
Cardinal Characteristics and De�nability

I write Σ1
n, Π1

n, ∆1
n for these classes without parameters

A wellorder of the reals is Σ1
n i� it is ∆1

n i� it is Π1
n

x � y i� (y ≤ x and y 6= x).

(Gödel) V = L→ ∆1

2
wellorder

(Mans�eld) ∆1

2
wellorder → V = L for reals

(Harrington) ∆1

3
wellorders are consistent with large continuum

(SDF) ∆1

3
wellorders are consistent with MA + c = ω2

(Caicedo-SDF) BPFA + ω1 = ωL
1
→ ∆1

3
wellorder

Large cardinals → There is no ∆1
n wellorder, n < ω



Cardinal Characteristics and De�nability

Question: Can we bring ∆1
n de�nability into the study of cardinal

characteristics?

Theorem

(Fischer-SDF) Each of the following is consistent with a ∆1

3

wellorder: d < c, b < a = s, b < g.

a, b, d, g, s = almost-disjointness, bounding, dominating,

groupwise-density, splitting numbers
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All three results have the same proof strategy:

Template Iteration: A countable support ω2-iteration of S-proper

forcings (for some stationary S ⊆ ω1) which is ωω bounding, forces

a ∆1

3
wellorder and allows for complete freedom to insert additional

proper forcings of size ω1 into the iteration.

For d < c: Use the basic template

For b < a = s: Insert proper almost ωω bounding forcings due to

Shelah to kill MAD families and push up the splitting number

For b < g: Insert Miller forcings to push up g
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The idea of the Template Iteration:

1. Club Coding: Code a wellorder by adding clubs to selectively

killing the stationarity of certain stationary subsets of ω1 (no reals

added).

2. Sacks Coding: Code these clubs by reals using a variant of Sacks

forcing (to ensure ωω-boundedness).

3. David's Trick: Make the coding ∆1

3
.

4. Stationarity Preservation: Verify that no stationary set

�unintentionally� loses its stationary, to ensure that the intended

Club Coding works.
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Write the Template Iteration as P = (Pα | α < ω2)

Club Coding

Fix a stationary subset S of ω1 and a sequence (Sα | α < ω2) of

almost disjoint stationary subsets of ω1, each disjoint from S

At iteration stage α (α limit):

Let <α denote the canonical wellorder of the reals in L[Gα]
Choose two reals x <α y and force to code the pair (x , y):

n ∈ x → Sα+2n is nonstationary

n ∈ y → Sα+2n+1 is nonstationary

A condition is a countable closed subset of ω1 disjoint from the

Sα+2n for n ∈ x and from the Sα+2n+1 for n ∈ y

The forcing is S-proper
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Sacks Coding

Suppose V = L[A] where A is a subset of ω1 = ωL
1

De�ne countable ordinals µi as follows:

µi = least µ > supj<i µj such that Lµ[A ∩ i ] � ZF− and i is

countable in Lµ

A real R codes A below i i� for j < i :

j ∈ A i� Lµj
[A ∩ j ,R] � ZF−

For T a Sacks tree, |T | = least i such that T ∈ Lµi
[A ∩ i ]

Now force with Sacks trees T such that:

R a branch through T → R codes A below |T |

By absoluteness, this holds for all R in the generic extension
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We need to check that forcing with Sacks coding behaves nicely

Fact 1. If T is a condition and |T | < i then T has an extension T ∗

with |T ∗| = i .

Proof: Suppose |T | = j , i = j + 1.

Let Aj denote Lµj
[A ∩ j ]; so T belongs to Aj .

If j belongs to A then thin T to T ∗ so that each branch of T ∗ is

T -generic over Aj . Then R a branch through T ∗ → Aj [R] � ZF−.

Otherwise let R0 be a real in Ai coding µj and thin T to T ∗ so

that branches through T ∗ go right at the 2n-th splitting level of T

i� n belongs to R0. Then:

R a branch through T ∗ → R0 ∈ Aj [T ,R] = Aj [R] → Aj [R] 2 ZF−

The case of limit i uses fusion.
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Also using fusion:

Fact 2. Sacks Coding is proper and ωω bounding.

The e�ect of Sacks Coding is to add a real R , the unique branch

through all T in the generic, such that for all i < ω1:

i ∈ A i� Ai [R] � ZF−

and therefore V = L[A] is contained in L[R].
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David's Trick

I won't say much about this (it is Tricky!). The idea is to strengthen

�For some α there is a club C disjoint from Sα+2n for n ∈ x and

from Sα+2n+1 for n ∈ y �

to:

�There is a real R such that in all ZF− models M containing R

satisfying ω1 = ωL
1
, M � There is an α and a club C disjoint from

SM
α+2n for n ∈ x and from SM

α+2n+1
for n ∈ y �

where SM
α+2n, S

M
α+2n+1

= Sα+2n, Sα+2n+1 interpreted in M.

This Σ1

3
statement about (x , y) is the source of the ∆1

3
wellorder.



