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We show that each admissible assignment of 8; and R, to the cardinal invariants
in the Cich6n Diagram is consistent with the existence of a projective wellorder of
the reals.
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1 Introduction

Every admissible assignment of N;-X; to the cardinal invariants in the Cichdn diagram
can be realized in a generic extension of a model of CH obtained as the countable
support iteration of proper forcing notions (see [2, Chapter 7]). With every invariant
in the Cichon diagram, one can associate a forcing notion which increases its value
without affecting the values of the other invariants. Thus to a certain extent the problem
of realizing an N;-N, assignment in a generic extension, reduces to iterating certain
posets (controlling the corresponding invariants) without introducing undesirable reals.

In [3] the first two authors provide a generic extension of the constructible universe L,
in which there is a A_l, -definable wellorder on the reals and ¢ = N,. The extension is
obtained by a countable support iteration of S-proper posets for some fixed stationary
S C w;. The construction leaves enough space to control in addition some of the
combinatorial cardinal invariants of the continuum and it is established that each of the
inequalities 0 < ¢, b < s = a, b < g is consistent with the existence of a projective
wellorder on R. In the present paper we use the flexibility of this construction to
control the invariants of measure and category. We show that each admissible N;-R,
assignment of the invariants in the Cichén diagram is consistent with the existence of
a A% definable wellorder of the reals. In addition, in two instances we use a slight
modification of the method from [4] which produces a A; definable wellorder of the
reals via a finite support iteration of o-centered posets.

The poset which forces the definable wellorder of the reals and is introduced in [3],
can be presented in the form (P,, Qq : a < wy) where Q, = Q% * Q, is a two step
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iteration: an arbitrary S-proper poset of size at most N, for some stationary S C wy
chosen in advance, followed be a three step iteration Q), of the form K9 x K/ x K2 .
The poset K shoots closed unbounded sets through certain components of a countable
sequence of stationary sets (see [3, Definition 3]), K}l is a poset known as localization
(see [3, Definition 1]), and K2 is a poset known as coding with perfect threes (see [3,
Definition 3]). The poset Q(T) of shooting a club through the stationary, co-stationary
set T is w;\T-proper and w-distributive. The localization poset £(¢) is proper and
does not add new reals. The only poset of these three forcing notions which does add
areal is the coding with perfect trees partial order, denoted C(Y). C(Y) is proper and
as we shall see below has the Sacks property.

Thus the main task in merging the above techniques is to show that the coding with
perfect trees poset has all relevant iterable combinatorial properties and that in all
relevant preservation theorems the requirement of properness can be relaxed to S-
properness. In the applications of the finite support iteration forcing techniques which
produce a wellorder of the reals, it is also of importance that the values of the relevant
invariants can be controlled using o -centered posets.

The paper is organized as follows: in section 2 we establish the necessary preservation
theorems for S-proper, rather than proper iterations, in section 3 we study the combi-
natorial properties of C(Y) and in section 4 we show that each of the above admissible
assignments is consistent with the existence of a A% -w.o0. on R.

2 Preservation theorems

Throughout this section S denotes a stationary subset of w; .

For T C w; a stationary, co-stationary set let Q(T) denote the poset of all countable
closed subsets of w;\T with extension relation given by end-extension. Note that if G
is a Q(T)-generic set, then | G is a closed unbounded subset of w; which is disjoint
from T'. Thus Q(T) destroys the stationarity of 7. One of the main properties of Q(7T)
which will be used throughout the paper is the fact that Q(T') is w-distributive and so
does not add new reals (see [8]).

Since Q(T) destroys the stationarity of T, it is not proper. However Q(T) is w;\T-

proper.

Definition 2.1 Let T C w; be a stationary set. A poset Q is T-proper, if for every
countable elementary submodel M of H(O), where O is a sufficiently large cardinal,
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such that M Nw; € T, every condition p € Q N M has an (M, Q)-generic extension
qg.

The proofs of the following two statements can be found in [5].

Lemma 2.2 If Q is S-proper, then Q preserves w;. Also Q preserves the stationarity
of every stationary subset ' of wy which is contained in S.

Lemma 2.3 If (P, : a < 6),(Q, : a < §)) is a countable support iteration of
S-proper posets, then Ps is S-proper.

The proofs of the following two statements follow very closely the corresponding
“proper forcing iteration" case (see [1, Theorem 2.10 and 2.12]).

Lemma 2.4 Assume CH. Let (P, : o« < §) be a countable support iteration of length
0 < wy of S-proper posets of size w;. Then Ps is R;-c.c.

Lemma 2.5 Assume CH. Let (P, : o < 0) be a countable support iteration of length
§ < wy of S-proper posets of size w;. Then CH holds in V%5 .

