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1 Introduction

Every admissible assignment of ℵ1 -ℵ2 to the cardinal invariants in the Cichón diagram
can be realized in a generic extension of a model of CH obtained as the countable
support iteration of proper forcing notions (see [2, Chapter 7]). With every invariant
in the Cichon diagram, one can associate a forcing notion which increases its value
without affecting the values of the other invariants. Thus to a certain extent the problem
of realizing an ℵ1 -ℵ2 assignment in a generic extension, reduces to iterating certain
posets (controlling the corresponding invariants) without introducing undesirable reals.

In [3] the first two authors provide a generic extension of the constructible universe L ,
in which there is a ∆1

3 -definable wellorder on the reals and c = ℵ2 . The extension is
obtained by a countable support iteration of S-proper posets for some fixed stationary
S ⊆ ω1 . The construction leaves enough space to control in addition some of the
combinatorial cardinal invariants of the continuum and it is established that each of the
inequalities d < c, b < s = a, b < g is consistent with the existence of a projective
wellorder on R. In the present paper we use the flexibility of this construction to
control the invariants of measure and category. We show that each admissible ℵ1 -ℵ2

assignment of the invariants in the Cichón diagram is consistent with the existence of
a ∆1

3 definable wellorder of the reals. In addition, in two instances we use a slight
modification of the method from [4] which produces a ∆1

3 definable wellorder of the
reals via a finite support iteration of σ -centered posets.

The poset which forces the definable wellorder of the reals and is introduced in [3],
can be presented in the form 〈Pα, Q̇α : α < ω2〉 where Qα = Q0

α ∗ Q̇1
α is a two step
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iteration: an arbitrary S-proper poset of size at most ℵ1 , for some stationary S ⊆ ω1

chosen in advance, followed be a three step iteration Q1
α of the form K0

α ∗ K̇1
α ∗ K̇2

α .
The poset K0

α shoots closed unbounded sets through certain components of a countable
sequence of stationary sets (see [3, Definition 3]), K1

α is a poset known as localization
(see [3, Definition 1]), and K2

α is a poset known as coding with perfect threes (see [3,
Definition 3]). The poset Q(T) of shooting a club through the stationary, co-stationary
set T is ω1\T -proper and ω -distributive. The localization poset L(φ) is proper and
does not add new reals. The only poset of these three forcing notions which does add
a real is the coding with perfect trees partial order, denoted C(Y). C(Y) is proper and
as we shall see below has the Sacks property.

Thus the main task in merging the above techniques is to show that the coding with
perfect trees poset has all relevant iterable combinatorial properties and that in all
relevant preservation theorems the requirement of properness can be relaxed to S-
properness. In the applications of the finite support iteration forcing techniques which
produce a wellorder of the reals, it is also of importance that the values of the relevant
invariants can be controlled using σ -centered posets.

The paper is organized as follows: in section 2 we establish the necessary preservation
theorems for S-proper, rather than proper iterations, in section 3 we study the combi-
natorial properties of C(Y) and in section 4 we show that each of the above admissible
assignments is consistent with the existence of a ∆1

3 -w.o. on R.

2 Preservation theorems

Throughout this section S denotes a stationary subset of ω1 .

For T ⊆ ω1 a stationary, co-stationary set let Q(T) denote the poset of all countable
closed subsets of ω1\T with extension relation given by end-extension. Note that if G
is a Q(T)-generic set, then

⋃
G is a closed unbounded subset of ω1 which is disjoint

from T . Thus Q(T) destroys the stationarity of T . One of the main properties of Q(T)
which will be used throughout the paper is the fact that Q(T) is ω -distributive and so
does not add new reals (see [8]).

Since Q(T) destroys the stationarity of T , it is not proper. However Q(T) is ω1\T -
proper.

Definition 2.1 Let T ⊆ ω1 be a stationary set. A poset Q is T -proper, if for every
countable elementary submodel M of H(Θ), where Θ is a sufficiently large cardinal,
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such thatM∩ω1 ∈ T , every condition p ∈ Q∩M has an (M,Q)-generic extension
q.

The proofs of the following two statements can be found in [5].

Lemma 2.2 If Q is S-proper, then Q preserves ω1 . Also Q preserves the stationarity
of every stationary subset S′ of ω1 which is contained in S .

Lemma 2.3 If 〈〈Pα : α ≤ δ〉, 〈Q̂α : α < δ〉〉 is a countable support iteration of
S-proper posets, then Pδ is S-proper.

The proofs of the following two statements follow very closely the corresponding
“proper forcing iteration" case (see [1, Theorem 2.10 and 2.12]).

Lemma 2.4 Assume CH . Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ ≤ ω2 of S-proper posets of size ω1 . Then Pδ is ℵ2 -c.c.

Lemma 2.5 Assume CH . Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ < ω2 of S-proper posets of size ω1 . Then CH holds in VPδ .

Preserving V ∩ 2ω as a dominating or as an unbounded family: A forcing notion P is
said to be ωω -bounding if the ground model reals V ∩ ωω form a dominating family
in VP . This property is preserved under countable support iteration of proper forcing
notions. A forcing notion P is said to be weakly bounding if the ground model reals
V∩ωω form an unbounded family in VP . In contrast to the ωω -bounding property, this
property of weak unboundedness is not preserved under countable support iterations
of proper posets. There are well-known examples of two step iterations of weakly
bounding posets, which add a dominating real over V . An intermediate property,
which preserves the ground model reals as an unbounded family in countable support
iterations of proper posets, is the almost ωω -boundedness. A forcing notion P is said
to be almost ωω -bounding if for every P-name for a real ḟ , i.e. a P-name for a function
in ωω , and for every condition p ∈ P, there is a real g ∈ ωω ∩ V such that for every
A ∈ [ω]ω ∩ V there is an extension q ≤ p such that q 
 ∃∞i ∈ Ǎ(ḟ (i) ≤ ǧ(i)). These
are our main tools in providing that the ground model reals remain a dominating and
or an unbounded family in the various models which we are to consider in section 4.

The proofs of the two preservation theorems below follow very closely the proofs of
the classical preservation theorems concerning preservation of the ωω -bounding and
the almost ωω -bounding properties respectively under countable support iterations of
proper forcing notions (see [1], or [5]).
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Lemma 2.6 Let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a countable support iteration of
length δ ≤ ω2 of S-proper, ωω -bounding posets. That is, assume that for all i < δ ,

Pi "Q̇i is ωω-bounding and S-proper". Then Pδ is ωω -bounding and S-proper.

Lemma 2.7 Let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a countable support iteration of length
δ ≤ ω2 of S-proper, almost ωω -bounding posets. That is, assume that for all i < δ ,


Pi "Q̇i is almost ωω-bounding and S -proper".

Then Pδ is weakly bounding and S-proper.

Keeping non(M), non(N ) and cof(N ) small: Recall that with every ideal I on a set
X we can associate the following invariants:

• add(I) = min{|A| : A ⊆ I and
⋃
A /∈ I},

• cov(I) = min{|A| : A ⊆ I and
⋃
A = X},

• non(I) = min{|Y| : Y ⊆ X and Y /∈ I}, and

• cof(I) = min{|A| : A ⊆ I and ∀B ∈ I∃A ∈ A(B ⊆ A)}.

Following standard notation we denote by M and N the ideals of meager and null
subsets of the real line, respectively. Thus add(M), cov(M), non(M), cof(M) and
add(N ), cov(N ), non(N ), cof(N ) denote the above defined cardinal invariants for
the ideals M and N .

