Shelah's Classification Theory

T countable, complete, first-order

T is classifiable iff there is a "structure theory" for its models Example: Algebraically closed fields (transcendence degree)

T is unclassifiable otherwise Example: Dense linear orderings

Shelah's Characterisation (Main Gap): T is classifiable iff T is superstable without the OTOP and without the DOP

A classifiable T is *deep* iff it has the maximum number of models in all uncountable powers (Example: Acyclic undirected graphs, every node has infinitely many neighbours)

Another way of classifying theories: Descriptive Set Theory

 $\mathsf{Mod}_{T}^{\omega} = \mathsf{Models} \ \mathsf{of} \ T \ \mathsf{with} \ \mathsf{universe} \ \omega$

 $\mathsf{Isom}_{\mathcal{T}}^\omega = \mathsf{The} \ \mathsf{Equivalence} \ \mathsf{Relation} \ \mathsf{of} \ \mathsf{Isomorphism} \ \mathsf{on} \ \mathsf{Mod}_{\mathcal{T}}$

Isom $_T^{\omega}$ is an analytic (boldface Σ_1^1) equivalence relation

Classify T according to the complexity of Isom $_T^{\omega}$:

Countably many classes Smooth Essentially countable

Borel

 S_{∞} complete (bireducible with Graph Isomorphism)

Bad news: The complexity of Isom $_T^{\omega}$ is not a good measure of the model-theoretic complexity of T:

Dense Linear Order is bad model-theoretically but Isom $_{\mathcal{T}}^{\omega}$ is trivial

(Koerwien) There are very classifiable theories T such that Isom_T^ω is not even Borel

Theme of this lecture: Instead use Isom $_T^{\kappa}$ for an uncountable κ (joint work with Tapani Hyttinen and Vadim Kulikov)

Preview: For appropriate κ

T is classifiable and shallow (i.e. not deep) iff Isom $_{T}^{\kappa}$ is "Borel"

T is classifiable iff for all regular $\lambda < \kappa$, Isom $_T^{\kappa}$ is not "Borel above" equality modulo the λ -nonstationary ideal

Higher Descriptive Set Theory: Generalised Baire Space

First we have to understand what is meant by "Borel" and "Borel reducible" in the generalised Baire space κ^{κ}

Fix an uncountable κ such that $\kappa^{<\kappa}=\kappa$

Then Baire space ω^{ω} generalises nicely to κ -Baire space κ^{κ} :

Points in κ^{κ} are functions $f:\kappa\to\kappa$ Basic open sets are of the form $N_p=\{f\mid p\subseteq f\}$, $p\in\kappa^{<\kappa}$ Basic open sets are also closed There are only κ many basic open sets The intersection of $<\kappa$ open sets is open

Higher Descriptive Set Theory: Borel Sets

Borel sets: Close the basic open sets under unions of size κ and complements

Now we start to see a difference for uncountable κ :

Borel is a proper subclass of Δ^1_1

This is because Borel sets are described by well-founded trees and well-foundedness is Δ_1^1 for regular uncountable kappa

Classical DST: LM (Lebesgue Measurability), BP (Baire Property) and PSP (Perfect Set Property)

Higher DST: BP and PSP

Baire Property

The Baire Category Theorem works: The intersection of κ -many open dense sets is dense

X is nowhere dense iff it is contained in a closed set with no interior $Meager = Union of \kappa$ -many nowhere dense sets

X has the Baire property (BP) iff its symmetric difference from some open set is meager

Fact: Borel sets have the BP

Surprise! There are Σ_1^1 sets without the BP:

Theorem

(Halko-Shelah) For regular $\lambda < \kappa$ let CUB^{κ}_{λ} denote the set of $f: \kappa \to \kappa$ such that $\{\alpha < \kappa \mid f(\alpha) = 0\}$ contains a λ -closed unbounded subset. Then CUB^{κ}_{λ} does not have the BP.

Even Δ_1^1 sets can fail to have the BP:

Theorem

- (a) In L, CUB_{λ}^{κ} is not Δ_1^1 for any λ but there are Δ_1^1 sets without the BP.
- (b) CUB_{λ}^{κ} is consistently Δ_{1}^{1} (Mekler-Shelah for $\kappa = \omega_{1}$, Hyttinen-Rautila whenever $\lambda^{+} = \kappa$, SDF when $\lambda^{+} < \kappa$).

A bit of good news:

Theorem

(Sam Coskey and SDF, independently) You can force Δ_1^1 sets to have the BP.

Perfect Set Property

A subset of κ^{κ} is *perfect* iff it is the set of branches through a subtree of $\kappa^{<\kappa}$ which has no isolated branches and is $<\kappa$ -closed

X has the *perfect set property (PSP)* iff it either has size at most κ or contains a perfect subset

Open sets trivially have the PSP

As Mekler-Väänänen observed, you need an inaccessible to get the PSP for closed sets, because you need to kill κ -Kurepa trees

Theorem

In L, the PSP fails for closed sets (for all κ).

