. Also let
o' = 3, _;-Master Code structure for L,[A N «] and choose a canonical X,(f')-
injection f : ' — w,,.

Now enumerate C as < a;<--- and consider the sequence 8, <d;<---
defined by d, = least 0 < w,, such that 4(«; + 8) + 3 € B*. We require that 9, has a
constant value (0, 8) for i sufficiently large. (Note that this implies 0 € x*). For x
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to code a fusion sequence p,=p;=--- we must have that the X;(«')-set with
defining parameter f~!(8) is a sequence of conditions py=p,=--- where
pi=glb{p; | i <A} for limit A, a(p,) (=least &’ such that p, e P4.,,) is at least a;
and i > w,— p; <, P,,. Now add the greatest lower bound p for all such fusion
sequences po=p, = - - to P, provided x € [p]— x codes this fusion sequence as
above and provided for all i <ordertype(C), p;., reduces all D e Hii=ZX,-
Skolem hull of a;U{p} in &, where (o |i<ordertype C) is a Z,(A)-
approximation to & and D is predense on ?4"*= 2% N L, [A]. We also specify
for limit A that B(p,) =A Na;, (v(ax, B(p.)), 1) gives rise to (p;|i<A) and
that B(p)=ANa, {(v(a, B(p)), 1) gives rise to (p;|i<ordertype C). This
completes Case 5.

Finally close each P4 under: p € P4, q(w,) =p(w,) for all sufficiently large
n—q e P4. This completes the construction of ?*=J{P:| ¢ <w,..}. We
now prove a series of lemmas which ultimately will show that a %*-generic real
minimally codes A. First we establish fusion for the forcings R”, T € R"*'. If ¢, t'
are generalized n-trees for n =1, then we write ¢’ <,,.¢ (I, l' <w,,) provided
t'<,t and ueR,—ueR) unless uet(u) for some i, w,_,-i=1" (where
(u; | j < ®,) is a fixed canonical enumeration of R™™Y). And @ c R"is I, I'-dense
below ¢t € RT if ' <, t— 3" <,, ¢’ such that ¢ € 9.

Lemma 3.9 (Fusion for R”, T € R"*"). Suppose te R”, Te R**', |<w, and D,
is [, I'-dense below t for each I’ < w,. Also suppose that for some y <(w,,)*7),
D, € L,|T] for each I' < w,. Then there exists t' <,t such that t' € D, for each
I'<w,.

Proof. Here we use the type B fusions from Case 5 of the construction of R".
The hypothesis implies that (D, | !’ < w, ) belongs to L[T], as AN w,,, € L[T].
Suppose the lemma fails and choose 7 < (w,,,)“I"! to be least so that there is a
counterexample ¢, (D, |/’ < w,) definable over L,[T] where D, € L;[T] for all
I' < ®,. Choose k =2 so that this counterexample is X;_,(L;[T]) with parameter
o, and let & = ;_,-Master Code structure for Ly[T].

Note that pf’ = @,, and let p be the standard parameter for . Let C consist
of the first w, ordinals «'> w, such that a'¢ H, = X,-Skolem hull of o' U
{0, }U{p} in & and write C={ap<a&,<---}. Now let a=C, o=
transitive collapse of H, and &' = 3'-Master Code structure for & = X;_,-Master
Code structure for L, [T | «] (for an appropriate 7n), h:a— w, a canonical
2(")-injection.

We are precisely in the type B situation of Case 5 of the construction of R".
Now pick any d < w,. Attempt to build the sequence fo =, t, =50, =5 - - as
follows. Let to=1t. If t; has been chosen, then let ¢,,, <;,,, t; be least in L[A] so
that ¢,,,€D,; and 8;=48 where &, is least so that 4(a; + 8,)+3 e B* for all
X € [t;1). Also insist that o; +4({0, 6;)) +3 € B* for all x €[t} (to guarantee
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that 0 ex*). As (D, |i<w,) is Z_,(L4[T]) it follows that ¢,, e RZ, . For
limit A let £, = glb{s; | i <A}.

We claim that 8 can be chosen so that (1 |i<w,) is well-defined and
glb{t; | i <w,} =t is a condition in R”. To see this let h’: «— & be (") and
so that 4’(8) is an index for the above sequence (t; | i < w,) where § =h(8). By
the recursion theorem we can choose 8 = 4(8) so that 8, h'(8) define the same
sequence (f |i<w,), in which case by Case 5 of the definition of R”,
(t;|i <w,) is totally defined. For the latter claim we need to arrange that « is
regular in L,[x] for x € [¢'].

Due to the leastness of 4 it suffices to arrange that x € [t']— x is R” [*-generic
over L [T|a]. To do so it would suffice to arrange that x e[t ]—x is
R"!evi.generic over L, [T|a;s,] (for the appropriate 7,,,). For simplicity
suppose k=2 and let p,,, be the standard parameter for Ay = L, [T{a.]
Approximate 7., by a Z,(s4;,,)-sequence (1 |j <j,) and let ;= L;[T&;] be
the transitive collapse of H;=X,-Skolem hull of o;U{a}U{p;s,} in
L,[T [ ;). Thus the ﬁj’s approximate s/, ,,. If we can successively extend ¢ to
f, such that x € [f]— x is R”'%-generic over &, then after j; steps we have the
desired ¢;,,. Thus assuming f,,, as desired does not exist, some ; as desired does
not exist. We can repeat this argument now for #;, leading ultimately to an infinite
descending sequence of ordinals. Thus f;,; can be found as desired and thus ¢’ can
be constructed as desired, contradicting our choice of counterexample. O

As in Section 2 we can now infer the following.

Corollary 3.10 (<w,-Distributivity for R”, T € R"*"). Suppose te€ R", T € R**'
and D, is open, dense below t for each i < w,_,. Also suppose (D;|i<w,_,) €
L[T). Then there exists t' <t such that t' € D; for each i < @, _;.

Corollary 3.11 (Density Reduction for R”, T € R**'). Suppose t € R", T € R"*!
and D; is open, dense below t for i < w,. Also suppose that {D;|i<w,) € L|T).
Then there exists t' <t such that t' reduces each D;, i < w, (i.e., for each i < w,,
W1 i <j—t'(;) =t"(w;) for some " € D;, where {u;|j<w,) is a fixed canoni-
cal enumeration of R"™").

We can now attack the proof of extendibility for 2.

Lemma 3.12 (Extendibility for ?*). Suppose pe #* and a(p)<a<w
Then there exists g <p, a(q)= «.

w+1-

Proof. By induction on a we show that there exists a type 1 extension (no fusion
involved) g =<, p such that a(¢q) = « and x € [q] — B*, b agree on [a(p), «), for a
given b = [a(p), a) which is ‘p-special at «’. We can assume « > w,,.

Suppose « = + 1. We can assume that a(p) = 8. For simplicity assume that
n=0. Now consider the quasiconditions p,=p;=--- built in Case 2 of the
construction of ?'. We must show the p,;’s as defined are in fact quasiconditions;
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the main thing to check is that p,(w,) € R". (Given the existence of p,_, as a
quasicondition, each pf can be constructed using Corollary 3.11 finitely many
times.) Now the verification that p,(w,) € R” follows from the fact that type A
fusions were added in Case 5 of the construction of R" together with the fact we
specified that B(p), (v(A(p), B(p)), i +2) givees rise to the sequence p?,,=
pla=---, py=p. (Similarly for (p,.,;|j<®,).) The only thing to check is
that x € [p;11,0(®@,)] = & = &(p;11,0(w,)) is regular in L,[x] where the transitive
collapse  of H;?=3,,,-Skolem hull of aU{{w,|m<w)} in
(Lap[B(p)], C(p)) is equal to (Lz[B], C) and 7 is least so that « is singular in
L,.1[B]. We assume that p reduces all predense D c P(p, B(p)), De
Ly, BonB(p)] (if p arises as in the first part of Case 5) or all predense
D < P*"MP) D € L,ipy.anampld NA(p)] (if p arises as in the second part of
Case 5). (These assumptions are justified by Lemmas 3.13, 3.14.) But now we see
that x € [piyy,0(®,)]— x is generic over L,[B] using the above density reductions
and the density reduction built into the definition of {p%,,|k € w). Moreover,
the forcings P(5, B(p)), P*"*P) are cardinal preserving and hence so are their
transitive collapses. It follows that x preserves cardinals over L,[B] and hence &
is regular in L,[x], as desired. A similar argument applies to (p;,,, |, j < @, )-

Suppose a < w,, is a limit ordinal not divisible by w,, - . We can assume that
a(p)=B=p where a=+9, 0<d<w,, o, divides B. Now define the
sequence (p, | y<6) as in Case 3 where p,=p, k =n. By induction we need
only show that p, is well-defined at limit stages A < 8. As in the previous case the
fact that we specified that B(p,), {(v(A(p), B(p))+ 4, 1) givesrise to (p, | vy <A)
guarantees this provided we check that x € [p,(w,)]— & = a(p(w,)) is regular in
L,[x] where in the present case (L,[B], C) = transitive collapse of the X;-
Skolem hull of &U {5} in (L;,,[B(p:)], C(p:)), p=standard parameter for
(LypplB(p)], C(pi)). But by induction it is clear that x is generic for the
collapse of P(p, B(p;)). Thus the desired cardinal preservation follows from
fusion for ?(p, B(p;)), which is established in Lemma 3.13.

Next suppose a = w,, - A, A limit, but & is not p.r. closed. Then the argument is
identical to the one used in the proceding paragraph. Note that we can assume
that «a(p)= P =greatest p.r. closed ordinal less than «, and hence
v(A(p,), B(p,)) = A(py) for all p, considered. Also one needs the fact that
C(p,) = C(p,,) N A(p,) for limit y <y, to verify that p, is a condition.

Finally, suppose « is p.r. closed. Then build (p, | y < 7,) as in Case 4, obeying
the proviso set forth at the start of Case 5. The only difference between this case
and the previous is that for limit A <y, we need to know that x € [p,(w,)]—> & =
a(p;(w,)) is regular in L,[x] but now possibly 7> where (Lg[B], C) is the
transitive collapse of the X;-Skolem hull of & U {p} in (L,,,[B(p)], C(pi)),
p = standard parameter for (L,,,[B(p.)], C(p,)). In this case we need (as in the
successor case « = 8 + 1) the reduction by p; of all predense D < P(p, B(p,)),
D € L,y o[ B(pa)). This follows from Lemma 3.13. O
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In the preceding proof we have made extensive use of the next two lemmas,
which in fact are established by a simultaneous induction with Lemma 3.12.

Lemma 3.13 (Chain Condition and Density Reduction for #(p, B)). Suppose
peP®, q is a type 1 extension of p and B=B(q). Then P(p, B)={p’ <
p | B(p'), B agree on [a(p), a(p'))} obeys the w,,.1-cc in L,u). 5qylB(q)] and
q reduces all predense D < P(p, B), D€ L,uu pqy[B(Qq)]. (Le., for some
n,r<q—3ar' <r (r' <some element of D, r'(w,,) =r(w,,) for all m > n).)