Preserving V N 2% as a dominating or as an unbounded family: A forcing notion P is
said to be “w-bounding if the ground model reals V N “w form a dominating family
in VF. This property is preserved under countable support iteration of proper forcing
notions. A forcing notion P is said to be weakly bounding if the ground model reals
VN“w form an unbounded family in V. In contrast to the “w-bounding property, this
property of weak unboundedness is not preserved under countable support iterations
of proper posets. There are well-known examples of two step iterations of weakly
bounding posets, which add a dominating real over V. An intermediate property,
which preserves the ground model reals as an unbounded family in countable support
iterations of proper posets, is the almost “w-boundedness. A forcing notion P is said
to be almost “w-bounding if for every P-name for areal f, i.e. a P-name for a function
in “w, and for every condition p € [P, there is a real g € “w N V such that for every
A € [w]¥ NV there is an extension ¢ < p such that ¢ |- 3% € A(f(i) < 5(i)). These
are our main tools in providing that the ground model reals remain a dominating and
or an unbounded family in the various models which we are to consider in section 4.

The proofs of the two preservation theorems below follow very closely the proofs of
the classical preservation theorems concerning preservation of the “w-bounding and
the almost “w-bounding properties respectively under countable support iterations of
proper forcing notions (see [1], or [5]).
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Lemma 2.6 Let ((P; : i < 6),(Q; : i < 6)) be a countable support iteration of
length § < w, of S-proper, “w-bounding posets. That is, assume that for all i < 9,
IFp, "Q; is “w-bounding and S-proper". Then Ps is “w-bounding and S -proper.

Lemma 2.7 Let ((P;:i < 6),(Q;:i < 6)) be acountable support iteration of length
0 < wy of S-proper, almost “w-bounding posets. That is, assume that for all i < 9,

l-p, "Q; is almost “w-bounding and S -proper".

Then Ps is weakly bounding and S -proper.

Keeping non(M), non(N') and cof(N) small: Recall that with every ideal Z on a set
X we can associate the following invariants:

add(Z) = min{|A|: ACZand JA ¢ T},
cov(Z) = min{|A| : ACZ and Y A =X},
non(Z) = min{|Y|: Y C X and Y ¢ Z}, and
cof(Z) =min{|A| : ACZ and VB € ZJA € A(B C A)}.

Following standard notation we denote by M and N the ideals of meager and null
subsets of the real line, respectively. Thus add(M), cov(M), non(M), cof(M) and
add(\V), cov(N), non(N), cof(N) denote the above defined cardinal invariants for
the ideals M and N .

To preserve small witnesses to non(M), non(N') and cof(N) we will use preservation
theorems which follow the general framework developed by M. Goldstern in [6].

Definition 2.8 ([2, Definition 6.1.6]) Let C be the union of an increasing sequence
(Ch)new of two place relations on “w such that

e the sets C = dom(C) and {f € “w:f C, g} where n € w, g € “w are closed
and have absolute definitions, that is, as Borel sets they have the same Borel
codes in all transitive models.

o VA € [C]=N3g € “wVf € A(f C g).

Let N be a countable elementary submodel of H(®) for some sufficiently large ©
containing C. We say that g € “w covers N it Vf e NN C(f C g).

Following [2, Definition 6.1.7], we say that the poset P S-almost-preserves-C if the
following holds: whenever N is a countable elementary submodel of H(®) for some
sufficiently large © containing P, C, C and wi "N € S, g covers N and p € PN N,
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then there is an (N, IP)-generic condition ¢ extending p such that ¢ I- “g covers N[G]".
Similarly we say that the forcing notion P S-preserves-C if P satisfies [2, Definition
6.1.10] with respect only to countable elementary submodels whose intersection with
wi is an element of the stationary set S. More precisely, we say that a forcing notion P
S-preserves-C if whenever N is a countable elementary submodel of H(©) for some
sufficiently large © which contains P and C as elements and such that w; NN € S,
whenever g covers N and (p,)qe., is a sequence of conditions interpreting the P-names
(f:)i<k € N for functions in C as the functions {f*);<x, then there is an N-generic
condition g < pg such that g IFp “g covers N [G]" and

Vn € wVi <kqlFp (ff Cog — £ Ca 9).
Furthermore we obtain the following analogue of Goldstern’s preservation theorem

(see [6] or [2, Theorem 6.1.3]).

Theorem 2.9 Let S be a stationary set and let (P,,, Q,, : o < &) be a countable support
iteration such that for all @ < 6, -, “Qa S-preserves- C ". Then Ps S-preserves-C.

Of particular interest for us are the relations Crandom —[—Cohen anq A defined in
Definitions 6.3.7, 6.3.15 of [2] and on page 303 of [2], respectively. For convenience
of the reader we define these relations below:

Crandom . Denote by Q the set of all clopen subsets of 2. Then let
crandom _ {f € QY :Vn€wu(f(n) <27"}

and for f € CT0OM jet A = () _ J,, f(k). Now for f € Crandom . & 2v 4ng
n € w define
forandom s vk > n(x ¢ £(K).

Crandom  Note that £ CFAOM y jf and only if x ¢ Ay and that x
—random

Let Erandom: Unew

covers N with respect to if and only if x is random over N.

ECohen: Let
cCohen _ ¢ ¢ 02 . vu € Q(F(U) C U)}.