This is because in L there is a "quasi"-Kurepa tree at every regular κ

Theorem

(Philipp Schlicht and SDF, independently) After converting an inaccessible into ω_2 with an ω -closed Lévy collapse, the PSP holds for all Σ^1_1 sets.

Question: Is the PSP for Π_1^1 sets consistent?

We need to generalise the theory of Borel reducibility from ω to κ

A function $f: X_0 \to X_1$ where X_0, X_1 are Borel subsets of κ^{κ} is a Borel function iff $f^{-1}[Y]$ is Borel whenever Y is Borel

Let E_0, E_1 be equivalence relations on Borel subsets X_0, X_1 of κ^{κ} .

 $E_0 \leq_B E_1$ (E_0 is Borel reducible to E_1) iff for some Borel function $f: X_0 \to X_1$:

$$x_0 E_0 y_0$$
 iff $f(x_0) E_1 f(y_0)$

Now recall the following picture from the classical case:

$$1 <_B 2 <_B \cdots <_B \omega <_B \text{ id } <_B E_0$$

forms an initial segment of the Borel equivalence relations under \leq_B where n denotes an equivalence relation with n classes for $n \leq \omega$, id denotes equality on ω^ω and E_0 denotes equality modulo finite on ω^ω

At κ we easily get the initial segment

$$1 <_R 2 <_R \cdots <_R \omega <_R \omega_1 <_R \cdots <_R \kappa$$

(Silver Dichotomy) Can id (equality on κ^{κ}) be the successor of κ ?

This implies that Borel sets have the PSP, so it fails in L and its consistency requires an inaccessible

(Glimm-Effros) Can E_0 be the successor of id (at κ)?

Versions of E_0 :

For regular $\lambda \leq \kappa$, define $E_0^{<\lambda} = ext{equality modulo sets of size} < \lambda$

Fact: For $\lambda < \kappa$, $E_0^{<\lambda}$ is Borel bireducible with id

So we can forget about $E_0^{<\lambda}$ for $\lambda<\kappa$ and set $E_0=E_0^\kappa$, equality modulo bounded

Other versions of E_0 :

For regular $\lambda<\kappa$ define $E^\kappa_\lambda=$ equality modulo the ideal of λ -nonstationary sets

These equivalence relations are key for connecting Shelah Classification with Higher Descriptive Set Theory

Theorem

(SDF-Hyttinen-Kulikov) Relative to an inaccessible it is consistent that κ is inaccessible and the E^{κ}_{λ} are pairwise Borel-incomparable for distinct regular $\lambda < \kappa$. And relative to a weak compact it is consistent that $E^{\omega_2}_{\omega}$ is Borel-reducible to $E^{\omega_2}_{\omega_1}$.

Are there Borel-incomparable Borel equivalence relations? We do have:

Theorem

(SDF-Hyttinen-Kulikov) It is consistent to have an embedding from $(\mathcal{P}(\kappa),\subseteq)$ into the ordering of Δ^1_1 equivalence relations under Borel reducibility.

We now connect Shelah Classification with Higher Descriptive Set Theory.

For simplicity assume GCH and $\kappa=\lambda^+$ where λ is uncountable and regular.

 $\mathsf{Isom}_{\mathcal{T}}^{\kappa}$ is the isomorphism relation on the models of \mathcal{T} of size κ .

Theorem

(SDF-Hyttinen-Kulikov)

- (a) T is classifiable and shallow iff Isom $_T^{\kappa}$ is Borel.
- (b) T is classifiable iff for all regular $\mu < \kappa$, $E_{S_{\mu}^{\kappa}}$ is not Borel reducible to $Isom_{T}^{\kappa}$.
- (c) In L, T is classifiable iff Isom $_T^{\kappa}$ is Δ_1^1 .

The proof uses Ehrenfeucht-Fraissé games:

The Game $EF_t^{\kappa}(\mathcal{A},\mathcal{B})$

 \mathcal{A} , \mathcal{B} are structures of size κ , t is a tree.

Player I chooses size $<\kappa$ subsets of $A\cup B$ and player II builds a partial isomorphism between $\mathcal A$ and $\mathcal B$ which includes these sets.

The moves take place along a branch through the tree t.

Player II wins iff he survives until a cofinal branch is reached.

The tree t captures $lsom_T^{\kappa}$ iff for all size κ models \mathcal{A} , \mathcal{B} of T, $\mathcal{A} \simeq \mathcal{B}$ iff Player II has a winning strategy in $\mathsf{EF}_t^{\kappa}(\mathcal{A},\mathcal{B})$.

Now there are 4 cases:

Case 1: T is classifiable and shallow.