To preserve small witnesses to non(M), non(N ) and cof(N ) we will use preservation
theorems which follow the general framework developed by M. Goldstern in [6].

Definition 2.8 ([2, Definition 6.1.6]) Let v be the union of an increasing sequence
〈vn〉n∈ω of two place relations on ωω such that

• the sets C = dom(v) and {f ∈ ωω : f vn g} where n ∈ ω , g ∈ ωω are closed
and have absolute definitions, that is, as Borel sets they have the same Borel
codes in all transitive models.

• ∀A ∈ [C]≤ℵ0∃g ∈ ωω∀f ∈ A(f v g).

Let N be a countable elementary submodel of H(Θ) for some sufficiently large Θ

containing v. We say that g ∈ ωω covers N if ∀f ∈ N ∩ C(f v g).

Following [2, Definition 6.1.7], we say that the poset P S-almost-preserves-v if the
following holds: whenever N is a countable elementary submodel of H(Θ) for some
sufficiently large Θ containing P, C, v and ω1 ∩ N ∈ S , g covers N and p ∈ P ∩ N ,
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then there is an (N,P)-generic condition q extending p such that q 
 “g covers N[Ġ]".
Similarly we say that the forcing notion P S-preserves-v if P satisfies [2, Definition
6.1.10] with respect only to countable elementary submodels whose intersection with
ω1 is an element of the stationary set S . More precisely, we say that a forcing notion P
S-preserves-v if whenever N is a countable elementary submodel of H(Θ) for some
sufficiently large Θ which contains P and v as elements and such that ω1 ∩ N ∈ S ,
whenever g covers N and 〈pn〉n∈ω is a sequence of conditions interpreting the P-names
〈ḟi〉i≤k ∈ N for functions in C as the functions 〈f ∗i 〉i≤k , then there is an N -generic
condition q ≤ p0 such that q 
P “g covers N[Ġ]" and

∀n ∈ ω∀i ≤ k q 
P (f ∗i vn g→ ḟi vn g).

Furthermore we obtain the following analogue of Goldstern’s preservation theorem
(see [6] or [2, Theorem 6.1.3]).

Theorem 2.9 Let S be a stationary set and let 〈Pα, Q̇α : α < δ〉 be a countable support
iteration such that for all α < δ , 
α “Q̇α S-preserves- v ". Then Pδ S-preserves-v.

Of particular interest for us are the relations vrandom , vCohen and v∆ defined in
Definitions 6.3.7, 6.3.15 of [2] and on page 303 of [2], respectively. For convenience
of the reader we define these relations below:

vrandom : Denote by Ω the set of all clopen subsets of 2ω . Then let

Crandom = {f ∈ Ωω : ∀n ∈ ω(µ(f (n)) ≤ 2−n)}

and for f ∈ Crandom let Af =
⋂

n∈ω
⋃

k≥n f (k). Now for f ∈ Crandom, x ∈ 2ω and
n ∈ ω define

f vrandom
n x ⇐⇒ ∀k ≥ n(x /∈ f (k)).

Let vrandom=
⋃

n∈ω vrandom
n . Note that f vrandom x if and only if x /∈ Af and that x

covers N with respect to vrandom if and only if x is random over N .

vCohen : Let
CCohen = {f ∈ ΩΩ : ∀U ∈ Ω(f (U) ⊆ U)}.

For f ∈ CCohen let Af :=
⋃

U∈Ω f (U). Note that Af is an open dense subset of 2ω

and that for every dense open set H ⊆ 2ω there is an f ∈ CCohen such that Af ⊆ H .
Fix some standard enumeration {Un}n∈ω of Ω and for f ∈ CCohen , x ∈ 2ω , n ∈ ω
define:

f vCohen
n x ⇐⇒ ∃k ≤ n(x ∈ f (Uk)).
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Let vCohen=
⋃

n∈ω vCohen
n . Then f vCohen x if and only if x ∈ Af . Therefore x covers

N with respect to vCohen if and only if x is a Cohen real over N .

v∆ : Let Q+ = Q ∩ [0, 1], let ∆ = {f ∈ Qω
+ :

∑
n∈ω f (n) < 1} and let

C∆ := {f ∈ ((Q+)<ω)ω : ∀n
∑

i∈dom(f (n))

f (n)(i) < 2−(n+1)}.

For f ∈ C∆ let εf ∈ ∆ be defined by εf = f (0)af (1)a · · · . For f , g ∈ C∆ define

f v∆
n g ⇐⇒ ∀m ≥ n(εf (m) ≤ εg(m)).

Let v∆=
⋃

n∈ω v∆
n .

Each of those relations satisfies the properties of Definition 2.8. Thus Theorem 2.9
implies the following two theorems (analogous to Theorems 6.1.13 and 6.3.20 from [2]
respectively).

Theorem 2.10 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , 
α “Q̇α S-preserves- vrandom ", then Pδ preserves outer measure. That is for
every set A ⊆ 2ω , VPδ � µ∗(A) = µ∗(A)V . In particular 
δ V ∩ 2ω /∈ N .

Theorem 2.11 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , 
α “Q̇α S-preserves- vCohen ", then Pδ preserves non meager sets. That
is for every set A ⊆ 2ω which is not meager, VPδ � A is not meager. In particular

δ V ∩ 2ω /∈M.

Recall that a forcing notion P has the Sacks property if and only if for every P-name
ġ for a function in ωω there is a slalom S ∈ V , i.e. a function S ∈ ([ω]<ω)ω such
that |S(n)| ≤ 2n for all n, such that 
P “∀n(ġ(n) ∈ S(n))··. By [2, Lemma 6.3.39]
a proper forcing notion P is has the Sacks property if and only if P preserves v∆ .
By [2, Theorem 2.3.12] if P has the Sacks property then every measure zero set in VP

is covered by a Borel measure zero set in V and so P preserves the base of the ideal of
measure zero sets. We obtain the following analogue of [2, Theorem 6.3.40].

Theorem 2.12 If 〈Pα, Q̇α : α < δ〉 is a countable support iteration and for each
α < δ , 
α “Q̇α S-preserves- v∆ ", then Pδ has the Sacks property and so preserves
the base of the ideal of measure zero sets.

No random and no amoeba reals: Some of the preservation theorems which we use to
show that certain iterations do not add amoeba or random reals, are based on a general
framework due to Judah and Repický (see [7]).
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Definition 2.13 ([2, Definition 6.1.17]) Let v be the union of an increasing chain
〈vn〉n∈ω of two place relations on ωω such that

• for all n ∈ ω and all h ∈ ωω the set {x : h vn x} is relatively closed in the
range of v,

• for every A ∈ [dom(v)]≤ℵ0 there is f ∈ dom(v) such that ∀g ∈ A∀n ∈ ω∃k ≥ n
such that ∀x(f vk x)→ g vk x), and

• the formula ∀x ∈ ωω(f vn x → g vn x) is absolute for all transitive models
containing f and g.

A real x is said to be v-dominating over V if for all y ∈ V ∩ dom(v), y v x .

We have the following S-proper analogue of Judah and Repický’s preservation theorem
(see [2, Theorem 6.1.18]).

Theorem 2.14 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of S-
proper posets, such that for all α < δ , Pα does not add a v-dominating real, then Pδ
does not add a v-dominating real.

Note that x ∈ 2ω vrandom-dominates V if and only if x is random over V . Further-
more the relation vrandom satisfies the conditions of definition 2.13 and so by the
above theorem we obtain the following S-proper analogue of Theorem 6.3.14 from [2].