For f € cCohen ¢ Ap = UUle(U). Note that Ay is an open dense subset of 2%
and that for every dense open set H C 2% there is an f € cCohen g;ch that Ar CH.

Fix some standard enumeration {U,},c. of Q and for f € CCohen, xe¥, new
define:
f EnCohen x <= Jk < n(x € f(Uyp)).
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Let CCohen— Uncw CCohen  Then f CC"" x if and only if x € Ay. Therefore x covers
N with respect to C¢°"" if and only if x is a Cohen real over N.

CA: Let Qp = QN0 1], let A= {f € Q% : Y, f(n) < 1} and let
Coi={f € (@)™)¥:Vn > fmi) <27}

iedom(f(n))
For f € CA let ¢ € A be defined by ¢ = f(0)"f(1)" - --. For f, g € C* define
fER g <= Vm > n(ep(m) < eg(m)).
Let CA={J . C&.

ncw —n
Each of those relations satisfies the properties of Definition 2.8. Thus Theorem 2.9
implies the following two theorems (analogous to Theorems 6.1.13 and 6.3.20 from [2]
respectively).

Theorem 2.10 If (P,,Q, : a < &) is a countable support iteration and for each
a <9,k “Qa S-preserves- Crandom v " then Py preserves outer measure. That is for
every set A C 2%, VPs w(A) = p*A)Y. In particular |5 VN2¥ ¢ N .

Theorem 2.11 If (P,,Q, : a < §) is a countable support iteration and for each
a < 6, IFq “Qq S-preserves- T " then Ps preserves non meager sets. That
is for every set A C 2“ which is not meager, V' = A is not meager. In particular
IFs VN2Y & M.

Recall that a forcing notion PP has the Sacks property if and only if for every P-name
g for a function in “w there is a slalom S € V, i.e. a function S € ([w]<*)*¥ such
that |S(n)| < 2" for all n, such that IFp “Vn(g(n) € S(n))--. By [2, Lemma 6.3.39]
a proper forcing notion P is has the Sacks property if and only if P preserves C”2.
By [2, Theorem 2.3.12] if P has the Sacks property then every measure zero set in V¥
is covered by a Borel measure zero set in V and so P preserves the base of the ideal of
measure zero sets. We obtain the following analogue of [2, Theorem 6.3.40].

Theorem 2.12 If (P,,Q, : a < &) is a countable support iteration and for each
a <6, ko “Qq S-preserves- T2 ", then Ps has the Sacks property and so preserves
the base of the ideal of measure zero sets.

No random and no amoeba reals: Some of the preservation theorems which we use to
show that certain iterations do not add amoeba or random reals, are based on a general
framework due to Judah and Repicky (see [7]).



Measure, category and projective wellorders 7

Definition 2.13 ([2, Definition 6.1.17]) Let C be the union of an increasing chain
(Ch)new of two place relations on “w such that

e forall n € w and all & € “w the set {x : h C, x} is relatively closed in the
range of C,

e forevery A € [dom(C)]=No thereis f € dom(C) suchthat Vg € AVn € w3k > n
such that Vx(f Ty x) — g T x), and

e the formula Vx € “w(f C, x — g T, x) is absolute for all transitive models
containing f and g.

A real x is said to be C-dominating over V if forall y € VN dom(E), y C x.

We have the following S-proper analogue of Judah and Repicky’s preservation theorem
(see [2, Theorem 6.1.18]).

Theorem 2.14 If (P,,Q, : a < &), § limit, is a countable support iteration of S -
proper posets, such that for all o < §, P, does not add a C -dominating real, then Ps
does not add a C -dominating real.

Note that x € 2@ Crandom_gominates v if and only if x is random over V. Further-

more the relation Erandom

above theorem we obtain the following S-proper analogue of Theorem 6.3.14 from [2].

satisfies the conditions of definition 2.13 and so by the

Theorem 2.15 If (P,,Q, : o < &), § limit, is a countable support iteration of S -
proper forcing notions and for each o < 9, P, does not add random reals, then P
does not add a random real.

Note that C2 also satisfies the conditions of Definition 2.13. Then by Theorem 2.14

above, as well as [2, Theorem 2.3.12] we obtain the following analogue of [2, Theorem
6.3.41].

Theorem 2.16 If (P,,Q, : o < &), & limit, is a countable support iteration of
S-proper posets and for all « < 6, I “|JWN NV) ¢ N, then ks JN NV) & N".

Other preservation theorems: We say that a forcing notion P is S-(f, h)-bounding,
if it satisfies [2, Definition 7.2.13] but instead of proper we require that P is S-
proper. That is, we say that P is S-(f, h)-bounding, if P is S-proper, for every k € w
limy,—,00 A()*-f = (n) = 0 and forevery f* € VFN]], ., f(n) thereis S € VN([w]<¥)~
such that for all n € w |S(n)| < h(n) and for all n € w(f'(n) € S(n)). The proof of [2,
Lemma 7.2.15] remains true under this modification, and so we obtain that if P is
S-(f, h)-bounding then P’ does not add random or Cohen reals. Furthermore we have
the following analogue of Shelah’s theorem (see [9] or see [2, Theorem 7.2.19]).
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Theorem 2.17 If (P,,Q, : a < 4),  limit, is a countable support iteration such that

for all v, ko, “Qq is S-(f, h)-bounding", then Py is S-(f, h)-bounding.