Proof. The fact that 2(p, B) obeys the chain condition follows from the use of
O(E) in the first part of Case 5 of the construction of P*. Indeed, if
D € L,;q) 8a)[B(q)] is predense, then {a <A(q) | D N L,[B(q)] is predense on
P(p, BYNL,[B(q)]}, is CUB in A(g), belongs to L, 8y[B] and hence
contains an « such that {«, BN «) € E. Then Case 5 reveals that D c L,[B].

To show that g reduces all predense D € L, »|[B] it therefore suffices to
consider D € L;,[B(q)]- But then we can assume that «(q) is a successor ordinal
in which case predensity reduction follows from Case 2 of the construction of

Pt 0O

Lemma 3.14 (Density Reduction for 2*7%). Suppose p € P4 is not of type 1
(i.e., p arises from the second part of Case 5). Then p reduces all predense
D c g}Aﬁa= g)A N La[A], De Lv(a,Aﬁa)[A n a/]

Proof. First note that we can assume v(«o, AN ®)>a as otherwise we can
choose 8 < a so that D € Lg,,[A] and choose g =p, A(g) = B+ 1; then the result
follows from Lemma 3.13.

Now we can apply induction, using the second part of Case 5 of the
construction of ?*. Clearly p was constructed there so as to reduce all predense
D € L,y anay|A N a]. The only question is whether or not p, is well-defined at
limit stages A. But this is clear using the distributivity of #*"* (see the next
lemma) and the fact that we specified that B(p,), (v(a,, B(p.)), 1) gives rise to
(p: | i<i). O

Lemma 3.15 (Distributivity and Cardinal Preservation). (a) Suppose (D;|i<
w,) are n-predense on P(p, B) (i.e., Vp' g’ <, p' (¢’ <some element of D,))
and (D, |i < ®,) € Lyuq).8qn[B(q)] (using the notation of Lemma 3.13). Then
p' e P(p, B)—3q' <,p’' (q' <some element of D, for all i < w,,).

(b) Suppose (D;|i<w,) are n-predense on P7%, (D;|i<w,)e
Lya.analA N a]. Then Vp 3q <, p (q <some element of D, for all i < w,,).

(c) The forcings P(p, B), P are cardinal-preserving over
Loy 8@yl B@)], Lyaana[A N a), respectively.
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Proof. (a) By the Chain Condition we are reduced to the case where a(q) is a
successor ordinal. But then the result is clear using the construction of Case 2.

(b) By induction on a. We use Case 5 of the construction o ?*. Suppose the
property fails and choose n to be least so that there is a counterexample
(D;|i<w,),p definable over L,J[ANa]. Choose k=2 so that this coun-
terexample is X, _(L;[A N «a]) with parameter « and let & = 3 _,-Master Code
structure for L,[A N a]. Then pif=a and we let ay<a,<--- be the first w,
ordinals «’ such that a’ ¢ H, = 3-Skolem hull of &' U {p} in o, p =standard
parameter for &. Let &= {a;|i<w,} and choose a canonical X ,(«’)-
injection f: a — w,,, ¥’ = X, _,-Master Code structure for L,[A N a].

Now build the sequence p,=p,=--- as follows, for any given 8 < w,,. Let
po=p. If p; is defined, let p,f+1 =, P; be least so that p,,; <some element of D,,
Pi+1 reduces all D € HY = 3,-Skolem hull of a; U {5} in &;, where (4, liew,)
is a X,(sf)-approximation to & = transitive collapse (H;) and D is predense on
PAN% and so that x € [p,;,,]— & =least & such that 4(e; + (0, 8}) + 3 € B*. For
limit A let p, = g.1.b{p; | i <A). By the recursion theorem we can choose & so that
(p;|i< w,) has index f7'(8) as a Z;(«£')-sequence, contradicting the choice of
counterexample.

(c) This is an immediate consequence of (a), (b) and Corollary 3.11. O

Corollary 3.16. Suppose R is P*-generic. Then R preserves cardinals and
A e L[R].

Proof. Clear from Lemma 3.15(c) and Lemma 3.14. [
Finally we must establish:
Lemma 3.17. If R is P*-generic, the R is V-minimal.

Proof. Suppose pl-x cORD, x ¢ V. Suppose g<p. It suffices to show the
following.

Claim. These exists «, qq, ¢, such that qo(w,) = q(w,) for all n>0, q¢, 9, <gq
and gy ¢ x, ¢, Fx ex.

Given the Claim we can build a fusion sequence g,=qg,=¢g,="--- so that
{q; ‘ i<w) has a greatest lower bound ¢* and s, ¢ incompatible elements of
g*(w)— (g*(®)s, ¢*(wy), ...) and (g*(w),, ¢*(wy),...) force different facts
about x. So g* I+ R e Vix].

Proof of Claim. Choose ¢, g; < g and « such that gyl @ ¢ x, g, IF o € x. Replace
qo(®1), g:(w,) by g(wy) (a, 27%, qo(®1), g:(®1)), where we assume a € go(w) —
g:1(w). Then replace go(w,), 4:(w2) by g(w2)(T, tg, go(@1), g1(w2)) where £y =
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weakest element of R', 7 is an acceptable w-term such that [go(®;)] = Z,,(7),
[g:(0)]N P, (7) =8. If we continue for finitely many steps, we still have a pair
g, 41 <q such that gt @ ¢ x, g,k & €x. By w-distributivity there in fact exists
a pair of conditions g, ¢; < g such that g,IF o ¢ x, g, I @ e x but go(w,) = g,(w,)
foralln>0. O

This completes the proof of Minimal Coding when A c @,

4. The general case

In this section we extend the ideas of Section 3 to establish the full result.
There are some new ideas here involving coding at inaccessible cardinals but
most of the ideas required for the proof are implicit in Section 3.

We assume that V = L[A] where A cORD, 2¥c L. +{A] for every infinite
cardinal x and in addition for convenience that x-w divides A€ (k, k']—
L;[A]Ek is the largest cardinal. Conditions in the desired forcing ?* for
minimizing coding A are certain functions p:Dom{(p)— V of the form p(y)=
(p,, P,) where Dom(p) is an initial segment of CARD = {0} U Infinite Cardinals.
Each p, is a (generalized) y*-tree (0" =w) and p, effects a restraint on
B* N Even Ordinals, for x € [(p, | v’ € ¥)]. We shall define R” = the appropriate
candidates for p, as well as the notion of y*-tree by induction on y. In addition,
we define [p,] = the y™-paths through p, as well as B* for x € [p,]. The need for
p, is to deal with coding A at inaccessibles, as in Beller-Jensen~Welch [1]. A
forcing RP+ will be defined as well, for coding y™ *-paths through p, . by a subset
of y* (using y*-trees p,). For limit cardinals x> @ a forcing P will also be
considered; k*-trees are built from elements of ?*. To each x e{p,] will be
associated a canonical sequence of y*-trees (p% | y* <@ <a(p,)) where x € [p%]
and a(p,)<y*". Similarly elements of #* are certain functions p*:CARD N
k— V and a path through p~ is a function x : CARD N x— V such that (among
other things) x(y) € [p*"(y)] and x(y ") = {(pi" | y" < @ <y*™*) for y < k. To each
path x through p“ (xe[p*]) will also be associated a canonical sequence
(p% | k< @< a(p*)) of conditions of $* such that x € [p%]. The final generic will
yield a sequence {(G(y)|y € CARD) of y*-paths so that G(y*)= (pS¥ | y* <
a<y**) and for limit cardinals y <w, (G(y') |y’ <y) codes G(y). Moreover
we have BC N [y", y**) codes AN[y*, y**) by: a € A iff 2{a, B) € B®D for
unboundedly many g <y**.

We now begin the inductive definition of R?Y, y e CARD, and the related
notions. We also define 2 when y>w is a limit cardinal. We have RY=
UARL | a<y**}, 2"=U{P%| a<y*}. In all cases we make use of an index i,
describing how A N y* is decoded (uniformly in y) from the general real R using
the parameter CARDN y*, as a X(L,-[R])-procedure. Also we define R,
#? = the ‘canonical’ elements of R, — RY.,, P%. — PY, respectively. Then R, P%is
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obtained from RY,URY, P, U P, using the operation (+) to be described
below.

Definition of R®

First define (+) to be the operation that takes w-trees f,, t; <t, a € 2~ and
produces #(a, ¢y, t,) = (t; — (t1).) U (o)., where it is understood that if a ¢ ¢;, then
(t).=0. We will only define R} for a<w, as then R%=[(+)-closure of
R%,URY).

Case 1: «=0. R}={2“}.

Case 2: @ =B+ 1. Let t € Rj. We define the canonical extensions of ¢ in RY.
First fix a listing {(k;, a,) | i < @) of all pairs (k, a) such that k € w, @ € 2<% and
k =length(a). Also define #f={a|acf(b) for some be2~®, b(2i)=j for
k <2i <length(b)} where f:2=“— Split(¢) is bijective and f(b*0) 2f(b)*0 for
all b €2°“. Now inductively define %, ¢!, ... as follows: ¥ is chosen so that
t# <, t(a;, t&, %) and ¢* shares no path with any ¢, i’ <2i; t**' is chosen so that
<, tay, 17, 16) and " shares no path with any ¢, i’ <2i. Then we add all
resulting ¢ to RS, for each ¢ € RY.

Case 3: « limit, a not divisible by @ - w. Write « = 8+ w where Sis 0 or a
limit ordinal. Choose ¢ € R% for some B €[B, a) as well as an acceptable term &,
an ordinal & < (& limit or 0) and an integer k&. We now describe a canonical
extension 7 <;t in RY% which ‘follows the term &, starting at &’.

Let t, =t and if ¢, is defined as an element of Ié%+m then define ¢, , € R%+n+1 to
be L[t]-least so that ., <z,,t, and R, S € [t,,.]— B¥, B® agree on [B, B+n]-
{4y + 1|y e ORD} and BR(& +4y + 1) = 6(R)(y) for 4y + 1 <min(|6], B+n +
1— &). Define i =glb{t, | n € w}.

Include all 7 as above in RY.

Case 4: a divisible by o - . In this case we add conditions both for
extendibility and for (two types of) fusion.

We consider extendibility first. To do so we define what it means for b < a to
be special at . For any ordinal f <« divisible by ® - w define bg={6<
B|4- (8, 8') +3eb for unboundedly many such ordinals <f}, where (-, ) is a
fixed pairing function on the ordinals such that n <w— (n, §) <é + w. For
bca to be special at o we insist that 0¢ b5, f is countable in L{b}] and
bg = b N B for all ordinals B < « divisible by w - @. Clearly, if b c « is special at
a and B < a is divisible by @ - @, then b N B is special at B. Also there exists
b c B which is special at a.

Now pick t e R%, B < a as well as an acceptable term &, an ordinal & < B (&
limit or 0), an integer £ and b c & which is special at a. We now define a
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canonical extension <; ¢ in R% which “follows &, & and ’. We let aj< o} <- - -
be the L[b%]-least w-sequence cofinal in a and let apy<a;<--- be the final
segment of @< a; <- - - determined by «a, = least «; greater than B.