Theorem 2.15 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of S-
proper forcing notions and for each α < δ , Pα does not add random reals, then Pδ
does not add a random real.

Note that v∆ also satisfies the conditions of Definition 2.13. Then by Theorem 2.14
above, as well as [2, Theorem 2.3.12] we obtain the following analogue of [2, Theorem
6.3.41].

Theorem 2.16 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration of
S-proper posets and for all α < δ , 
α “

⋃
(N ∩ V) /∈ N ", then 
δ

⋃
(N ∩ V) /∈ N ".

Other preservation theorems: We say that a forcing notion P is S-(f , h)-bounding,
if it satisfies [2, Definition 7.2.13] but instead of proper we require that P is S-
proper. That is, we say that P is S-(f , h)-bounding, if P is S-proper, for every k ∈ ω
limn→∞ h(n)k ·f−1(n) = 0 and for every f ′ ∈ VP∩

∏
n∈ω f (n) there is S ∈ V∩([ω]<ω)ω

such that for all n ∈ ω |S(n)| ≤ h(n) and for all n ∈ ω(f ′(n) ∈ S(n)). The proof of [2,
Lemma 7.2.15] remains true under this modification, and so we obtain that if P is
S-(f , h)-bounding then P does not add random or Cohen reals. Furthermore we have
the following analogue of Shelah’s theorem (see [9] or see [2, Theorem 7.2.19]).
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Theorem 2.17 If 〈Pα, Q̇α : α < δ〉, δ limit, is a countable support iteration such that
for all α , 
α “Q̇α is S-(f , h)-bounding", then Pδ is S-(f , h)-bounding.

We will also use preservation theorems for the so called (F, g)-preserving posets.
For convenience of the reader we state the definition of (F, g)-preserving (see [2,
Definition 7.2.23]). Let g be a given real and for n ∈ ω let Pn = {a ⊆ g(n + 1) :
|a| = g(n + 1)/2n}. For a set A ⊆ Pn define norm(A) = min{|X| : ∀a ∈ A(X 6⊆ a)}.
Let F be a family of strictly increasing functions. For every f ∈ F choose a function
f + ∈ F and assume that for all f ∈ F , n ∈ ω we have that f (n) < g(n)/2n . A
forcing notion P is said to be (F, g)-preserving if for every f ∈ F and every P-name
Ṡ which has the property that for all n, 
P Ṡ(n) ⊆ Pn and 
P norm(Ṡ(n)) < f (n),
there exists a function T ∈ V such that for all n, T(n) ⊆ Pn , norm(T(n)) < f +(n) and

P Ṡ(n) ⊆ T(n). Note that the countable support iteration of (F, g)-preserving posets
is (F, g)-preserving (see [2, Theorem 7.2.29]) and that (F, g)-preserving posets do not
add Cohen reals (see [2, Theorem 7.2.24]).

3 Coding with perfect trees

Let Y ⊆ ω1 be generic over L such that in L[Y] cofinalities have not been changed and
let µ̄ = {µi}i∈ω1 be a sequence of L-countable ordinals such that µi is the least ordinal
µ with µ >

⋃
{µj : j < i}, Lµ[Y ∩ i] � ZF− and Lµ � ω is the largest cardinal. A real

R is said to code Y below i if for all j < i, j ∈ Y if and only if Lµj[Y ∩ j,R] � ZF− .
Whenever T is a perfect tree, let |T| be the least i such that T ∈ Lµi[Y ∩ i].

Fix L[Y] as the ground model. The poset C(Y), to which we refer as coding with
perfect trees, consists of all perfect trees T such that every branch R through T codes
Y below |T|. For T0,T1 conditions in C(T) define T0 ≤ T1 if and only if T0 is a
subtree of T1 .

Below we systemize some of the main properties of the poset C(Y). Note that T0 ≤ T1

if and only if [T0] ⊆ [T1] where [T] denotes the set of infinite branches through T . For
n ∈ ω , let T0 ≤n T1 if and only if T0 ≤ T1 and T0,T1 have the same first n splitting
levels. For T a perfect tree, m ∈ ω let Sm(T) be the set of nodes on the m-splitting
level of T (and so |Sm(T)| = 2m ), and for t ∈ T let T(i) = {η ∈ T : t ⊆ η or η ⊆ t}.
Note that by absoluteness R codes Y below |T| even for branches through T in the
generic extension.

Lemma 3.1 [3, Lemma 5] If T ∈ C(Y) and |T| ≤ i < ω1 , then there is T∗ ≤ T such
that |T∗| = i.
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Lemma 3.2 [3, Lemma 6] If G is C(Y)-generic and {R} =
⋂
{[T] : T ∈ G}, then

for all j < ω1 we have that

j ∈ Y if and only if Lµj[Y ∩ j,R] � ZF−.

That is, R codes Y .

Lemma 3.3 [3, Lemmas 7 and 8] C(Y) is a proper, ωω -bounding forcing notion.

Lemma 3.4 The coding with perfect trees forcing notion C(Y) preserves vCohen .

Proof Let N be a countable elementary submodel of LΘ[Y] for some sufficiently
large Θ, such that C(Y), µ̄ are elements of N . Let c be a Cohen real over N . Let T
be a condition in C(Y) ∩ N . We have to show that there is a condition T∗ which is a
(N, C(Y))-generic extension of T and which forces that “c is Cohen over N[Ġ]". By [2,
Lemma 2.2.4] for every meager set F ⊆ 2ω there are reals xF ∈ 2ω and fF ∈ ωω such
that

F ⊆ {x : ∀∞n∃i ∈ [fF(n), fF(n + 1))xF(i) 6= x(i)}.

Let {ẋn, ḟn}n∈ω and {Dn}n∈ω enumerate names for representatives of all meager sets
in NC(Y) and all dense subsets of C(Y) in N , respectively. Let N denote the transitive
collapse of N , let i = ω1 ∩ N . Note that N = Lµ[Y ∩ i] for some µ and since
Lµi[Y ∩ i] � “i is countable", we have that Lµ[Y ∩ i] is an element of Lµi[Y ∩ i].
Let ī = {ik}k∈ω be an increasing cofinal sequence in i such that ī ∈ Lµi[Y ∩ i].
Recursively we will define a sequence of conditions τ = {Tn}n∈ω , such that for every
n, the condition Tn is an element of N , Tn+1 ≤n+1 Tn , |Tn| ≥ in and

(1) T2n 
C(Y) “c /∈ F(ẋn, ḟn)", where F(ẋn, ḟn) denotes a name for the meager set
corresponding to the names ẋn, ḟn ,

(2) T2n+1 
C(Y) “Ġ ∩ N ∩ Dn 6= ∅", where Ġ is the canonical C(Y)-name for the
generic filter.

Furthermore the entire sequence τ will be an element of Lµi[Y ∩ i], since it will be
definable in Lµi[Y ∩ i]. Thus its fusion T∗ will also be an element of Lµi[Y ∩ i], and
so a condition in C(Y) which extends T and has the desired properties.