We will also use preservation theorems for the so called (F, g)-preserving posets.
For convenience of the reader we state the definition of (F,g)-preserving (see [2,
Definition 7.2.23]). Let g be a given real and for n € w let P, = {a C g(n + 1) :
la| = g(n+ 1)/2"}. For aset A C P, define norm(A) = min{|X| : Va € AX Z a)}.
Let F be a family of strictly increasing functions. For every f € F choose a function
fT € F and assume that for all f € F, n € w we have that f(n) < g(n)/2". A
forcing notion P is said to be (F, g)-preserving if for every f € F and every P-name
S which has the property that for all n, IFp §(n) C P, and IFp norm(S(n)) < f(n),
there exists a function T € V such that for all n, T(n) C P,, norm(T(n)) < f*(n) and
Ikp S(n) C T(n). Note that the countable support iteration of (F, g)-preserving posets
is (F, g)-preserving (see [2, Theorem 7.2.29]) and that (F, g)-preserving posets do not
add Cohen reals (see [2, Theorem 7.2.24]).

3 Coding with perfect trees

Let Y C w; be generic over L such that in L[Y] cofinalities have not been changed and
let i = {pi}icw, be asequence of L-countable ordinals such that ; is the least ordinal
powith > ({pj 2 j < i}, L,IYNil EZF~ and L, F w is the largest cardinal. A real
R is said to code Y below i if for all j < i, j € Y if and only if L,,[Y Nj,R] F ZF".
Whenever T is a perfect tree, let |T| be the least i such that 7 € L, [Y N i].

Fix L[Y] as the ground model. The poset C(Y), to which we refer as coding with
perfect trees, consists of all perfect trees T such that every branch R through T codes
Y below |T|. For Ty, T conditions in C(T) define Ty < T; if and only if Ty is a
subtree of T7.

Below we systemize some of the main properties of the poset C(Y). Note that Tp < T}
if and only if [Ty] C [T;] where [T] denotes the set of infinite branches through 7. For
n e w,let Tp <, Ty if and only if Ty < T and Ty, T have the same first n splitting
levels. For T a perfect tree, m € w let S,,(T) be the set of nodes on the m-splitting
level of T (and so [S,,(T)| =2"),andfort € Tlet T(i)) ={n € T :t CnornCt}.
Note that by absoluteness R codes Y below |T| even for branches through 7 in the
generic extension.

Lemma 3.1 [3, Lemma 5]IfT € C(Y) and |T| < i < wy, then there is T* < T such
that |T*| = i.
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Lemma 3.2 [3, Lemma 6] If G is C(Y)-generic and {R} = ({[T]: T € G}, then
for all j < w; we have that

J€Yifandonlyif L, [YNj,RIF ZF .
That is, R codes Y .

Lemma 3.3 [3, Lemmas 7 and 8] C(Y) is a proper, “w -bounding forcing notion.

Lemma 3.4 The coding with perfect trees forcing notion C(Y) preserves CCohen

Proof Let N be a countable elementary submodel of Lg[Y] for some sufficiently
large ©, such that C(Y), i are elements of N. Let ¢ be a Cohen real over N. Let T
be a condition in C(Y) N N. We have to show that there is a condition 7% which is a
(N, C(Y))-generic extension of T and which forces that “c is Cohen over N[G]". By [2,
Lemma 2.2.4] for every meager set F C 2 there are reals xr € 2 and fr € w* such
that

F C {x:¥>®°n3i € [fr(n), fr(n + D)xp() # x(0)}.

Let {5,/ }new and {D,},c., enumerate names for representatives of all meager sets
in N°@ and all dense subsets of C(Y) in N, respectively. Let N denote the transitive
collapse of N, let i = w; N N. Note that N = L,[Y Ni] for some yp and since
L, [Y Ni] F “ is countable", we have that L,[Y N i] is an element of L, [Y N i].
Let 7 = {ix}rew be an increasing cofinal sequence in i such that 7 € LY nil.
Recursively we will define a sequence of conditions 7 = {T, },cw , such that for every
n, the condition 7}, is an element of N, Ty, <p+1 Ty, |Tu| > i, and

(1) Top lFery “c ¢ F(xy, )", where F(x,,f,) denotes a name for the meager set
corresponding to the names iy, f,,

2) Tont1 IFeqy) “GNNND, # 0", where G is the canonical C(Y)-name for the
generic filter.

Furthermore the entire sequence 7 will be an element of L, [Y N i], since it will be
definable in L, [Y N i]. Thus its fusion 7 will also be an element of L,,[Y N i], and
so a condition in C(Y) which extends T and has the desired properties.