Now define {t,|0<n<w) as follows: t,=the L[b%]-least t,<¢¢ in R, such
that R €[t)]— B®, b agree on [B, ay) — {4y + 1|y € ORD} and BX(& +4y+
1) = 6(R)(y) for 4y + 1 <min(|6(, ap— &). If ¢, is defined, then t,,, is L[B%}-
least in RY, , such that #,., <¢,,t, and R € [t,.,]— BF, b agree on [a,, 1] —
{4y +1| y e ORD}, BR(&+4y+1)=06(R)(y) for 4y +1<min(|6], a1 — &)
Set #=glb{t, | n € w}.

Include in RY all 7 as above, for some choice of ¢, &, &, k, b.

Next we turn to type A fusions. We put those ¢ into R, which can be written
t=glb{s, | new) where ty=,1t, =,1,=,1t; =,--- has the property that each
R €[t] codes (t,|n € w). The latter is defined as follows. Let 1 = a be least so
that « is not regular in L,.,[R]. We require that n exists and that R codes a
predicate G® c L, +[R], k* = (x*)“!®] via the index i, for decoding ?*-generics
from reals R, using the parameter (CARD N x*)“I® where L,[R]Fk is the
largest limit cardinal. Let A be decoded in L,[R] from R as A is decoded from
%*-generic reals and let ?* denote the L,[R] version of ?*, with A playing the
role of A. We require that L, ,,[R]|EG" | k, {n, k, y) give rise to the canonical
w-sequence of P4 quasiconditions py=p,=--- for some k, y and a=
U {1p.(0)] | n € w}. If in addition 0 e (B® N a)%, then we say that R codes the
type A fusion (p,(0) | n e ).

Finally we consider the type B fusions. As in the type A case we put those ¢
into R® which can be written ¢ = glb{t, | n e w} where ty=,t, =,t, =5 - - has the
property that each R € [¢] codes (¢, | n € w). The latter is defined as follows. Let
n be least so that « is not regular in L, ,[R]. We require that 7 is defined and
L,[R]k w, is the largest cardinal. Now let x* = (¢ | B < a) and we then require
that L,[R]Efor some Sy, x" is a path through the w,-tree T = T% and R is
R”-generic over L[A N a, T].

We also require that a is 2, (L,[A N a, T])-projectible for some least k s.t.
k=2. Now let o = X, _,-Master Code structure for L,[A N &, T] and we require
that C has ordertype w where C consists of all o’ <a such that o' ¢ H, = X)-
Skolem hull of &’ U{p} in o, p =standard parameter for of. Let o' =23;-
Master Code structure for &f and & : «— w a canonical X,(")-injection.

For R to code the type B fusion sequence (f,|new) we require that
0e (B®N )% and h~'(j) is a X,(s4')-index for (t, |ne ), t,.1 <,.1 ¢, for all n
where i is defined as follows: List C= {ao<a;<---} and let i, =least i <w
such that 4(a, + i) + 3 € BX. We require that i, is defined and equal to ; for k
large enough.

This completes Case 4 and also the construction of R®=J{RY | a < w,}. For
t € R® we set a(r) =least a such that r € R), — R%,, where R%,=J {R}| B < a}.

For any real R, X denotes the unique ¢ € R%, such that R € [¢]; tR is defined
provided R € (¢] for some t € R%. Also B¥ is defined as follows. For any w-tree ¢,
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Split(t)={set|s*0,s*1et}. For set, |s| denotes the cardinality of {s'c
s |s" e Split()}. If R €[], then R goes right at the nth level of ¢ if s * 1 c R where
s € split(¢), ||s|| = n. Finally, & € B® iff R goes right at the sufficiently large even
levels of R

Terms are L[R, Ry]-nemes for functions from 2¢ into 2=“!, for some real R,.
The class of acceptable terms is defined inductively by:

(a) Any constant term o(R)=s,, so a fixed element of 2=*' of limit ordinal
length, is acceptable. We set o] = |s|.

(b) If o0, o, are acceptable, |0,] = |0,| and a € 2=, then o is acceptable where
o(R)=0(R)ifacR, =0y(R) if a ¢ R. We set |0| = |0y = |0,

(c) If 0, 0, are acceptable, then so is 0, * 0, where o, * 0,(R) = 0,(R) * 0,(R)
and * denotes concatenation. Set |0, * ;| = |oy| + |0,].

(d) If o,c0,<--- are acceptable (o<t if o(R)< ©(R) for all R), then
o= {0, | n € w} is acceptable, where a(R) = {0,(R) | n € w}.

If t' <t belong to R°=J {R%| < w,}, then t' <t is a type 1 extension if for
some « = a(t'), b < a which is special at @, b does not contain 0 as an element
and R € [t']— B~, b agree on [a(t), a(t')) — {4y + 1| y e ORD}. This means that
¢’ is an extension of ¢ which arises as in the construction of R® but without the use
of the fusions of Case 4. An equivalence relation ~ on elements of R is defined
inductively by: ¢, ~1t, if a(t;)=a(t,;) and either ¢, =1,, or there are type 1
extensions t;, <%, t,<7, where ¥, ~1, and R e[t,], S €[t,]— B~, B® agree on
[a(B), a(t) — {47+ 1| y € ORD}, BR(4y +1)=o(R)(y) and BS(4y+1)=
o(S)(y) for some fixed term o and all 4y + 1 € [a(7,), a(t))).

This completes our present discussion of R°. The remaining notions from the
construction of R® which are yet to be defined will be clarified by our upcoming
definitions of R”, ?” for y > ®w. We also note here that in future reference to
w-tree, acceptable w-term, ~, we are referring to the notions tree, acceptable
term, ~ discussed above.

Definition of R, y=w

If y is a limit cardinal >, then %" has been defined by induction. If y =™,
k € CARD, then define 7= R*. In any event we have inductively defined B* for
x €[p], p € #" as well as the equivalence relation ~, on elements of %.

Tis a y*-tree if T = ((f, &) |i<y*) where:

(a) f, g::R7— Acceptable y-Terms, where RT is defined below.

(b) |£()] = |g:(1)| for all € R7 and all i <y*. In addition fy(t) = go(ts) Where
t¢—weakest element of #* and for i >0:f(t)(x)(0) =0, g:(t)(x)(0)=1 for all
xelt], teR7.

© Iy~ belong to R then fi(t,) = fi(t2), 8t1) = g:(tz)

We deﬁne R”, RT by induction on i. First we have RI=RI= {ts} where
tg—weakest element of #7, If R,T, R have been defined, then ¢’ eR,)r1 if for
some teR,T, t'<tin #, a(t')=a(t)+n where n=|f(t)| and either for all
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xe[t'], B (a(t) +4n' +1)=fi(t)(x)(n') for n’' <n or for all xe€ [IJ B*(a(t) +
4n' + 1) g:()(x)(n") for n' <n. Then R, is the (+,)-closure of R%,, URT. To
define R for limit A we take all ¢ € #” which can be written ¢ = glb(, |i<8), &
limit where to=t=--- belong to RZ, and a(t)=U{a(t)|i< o}, A=

(U{A' | ;e Rl — RZ,. for some i <§8}. And RY = (+,)-closure of RT,UR!. For
t € R”, |t| denotes the unique i such that t € RT — RZ,. Also set R ={J{R]]i<
Y}

The reason we use the symbol ~ above is that we want to define R” slightly
differently. For any 8 < y* let u(8) ={2(8, 6') | 8’ <y™}. A condition in R” is a
pair (p, p) where p € R” and p is a subset of y* — A of cardinality <y. Then
(Po, Po) =< (p1, p1) iff po<p, in P?, pocp, and x €[py]— B*(n)=0 for all
n€la(p,), a(po)) which belong to u(d) for some éep,. We also write
xe€[(p, p)] if x e[p] and B*(n) =0 for all n € [a(p), y*) which belong to u(4)
for some & € p. Of course the idea is that generically d € A iff u(6)NBY'7 is
unbounded in y~.

If t,, t; are y"-trees (we now use lower case letters), then we write f,<1¢; if
R c R". A useful fact is the (<y)-closure of the collection of y*-trees.

Lemma 3.1. Suppose (1, |i<k) are y*-trees, i<j<i—t;<t, and A<y. Then
(t;| i <A) has a greatest lower bound.

Proof. This is clear, given extendibility for R’, t a y*-tree. The latter is
established later. [J

We define the operation (+.,+) on y*-trees. First inductively define, for ¢ € R”
and T a y*-tree, the set T(¢):a(t)s a(r'), [f]N][t ]9& 0, 'eRT—>t'e T();
LheT(t), t,~, o>t eT(t). Itis easily verified that t' e RT— ¢ € T(t) for at most
y-many ¢. Now if T, ;<T, te R"NR” and 7 is an acceptable k-term for some
k <y, then define T*=T(v, t, Ty, T,) = ((f], &7) | i<y") as follows. Suppose
(f*, gF) is defined for i < 6. Pick t* e T(¢), t* eRT NR®NRT and canonically
choose type 1 extensions t,, #; of t* in RT" R™ so that a(ty) = a(t;), with
corresponding acceptable y-terms o, 0, so that o¢(x)(0) = 0,(x")(0)=0 for
x€lt], x eft;] (that is, x €[t,]— B*(a(t*) + 4y + 1) = 0;(x)(y) for 4y+1<
a(t;) — a(t*)). Then define f3(t*) = go(x) if x € P, (1), =0,(x) otherwise. Here
we are using %,(t) = {y-paths x |x is coded by some k*-path % such that
z e Range(¥), g € [z]——)B"(4y +1) = t(g)(y) for 4y + 1 <min(|z|, a(z))}. Define
g5 similarly. If ¢* ¢RT but t* € T(¢), then define (f3(t*), g3(¢*)) to agree with
T,—; and if t* ¢ T(¢), then define (f5(t*), g5(t*)) so as to agree with T.

Acceptable y*-terms are defined as follows. A y*-path is a function x: y*— %7
such that for some y-path y, x(a) =£, for all @ <vy™. Acceptable y*-terms are
certain (names for) functions o:y*-paths— 2=7"", defined inductively as follows:

(a) Any constant y*-term o(x) =s,, s, a fixed element of 2<*"" of limit length,
is acceptable.
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(b) If 0,, 0, are acceptable, |oy| =|0,| and 7 is an acceptable k-term for some
x =<y, then o is acceptable where o(x) = o,(x) if x is coded by some x*-path %
such that ¢ € Range(x), y € [t{]— B*(4y + 1) = ©(y)(y) for 4y + 1 <min(|7|, a(2));
o(x) = 0x(x) otherwise.

(c) o, 0, acceptable — g, * g, is acceptable.

(d) opcoyc---co;c--- acceptable for i<d (where d<sy")—J;0; is
acceptable.