We will need the following two claims:

Claim Let R ∈ C(Y)∩N and let {ẋ, ḟ} be C(Y)-names in N (for reals), representing
a meager set in NC(Y) , let n ∈ ω and let α ∈ N ∩ ω1 such that α > |R|. Then there is
a condition R′ in N such that R′ ≤n R, |R′| ≥ α and every branch through R′ decides
ẋ , ḟ .
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Proof Let N0 be a sufficiently elementary submodel of N such that N � “N0 is countable"
and all relevant parameters are elements of N0 , that is R, C(Y), µ̄, ḟ , ẋ , n and α are
elements of N0 . Let N0 denote the transitive collapse of N0 and let j = ω1 ∩N0 . Note
that N0 is of the form Lµ[Y ∩ j] for some µ and since Lµ[Y ∩ j] � “j is uncountable"
and Lµj[Y ∩ j] � “j is countable", we have that N0 = Lµ[Y ∩ j] ∈ Lµj[Y ∩ j]. On the
other hand, since Lµj[Y ∩ j] is definable from Y, j, µj and all of those are in N , we
obtain that Lµj[Y ∩ j] ∈ N . Let j̄ = {jm}m∈ω be an increasing cofinal in j sequence,
which is an element of Lµj[Y ∩ j].

The condition R′ will be obtained as the fusion of a sequence 〈Rm〉m∈ω such that the
entire sequence is definable in Lµj[Y ∩ j] and for all m, Rm ∈ N0 (and so Rm ∈ N0 ).
Let R0 = R. For every s ∈ Splitn(R0) and every t ∈ Succs(R0) find R0

t ≤ R0(t)
which decides ẋ�|t| and ḟ �|t|. By elementarity, we can assume that R0

t ∈ N0 and
so R0

t ∈ N̄0 . Since the set of conditions in C(Y) of height strictly greater than
α and j0 is dense, again by elementarity we can assume that |R0

t | > α, j0 . Let
R1 =

⋃
s∈Splitn(R0)

⋃
t∈Succt(R0) R0

t . Then in particular R1 ∈ N0 and |R1| > α, i0 .
Now suppose Rm ∈ N0 is defined. Then for every s ∈ Splitn+m(Rm) and t ∈ Succs(Rm)
find Rm

t ≤ Rm(t) in N̄0 of height > α, jm , which decides ẋ�|t|, ḟ �|t|. Let Rm+1 =⋃
s∈Splitn+m(Rm)

⋃
t∈Succ(s) Rm

t . Then Rm+1 ≤m+n Rm , Rm+1 ∈ N0 and |Rm+1| >
α, jm . With this the inductive construction of the fusion sequence is complete. Since
〈Rm〉m∈ω is definable in Lµj[Y ∩ j], we obtain that R′ =

⋂
m∈ω Rm ∈ Lµj[Y ∩ j]. Then

in particular |R′| = j, which implies that R′ is indeed a condition in C(Y).

Claim Let R′ , ẋ , ḟ , n, α , N be as above and let c be a Cohen real over N . Then
there is a condition R′′ ∈ N such that R′′ ≤n R′ , |R′′| ≥ α, |R′| and R′′ forces that c
does not belong to the meager set determined by ẋ , ḟ .

Proof Just as in the previous claim let N0 be a sufficiently elementary submodel of N
such that N � “N0 is countable" and all relevant parameters are elements of N0 . Let
N0 denote the transitive collapse of N0 . Let j = ω1 ∩ N0 and let j̄ = {jm}m∈ω be an
increasing and cofinal in j sequence which is an element of Lµj[Y ∩ j]. The condition
R′′ will be obtained as the limit of a fusion sequence 〈Rm〉m∈ω which is definable in
Lµj[Y ∩ j] and whose elements are in N0 . Let R0 = R′ . For every s ∈ Splitn(R0) and
every t ∈ Succt(R0) find a branch bt ∈ N0 ∩ [R0] such that t ⊆ bt . Then bt gives an
interpretation of the names ẋ , ḟ as reals xt and f t in N0 . Since c is Cohen over N , it
is Cohen over N0 and so there is jt > |t| such that

xt
n�[f

t(jt), f t(jt + 1)) = c�[f t(jt), f t(jt + 1)).
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Take any kt > jt . Let R1 =
⋃

s∈Splitn(R0)
⋃

t∈Succs(R0) R0(bt�kt). Thinning out once
again we can assume that |R0(bt�kt)| > j0, α . Also clearly R1 ∈ N0 .

Suppose Rm is defined. Again for every s ∈ Splitn+m(Rm) and t ∈ Succs(Rm), find a
branch bt ∈ [Rm]∩N0 such that t ⊆ bt . Then bt gives an interpretation xt, f t of ẋ, ḟ as
reals xt, f t in N0 . Using the fact that c is Cohen over N0 we can find {lta}1≤a≤m such
that |t| < lt1 , lta < lta+1 for a < m such that for every j ∈ {lta}1≤a≤m

xt�[f t(j), f t(j + 1)) = c�[f t(j), f t(j + 1)).

Take any kt > ltm . Let Rm+1 =
⋃

s∈Splitn+m(Rm)
⋃

t∈Succs(Rm) Rm(bt�kt). Passing

to an extension if necessary we can assume that |Rm(bt�kt)| > jm, α and so that
|Rm+1| > jm, α . Let R′′ = ∩m∈ωRm . Then R′′ is a condition in N with the desired
properties.

With this we can proceed with the construction of the fusion sequence 〈Tn〉n∈ω . Let
T0 = T . Reproducing the proof of [3, Lemma 7] find T1 ∈ N such that T1 ≤1 T0 ,
|T1| ≥ i1 and T1 
 Ġ ∩ N ∩ D1 6= ∅. Suppose T2n−1 is defined for some n ≥ 1.
Using the previous two claims find a condition T2n ∈ N ∩ C(Y) such that |T2n| ≥ i2n ,
T2n ≤2n T2n−1 , and T2n forces that c does not belong to the meager set corresponding
to {ẋn, ḟn}. Obtain T2n+1 as in the base case. With this the fusion sequence 〈Tn〉n∈ω
is defined. Let T∗ =

⋂
n∈ω Tn . Note that |T∗| = i and so in particular T ∈ C(Y).

Clearly, T∗ is (N, C(Y))-generic and T∗ 
C(Y) “c is Cohen over N[Ġ].".

In order to show that the coding with perfect tress forcing notion, preserves vrandom ,
we will use the fact that C(Y) is weakly bounding and that C(Y) preserves positive
outer measure (see below).

Lemma 3.5 Suppose that A is a set of positive outer measure. Then 
C(Y) µ
∗(A) > 0.

Proof Suppose not. Then there is a condition T ∈ C(Y) such that T 
 µ∗(A) = 0.
Let N be a countable elementary submodel of LΘ[Y] for some sufficiently large Θ

such that T, C(Y),A are elements of N . Then there is a sequence 〈İn〉n∈ω ∈ N of
rational intervals such that T 


∑
n∈ω µ(İn) < ∞ and T 
 A ⊆

⋂
n∈ω

⋃
m≥n İm .