We will need the following two claims:

Claim Let R € C(Y)NN and let {x,f} be C(Y)-names in N (for reals), representing
a meager set in N°Y) | let n € w and let « € N Nw; such that o > |R|. Then there is
a condition R' in N such that R" <, R, |R'| > « and every branch through R’ decides

i f.
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Proof Let Ny be asufficiently elementary submodel of N suchthat N F “Nj is countable”
and all relevant parameters are elements of Ny, that is R, C(Y), fi, f, x, n and « are
elements of Ny. Let Ny denote the transitive collapse of Ny and let j = w; N Ny. Note
that N is of the form L,[Y Nj] for some p and since L,[Y N j] F *j is uncountable"
and L, [Y NJ] F “j is countable", we have that Ng = L,[YNjl€Ly,lYNj]. Onthe
other hand, since L, [Y N] is definable from Y,j, u; and all of those are in N, we
obtain that L,,[Y Nj] € N. Let j = {j}mew be an increasing cofinal in j sequence,
which is an element of L, [Y N /].

The condition R’ will be obtained as the fusion of a sequence (R,;)me,, such that the
entire sequence is definable in L, [YNjl and for all m, R,, € Ny (and so R,, € Ny).
Let Ry = R. For every s € Split,(Ry) and every ¢ € Succy(Ro) find R? < Ry(f)
which decides x[|t| and f]|t|. By elementarity, we can assume that RY € Ny and
so RY € Ny. Since the set of conditions in C(Y) of height strictly greater than
a and jy is dense, again by elementarity we can assume that |[R?| > a,jo. Let
R, = UseSplitn(Ro) UseSuce, o) R?. Then in particular R; € Np and |Ry| > a,ip.
Now suppose R, € Ny is defined. Then for every s € Split,, ,,(R;;) and 7 € Succg(R;,)
find R < R,,(t) in Ny of height > «,j,,, which decides i[|¢|, f|t|. Let Ryy1 =
UseSplith(Rm) UtESLlCC(s) R;ﬂ. Then Rur1 <imin R, Ruy1 € No and ’Rm—&-l‘ >
«, jm. With this the inductive construction of the fusion sequence is complete. Since
(Rim)mew is definable in L, [Y N j], we obtain that R = (.., Rm € L, [Y Nj]l. Then
in particular |R’| = j, which implies that R’ is indeed a condition in C(Y). O

Claim Let R, x, f , n, o, N be as above and let ¢ be a Cohen real over N. Then
there is a condition R” € N such that R” <, R', |R"| > «,|R'| and R" forces that ¢
does not belong to the meager set determined by x, f.

Proof Just as in the previous claim let Ny be a sufficiently elementary submodel of N
such that N F “Njy is countable" and all relevant parameters are elements of Ny. Let
No denote the transitive collapse of Ny. Let j = w; N Ny and let j = {j, hmew be an
increasing and cofinal in j sequence which is an element of L, [Y M j]. The condition
R” will be obtained as the limit of a fusion sequence (R;,);c,, Which is definable in
L,,[Y Nj] and whose elements are in Ny. Let Ry = R'. For every s € Split,(Ry) and
every t € Succ,(Ryp) find a branch b, € Ny N [Ry] such that t C b,. Then b, gives an
interpretation of the names &, f as reals x’ and f’ in Ny. Since ¢ is Cohen over N, it
is Cohen over Ny and so there is j; > |¢| such that

N G f G+ D) = el G f e+ D).



Measure, category and projective wellorders 11

Take any k; > j,. Let R| = UseSplitn(Ro) UteSuCCS(Ro) Ro(b:[k;). Thinning out once
again we can assume that |Ry(b; [k;)| > jo, . Also clearly R} € Ny.

Suppose Ry, is defined. Again for every s € Split,, ,,(R;) and € Succy(R,,), find a
branch b, € [R,,] NNy such that ¢ C b,. Then b, gives an interpretation x, f* of x,f as
reals x', f in Ny. Using the fact that ¢ is Cohen over Ny we can find {/}};<,<, such
that [¢| < I, Il, < I | for a < m such that for every j € {l}1<a<m

FGDSG+ 1) = cllf (.G + D).

o Ra) UseSuce,x,) Bm(bilk:).  Passing
to an extension if necessary we can assume that |R,(b;[k;)| > ju,a and so that
|Rm+1| > jm, . Let R” = NyewRy. Then R” is a condition in N with the desired
properties. a

Take any k > [,. Let Ruy1 = Uesplit

With this we can proceed with the construction of the fusion sequence (7,),c. . Let
To = T. Reproducing the proof of [3, Lemma 7] find 77 € N such that 77 <; Ty,
|T| > iy and T} IF GANND; # (. Suppose Ty, is defined for some n > 1.
Using the previous two claims find a condition T, € N N C(Y) such that |T,| > iz,
T2y <24 Tou—1, and T, forces that ¢ does not belong to the meager set corresponding
to {xn, fn} Obtain T, as in the base case. With this the fusion sequence (7),)nc.
is defined. Let T* = () . T,. Note that |T*| = i and so in particular T € C(Y).

ncw "N

Clearly, T* is (N, C(Y))-generic and T* I-¢(y) “c is Cohen over N [G].". O
In order to show that the coding with perfect tress forcing notion, preserves Crandom
we will use the fact that C(Y) is weakly bounding and that C(Y) preserves positive
outer measure (see below).