If x is a y*-path, then x €[t], ¢ a y*-tree, if x(a) e R for unboundedly many
a < y*. In this case we say that x goes rlght at Bont (B<y™)if ye[x(alts+
2))]—> a(tg) + 1€ B”, where tg e Range(x) N R’ Below we shall define canonical
y*-trees ., for an initial segment of a <y*™, for any y*-path x. We then define
B* by; « € B* iff x goes right at § + 1 on £, for sufficiently large g <y**

And we shall need the tree form of O,.. We fix a canonical system (C% | a
limit, y*<sa<(y**)P) yca) with the properties that C’, is closed and
uniformly definable in L,[y] whenever L,[y]Fcard(a)<y* and Be(C,—
Cy"8 =% N B, ordertype (C%) <y and U C%, = a unless L[y] ¥k cof(a) = @

We now give the construction of R?. We will only define R, for a <y**
then RY, is obtained by taking the (+,+)-closure of R}, URY,,

Case 1: @ =0. Ry ={t,} where t, is the y*-tree defined by t3={(f, g) |i <

"), foth) = go(th) = @ (¢} = weakest element of #7), fi(t)(x) = (0) and g,(¢)(x) =
(1) for all t € R® and y-paths x.

Case 2: a=f+1. Lette R{;. We describe the extensions of ¢ in RY. First we
define two special extensions #§, 1 <1, for each k < y*:rf is characterized by the
properties that tf <, .t and x € [tf] > x goes (right if i =1, left if i =0) on ¢ at
B+1, for all B=w - k. Now fix a listing ((k;, 7,) |i <y*) of all pairs (k, T) such
that k<y* and 7 is an acceptable y-term of length || <k. Now inductively
define ¢°, ¢, . . . as follows: ¢* is chosen so that ' <, (7, @, t§, ) and * shares
no path with ¢, i’ <2i; #*! is chosen so that r**'=<, t(1;, @, £¥, t§) and t**!
shares no path with ¢, i’ <2i. Then add all resulting ¢ to R, for each t € R}.

Case 3: « limit, « not divisible by y* - w. Write a =8+ 8 where 0<é=<y
and y* divides . Choose teRY for some B e(fB, ) as well as an acceptable
y*-term &, an ordinal a<p (a limit or 0) and an ordinal k<y*. We now
describe a canonical extension f <; ¢ in RY, which ‘obeys &, &’.

Let t, =t and if ¢, is defined in Rﬁ+,, then define ;. € Rﬁﬂ+1 to be Lt]-least so
that ¢, ; <¢,; and x, y € [t;;1]— B*, B* agree on [B, B +i]— {4j +1|j e ORD}
and B*(& +4j+1)=6(x)(j) for 4+ 1<min(|6], B+i+1—&). Define ¢ =
glb({z; | i <A) for limit A< — . Andi=1¢,_p

Include all £ as above in RY.

Case 4: a divisible by y*-w. In this case we add conditions both for
extendibility and for two types of fusion.
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First consider extendibility. We define what it means for b < « to be special at
a. For any B < a, B divisible by y* - w define by ={6<B|4- (5, 8') +3€b for
unboundedly many such ordinals <f}, where (:,-) is a fixed paring on ORD
such that 6 <y*— (48, 8') <d'+y*. For b to be special at & we insist that
0¢ by, B has cardinality y* in L{bg] and b =b%N P, for all B =< a which are
divisible by y*

Now pick ¢ € R}, B < « as well as an acceptable y*-term &, an ordinal & < f
(& limit or 0), an ordinal £ < y* and b — a which is special at «. We define a
canonical extension 7 <;t in RY, which ‘obeys &, & and b’.

If C2” is unbounded in a, then let oy < &} < - - - enumerate it (where b* =b%).

Otherwise ag<a;<--- is the increasing enumera}ion of C% followed by the
L[b*]-least w-sequence cofinal in a such that | J C5 < ﬁo And ap<a <---is
the final segment of &, < @) <- - - defined by ¢, = least «; greater than B.

Now define ¢, =1t and if ¢; is deﬁned, then let #;,, <¢,,t, be L[b*]-least in R};M
such that x € [t,.;]— B*, b agree on [B, a;,,) — {4j +1|j € ORD} and B*(& +
4j + 1) = &6(x)(j) for 4j + 1 <min(|6], a;,, — &). Set £, = glb(¢; | i <A) for limit A
and 7 =1, where A,= ordertype(wo <ap<--o)

Include all 7 as above in RY.

We now turn to type A fusions. We put those ¢ into RY, which can be written
t=glb{t; | i <A) where ty =, t; =, 1, =313 =4 - - has the property that each x € [¢]
codes (t;|i<A). The latter is defined as follows. Let 7 be least so that a is not
regular in L,.,[x]. We require that n exists and that x codes a predicate
G* c L+[x], k* = (x*)"®] via the index i, for decoding G from x“ = G(y) for
P*-generic G, using the parameter (CARD N k*)™I® where L,[x]Fa=y*"
and k = largest limit cardinal. Let A be decoded in L, [x] from x as A is decoded
from x“ = G(y) for ?*-generic G and let ?* denote the L,[x] version of $*,
with A playing the role of A. We require that L, . ,[x]FG* | x, {(n, k, §) give
rise to the canonical A-sequence of P ;-quasiconditions py,=p,=- - - for some X,
d, limit A and & =J {|p.(y)| | i <A}. If in addition 0 € (B* N a)¥, then we say
that x codes the type A fusion (p;(y) | i <A).

Finally we consider type B fusions. As in the type A case we put those ¢ into R?,
which can be written £ = glb(t; | i <A) where t,=,1,=,1, =5 - - has the property
that each x € [t] codes {t;|i <A). The latter is defined as follows. Let 7 be least
so that a is not regular in L, [x]. We require that 7 is defined and L,[x]Fy** is
the largest cardinal. Now let $*=(rs|B<a) and we then require that
L,[x])Ffor some B, S* is a path through the y"*-tree T=Tj} and x is
R”-generic over L[AN a, T].

We also require that a is 2 (L,[A N @, T])-projectible for some least k and
k=2. Now let o = 3, _,-Master Code structure for L,[A N &, T| and we require
that C has ordertype <y™ where C consists of all &’ < & such that a’ ¢ H, = 3-
Skolem hull of &’ U {p} in &, p = standard parameter for /. Let o’ = 3,-Master
Code structure for & and h:ao— y* a canonical 3,(")-injection.

For x to code the type B fusion f,=;,¢ =j,1,=;, -+ we require that
0e(B*Na)i and h7Y(@) is a X.(s4')-index for t,, t;, ..., where [ is defined as
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follows; List C = {a,<a&;<---} and let i, =least i <y™ such that 4(a; +i) +
3€e B*. We require that i, is defined and equal to i for sufficiently large
k < ordertype(C).

This completes the construction of R”=|J{R% | a<y**}. For te R” we set
a(t) =least a such that t € R}, — R%,, where R, =\J{RL|B<a}.

If t'<t belong to R?, then t' <t is a type 1 extension if for some a = a(t')
there exists b = a which is special at a, 0 ¢ b, such that x € [t'] - B*, b agree on
[a(t), a(t')) — {4j + 1| j e ORD}. The equivalence relation ~,. on elements of
R is defined inductively by: ¢, ~ ¢, if a(t,) = a(t,) and either ¢, =, or there are
type 1 extensions ¢, <7, t, <17, where f; ~f, and for some acceptable y*-term o,
x€[t;], ye€[t]— B*, B® agree on [a(f), a(t)) —{4j +1|j€ ORD}, B*(4j +
1) = o(x)(j) and B*(4j + 1) = o(y)(j) for all 4j + 1 € [a(F,), a(ty)).

This completes our present discussion of R”, y < w.

Definition of 7, y an uncountable limit cardinal

A quasicondition is a sequence p = (p(¥) | 7€ CARDNy) where p(y)=
(ps» Ps) € R+ for 7 not a limit cardinal and p(¥) = (py, P5, P;) Where (p;, py) €
R?* and (p | ¥, py) € R? for ¥ a limit cardinal (we have @ =0" is a successor
cardinal for these purposes). In the latter case we write (ps, ps, P5) < (g5, G5, 45)
if (py 47) <(q3 §5) and p; 2 g5 Then p <gq if p(¥) <q(¥) for all . And x is a
path through p, x € [p], if x = (x(¥) | ¥ € CARD N y) where x(¥) € [(p5, p;)] for
all ye CARDNy, x [ 7€[(p ¥, p;y)] for limit ¥ € CARD Ny and in addition
x(FWa) =P for <7 and all e CARD Ny, x(#a@) =137 for a<p*
and all limit e CARDNYy. A y-path is a path through p, the weakest
quasicondition.

Acceptable y-terms are certain (names for) functions o: y-paths— 27" and are
defined inductively as follows:

(a) Any constant term o(x) = sy, S, a fixed element of 2<7", is acceptable.

(b) If o,, 0, are acceptable, |0, = |0,| and 7 is an acceptable y-term for some
7€ CARDN v, then o is acceptable where o is defined by: o(x)=o,(x) if
t e Range(x(¥)), y € [t{]— B*(4j + 1) = ©(¥)(j) for 4j + 1 <min(|7|, a(t)); o(x) =
0,(x) otherwise.

(¢) o,, 0, acceptable— o, * 0, is acceptable.

(d) opcoyc0---co;c--- acceptable for i<y
U {a; | i <y} is acceptable.

To each condition p € " will be assigned a pair (A(p), D(p)) such that
D(p) c Ly, and L, [D(p)]F v is the largest cardinal. The condition p will then
be I)(A(p)) where A(p)=(L,,[D(p)], D(p)). Moreover Z3-
projectum(#(p)) = y and X;-cofinality(sf(p)) <y. Each x € [p] will canonically
give rise to a sequence of conditions {p% | @ < &(p)) where p%,, = p. We define
B* as follows: For each condition ¢, n < w, and ¥y € CARD Ny let Xi(y) = Z,-
Skolem hull of YU {y} in #(g) and let 8i(¥)=X¥(y)Ny*. Then « € B* iff

!

(where vy’ '=y)—
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4825(7*) + 3 € B* for sufficiently large ¥ <y (if y is 3,(s(p%))-singular for
some n) and « € B* iff 482%(¥%)+3 e B*¥ for sufficiently large ¥ <7y, for
sufficiently large n (if y is X,(H(p%))-regular for all n).

Write p<,q for ye CARDN vy if p=<gq and p(¥) = q(¥) for y<j. We shall
define #Y=J{P%|a<y*} in y* stages where P =(+),-closure(?}U P,)
and where (+), is the closure operation: Given p, q and ¥y e CARD N y form r by
r(¥) =p(¥) for ¥ =¥ and r(¥) = q(¥) for ¥ < ¥ (provided r is a quasicondition).
Thus it will only be necessary to define %7, for a < y*.