Then in particular, there is a C(Y)-name for a function ġ in ωω such that for all n,
T 


∑
m≥ġ(n) µ(İm) < 2−(n2+n) . Then there is R ≤ T and a ground model real g, i.e.

function in ωω such that for all n ∈ ω , R 
 ġ(n) < ǧ(n). Then in particular, for all
n ∈ ω , R 


∑
g(n)≤i<g(n+1) µ(İi) < 2−(n2+n) . Let i = ω1 ∩ N and let ī = {in}n∈ω

be an increasing and cofinal in i sequence, which belongs to Lµi[Y ∩ i]. Recursively
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define a fusion sequence 〈Rn〉n∈ω as follows. Let R0 = R. Suppose Rn has been
defined. For every n-splitting node t of Rn find Rt ≤ Rn(t) such that for some finite
sequence 〈In

t,j〉g(n)≤j<g(n+1) of rational intervals for all j : g(n) ≤ j < g(n + 1) we
have Rt 
 İj = Ǐn

t,j . By elementarity we can assume that Rt is a condition which
is an element of N , which is also of height ≥ in and that 〈In

t,j〉g(n)≤j<g(n+1) ∈ N .
Let Rn+1 =

⋃
t∈Splitn(Rn) Rt and let Jn =

⋃
t∈Splitn(Rn)

⋃
g(n)≤j<g(n+1) In

t,j . Note that
Jn ∈ N and µ(Jn) < 2−n . Let R∗ be the fusion of the sequence 〈Rn〉n∈ω . Then R∗ is
a condition in C(Y) of height i, such that

R∗ 

⋂

n

⋃
m≥n

İm ⊆
⋂

n

⋃
m≥n

Jm.

Since J :=
⋂

n
⋃

m≥n Jm is a measure zero set, there is x ∈ A\J . However

R∗ 
 x ∈
⋂

n

⋃
m≥n

İm

and so R∗ 
 x ∈ J , which is a contradiction.

Lemma 3.6 The coding with perfect trees forcing notion C(Y) preserves vrandom.

Proof The proof proceeds similarly to the proof that Laver forcing preserves vrandom

(see [2, Theorem 7.3.39]). Let N be a countable elementary submodel of LΘ[Y] for
some sufficiently large Θ, let ḟ0 be an element of Ċrandom∩N and let τ = 〈Tn〉n∈ω ∈
N be an approximating sequence for ḟ0 below T for some T ∈ C(Y) ∩ N . Let f ∗0
be the approximation of ḟ0 determined by τ . Note that f ∗0 ∈ N ∩ ωΩ. Let x be a
random real over N . We have to show that there is an extension T∗ of T which is an
(N, C(Y))-generic condition, such that T∗ 
 “x is random over N[Ġ]" and such that
for all n ∈ ω , T∗ 
 (f ∗0 vn x→ ḟ0 vn x).

Let D be a dense open subset of C(Y). Denote by cl(D) = {T : ∃n∀t ∈ Split≥n(T)(if there is Rt ≤0

T(t) such that Rt ∈ D then T(t) ∈ D)}. Note that cl(D) is n-dense open for every
n ∈ ω and so if {Dn}n∈ω is a sequence of dense open sets, then

⋂
n∈ω cl(Dn) is n-dense

for all n. Also, we have that if S ≤ T ∈ cl(D), then there is s ∈ S such that T(s) ∈ D.

Let D denote the collection of all dense subsets of C(Y) which are in N . Since x is
random over N and f ∗0 ∈ N there is n0 such that for all k ≥ n0(x /∈ f ∗0 (k). For every
n ≥ n0 let Yn

n be the set of all reals z ∈ 2ω such that there is Z ≤ Tn such that φn(z,Z)
holds where φn(z,Z) is the conjunction of the following three formulas:

(1) φ1(Z) ≡ for all D ∈ D ∩ N∃R ∈ cl(D) ∩ N(Z ≤ R), and

(2) φ2(z,T) ≡ for all ḟ ∈ Ċrandom ∩ N∀∞n(Z 
 z /∈ ḟ (n)),
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(3) φn
3(z,T) ≡ for all k ≥ n Z 
 z /∈ ḟ0(k).

Note that Z 6
 z /∈ ḟ (n) iff there is Z′ ≤ Z such that Z′ 
 z ∈ ḟ (n) iff there is Z′ ≤ Z
such that z ∈ ḟ (n)[Z′] which is equivalent to there is s ∈ Z such that z ∈ ḟ (n)[Zs]
iff there is R ∈ cl(Dḟ

n) ∩ N∃s ∈ Z(Z ≥ R and z ∈ ḟ (n)[Rs]). Since quantifiers of
φ1, φ2, φ3 are relativized to subsets of N , all three of these formulas are Borel.

Using the fact that C(Y) is weakly homogeneous and preserves positive outer measure,
modifying the proof of [2, Lemma 7.3.41] we obtain that for every n ≥ n0 , the inner
measure µ∗(Yn

n ) ≥ 1− 2−n . This implies that Y∗ :=
⋃

n≥n0
Yn

n is a set of measure 1.

Claim (see [2, Lemma 7.3.42]) There is a sequence 〈Bk : k ≥ n0〉 ∈ N of Borel sets
such that for all n, Bn ∈ N and Bn4Yn

n ⊆
⋃

(N ∩ N).

Proof Fix z ∈ 2ω and let G be an N[z]-generic filter for Coll(22ℵ0 ,ℵ0) (the algebra
collapsing 22ℵ0 onto ℵ0 ). Now we have z ∈ Yn

n iff LΘ[Y] � ∃Z ≤ Tφn(z,Z) iff
N[z][G] � ∃Z ≤ Tφn(z,T) iff N[z] 
 “ 
Coll(22ℵ0 ,ℵ0)

∃Z ≤ Tφn(z,Z)". The second

equivalence follows from absoluteness of Σ1
1 formulas and the third from homogeneity

of Coll(22ℵ0 ,ℵ0).

Let φ∗n(z) denote the formula “ 
Coll(22ℵ0 ,ℵ0)
∃Z ≤ Tφn(z,Z)". That is z ∈ Y iff

N[z] � φ∗n(z). Let Bn be a Borel set in N representing the Boolean value [[φ∗n(ṙ)]]B
where ṙ is the canonical name for a random real. For a random real z over N we have,

z ∈ Yn
n ⇐⇒ N[z] � φ∗n(z) ⇐⇒ z ∈ Bn.

Therefore Bn4Yn
n ⊆

⋃
(N ∩ N).

Note that in particular µ(Bn) ≥ 1 − 2−n . Using the fact that x is random over N we
obtain that there is n∗ ≥ n0 such that x ∈ Bn∗ . Again since Bn∗4Yn∗

n∗ ⊆
⋃

(N ∩ N),
x ∈ Yn∗

n∗ . Let T∗ be a witness to x ∈ Yn∗
n∗ . Then T∗ ≤ Tn∗ , T∗ is (N, C(Y))-generic,

T∗ 
 “x is random over N" and for all k ≥ n∗ , T∗ 
 x /∈ ḟ0(k). Then

T∗ 
 f ∗0 �n
∗ = ḟ0�n∗ ∧ ∀k ≥ n(x /∈ ḟ0(k))

which implies that for all n ∈ ω , T∗ 
 (f ∗0 vn x→ ḟ0 vn x).

Recall that a forcing notion P has the Laver property if and only if for every function
f ∈ V ∩ ωω and a P-name ġ such that 
P ∀n(ġ(n) ≤ f (n)) there is a slalom S ∈ V
such that 
P ∀nġ(n) ∈ S(n).
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Lemma 3.7 Sacks coding C(Y) has the property Lf where f (n) = 2n for all n, and so
has the Laver property. It is ωω -bounding and so has the Sacks property. Furthermore it
is (F, g)-preserving for some F and g (see [2, Definition 7.2.23]) and is (f , h)-bounding
for all f and h.