Lemma 3.5 Suppose that A is a set of positive outer measure. Then IF¢eyy 1*(A) > 0.

Proof Suppose not. Then there is a condition 7" € C(Y) such that T I+ p*(A) = 0.
Let N be a countable elementary submodel of Lg[Y] for some sufficiently large ©
such that T,C(Y),A are elements of N. Then there is a sequence (I,)ycy € N of
rational intervals such that 7 Ik 3 _ u(l,) < oo and T IF A C (e, Upsp I
Then in particular, there is a C(Y)-name for a function ¢ in “w such that for all n,
TIE 3 s am M) < 2-"+m  Then there is R < T and a ground model real g, i.e.
function in “w such that for all n € w, R I g(n) < g(n). Then in particular, for all
new RIFY o cicouin i) < 270D Let i = w NN and let 7 = {iy}new
be an increasing and cofinal in i sequence, which belongs to L,,[Y Ni]. Recursively
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define a fusion sequence (R,),c. as follows. Let Ry = R. Suppose R, has been
defined. For every n-splitting node ¢ of R, find R, < R,(¢) such that for some finite
sequence <I,”J>g(n)§j<g(n+1) of rational intervals for all j : g(n) < j < gn + 1) we
have R; IF [; = 7th' By elementarity we can assume that R, is a condition which
is an element of N, which is also of height > i, and that (I;)em<j<gmn+1) € N.
Let R,y = UteSplitn(Rn) R; and let J, = UtESplitn(R,,) Ug(n)gj<g(n+l)1;lj' Note that
Jy € N and p(J,) < 27". Let R* be the fusion of the sequence (R,),c. . Then R* is
a condition in C(Y) of height i, such that

RO I

n m>n n m>n

Since J := (), U,,>, Jm is a measure zero set, there is x € A\J. However

R*II—xeﬂUim

n m>n

and so R* I+ x € J, which is a contradiction. O
Lemma 3.6 The coding with perfect trees forcing notion C(Y) preserves Cfandom
Proof The proof proceeds similarly to the proof that Laver forcing preserves CT andom
(see [2, Theorem 7.3.39]). Let N be a countable elementary submodel of Lg[Y] for
some sufficiently large O, let fy be an element of ¢random A7 and et 7 = (T new €
N be an approximating sequence for fy below T for some T € C(Y) N N. Let o
be the approximation of f determined by 7. Note that fo € NN¥Q. Let x be a
random real over N. We have to show that there is an extension 7% of T which is an
(N, C(Y))-generic condition, such that T* IF “x is random over N[G]" and such that
forall n € w, T* I (ff T, x — fo 5, %).

Let D be adense open subset of C(Y). Denoteby cl(D) = {T : InVt € Splith(T)(if there is R, <y

T(r) such that R, € D then T(r) € D)}. Note that cl(D) is n-dense open for every
n € w and so if {D, },¢., is a sequence of dense open sets, then [, ., cl(D,) is n-dense
for all n. Also, we have thatif S < T € cl(D), then there is s € S such that T(s) € D.

Let D denote the collection of all dense subsets of C(Y) which are in N. Since x is
random over N and fj € N there is ny such that for all k > no(x ¢ f; (k). For every
n > ng let Y7 be the set of all reals z € 2 such that there is Z < T, such that ¢,(z,2)
holds where ¢,(z, Z) is the conjunction of the following three formulas:

(1) ¢1(Z)=forall D e DNNAR € cl(D)NN(Z < R), and

) ¢z, T) = forall f € Crandom o yyoop 7 |- 2 ¢ #(n)),
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(3) #iz, T)=forall k > n Z Iz ¢ fo(k).

Note that Z ¥ z ¢ f(n) iff there is Z' < Z such that Z' Il z € f(n) iff there is Z' < Z
such that z € f(n)[Z’ ] which is equivalent to there is s € Z such that z € f(n)[Z]
iff there is R € cl(DQ) NN3s € Z(Z > R and z € f(n)[R,]). Since quantifiers of
@1, P2, @3 are relativized to subsets of N, all three of these formulas are Borel.

Using the fact that C(Y) is weakly homogeneous and preserves positive outer measure,
modifying the proof of [2, Lemma 7.3.41] we obtain that for every n > ng, the inner
measure /1,(Yy) > 1 —27". This implies that Y* := (-, Yy is a set of measure 1.

Claim (see [2, Lemma 7.3.42]) There is a sequence (By : k > ng) € N of Borel sets
such that for all n, B, € N and B,AY" C [ JW NN).