As before conditions will be added both for extendibility and fusion. In the
former case we will make use of the tree forms of (1 and {. Thus as in Chapter 6
of Beller—Jensen—Welch [1] we have a system (¢, \ y=sa<(yH", y.w
divides &, y c & and L,[y]E y is the largest cardinal) where (2, is a closed subset
of & of ordertype<y, Be(Cl— Cy,,”‘s is defined and equal to C%,NB, €2 is
uniformly 2, ,,(L,[y]) where (v, n) is least so that « is X,(L,[y])-projectible, C?,
bounded in a— X, . (L,[y])-cofinality(«) = w and if

Fr{Lal7), €) — (Laly], €2,

then C7% is defined (where y above is replaced by # = largest L;[7]-cardinal) and
equal to C. We can also define C’, (for the same pairs (e, y)) to have the same
properties with the exception that € C%,— C3"# = C%N B only for B a limit of
elements of C’,, but now C2 is also unbounded in « (and C, = C?, when the latter
is unbounded in «). It will be convenient to also define CJ, =the interval
(y-B, a) when a=vy-+68, 0<d=<y for all ycw, L,[y]Ey is the largest
cardinal.

Let E = {(«, y) | C% is defined and bounded in a}. Then E is stationary in the
sense that if C) is defined, v(a,y)=least v such that « is X, ,,(L,[y])-
projectible for some least n(a, y)<w and v(a, y)>a, then whenever Ce
Ly(a ,ly] is closed unbounded in « there exists 8 € C such that (8, y N B) belongs
to E. Using this we can define a {(E) system (D, | («, y) € E) with the properties
that v(a, y) > &, X € L,(,,,)[y], X € a— X N B = D} for some (B, y N B) € E and
that D’, is uniformly definable as an element of L, ,)[y].

We shall also make an implicit use of ‘singularizing’ sequences, like the C; of
Theorem 6.46 of Beller—Jensen—Welch [1]. However we will define these
explicitly during the construction, rather than specify them in advance.

Now we turn to the construction of #¥, a < y™.

Case 1: @« =0. P§={py} where py is the weakest quasicondition. A(pg) =1y
and D(py) =9.

Case 2: o =B+ 1. Let p e 5. We describe the extensions of p in P%. We
assume inductively that for sufficiently large ¥ <y, a(p;) = 65(¥™) and for limit

7, a((psy | 7 <7))=84(D).
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Case 2A: v is Z,(sd(p))-singular. Choose canonically a continuous cofinal
sequence {y; | i < &) of cardinals less than y such that 6 <o, x € L, [A] where x
is the least parameter defining p and (y;|i<d) as Z,(s(p)*)-sequences,
#(p)* = =,-Master Code structure for s/(p). We assume as well that (y; |i <1)
is X,(£*(p) | ;) for limit A< &. Also let (p, g)"*' denote the Z,-Master Code
structure for {A(p)*, q) where g < L,[A].

We will now build an w-sequence of quasiconditions p=pe=p,=p,=---
such that p, is 2, ,,(#(p)). Assuming that p, has been defined we turn to the
definition of p,;=glb (ph+1|j<y). Define pi.,=p, To define pitl from
Phei, proceed as follows. Set piti®=ph.. For u<y, let X,i* equal the
>,-Skolem hull of u+1 in (p, Ph)""' I v& Then P is the least
quasicondition g <}’ such that (g),; = (#25y")ys (Where (r), =r—r | u) and
for A<peCARD, u<y,:q,+(q,)=q'(q.) where g’ is canonical and g(u)
reduces all predense D < R%* which belong to X330 Logg[q.+(q4)). Also
require that for limit cardinals u as above, g,(q I n)=q'(q | p) where q' is
canonical and g | u reduces all predense D < %% which belong to X200
Leqol9x(q | @)]. For limit i<2 we let Pkl = glb(pith" | i' <i). Also specify
that y, (v(A(p), D(p)),n+1,A-j+i) gives rise to (P4 |i'<i) for each
y-path y € [p534]. Set pity = phili™.

We define pit, from pity as follows. For any quasicondition r, P(r)=
{quasiconditions g <r | (q);=(r); for some y<y}. Choose a canonical listing
((D;, §;) | i <y) of all pairs (D, g) where D € Z,(4(p)") is predense on P(p,),
G=q |y for some g€ P(p,), 7€ CARDNy. Now suppose §; has domain
[0, 7)) NCARD and §;(¥) € R where r = p,5;. Also suppose that there exists

g <some element of D; such that g < pil and g |} 7* = g;. Then let pity <pith

be least so that pi%. agrees with such a ¢ above ¥ and with pirL below y*.
Otherwise pit} = pity. For limit j < y we set pl,., = glb{p}., | j' <j) and specify
that y, (v(A(p), D(p)), n+1, A-j) gives rise to (Pl |j'<j) for each y-path
Ve [pin-l} Then Pn+1 =p:};+1'

This completes the definition of the w-sequence of quasiconditions p = po=
p,=--- and we set p = glb{p, | n € ®). Also let (i), i =0 or 1, denote the least
quasicondition <p such that 485,(7") +3 €; B’ when y € [p(i);], for sufficiently
large 7eCARDNy, where e€,=¢, €, =€. Then we specify  that
y, (v(A(p), D(p)), o, 1) givesrise to the (» + w)-sequence consisting ofpo=p,=
... followed by the constant @w-sequence p(i)=p(i)=--- for each y € [p(i)],
i=0orl.

To complete the description of &% in this subcase we repeat the above
construction (given p € P%) for each ¥y e CARD Ny to obtain p(i, ¥), where we
require that all extensions pj;’, p}, are <;p; thus for example in defining Tl o
from piY;' we only consider p > ¥, in defining pil from pit) we only consider g;
with domain [0, 7] for some 7 = ¥ and in defining p(i) from p we only consider
482 (u*) +3 €; BP® for > 7. Also we choose p, not to be p but some p’ <y p
such that (p'), = (p), form some u <y and p' is incompatible with p(i, ¥) for all
7 < 7. This is easily arranged through a judicious choice of D+
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To define the extensions of p in P, we fix a listing ((¥;, 7,) | i <y) of all pairs
(¥, ) where y € CARD Ny and 7 is an acceptable y-term for some 7 <. Now
inductively define gqo, ¢i,... as follows: g* is chosen so that g* =,
p(z, 8, p(0, ¥), p(1, 7)) and g shares no path with q°, i’ <2i; g**! is chosen so
that ¢**' <. p(z, 8, p(1, ¥), p(0, 7)) and g**' shares no path with ¢°, i’ <2i. To
complete this definition we must define p* =p(z, 8, §°, §') when p =4° §' are
quasiconditions and 7 is an acceptable y-term, ¥ <<y: we have p* [ ¥=p | ¥ and
pi=pir,0,3% 4%, p3=4%U4} P:=433Ug; (for ¥ limit), for y e CARD N
7. -

Finally add all the g to %%, for each choice of p € #} and set A(g") = A(p) + 1,

D(q")=D(p).

Case 2B: y is 2,(A(p))-regular for each ne€ w. For any new let C, ={y <
v|¥=yNH(y) where H(¥)= X,-Skolem hull of U {y} in «(p)**'} where
A(p)*! =2, ,,-Master Code stucture for &(p). Then C, is closed, unbounded
in y and we assume inductively that for sufficiently large ¥ € Cy, p;=@.

Pick i =0 or 1. We build an w-sequence of quasiconditions p =p,=p,=---
such that p, is Z,..(sf(p)), with the property that p(i)=glb(p,|new),
x €[p(i)]— B*(B)=i. As before let A(p, q)**' denote the X,-Master Code
structure for (A(p)*, q) where q c L,[A] and A(p)* = Z,-Master Code struc-
ture for of(p). Let C,(q) be defined like C,, but using «(p, q)"*" instead of
A(py.

Assuming that p, has been defined we now define p,,,. First we define a
sequence (p’.;|j<y). Set ph.1=p, and to define p/}} from p’,,, proceed as
follows. Set pii%°=pl... For j<pu <y let X737 equal the X,-Skolem hull of
p+1in A(p, ph))”™ | ¥ Then pit%Y" is the least quasicondition g < pity?
such that ()5 = (p.157);- and for p <79, q,+(q,) = ¢'(g,) where ¢’ is canonical
and g(u) reduces all predense D < R%* which belong to X343 N La,, )[9,.+(q.)]-
Also require that for limit cardinals u, p<7%, u ¢ CI'(p,,) (=the set defined
like C,(ph+1) but using S(p, pls)™*' 1 7%): qu(q P )=q'(q | u) where ¢’ is
canonical and g | u reduces all predense D < P% which belong to X7%%N
Laolg.(q I p)). For limit 7 <y we let pjt}7 = glb(p,";"| 7€ CARDN ¥) and
specify that y, (v(A(p), D(p)),n+1,y-j+7¥) gives rise to (pi"47|ye
CARD N 7) for each y-path y € [pit7]. Set pihh = pith”.

Define p.%Y from p.% as follows. For any quasicondition r, P(r)=
{quasiconditions q <r | (¢q); = (r); for some 7 <y}. Choose a canonical listing
((Dy, q;) |j<7v) of all pairs (D, §) where D € Z,(s4(p)") is predense on P(p,),
Gg=gq | v for some g € P(p,), ¥ € CARDNy. Suppose g; has domain [0, ¥]N
CARD and §;(7) € R where r = p’%. Also suppose that there exists g € some
element of D; such that ¢ <p%%; and g | y* = g;. Then let (4, C) be least so that
g <pitl, g agrees with such a g above 7, § agrees with p}%}; below ¥* and C is
closed unbounded in y, o€ C—§,=0. Otherwise let § =p."}. We define
pri=4.

For limit j<y we set pl,,=glb(p,,,|j'<j) and specify that
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¥, (v(A(p), D(p)), n+1,v-j) gives rise to (pl..|j'<j) for each y-path
Y €[Ph+1]- Set Poir=piir )

Now we describe how to obtain p, ;. First define a sequence (p}..| 7€y N
CARD) starting with p,,+1 = pn+1 just like we defined (p.%;7| ¥ € y N CARD)

Aj+1,0

starting with p/t;°=p/ ., but using .szf(p)"+2 in place of (p,pl,)"*" and
specifying that y, ((A(p), D(p)), n+1, Y’ +7) gives rise to (Pl |7<7¥) for
each y-path ye([p].,] when <y is an uncountable limit cardinal. Put
pro=glb(pl.,|ye CARDNy) and finally let p,,,<p;., be least so that
&(Ps1 [ V)=a(prss [ 7)s Pner,= § for sufficiently large y€C,,; and for
sufﬁaently large 7€ CARDNy: 465.5(7")+3 €, B” when je [Pn+1,] (Where

= ¢, e,=¢€). We specify that y, (v(A(p), D(p)), n +2,0) gives rise to the
(y + w)-sequence consisting of (f7., |7 € y N CARD) followed by the constant
W-SE€qUENCE P, 41 =Ppyy =+ - - for each y € [p,44].

This completes the definition of the sequence (p,|n € w). Now let p(i) =
glb(p, | n € @) and specify that y, (v(A(p), D(p), w, 0) gives rise to {p, | n € ®)
for each y € [p(i)]. Repeat this construction for each y e CARD Ny to obtain
p(i, ¥) <,p and arrange that ¥ # 7' — p(i, ¥) and p(i, ¥') have no common path.
Finally proceed as in Case 2A to define (g’ | i <y) using p(0, 7), p(1, ) in place
of p(0, 7), p(1, 7) and add all ¢’ to 7, for each choice of p € #%, and define

Mg')=Ap) +1, D(¢') = D(p).