Proof Recall that a forcing notion P has property Lf where f ∈ ωω , if for every
p ∈ P, n ∈ ω and A ∈ [ω]<ω the following holds: if p 
 ȧ ∈ A, then there is q ≤n p
and B ⊆ A, |B| ≤ f (n) such that q 
 ȧ ∈ B. Thus suppose T ∈ C(Y), n ∈ ω and
A ∈ [ω]<ω such that T 
 ȧ ∈ Ǎ. Let Sn(T) be the n-th splitting level of T . Then
|Sn(T)| = 2n and for every tj ∈ Sn(T) there is T ′j ≤ T(tj) such that T ′j 
 ȧ = ǩj for
some kj ∈ A. Let B = {kj}j∈2n ⊆ A, T ′ =

⋃
j∈2n T ′j . Then T ′ ≤n T and T ′ 
 ȧ ∈ B̌.

By [2, Lemma 7.2.2] if P has the Lf property for some f , then P has the Laver property.
Since C is ωω -bounding, by [2, Lemma 6.3.38] it has the Sacks property. The Laver
property implies also that C(Y) is (F, g)-preserving for some F and g (see [2, Lemma
7.2.25] and is (f , h)-bounding for all f and h (see [2, Lemma 7.2.16]).

4 Measure, category and projective wellorders

The underlying forcing construction is the construction from [3] forcing a ∆1
3 -w.o.

of the reals. For completeness of the argument we will give a brief outline of this
construction. Recall that a transitive ZF− model M is suitable if ωM

2 exists and
ωM

2 = ωLM

2 . Assume V is the constructible universe L . Let F : ω2 → Lω2 be a
bookkeeping function which is Σ1 -definable over Lω2 and let S̄ = (Sβ : β < ω2)
be a sequence of almost disjoint stationary subsets of ω1 which is Σ1 -definable over
Lω2 with parameter ω1 , such that F−1(a) is unbounded in ω2 for every a ∈ Lω2 ,
and whenever M,N are suitable models such that ωM

1 = ωN
1 then FM, S̄M agree with

FN , S̄N on ωM
2 ∩ ωN

2 . In addition if M is suitable and ωM
1 = ω1 , then FM, S̄M equal

the restrictions of F ,S̄ to the ω2 of M . Let S be a stationary subset of ω1 which is
∆1 -definable over Lω1 and almost disjoint from every element of S̄ .

Recursively define a countable support iteration 〈〈Pα : α ≤ ω2〉, 〈Q̇α : α < ω2〉〉 such
that P = Pω2 will be a poset adding a ∆1

3 -definable wellorder of the reals. We can
assume that all names for reals are nice in the sense of [3] and that for α < β < ω2 all
Pα -names for reals precede in the canonical wellorder <L of L all Pβ -names for reals,
which are not Pα -names. For each α < ω2 define <α as in [3]: that is if x, y are reals
in L[Gα] and σαx , σ

α
y are the <L -least Pγ -names for x, y respectively, where γ ≤ α ,

define x <α y if and only if σαx <L σ
α
y . Note that <α is an initial segment of <β . If
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G is a P-generic filter, then <G=
⋃
{<G

α: α < ω2} will be the desired wellorder of
the reals.

In the recursive definition of Pω2 , P0 is defined to be the trivial poset and Q̇α is of
the form Q̇0

α ∗ Q̇1
α , where Q̇0

α is an arbitrary Pα -name for a proper forcing notion
of cardinality at most ℵ1 and Q̇1

α is defined as in [3], and so carries out the task of
forcing the ∆1

3 -w.o. of the reals. Note that Q1
α is the iteration of countably many

posets shooting clubs through certain stationary, co-stationary sets from S̄ (and so
each of those is S-proper and ω -distributive), followed by a “localization" forcing
which is proper and does not add new reals, followed by coding with perfect trees. In
the following we will use the fact that Q̇0

α is arbitrary, to force the various ℵ1 -ℵ2 -
admissible assignments to the cardinal characteristics of the Cichón diagram, in the
presence of a ∆1

3 wellorder of the reals.

Theorem 4.1 The constellation determined by cov(M) = cov(N ) = ℵ2 and b = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof Perform the countable support iteration described above, which forces a ∆1
3 -

w.o. of the reals and in addition specify Q̇0
α as follows. If α is even let 
α Q̇α = B be

the random real forcing, and if α is odd let 
α Q̇α = C be the Cohen forcing. Then in
VPω2 cov(M) = cov(N ) = ℵ2 . At the same time since the countable support iteration
of S-proper, almost ωω -bounding posets is weakly bounding, the ground model reals
remain an unbounded family and so a witness to b = ℵ1 .

Theorem 4.2 The constellation determined by d = ℵ2 , non(M) = non(N ) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof In the forcing construction described above, which forces a ∆1
3 -w.o. of the

reals, define Q̇0
α to be the rational perfect tree forcing PT defined in [2, Definition

7.3.43]. To claim that d = ℵ2 in the final generic extension, note that PT adds an
unbounded real. It remains to show that non(M) = non(N ) = ℵ1 . By [2, Theorem
7.3.46] the rational perfect tree forcing preserves vCohen and by Lemma 3.4 the
coding with perfect tress C(Y) also preserves vCohen . Therefore by Theorem 2.11 in
VPω2 the set 2ω ∩ V is non meager and so VPω2 
 non(M) = ℵ1 . By [2, Theorem
7.3.47] the rational perfect tree forcing preserves vrandom and by Lemma 3.6 the
prefect tree coding C(Y) preserves vrandom. Therefore by Theorem 2.10 in the final
extension 2ω ∩ V is a non null set and so VPω2 � non(N ) = ℵ1 .

Theorem 4.3 The constellation determined by cov(N ) = d = non(N ) = ℵ2 , b =

cov(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.
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Proof For even α , let Q̇0
α be the random real forcing B and for α odd, let Q̇1

α be
the Blass-Shelah forcing notion Q defined in [2, 7.4.D]. Since all iterands are almost
ωω -bounding, by Lemma 2.7 the ground model reals remain an unbounded family
and so a witness to b = ℵ1 . On the other hand Q adds an unbounded real and

Q “2ω ∩ V ∈ N ", which implies that VPω2 � d = non(N ) = ℵ2 . Since cofinaly
often we add random reals, we have that cov(N ) = ℵ2 in the final extension. To
show that no Cohen reals are added by the iteration, use the fact that all iterands are
(F, g)-preserving, as well as [2, Theorems 7.2.29 and 7.2.24].

Theorem 4.4 The constellation determined by non(M) = d = ℵ2 and cov(N ) =

b = non(N ) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇α = PTf ,g and for α odd, let Q̇α = PT where PTf ,g and
PT are defined in [2, Definition 7.3.43 and Definition 7.3.3] respectively. Since 
PTf ,g

2ω∩V ∈M and PT adds an unbounded real, VPω2 � non(M) = d = ℵ2 . All iterands
are almost ωω -bounding and so b remains small. All iterands S preserve vrandom and
so by Theorem 2.10 Pω2 preserves outer measure and so VPω2 � non(N ) = ℵ1 . To
see that the iteration does not add random reals, note that PT and C(Y) have the Laver
property and so are (f , g)-bounding for all f , g. On the other hand PTf ,g is (f , h)-
bounding for some appropriate h, which implies that all iterands are S-(f , h)-bounding.
Then by Theorem 2.17, Pω2 is S-(f , h)-bounding, which implies that is does not add
random reals.

Theorem 4.5 The constellation determined by cov(N ) = d = ℵ2 and b = non(N ) =

ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even, let Q̇α be the rational perfect tree forcing PT and for α odd, let
Q̇α be the random real forcing B. Then VPω2 � cov(N ) = d = 2ℵ0 . By [2, Theorem
6.3.12] B preserves vrandom, by [2, Theorem 7.3.47] PT preserves vrandom and by
Lemma 3.6 Sacks coding preserves vrandom. Then Theorem 2.10, VPω2 � 2ω ∩ V /∈
N . All iterands are almost ωω -bounding, and so by Theorem 2.7 the ground model
reals remain an unbounded family in VPω2 .