Proof Fix z € 2“ and let G be an N[z]-generic filter for Coll(22N°, Ny) (the algebra

collapsing 22" onto Np). Now we have z € Y iff Lo[Y] F 3Z < T¢,(z,Z) iff

N[zZI[G] E 3Z < T¢u(z, T) iff N[z] IF ”_Coll(22N° Ro) 37 < T¢,(z,Z)". The second
130

equivalence follows from absoluteness of Z‘% formulas and the third from homogeneity

of Coll(22™, Ry).

Let ¢ (z) denote the formula * H—C011 @M ) 37 < Tou(z,Z)". Thatis z € Y iff
3390

Nlz] E ¢;(z). Let B, be a Borel set in N representing the Boolean value [[¢; (i)

where 7 is the canonical name for a random real. For a random real z over N we have,

z€Y, < N[zl F ¢,(z) < z € B,.

Therefore B,AY! C [JWN NN). ]

Note that in particular u(B,) > 1 — 27", Using the fact that x is random over N we
obtain that there is n* > ng such that x € B,«. Again since B,,*AY,':: CUWN NN),
X € Y,Z‘:. Let T* be a witness to x € Y,'l’f. Then T* < Ty, T* is (N, C(Y))-generic,
T* I “x is random over N" and for all k > n*, T* IF x ¢ fy(k). Then

T* IF fif In* = foln™ AVk > n(x ¢ fo(k))

which implies that forall n € w, T* IF (f5 &, x — fo Cax). O

Recall that a forcing notion P has the Laver property if and only if for every function
f € VNwY and a P-name ¢ such that IFp Vr(g(n) < f(n)) there is a slalom S € V
such that IFp Vng(n) € S(n).
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Lemma 3.7 Sacks coding C(Y) has the property Ly where f(n) = 2" for all n, and so
has the Laver property. It is “w -bounding and so has the Sacks property. Furthermore it
is (F, g)-preserving for some F and g (see [2, Definition 7.2.23]) and is (f, h) -bounding
forall f and h.

Proof Recall that a forcing notion [P has property L; where f € “w, if for every
peP, newand A € [w]<¥ the following holds: if p IF a € A, then there is g <, p
and B C A, |B| < f(n) such that ¢ IF @ € B. Thus suppose T € C(Y), n € w and
A € [w]<¥ suchthat T I+ a € A. Let S,(T) be the n-th splitting level of 7. Then
|Sp(T)| = 2" and for every t; € S,(T) there is TJ’ < T(tj) such that TJ’ IFa = Ivcj for
some kj € A. Let B = {kj}jerr CA, T = UjeZ" T]’ Then 77 <, T and T’ IF a € B.
By [2, Lemma 7.2.2] if P has the Ly property for some f, then [P has the Laver property.
Since C is “w-bounding, by [2, Lemma 6.3.38] it has the Sacks property. The Laver
property implies also that C(Y) is (F, g)-preserving for some F and g (see [2, Lemma
7.2.25] and is (f, h)-bounding for all f and & (see [2, Lemma 7.2.16]). O

4 Measure, category and projective wellorders

The underlying forcing construction is the construction from [3] forcing a A%-w.o.
of the reals. For completeness of the argument we will give a brief outline of this
construction. Recall that a transitive ZF~ model M is suitable if wé"’ exists and
wg” = w%M. Assume V is the constructible universe L. Let F : w, — L, be a
bookkeeping function which is X;-definable over L,, and let S = Sg 1 B < w)
be a sequence of almost disjoint stationary subsets of w; which is >:; -definable over
L., with parameter w;, such that F ~!(a) is unbounded in wy for every a € L,,,
and whenever M, N are suitable models such that w}! = w¥ then FM $” agree with
FN SN on w) Nw). In addition if M is suitable and w)! = wy, then FM S equal
the restrictions of F,S to the w, of M. Let S be a stationary subset of w; which is
A\ -definable over L, and almost disjoint from every element of S.

Recursively define a countable support iteration ((Py, : o < wa), (Qq : @ < w»)) such
that P = P,,, will be a poset adding a A% -definable wellorder of the reals. We can
assume that all names for reals are nice in the sense of [3] and that for o < 8 < w; all
[P, -names for reals precede in the canonical wellorder <; of L all Pg-names for reals,
which are not P, -names. For each o < w; define <, asin [3]: that is if x, y are reals
in L[G,] and oy, o} are the < -least I, -names for x, y respectively, where v < «,

¥
define x <, y if and only if o <, ayo‘. Note that <, is an initial segment of <g. If
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G is a P-generic filter, then <%= (J{<%: a < w,} will be the desired wellorder of
the reals.

In the recursive definition of PP,,,, Py is defined to be the trivial poset and Q. is of
the form Q2 * Q!,, where QO is an arbitrary P, -name for a proper forcing notion
of cardinality at most ¥; and QL is defined as in [3], and so carries out the task of
forcing the A; -w.o. of the reals. Note that Q. is the iteration of countably many
posets shooting clubs through certain stationary, co-stationary sets from S (and so
each of those is S-proper and w-distributive), followed by a “localization" forcing
which is proper and does not add new reals, followed by coding with perfect trees. In
the following we will use the fact that QO is arbitrary, to force the various N;-N;-
admissible assignments to the cardinal characteristics of the Cich6n diagram, in the
presence of a A% wellorder of the reals.