Case 2C: v is Z,(A(p))-regular but Z,(A(p))-singular for some n. Let m be
largest so that v is 2,,,,(«f(p))-regular. Then given i € {0, 1} and p € P% build
Po=p1= - - - =p,, as in Case 2B. The only difference may be that when building
P the closed unbounded set C,_, may have ordertype <y, which however
causes no difficulty in the construction. Now build p,, = p,,.;=---=p(i) as in
Case 2A, observing that y is %,,.,(#(p))-singular. If we repeat this for each
7€ yNCARD to obtain p(i, y) <,p, we can then define as before all the
extensions of p in %, in this case.

Case 3: « a limit ordinal not divisible by y- . Write o=+ where
0<dé=y and y divides B. Choose p € ?/)y for some Be[B, ) as well as an
acceptable y-term &, a set bca, an ordlnal @<pB (& limit or 0) and
7€ CARD N y. We describe a canonical extension p <;p in P

Let po=p and if p;, has been defined, then let p,,, <;,sp; (6 =card(i)) be
L[A Ny, pol-least in $§,,;,, such that x € [p;+,]— B*, b agree at B+iGfB+iis
not of the form & +4j + 1) and B*(& +4j + 1) = 6(x)(j) (f B+i=a& +4j +1).
Define p, = glb{p; | i<A) if A is a limit ordinal in which case we specify that
y, (v(A(p), B(p)) + 4, 0, 0) gives rise to {p; | i <A) for y € [p;]. Define p =p,_3
and let AP)=A(p)+ (a— B), B(p)=B(p)*D and D(p)=D(p)*D where
D c [A(p), A(p)) codes b, 6. Include all resulting p in PY.

Case 4: « divisible by y - . We add conditions both for extendibility and for
fusion.
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First consider extendibility. We define what it means for b ¢ a to be special at
a. For f<a, B divisible by y-w define bj={5<p|4-(8,8)+3eb for
unboundedly many such ordinals <f}. For b to be special at & we require that
0¢ b}, B has cardinality y in L[bg], (b§)o codes an acceptable y-term 6(bg) and

=biN B, for all B < « which are divisible by v - .

Now pick p € #%, B < « as well as an acceptable y-term &, an ordinal & < f8 (&
limit or 0), # e CARD Ny and b = a which is special at « where &= 6(b%). We
define an extension p <,pin P,

Let ay< a;<--- be the increasing enumeration of ct (where h* = b?) and
define ay<a,<--- to be its final segment determined by «, = least &, greater
than 8.

Now define p,=p and if p; is defined, then let p,,, <;.sp; (8 = card(i)) be
L[b)-least in P, such that x € [p;+1]— B*, b agree on [B, a;y,)—{4j+1]je
ORD} and B*(& +4j+1)=06(x)(j) for 4j+1<min(|6|, a;41 — &). Set p, =
glb(p; | i <A) for limit A and specify that y, (v(A(p:), B(p:)), 0, 0) gives rise to
(p:| i <A) for each y € [p,]. Define p = p;,, where A, = ordertype(C%’) and define
AB)=Mp)+(a—PB), B()=U{B(p)|i<i} and D(p)=D(p)*D where
D < [A(p), A(p)) codes b, C5".

If (o, B(p)) ¢ E, then add p to P%. Otherwise see if D5 is a dense subset of
PP, B(p))={q=<p | B(q), B(p) agree on [A(p), Aq)), a(q)<«} for some
p=p. If not, then add p to P%. If so, then add p to P, provided p =g =p for
some g which reduces DE®; ie., g=re PP, B(p))—3r' <r (r' e DEP and
(r); = (r'); for some 7 € y N CARD).

Now we turn to type A fusions. We put those p into %% which can be written
p=glb(p,|i<A) where py=p,=--- has the property that each x € [p] codes
(p;| i <A). The latter is defined as follows. Let 7 be least so that « is not regular
in L, 1[x]. We require that 7 exists and that x codes a predicate G* < L.+[x],
k* = (k%)™ via the index i, for decoding G from x = G | y for ?*-generic G,
using the parameter (CARD N x*)*"I*! where L,[x]F &= y* and k = the largest
limit cardinal. Let A be decoded in L,[x] from x as A is decoded from x® =G | y
for P*-generic G and let ?* denote the L, [x]-version of #*, with A playing the
role of A. We require that L, ,[x]EG* | k, (n, 7, ) give rise to the canonical
A-sequence of P*-quasiconditions p,=p,=--- for some %, 5, limit A and
a=Ha@; | v)|i<A}. If in addition 0 € (B* N &)%, then we say that x codes
the type A fusion (p;|y|i<A). Also let o/ =(p) be defined for j=
glb(p; | i<A) (as in Cases 2, 3 or Extendibility, Type B Fusion parts of Case 4)
and for p =glb(p, | y|i<A) we define D(p) to be a subset of a =A(p) that
codes (A, | & < a} where o, = transitive collapse (Z,-Skolem hull of & U {k} in
). (We require that Z-projectum(sf) = k.) We also let B(p) equal D(p).

Finally we consider type B fusions. We put those p into %% which can be
written p = gib(p; | i <A) where po=p,= - - - is coded by each x € [p]. To define
this notion of coding let 7 be least so that « is not regular in L, . [x]. We require
that 7 is defined and L, [x]F o = y™ is the largest cardinal. Now let $* = (p3| B <
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«) and then we require that L,[x]ES™ is a path through the y*-tree t = ¢}, where
x is R'-generic over L[A N a, t].

We also require that a is Z,(L,[A N a, t])-projectible for some least k and
k=2. Now let o = 3, ,-Master Code structure for L,[A N a, t] and we require
that C has ordertype =<y where C consists of all a’ < « such that «' ¢ H,. = -
Skolem hull of &’ U {q} in &, g = standard parameter for &. Let &’ = 3,-Master
Code structure for & and h: @ — y a canonical X,(«')-injection.

For x to code the type B fusion p,=p,=--- we require that 0 e (B* N a)},
p =glb(p, | i <ordertype(C)) reduces all predense D c R%,, D € & and h~'(i) is
a X,(s€') index for po=p,=--- where [ is defined as follows: List C = {a, <
a;<---} and let i = lgast i <y such that 4(a, +i)+ 3 € B*. We require that i,
is defined and equal to ¢ for sufficiently large k < ordertype(C).

Finally define #4(p)= o' for p as above (thus D(p) is a X,-Master Code for
&) and set B(p) = D(p).

This completes the construction of 27 =J {?%| & <y*}. For p € P7 we set
a(p) =least a such that p € P}, — P~,, where P, = {P}|B < a}.

If p' <p belong to #, then p’ <p is a type 1 extension if for some a = a(p')
there exists b < & which is special at «, 0 ¢ b}, such that x € [p']— B*, b agree on
[a(p), a(p’)) — {4j + 1| j e ORD}. The equivalence relation ~, on elements of $”
is defined inductively by: p, ~, p, if a(p,) = @(p,) and either p, = p, or there are
type 1 extensions p,<p,, p,<p, where p,~,p, and for some y-term o,
(xelpilyelp)—>B5 B’ agree on [a(p)), a(py) — {4j + 1] e ORD},
B*(4j + 1) = 0(x)(j) and B*(4) + 1) = o(y)(j) for all 4] + 1 & [a(py), @(py)).

This completes our definition of ?* =(_J {2 | y an uncountable limit cardinal}
(where p < g if p | Dom(q) <gq). We now prove a series of lemmas which show
that a ?*-generic real minimally codes A. These lemmas concern fusion, chain
conditions, extendibility and are established by a simultaneous induction.

We first consider distributivity and fusion for the forcings R?, Te R?". If ¢, ¢’
are y*-trees for y >0, then we write t<,,.t' (I, I’ <y") provided t<,¢' (i.e.,
R!=RY) and u € R, — u e R} unless u €t'(u;) for some i, y-i=1". Here we are
using a fixed canonical enumeration of P of length y*. If t=(t, 1), t'=
(), 1) eRT (T €RY"), then t <, t', t<,t' iff tg<,; t}, ty<;t;. And D c R” (for
TeR"")isl I'-dense below t e RT if ¢’ <,t— 3" <, t' (t" € D).

Lemma 4.1 (Fusion for R”, T € R""). Supposete R, TeR"',I<vy* and D, is
open and 1, I'-dense below ¢ for all I' <y*. Also suppose that (D, |I'<y*)e
L[T, AN y*™*). Then there exists t' <,t such that t' € D, for all ' <y™.

Proof. We use the type B fusions of Case 4 of the construction of R. Suppose
the lemma fails and choose ## <y*** (in the sense of L[T, A N y**]) to be least
so that there is a counterexample ¢, (D, |I' <y*) definable over LT, AN
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y**]. Choose k=2 so that this counterexample is X;_,(L;[T, AN y**]) with
parameter y** and let & = 3;_,-Master Code structure for Ly[T, AN y**]. We
also assume that a(T') is minimized among T € RY" for which the lemma fails.

Note that pi¥=y** and let p be the standard parameter for . Let
C={ay, @, - ..} consist of the first y* ordinals &’ such that y* <a'¢ H, = ;-
Skolem hull of &’ U {y**} U {p)} in . Now let « = U C, & = transitive collapse
of H, and «'=2X,-Master Code structure for &, h:a—y* a canonical
3, (A')-injection.

Now we are precisely in the type B situation of Case 4 of the construction of
RY". Pick any i< y*. We attempt to build the sequence t, =4t =, t, =, - - as
follows. Let ty=t¢ If t; has been chosen, then let t,,, <, be least so that
ti,1€Dy; and ;=] where j; is least so that 4(a; +j;) +3 € B* for all x € [t,,,].
Also insist that «; +4({0,j;))+3€B* for all xe[t,,] (to guarantee that
Oe(B*Na)t). As (D,;|i<y*) is Zp (LT, ANy**)) it follows that t,,, €
RZ,.. For limit A let #, = glb{r; | i <A).

We claim that j<y* can be chosen so that (t|i<y*) is well-defined and
glb(¢; | i<y*) =t"is a well-defined condition in R”. To see this let A’ : a— a be
(') and so that 2'(j) is a X,(#')-index for the above sequence (f; |i<y™)
where we have chosen j=h(j). By the Recursion Theorem we can choose
j =h(j) so that j and h’(j) define the same sequence (¢, | [ <y*). But then Case 4
of the construction of RY" shows that {t;|i<y™*), ' are well-defined, provided
we can verify: x €[], A limit— a; is regular in L, {x] where n, =ORDN
(transitive collapse of H,,).

To arrange this last property, by the leastness of # it suffices to arrange that
xe[y]—xis RT ' _generic over L, T | a;, AN &,). But this can be arranged
just as in the proof of Lemma 3.9.

Now the condition ¢ €(\{D,;|i<y"} provides a counterexample to the
choice of ¢, (D, |i<y*). O

Corollary 4.1A (<y-Distributivity for R”, T e R""). Suppose t e RT, T € R”" and
D; is open, dense below t for each i <y. Also suppose that (D, |i<y) e L[T, AN
y**). Then there exists t' <t such that t' € D, for all i <'y.