Then Shelah's work shows that some well-founded tree captures Isom_T^κ . We use this to show that Isom_T^κ is Borel.

Case 2: T it classifiable and deep.

Then Shelah's work shows that no fixed well-founded tree captures Isom_T^κ . We use this to show that Isom_T^κ is not Borel.

Shelah's work also shows that $L_{\infty\kappa}$ equivalent models of T of size κ are isomorphic. This means that the tree $t=\omega$ (with a single infinite branch) captures Isom_T^κ . As the games $\mathrm{EF}_\omega^\kappa(\mathcal{A},\mathcal{B})$ are determined, this shows that Isom_T^κ is Δ_1^1 .

We must also show: $E_{S_{\mu}^{\kappa}}$ (equality modulo the μ -nonstationary ideal) is not Borel reducible to $\mathrm{Isom}_{T}^{\kappa}$ for any regular $\mu < \kappa$. This is because (in this case) $\mathrm{Isom}_{T}^{\kappa}$ is absolutely Δ_{1}^{1} , whereas μ -stationarity is not.

Now we look at the unclassifiable cases.

Recall: Classifiable means superstable without DOP and without OTOP.

Case 3: T is unstable, superstable with DOP or superstable with OTOP.

Work of Hyttinen-Shelah and Hyttinen-Tuuri shows that in this case no tree of size κ without branches of length κ captures Isom $_T^\kappa$. This can be used to show Isom $_T^\kappa$ is not Δ_1^1 .

But $E_{S_{\lambda}^{\kappa}} \leq_B \operatorname{Isom}_T^{\kappa}$ is harder. Following Shelah, there is a Borel map $S \mapsto \mathcal{A}(S)$ from subsets of κ to Ehrenfeucht-Mostowski models of T built on linear orders so that $\mathcal{A}(S_0) \simeq \mathcal{A}(S_1)$ iff $S_0 = S_1$ modulo the λ -nonstationary ideal.

Case 4: T is stable but not superstable.

This is the hardest case and requires some new model theory. Hyttinen replaces Ehrenfeucht-Mostowski models built on linear orders with primary models built on trees of height $\omega+1$ to show $E_{S_{\omega}^{\kappa}} \leq_B \operatorname{Isom}_T^{\kappa}$. (We don't know if $E_{S_{\lambda}^{\kappa}} \leq_B \operatorname{Isom}_T^{\kappa}$ or if $\operatorname{Isom}_T^{\kappa}$ could be Δ_1^1 in this case.)

Now we have all we need to prove the Theorem mentioned earlier:

(a) T is classifiable and shallow iff Isom $_{T}^{\kappa}$ is Borel.

We showed that if T is classifiable and shallow then Isom_T^κ is Borel and if it is classifiable and deep it is not. If T is not classifiable then some $E_{S_n^\kappa}$ Borel reduces to Isom_T^κ , so the latter cannot be Borel.

(b) T is classifiable iff for all regular $\mu < \kappa$, $E_{S^{\kappa}_{\mu}}$ is not Borel reducible to $\mathrm{Isom}_{\mathcal{T}}^{\kappa}$.

We showed that if T is not classifiable then $E_{S^\kappa_\mu}$ is Borel reducible to Isom^κ_T where μ is either λ or ω . We also showed that if T is classifiable and deep then no $E_{S^\kappa_\mu}$ is Borel reducible to Isom^κ_T , by an absoluteness argument. When T is classifiable and shallow there is no such reduction as Isom^κ_T is Borel.

(c) In L, T is classifiable iff Isom $_T^{\kappa}$ is Δ_1^1 .

We showed that if T is classifiable then Isom_T^κ is Δ_1^1 , in ZFC. If T is not classifiable then $E_{\mathcal{S}_\mu^\kappa}$ Borel reduces to Isom_T^κ for some μ , and in L, $E_{\mathcal{S}_\mu^\kappa}$ is not Δ_1^1 .

Shelah Classification and Higher Descriptive Set Theory: Open Problems

Regularity Properties at uncountable regular cardinals

- 1. Is the PSP for Π_1^1 consistent?
- 2. Investigate other regularity properties.

Borel Reducibility at uncountable regular cardinals

- 3. Are there incomparable Borel equivalence relations?
- 4. Are the Silver or Glimm-Effros Dichotomies for Borel equivalence relations consistent? Do they hold for isomorphism relations?
- 5. Are there Σ_1^1 equivalence relations which are not Borel reducible to graph isomorphism?

Shelah Classification and Higher DST

- 6. Can Isom T be Δ^1 for an unclassifiable T?
- 7. Does equality modulo the λ -nonstationary ideal Borel reduce to $\mathsf{Isom}_{\mathcal{T}}^{\kappa}$ for stable, unsuperstable \mathcal{T} ($\kappa = \lambda^+$)?