Cardinal Characteristics and De�nability

Stationary Preservation

Our iteration does the following: If < is the canonical wellorder of

the reals in L[G ] then:

x < y → For some limit α < ω2 there is a club C disjoint from

Sα+2n for n ∈ x and from Sα+2n+1 for n ∈ y

To get a de�nable wellorder we need the converse; i.e. we need to

show that the stationarity of Sα+2n or Sα+2n+1 was not

�unintentionally� killed.
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Stationary Preservation (continued)

For this we argue as follows:

Suppose that p forces that Sα+2n �should� remain stationary

(because n does not belong to x where the pair (x , y) is considered

at stage α). Then the iteration below p is a countable support

iteration of Sα+2n-proper forcings and therefore is Sα+2n-proper.

But p forces the generic to be also generic for this iteration, so p

forces stationary-preservation for Sα+2n.

We now have all the ingredients to show:

The Template Iteration is S-proper for some stationary S, is ωω

bounding, is ω2-cc, forces ∼ CH and adds a ∆1

3
wellorder of the

reals. Moreover we can mix into the iteration any size ω1 proper

forcings and preserve these properties with the exception of ωω

boundedness.
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Cardinal Characteristics and ∆1

3
wellorders

Now we mix in speci�c additional proper forcings to control

cardinal characteristics.

Example 1: d < c

No mixing is required; the basic Template Iteration is ωω bounding

so does not increase d.

Example 3: b < g

Miller forcing is almost ωω-bounding. The countable support limit

of S-proper, almost ωω-bounding forcings is weakly bounding, i.e.

does not increase b. By an argument of Blass, Miller forcing pushes

up g.
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Example 2: b < a = s

We need two forcings of Shelah. Assume CH.

(a) A proper, almost ωω-bounding forcing Q of size ω1 which adds

a real not split by any ground model real.

(b) A proper, almost ωω-bounding forcing R of size ω1 which kills

a given MAD family of the ground model.

By inserting the forcings Q and R into the Template Iteration we

keep b = ω1 but push up both a and s to ω2.



Projective MAD Families

We consider MAD families of subsets of ω.

(Mathias) There is no Σ1

1
MAD family

(Miller) In L, there is a Π1

1
MAD family

(Kastermans-Steprans-Zhang + Kurilic) There is a Π1

1
MAD family

in L that remains Π1

1
and MAD after adding any number of Cohen

reals.

So it is consistent with ∼ CH to have a Π1

1
MAD family of size ω1.



Projective MAD Families

Question: Is it consistent to have projective MAD families when

there are no MAD families of size ω1?

Theorem

(SDF-Zdomskyy) It is consistent with b = ω2 to have a Π1

2
MAD

family.

As b ≤ a it follows that it is consistent to have a Π1

2
MAD family

when there are no MAD families of size ω1.



Projective MAD Families

Very brief proof sketch:

Insert proper forcings that add a dominating real into the Template

Iteration; this guarantees b = ω2.

At limit stage α look at the α-th real xα and add it to Fα = the

part of the MAD family built so far, if xα is almost disjoint from Fα.

Using Club Coding and David's Trick, witness xα ∈ F or xα /∈ F in

a Π1

2
way; this ensures that F is ∆1

3
.

The above is straightforward.

The hard part: Actually only put xα into F which �witness

themselves�; this ensures that F will be Π1

2
.



Projective MAD Families

Question: Can we have projective MAD families when b > ω2?

Theorem

(Aristotle-Fischer-SDF-Zdomskyy) It is consistent with b = c = ω3

to have a Π1

2
MAD family and a ∆1

3
wellorder of the reals.

Of course we now need to use �nite support iteration, to avoid

collapsing ω2.



Projective MAD Families

Another very brief proof sketch:

We begin with a sequence (Sα | α < ω3) of almost disjoint

stationary subsets of ω2 ∩ Cof(ω1), each disjoint from some �xed

stationary S ⊆ ω2 ∩ Cof(ω1)

Let P0 be the product with size ω1 support of forcings to add clubs

Cα disjoint from Sα

Next let P1 be the product with countable support of forcings to

code each Cα by a subset Xα of ω1. (So 2ω1 now equals ω3.)

Finally we iterate with �nite support to add reals Rβ , β < ω3, which

code certain of the Xα's using σ-centered almost disjoint coding.

At limit stage β we look at the β-th pair of reals x < y and force

Rβ to code Xβ+2n for n in x and Xβ+2n+1 for n in y .

Using David's Trick, this will give a ∆1

3
wellorder provided

nonstationarity is not �unintenionally� coded by a real.



Projective MAD Families

Obtaining a Π1

2
MAD family with b = ω3 is accomplished by mixing

in Hechler reals and the methods of the previous theorem.

To show that nonstationarity is not �unintentionally� coded, it is

important that the wellorder of the reals be determined just by the

generic reals being added, and not by the generic as a whole.

This means that our technique is limited to handling countable

objects in the iteration. So the following remain open:

Is Martin's Axiom consistent with a ∆1

3
wellorder and c = ω3?

Can one separate cardinal characteristics with a ∆1

3
wellorder and

c = ω3?

(Also: Is it consistent to have a Σ1

2
MAD family when there are no

MAD families of size ω1?)



The Last Slide

Question: Can one introduce de�nability into the study of cardinal

characteristics at an uncountable cardinal?

Theorem

(SDF-Honzik) Assume the consistency of a weak compact

hypermeasurable cardinal. Then it is consistent for GCH to fail at a

measurable κ with a de�nable wellorder of H(κ+); the same holds

for ℵω with ℵω strong limit.