Corollary 4.1B (Density Reduction for R”, T e R”"). Suppose te RT, T e R""
and D is open, dense below t for each i <y™, (D;|i<y*)e L[T, ANy**]. Then
there exists t' <t which reduces each D; (i.e., for y-i<j<vy*, t'(w))=1"(w;) for
some "€ D,, where (u;|j<y™) enumerates P"). In particular, if D} is open
dense on {(t,u)|teR", ueR'} and (D} |i<y*)eL[T,ANy*™*)], then there
exists t' <t such that {u e R" | (t', u) € D;} is dense on R" for all i <y™.

An entirely similar argument establishes the following.
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Lemma 4.2 (Fusion for R”, TeR?, y>w a limit cardinal). Suppose p € R”,
T € RY, y an uncountable limit cardinal and for y,<i<vy, D,cR" is open and
card(i)-dense below p (i.e., g <,p—3r=<,q (r e D;) where ¥ = card(i)). Also
suppose that {D; | yo<i<y) € L[T, AN y*]. Then there exists p' <, p such that
p' €D, forall i€y, 7).

Proof. Use the type B fusion part of Case 4 of the construction of #Y, y an
uncountable limit cardinal. We need the form of density reduction stated in
Corollary 4.2B below to guarantee that x € [t,]—x is R” ' “*-generic and hence a;
is regular in L, [x]. O

Corollary 4.2A (Distributivity for R”, TeRY, y an uncountable limit
cardinal). Suppose p € R", T € R”, y an uncountable limit cardinal and D; c R" is
open and y-dense below p for i <. Also suppose that (D, |i<¥) e L[T, AN y*].
Then there exists q <p such that g e\ {D;|i <7}

Corollary 4.2B (Density Reduction for R”, Te R”, y an uncountable limit
cardinal). Suppose p € R™, T € R?, y an uncountable limit cardinal and D, < R" is
open and dense below p for each i <'y. Also suppose that (D;|i<y) e L[T, AN
y*]. Then there exists q < p which reduces each D, (i.e., for each i <y there exists
ye CARDN y such that r<q—3r' <r ((r' | ¥) U (q); € D).

The proof of Lemma 4.1 implicity used the following.

Lemma 4.3 (Extendibility for R”, T € R*"). Suppose te R}, Te R"", I<y™* and
i<j<y**. Then there exists t' <,t, t' € R].

The proof of Lemma 4.3 depends on the next lemma.

Lemma 4.4 (Extendibility for R"). Suppose te RY, k<y*, 8 is an acceptable
y*-term and & < «(t) is O or a limit ordinal. Also suppose that x € [t|]— B*(& +
4j + 1) = o(x)(j) for 4j + 1 <min(|o|, a(t) — &). Then if a > a(t), a« <y** there
exists t' <, t, t' € R), such that t' <t is a type 1 extension and x € [t'|— B*(& +
4j + 1) = o(x)(j) for 4j + 1 <min(jo|, a(t') — &).

Proof. First we note that if « is divisible by y* - w, then there exists a special
b < « such that (b}), codes the term o. To see this we need only choose X c a
such that 0¢ X, L[(X); N y*]Ecard(a) = y™ and (X),N B codes o | B for < a
divisible by y* - w; then define b so that 4- (8, ') + 3 e b iff 6 € X. We see that
B < a, B divisible by y* - w— bz =X N B and hence b is special at a.

The lemma is established by induction on a. We show that if « is divisible by
y* - w, then for any b < o which is special at a such that o = §(b}) there exists ¢'
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as in the lemma where in addition x € [t']— B*, b agree on [a(?), a) — {4/ +
1]j e ORD}. If « is not divisible by ¥* - w, we show the same for any b c a.

If « =90, there is nothing to show.

Suppose a = f + 1. By induction first extend ¢ to ¢", «(¢")=p obeying the
above for b N B. The extension of ¢” to the desired ¢’ € R, is clear if B is not of the
form & +4j + 1 by Case 2 of the construction of R”. If =& + 4j + 1, then we
induct on the formation of the term o, the important case being (b) in the
definition of y*-term. But then the construction of the ¢ in Case 2 shows that the
desired extension exists.

Suppose « is a limit ordinal not divisible by y* - @ so we can write a = + 6,
0<8=<y* and y* divides §. By induction we can extend to " € R} obeying the
above, where B'=max(8, «(t)). But then make successive extensions ¢’ =,
{1 =, i =, -- - as in Case 3 of the construction of RY where a(t}) = B’ + i. Finally
t' =t!,_g is as desired, as the sequence (¢ |0=<i=<a — B’) is clearly well-defined
at limit stages.

Finally suppose « is divisible by y* - w. Consider C%. If it is bounded in «,
then let C consist of C5 U {B,, B1, . . .} as in Case 4 of the construction of R; if
it is unbounded in «, then let C = C%. We also let ay< a, < - - - enumerate the
final segment of C determined by «a, = least element of C greater than a(¢). Now
define t =1ty =,t, =, - - - as in Case 4 where k =k, b = b, & = 0. The desired ¢’ is
# as defined there. The only thing to check is that (z |i <A,) is well-defined at
limit stages, A, = ordertype({ay, oy, .. .}). But this is clear as § a limit point of
C—y* - wdivides B, b5 =b%N B and hence CF=CNB. O

Proof of Lemma 4.3. We first consider the case t = (¢, 7,) where {, =9. Thus we
want to show that te R7— 3¢’ <,t (¢' € R). It suffices to consider teRT. By
Lemma 4.4 we can assume that j is a limit ordinal. Choose i = j, <{j; <- - - cofinal
in j of ordertype A < y*. We inductively build a sequence t = ¢, t,, . . . of length A
so that ¢, <;t for each k<A, e RT and ko<k,— B*™, B*' agree on
[a(?), alte,)) — {4j + 1|j € ORD} for xy € [tkn] x1 € [t

Define t,., from ¢, so that ¢, <,t and t,(HeR,kH by induction. Also we
assume indictively that x €[t]— B, b, agree on [a(t), a(t))— {4 +1]|je
ORD} where b, c a(t,) is special at a(t), (bi),={a(ti); |k’ <k} and in
choosing #,,, we can then also require the existence of a similar b, ., such that
(b)) ={ate) | k' <k}, bk =bf,1Va(t) and in addition 8 < a(ty), S ¢ bf—
4-((5,06')) +3¢ by forall 8" e[a(ty), a(tesr))-

Now for limit k£ < A note that b, = {b,- | k" <k} is special at | {a(t) | k' <
k}=a,. So by Lemma 4.4 we can choose f, <,t such that «a(#)= a; and
x € [t.]— B*, b, agree on [a(t), &,) — {4j + 1| j e ORD}. We claim that ¢, € R
Indeed if for k' < k we choose . = 1., aft;) = aft,), then we see that 1, ~_. tk
and thus f, (i) =f; ('), 8. (tk) g (ti) and so ;. eR for k' < k. Thus tA is
the desired extension of ¢ in RT
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Finally note that we can choose the above extensions so that b, N Even
Ordinals = @ and therefore the case 7, #@ also follows. O

We now attack the proof of extendibility for 2.

Lemma 4.5 (Extendibility for %7, y a limit cardinal). Suppose y is a limit
cardinal, p € P and a(p) < a < y™. Then there exists g <p, a(q) = a.

Proof. For any p in #" we show by induction on a € (a(p), y*) which are
divisible by y - w that for any ¥ e CARD Ny, any b = & which is special at o and
any & < a(p), & limit or 0 there exists ¢ <, p, a(q) = & such that x € [q]— B*, b
agree on [a(p), a)—{4j+1|je ORD} and B*(& +4j + 1) = o(x)(j) for 4j +
1< min(|o|, &« — &) where o= 6(b). Also, if a € (a(p), a(p) + y - w), we show
the same without the restrictions that b is special or o= &(b*). We also verify
that each such g€ #? reduces all predense D < P(p, b) which belong to
Ao(q) = {Lyoa).@n[B(q)), B(q)) when y-w divides «a, as well as other
properties assumed inductively during the construction of #?.

If & =0, there is nothing to show.

Suppose « = f + 1. First we can extend p to § € #} as above by induction. So
we can assume that a(p) = B. First suppose that y is 2,(f(p))-singular. We must
verify that the sequences of quasiconditions built in Case 2A of the construction
are well-defined. The existence of p.5;"*' follows by induction on y: when
y = wth cardinal after 0 or the limit cardinal ¥ we use Density Reduction for R”
finitely many times together with the easily verified fact that r e R*— 3r' e R*, r
and r' are compatible. (The latter is needed to justify the condition g,+(g,) =
q'(q.), q' canonical.) For limit ; we must also show that p/t5‘ = glb(p/5" | i' <
i) is a well-defined quasicondition. This follows from the fact that type A fusions
were added (in Case 4 of the construction of R° RY, #Y) and the fact that we
specify that y, (v(A(p), B(p)), n+1, 2-j+1) gives rise to (pit}" i’ <i) for
y € [p114]. The important thing to check however is that a/(p,) is regular in [x]
where & = the transitive collapse of X313, p =pit%' and x € [p,] (also we need
that a(p | p) is regular in #[x] where o = transitive collapse of X%.%2, p = p/ilf
and x € [p | u], for limit cardinals u <y;). But we have (see Lemma 4.8 below)
that p reduces all predense D c ?(p, B(p)) (if p is of type 1) or all predense
Dc P (if p arises from a type A fusion) or all predense D c R''*®) =
(g € PLory | g €R'} (if p arises from a type B fusion), for any D e oy(p),
A(p), ,(p) respectively. Thus we see that x as above is generic for (the image
in the transitive collapse (X}3) of) one of the above forcings, using the above
reductions together with those built into the definition of {p’°%"|i' <i).
Moreover, these forcings are cardinal preserving by Corollary 4.10A. So we are
done: pitl is well-defined. Exactly the same argument applies to verify that
Pnr1=gIb{ph |j<y) is well-defined, using the built-in density reductions. We

also get that (p,|new) is well-defined and the existence of p(i) follows by
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showing inductively that p(i) | ¥ is a quasicondition for ¥ € CARDNy. The
remaining part of Case 2A where g', i <y, are defined, presents no problems and
justifies the assertion that there exists ¢ <;p, a(q)=a, x €[q]— B*(B) =i (if
B¢{4j+1|jeORD}), B (&+4j+1)=o0(x)(j) (if B=a&+4j+1). Also note
that q' clearly reduces all predense D = P(p, B(g‘)) belonging to sf,(¢’) and that
7€ CARDN y— a(g}) = 87(¥%), a(q' | 7)=067(7) for 7 a sufficiently large
limit cardinal <y.