Theorem 4.6 The constellation determined by non(M) = cov(M) = ℵ2 and b =

cov(N ) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even, let Q̇0
α be Cohen forcing and for α odd, let Q̇0

α be PTf ,g (see [2,
Definition 7.3.3]). Since 
PTf ,g

2ω ∩V ∈M, VPω2 � non(M) = ℵ2 . Since cofinally
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often we add Cohen reals, clearly cov(M) = ℵ2 in the final generic extension. All
involved partial orders are almost ωω -bounding and so VPω2 � b = ω1 . To see that
the iteration does not add random reals, proceed by induction using Theorem 2.15 at
limit steps.

Alternative Proof: The result can be obtained using finite support iteration of ccc
posets. We will slightly modify the coding stage of the construction of [4]. Let
〈Pα, Q̇β : α ≤ ω2, β < ω2〉 be a finite support iteration such that P0 is the poset
defined in [4, Lemma 1]. Suppose Pα has been defined. If α is a limit, α = ω1 ·α′+ ξ

where ξ < ω1 and α′ > 0, define Qα as in Case 1 of the original construction. If α
is not of the above form, i.e. α is a successor or α < ω1 , let Q̇α be a name for the
following poset adding an eventually different real:

Qα = {〈s0, s1〉 : s0 ∈ ω<ω, s1 ∈ [o.t.(<̇G
α)]<ω},

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s0 is an initial segment of t0 , s1 ⊆ t1 , and for
all ξ ∈ s1 and all j ∈ [|s0|, |t0|) we have t0(j) 6= xξ(j), where xξ is the ξ -th real in
L[Gα]∩ωω according to the wellorder <̇Gα

α . The sets Ȧα are defined as in [4]. With this
the definition of Pω2 is complete. Following the proof of the original construction one
can show that Pω2 does add a ∆1

3 -definable wellorder on the reals (note that in our case
VPω2 � c = ℵ2 .) Since the eventually different forcing adds a Cohen real and makes the
ground model reals meager, we obtain that VPω2 
 cov(M) = non(M) = ℵ2 . Since
all iterands of our construction are σ -centered, by [2, Theorems 6.5.30 and 6.5.29]
Pω2 does not add random reals and so VPω2 � cov(N ) = ℵ1 . The ground model reals
remain an unbounded family and so a witness to b = ℵ1 in VPω2 . We should point out
that the coding techniques allow one to obtain the consistency of the existence of a ∆1

3
wellorder of the reals with non(M) = cov(M) = ℵ3 and b = cov(N ) = ℵ1 .

Theorem 4.7 The constellation determined by d = non(N ) = ℵ2 and cov(M) =

non(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even, let Q̇0
α be the rational perfect tree forcing PT and for α odd,

let Q̇0
α be the poset Sg,g∗ (see [2, 7.3.C]). Note that 
Sg,g∗ 2ω ∩ V ∈ N and so

VPω2 � non(N ) = ℵ2 . On the other hand PT adds an unbounded real, which implies
that (d = ℵ2)V

Pω2 . Also Sg,g∗ , PT and C(Y) preserve vCohen , which by Theorem 2.11
implies that VPω2 � non(M) = ℵ1 . To see that there are no Cohen reals added by
the iteration we use the S-(f , g)-bounding property. More precisely, PT and C(Y)
are Laver and so (f , g)-bounding for all f , g. The poset Sg,g∗ is (g, g∗)-bounding,
which implies that all iterands are S-(g, g∗)-bounding. Thus by Theorem 2.17, Pω2 is
S-(g, g∗)-bounding, and so the entire iteration does not add Cohen reals.
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Theorem 4.8 The constellation determined by cov(M) = ℵ2 , non(M) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For every α < ω2 , let Q̇0
α be Cohen forcing. By [2, Theorem 6.3.18] C

preserves vCohen , by Theorem 3.4 Sacks coding preserves vCohen . Then by The-
orem 2.11 the entire iteration Pω2 preserves non-meager sets and so in particular
VPω2 � 2ω ∩ V /∈M.

Theorem 4.9 The constellation determined by non(N ) = d = non(M) = ℵ2 and
cov(N ) = b = cov(M) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the
reals.

Proof For α an even successor, let Q̇0
α be the rational perfect tree forcing PT, for α an

odd successor let Q̇0
α be PTf ,g (see [2, Definition 7.3.3]) and for α limit, let Q̇0

α = Sg,g∗ .
Clearly non(N ) = d = non(M) = ℵ2 . To show that cov(N ) = cov(M) = ℵ1 use
the fact that all forcing notions used in the iteration are S-(f , h)-bounding and so by
Theorem 2.17 Pω2 is S-(f , h)-bounding. Thus no real in VPω2 is Cohen or random
over V . To show that b = ℵ1 in the final extension, use the facts that all iterands are
almost ωω -bounding.

Theorem 4.10 The constellation determined by add(N ) = ℵ2 is consistent with the
existence of a ∆1

3 wellorder of the reals.

Proof Note that if A is amoeba forcing then VA �
⋃

(N ∩ V) ∈ N . Thus in order to
obtain the desired result, it is sufficient to require that for every every α < ω2 , Q̇0

α is
the amoeba forcing.

Theorem 4.11 The constellation determined by cof(N ) = ℵ1 is consistent with the
existence of a ∆1

3 wellorder of the reals.

Proof Sacks coding has the Sacks property and so by [2, Lemma 6.3.39] C(Y) pre-
serves v∆ (and so it S-preserves-v∆ ). For every α let Q̇α

0 be the trivial poset.
Then by theorem 2.12 Pω2 preserves the base of the ideal of measure zero sets, that is
VPω2 � cof(N ) = cof(N )V = ℵ1 .

Theorem 4.12 The constellation determined by add(M) = cov(N ) = ℵ2 and
add(N ) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.
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Proof For α even successor let Q̇0
α be the random real forcing B, for α odd successor

let Q̇0
α be Cohen forcing C, and for α limit let Q̇0

α be Laver forcing LT. Then clearly
in VPω2 we have that add(M) = cov(N ) = ℵ2 . To show that there are no amoeba
reals in the final generic extension, and so add(N ) = ℵ1 , proceed by induction using
Theorem 2.16 at limit stages.

Theorem 4.13 The constellation determined by cof(N ) = ℵ2 and non(N ) = cof(M) =

ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α let Q0
α be the poset U defined on page 339 in [2]. This poset is ωω -

bounding, preserves vrandom , preserves vCohen and does not have the Sacks property.
By Theorem 2.6, the ground model reals dominate the reals in VPω2 and so d = ℵ1 . On
the other hand since all iterands S-preserves-vrandom and S-preserve-vCohen , in VPω2

we have non(M) = non(M) = ℵ1 . Thus in particular VPω2 � cof(M) = non(N ) =

ℵ1 . To see that cof(N ) = ℵ2 in VPω2 use the fact that U does not have the Sacks
property.

Theorem 4.14 The constellation determined by cov(N ) = b = non(N ) = ℵ2 and
cov(M) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be random real forcing, for α an odd successor let Q̇α be

the poset Sg,g∗ defined in [2, Section 7.3.C] and for α limit, let Q̇0
α be Laver forcing.