Suppose that y is X, (sf(p))-regular for all n € . We must verify that the
quasiconditions defined in Case 2B of the construction of ?” are well-defined.
The existence of p.1;"" follows by induction on ¥ as in the previous subcase. For
limit y<y we must also verify that pith¥=glb(p/ %" | yeCARDN YY) i
well-defined. This follows as in the previus subcase from the fact that type A
fusions were added (in Case 4 of the R°, RY, PV constructions). The only new
point to observe is that for ue Ci(pj.))=M{Cl (phs+1)| 7€ CARDN 7} we
have that p,.7 | u has the same definition at u as does p.\;7 | 7 at . Thus
P57 T does belong to R? where g =pti"=pl.,,. We must again check
however that for p <79, a(p,) is regular in &f[x] where & = transitive collapse of
Xit%., p=pitY" and x € [p,,] (similarly for limit u <%, u ¢ Ci(pl.,), as in the
previous subcase). Again by Lemma 4.8 we have that x is generic for the
appropriate cardinal-preserving forcing (collapse of (p, B(p)), #* or %) so we
are done. The fact that p/"} is well-defined follows, given the existence of the
closed unbounded set C. But notice that we can choose § to belong to P(p.4)) so
we can let C = q final segment of C,(p,.,).

The fact that p, ., is well-defined follows as before using density reduction and
closure under type A fusions. The construction of p,.,<p}.  =glb{pl , | ye
CARD N y) presents no new problems; again we must inductively verify that
Pn+1 | ¥ 18 a quasicondition for ¥ € CARD Ny. Then we can define the p(i, y)
and q'. Notice that the verification that ¢‘<p requires us to know that
neC,=M{C,|new}—p, =0, p, =ty as we have specified B*(a(q’ | p)) =
B*(a(p ' n)) for x e[p I u]. And for sufficiently large 7 € C,, we have g% =1,
g>=0and a(q' | 7) = 6{(¥) thereby preserving our induction hypotheses.

When y is 3,(sf(p))-regular but X, (&4(p))-singular for some n, then we can
combine the above two arguments to obtain the desired g.

Now suppose « is a limit ordinal not divisible by vy - @. We can assume that
B=a(p)=p where a=p+6, 0<d<1y and y divides B. The desired g arises
from Case 3 of the construction of %Y. The condition p; in that construction is
well-defined as before using type A fusions provided we check that p, reduces all
predense D < P(p, B(p,)) in (p;), for A< a — B. Induction proves this for
A<y and for A =y note that even though B(p,)# B(p,_) NA(p;) fori<a —
we can still verify the desired reduction by choosing i least so that D € (p;,,)
and using Case 2 of the construction. Also note that if y € C;— pi,=1ty, p;, =9 for
i<a—pB thenyeC— py @, p; =ty where C = diagonal 1ntersect10n of the C/’s
(or just the ordinary intersection if & — B < y).
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Finally suppose that « is divisible by y - ®. Then we must verify that the
sequence (p; | i <A,) from Case 4 of the construction of %" is well-defined. But
this follows from C(b Ne)” = C5"N @, provided we have that p, reduces all
predense D < P(p, B( P) in L, een[B(p)]. The latter follows from
Lemma 4.7 below. also note that the final restriction on when to add p to %, does
not interfere with the desired extendibility. And in case y is inaccessible in A(p;)
we should note that p, | 7 is a quasicondition for 7 € {¥ <y | ¥ =y N (Z;-Skolem
hull of yU{y} in #(p,))} thanks to the special collapsing properties of the
O-sequences (Ck|yca, « divisible by y-w and L,[t]Fy is the largest
cardinal). O

Lemma 4.6 (Extendibility for R’, Te R, vy an uncountable limit
cardinal). Suppose p € RT, T € R, y an uncountable limit cardinal, ¥ € CARD N
yand i <j<y®*. Then there exists g <;p, q €R].

Proof. Exactly like the proof of Lemma 4.3, using Lemma 4.5 now instead of
Lemma 4.4. O

We have made extensive use of the following lemmas, which in fact are
established via a simultaneous induction with our earlier lemmas.

Lemma 4.7 (Chain Condition for #(p, B)). Suppose p € #", y an uncountable
limit cardinal and q <p is a type 1 extension, B = B(q). Then P(p, B)={p' <
p|p € Pl B(p') and B agree on [a(p), a(p'))} obeys the y*-cc in
Lv(l(q),B)[B]‘

Proof. This follows from the use of the {-sequence in Case 4 of the construction
of #*. O

Lemma 4.8 (Density Reduction for P(5, B(p)), P% R*'*®), Suppose p € P"
where y is an uncountable limit cardinal.

(a) If p<p is a type 1 extension (p #p), let Ao(P) = Lyaimy,8onlB(P)). Then
p reduces all predense D = P(p, B(p)), D € Ao(p).

(b) If p arises from a type A fusion, let Ai(p) = A where s and P arise from
Case 4 of the construction of P. Then p reduces all predense D — P, D € sd,(p).

(c) If p arises from a type B fusion, let d(p) = where { and R''*P arise
from Case 4 of the construction of P". Then p reduces all predense D ¢ R*' *?,
De -ﬁz(P )-

Proof. (a) is clear from the proof of Lemma 4.5. And (c) is clear from Case 4 of
the construction of #”. Lastly (b) follows from the definition of the canonical
sequences in the construction of #*. 0O
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Lemma 4.9 (Distributivity for P*). Suppose (D, |i<y) is a definable sequence
of open classes which are y-dense below p € P*. Then there exists q<,p,

qem{D.-li<Y}-

Proof. Choose 6 e CARD so that p € Ls[A] <z, L[A]. Then each D =D;N
Ls[A] is open dense below p* on P(p*) for some p* € P§ (i.e., (p*); agrees with
the weakest element of ?° for some & € CARD N §). Then by definition, if
g=<p*, a(q)=1, then g reduces each D}. Thus we see that D} is predense on
2. So we can apply Corollary 4.2A to T = the weakest element of R® to obtain
the desired g. [

Lemma 4.10 (Density Reduction for #*). Suppose p e #* and (D, |i<y) isa
definable sequence of open classes which are dense below p. Then there exists q <p
which reduces each D; below v.

Proof. As in the proof of Lemma 4.9 it suffices to prove this with ?* replaced by
R7, T € R® for some limit cardinal > y* and (D, |i<y) e L[T, AN &*]. Now
apply Corollary 4.2A to reduce the D,’s below y* and then Corollary 4.1B to
reduce them below y. O

Corollary 4.10A (Cardinal Preservation). If R is a P*-generic, then R preserves
cardinals.

Proof. Immediate from Lemma 4.10, which also is needed to establish the
definability of forcing. [

Lemma 4.11 (Minimal Coding). If R is P*-generic, then A is L[R]-definable and
R is V-Minimal.

Proof. Extendibility for ?* follows from extendibility for #?, Lemma 4.5. From
this we can infer that A is L[R]-definable.
Now suppose p IFx < ORD, x ¢ L[A]. It suffices to prove:

Claim. There exist o, po, p, such that p,,p1<p and polra ¢x, p,+taex and
(pO)w = (pl)m-

Given the Claim we can use Density Reduction for #* to build a sequence
Po=p,=--- such that p* =glb(p, | i < w) exists and s, ¢ incompatible elements

of 25— ((pi(s), 58), p*(1),-..) and ((p3(1), 53). p*(1), ...) force incom-
patible facts about x. So p*+R € Vix].

Proof of Claim. Choose p,, py;=<p and a as in the Claim but without the
requirement (py), = (P1).- Our operation (+) allows us to modify p,, p, so as to
satisfy the Claim. By induction on y e CARD define p{§, p{ so as to satisfy the
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Claim with (po). = (p1). replaced by pf | [@, ¥) =p} | [@, y). For successor y*
we can use the operation (+),+ to define ?}, to be py (1, tg, po,., p1,,) Where T is
a y-term for some ¥ < y such that [p, ] = g’y(r), [p1,]1N %, (7) =9. Limit cardinals
y can be handled using y-distributivity. [

This completes the proof of the Minimal Coding Theorem.

5. Further results

Theorem 5.1. There exists a real R € L[0*] which is L-minimal but not set-generic
over L.

Proof. We need to produce a real R in L[0%] which is weakly #*-generic over L,
where by weakly generic we mean that G need only meet all predense D c P,
DelL.

We proceed just as in Section 4.4 of Beller—Jensen—Welch [1]. Let I denote the
Silver indiscernibles for L and for i € I, n € w let i(n) denote i* N Skolem hull of
(+1DU{iy, ..., 0} in L, where i*=(i")" and i<i;<---<i, belong to L
Clearly this deﬁmtlon is independent of the choice of i,, .. ., i,.

Now define, for each n € w, sequences (p™|iel), (t"|iel)y and (u" |iel)
where u” e R, t" € R“", p" € R and u™ = pi for i <j in 1. We define p%, t*
u” to be the weakest conditions obeying the preceding requirements. Then let
p"* Vi< p™ be least in R such that a(p™*"") =i(n) where **" is the least
t € R*", t <™ which reduces all predense D e Skolem hull of i* U {i;, ..., i,} in
L, i<i <---<i, from I. We also insist that p"*P* meets the first n predense
sets in Skolem hull of {ig, iy, ..., i,} in L, where i, =min(f) and i, <i; <---<
i, belong to 1.

Clearly we have n<m—p™<p™, (™ =<¢" and u™ <u™ for iel and
i<j—p™=p" }ifor n e w. Now let G consist of all conditions p € 2" such that
for some finite Fc/ and iel, new we have that Fci and p | (i—F)=
p”‘ V@~F), p(j)=(p; Py p;) where (p;,p)=t" for jeF. Let G={pe
P |p=p for some p e G). Then G is a compatible class of conditions and by
construction any predense D e L is reduced below i, by G. But then the
requirement on p™*"" implies that in fact G meets D. So G is weakly
#-generic. O

Theorem 5.2. There exists an L-definable forcing P for producing an L-minimal
real which is not set-generic over L such that if R # S are P-generic over L, then
(R, S) is P x P-generic over L. In addition, L[0*] = 3P-generic real.

Proof sketch. We only deal with weak genericity; the modifications required for
full genericity are as in Beller—Jensen—Welch (1, Lemma 5.3].
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Modify the forcing #° as follows: In the definitions of #* and R restrict the
type A, B fusions to a stationary set of @ <y*, avoiding a stationary set E c y*
on which lies a {(E)-sequence. Then when adding conditions to Y, RY for « € E
(for the sake of extendibility) make sure that any distinct pair (p, q) € 2% x 27,
Ry X R}, reduces a dense set on PL,x PL, RY,XRY, specified by the
Q(E)-sequence. This is possible provided ?%,, RY, are subsets of L,; we can
arrange this by requiring (as in Section 1) that Y, R}, c L; where & =least B> a
such that 8 is admissible and Lg k y is the largest cardinal. Then any two distinct
P-generics will reduce any given predense Dc ?x P, De L. O

Open Questions. (1) Does there exist an L-minimal IT}-singleton?

(2) Define S <R if R is set-generic over L[S] and S=<; R. Assume 0% exists.
What are the finite initial segments of the resulting partial ordering of degrees
(R~ S if R<S, S<R) below 0*? Theorem 5.1 implies that there is a minimal
such degree.

(3) Is there a K-minimal real which is not set-generic over K = the core model?
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