To see that cov(M) = ℵ1 in the final generic extension, note that all iterands are
(F, g)-preserving and so by [2, Theorems 7.2.29 and 7.2.24] Pω2 does not add Cohen
reals.

Theorem 4.15 The constellation determined by the equations non(M) = ℵ2 and
non(N ) = cov(N ) = d = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the
reals.

Proof For each α < ω2 , let Q̇0
α be a Pα -name for PTf ,g . Note that by [2, Theorem

7.3.6] we have that VPTf ,g � V∩ωω ∈M. Therefore in VPω2 we have that non(M) =

ℵ2 . The poset PTf ,g is (f , h)-bounding for some h, and so all iterands are S-(f , h)-
bounding. Then by Theorem 2.17 Pω2 is S-(f , h)-bounding, which implies that Pω2

does not add random reals. Thus cov(N ) = ℵ1 in the final generic extension. Since
all iterands are ωω -bounding, by Theorem 2.6 the ground model reals are a witness to
d = ω1 in VPω2 . By [2, Theorem 7.3.15] the poset PTf ,g preserves vrandom, Sacks
coding preserves vrandom and so by Theorem 2.10 Pω2 preserves outer measure.
Thus VPω2 � non(N ) = ℵ1 .
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Theorem 4.16 The constellation determined by the equalities cov(N ) = b = ℵ2 and
non(N ) = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be the random real forcing B and for α odd let Q̇0

α be Laver
forcing LT. Then we immediately get that cov(N ) = b = ℵ2 in VPω2 . By [2, Theorem
7.3.39] LT preserves vrandom, by [2, Theorem 6.3.12] B preserves vrandom and
Sacks coding preserves vrandom. Then by Theorem 2.10 VPω2 � 2ω ∩ N /∈ N and
so VPω2 � non(N ) = ℵ1 .

Theorem 4.17 The constellation determined by cov(N ) = ℵ2 and non(N ) = d = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For each α , let Q̇0
α be the random real forcing B. Since B and the Sacks

coding preserve vrandom, Theorem 2.10 implies that VPω2 � non(N ) = ℵ1 . By
Lemma 2.6 Pω2 is ωω -bounding and so d = ℵ1 in the final generic extension.

Theorem 4.18 The constellation determined by add(M) = ℵ2 and cov(N ) = ℵ1 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even, let Q̇0
α be the Cohen forcing C and for α odd, let Q̇0

α be the Laver
forcing. Clearly add(M) = min{b, cov(M)} = ℵ2 in VPω2 . To show that Pω2 does
not add random reals proceed by induction using Theorem 2.15 at limit steps.

Alternative proof: The result can be obtained using finite support iteration of ccc posets,
by slightly modifying the coding stage of the poset forcing a ∆1

3 definable wellorder
on the reals from [4]. Let 〈Pα, Q̇β;α ≤ ω2, β < ω2〉 be a finite support iteration where
P0 is the poset defined in [4, Lemma 1]. Suppose Pα has been defined. If α is a limit
and α = ω1 · α′ + ξ where ξ < ω1 and α′ > 0, define Qα as in Case 1 of the original
construction. Otherwise, if α is a successor or α < ω1 let Qα be the poset from Case
2 of the same paper. Note that in this case Qα adds a dominating real. In either case
Aα is defined as in [4]. With this the definition of Pω2 is complete. Following the
proof of the original iteration, one can show that Pω2 adds a ∆1

3 -definable wellorder
of the reals. Note that in VPω2 we have add(M) = ℵ2 , since cofinally often we add
dominating and Cohen reals. To show that cov(N ) remains small, i.e. that random
reals are not added, use the fact that all iterands are σ -centered and [2, Theorems
6.5.30, 6.5.29]. We should point out that the coding techniques allow one to obtain the
consistency of the existence of a ∆1

3 wellorder of the reals with add(M) = ℵ3 and
cov(N ) = ℵ1 .
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Theorem 4.19 The constellation determined by cof(M) = ℵ1 and non(N ) = ℵ2 is
consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For each α let Q̇0
α be the poset Sg,g∗ defined in [2, Section 7.3.C]. Note

that VSg,g∗ � V ∩ 2ω ∈ N . Thus clearly VPω2 � non(N ) = ℵ2 . Now cof(N ) =

max{d, non(M)}. Thus it is sufficient to show that both d and non(M) remain small
in the final generic extension. However Sg,g∗ is ωω -bounding and preserves vCohen .
Then theorems 2.6 and 2.11 imply that d = non(M) = ℵ1 in VPω2 .

Theorem 4.20 The constellation determined by non(N ) = b = ℵ2 and cov(N ) =

cov(M) = ℵ1 is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For α even let Q̇0
α be Sg,g∗ and for α odd, let Q̇0

α be the Laver forcing LT .
Since all iterands are S-(g, g∗)-bounding, by theorem 2.17 Pω2 is S-(g, g∗)-bounding,
which implies (see [2, Lemma 7.2.15]) that no real in VPω2 is Cohen or random over
V . Therefore cov(N ) = cov(M) = ℵ1 in VPω2 . Recall also that 
Sg,g∗
 2ω ∩V ∈ N
and LT adds a dominating real.

Theorem 4.21 The constellation determined by non(M) = non(N ) = ℵ2 and
cov(N ) = d = ℵ1 is consistent with the existence of a ∆1

3 wellorder of the reals.

Proof For α even let Q̇0
α be PTf ,g and for α odd, let Q̇0

α be Sg,g∗ . Since 
PTf ,g

2ω ∩ V ∈ M and 
Sg,g∗ 2ω ∩ V ∈ N , we have VPω2 � non(M) = non(N ) = ℵ2 . All
iterands are S-(f , h)-bounding and ωω -bounding, which implies that in VPω2 there are
no random reals over V and the ground model reals form a dominating family.

Theorem 4.22 The constellation determined by b = ℵ2 and non(N ) = cov(N ) = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.

Proof For every α let Q̇0
α be the Laver forcing LT. Since LT adds a dominating func-

tion clearly b = ℵ2 . Since LT and Sacks coding S-preserve-vrandom , by Theorem 2.10
the ground model reals V ∩ 2ω are not null in VPω2 . Since LT and Sacks coding have
the Laver property, they are (f , g)-bounding which implies that the iteration does not
add random reals.

Theorem 4.23 The constellation determined by cov(N ) = non(N ) = ℵ2 and d = ℵ1

is consistent with the existence of a ∆1
3 wellorder of the reals.
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Proof For α even let Q̇0
α be the forcing notion Sg,g∗ defined in [2, Section 7.3.C] and

for α odd let Q̇0
α be the random real forcing B. Since Sg,g∗ makes the ground model

reals a null set, VPω2 � non(N ) = ℵ2 . Clearly cov(N ) is large in the final extension
and since all iterands are ωω -bounding the ground model reals remain a witness to
d = ℵ1 in VPω2 .

5 Questions

We would like to conclude with some open questions. It is of interest whether all
of the constellations can in fact be obtained without the existence of a ∆1

3 wellorder
of the reals. Note that this would follow if one could simultaneously have that all
∆1

3 sets enjoy some regularity property that conflicts a ∆1
3 wellorder. Can we even

guarantee that there are no projective wellorders at all? Another direction is the
question whether an assignment of larger values to the cardinal invariants in the Cichón
diagram is consistent with the existence of a ∆1

3 wellorder. What about constellations
in which the invariants have more than two distinct values? Are those consistent with
the existence of a ∆1

3 wellorder of the reals?
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