Theorem 4.1 The constellation determined by cov(M) = cov(N) = R; and b = N
is consistent with the existence of a A; wellorder of the reals.

Proof Perform the countable support iteration described above, which forces a A%—
w.o. of the reals and in addition specify Q2 as follows. If « is even let I-, Q, = B be
the random real forcing, and if « is odd let I-, Q, = C be the Cohen forcing. Then in
VP2 cov(M) = cov(N) = N,. At the same time since the countable support iteration
of S-proper, almost “w-bounding posets is weakly bounding, the ground model reals
remain an unbounded family and so a witness to b = N;. O

Theorem 4.2 The constellation determined by 0 = N,, non(M) = non(N) = N is
consistent with the existence of a A% wellorder of the reals.

Proof In the forcing construction described above, which forces a A% -w.o. of the
reals, define QY to be the rational perfect tree forcing PT defined in [2, Definition
7.3.43]. To claim that ® = N, in the final generic extension, note that PT adds an
unbounded real. It remains to show that non(M) = non(N) = R;. By [2, Theorem
7.3.46] the rational perfect tree forcing preserves ECohen and by Lemma 3.4 the
coding with perfect tress C(Y) also preserves CCONeN | Therefore by Theorem 2.11 in
VP the set 2 NV is non meager and so VPe |k non(M) = N;. By [2, Theorem
7.3.47] the rational perfect tree forcing preserves Erandom and by Lemma 3.6 the
prefect tree coding C(Y) preserves Cf314OM  Therefore by Theorem 2.10 in the final
extension 2¢ NV is a non null set and so V<2 E non(\N) = ;. O

Theorem 4.3 The constellation determined by cov(N) = 0 = non(N) = N,, b =
cov(M) = Ny is consistent with the existence of a A% wellorder of the reals.
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Proof For even «, let Q¥ be the random real forcing B and for o odd, let Q!, be
the Blass-Shelah forcing notion Q defined in [2, 7.4.D]. Since all iterands are almost
“w-bounding, by Lemma 2.7 the ground model reals remain an unbounded family
and so a witness to b = N;. On the other hand Q adds an unbounded real and
g “2¥ NV € N, which implies that V¥«> F 9 = non(\V) = N,. Since cofinaly
often we add random reals, we have that cov(\N) = ¥, in the final extension. To
show that no Cohen reals are added by the iteration, use the fact that all iterands are
(F, g)-preserving, as well as [2, Theorems 7.2.29 and 7.2.24]. O

Theorem 4.4 The constellation determined by non(M) = 0 = R, and cov(N) =
b = non(N) = Ny is consistent with the existence of a A% wellorder of the reals.

Proof For o even let Q, = PT;, and for o odd, let Q4 = PT where PT;, and
PT are defined in [2, Definition 7.3.43 and Definition 7.3.3] respectively. Since Il—pr’g
2NV € M and PT adds an unbounded real, V'«  non(M) = 9 = X,. All iterands
are almost “w-bounding and so b remains small. All iterands S preserve "™ and
so by Theorem 2.10 P,,, preserves outer measure and so VPe E non(NV) = X;. To
see that the iteration does not add random reals, note that PT and C(Y) have the Laver
property and so are (f, g)-bounding for all f, g. On the other hand PT}, is (f, h)-
bounding for some appropriate /2, which implies that all iterands are S-(f, #)-bounding.
Then by Theorem 2.17, P, is S-(f, #)-bounding, which implies that is does not add
random reals. |

Theorem 4.5 The constellation determined by cov(N) = 0 = N, and b = non(N) =
N is consistent with the existence of a A% wellorder of the reals.

Proof For o even, let Q, be the rational perfect tree forcing PT and for o odd, let
Q. be the random real forcing B. Then VF«2 E cov(N) = 2 = 2% By [2, Theorem
6.3.12] B preserves CraNAOM 4y 12 Theorem 7.3.47] PT preserves CraNdOm 4 by
Lemma 3.6 Sacks coding preserves Erandom‘ Then Theorem 2.10, VP« E 24 NV ¢
N. All iterands are almost “w-bounding, and so by Theorem 2.7 the ground model
reals remain an unbounded family in VF«2 |

Theorem 4.6 The constellation determined by non(M) = cov(M) = R, and b =
cov(N') = N is consistent with the existence of a A% wellorder of the reals.

Proof For « even, let Qg be Cohen forcing and for o odd, let Qg be PT;, (see [2,
Definition 7.3.3]). Since II—Png 2NV e M, VP E non(M) = R,. Since cofinally
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often we add Cohen reals, clearly cov(M) = X, in the final generic extension. All
involved partial orders are almost “w-bounding and so V2 & b = w;. To see that
the iteration does not add random reals, proceed by induction using Theorem 2.15 at
limit steps.

Alternative Proof: The result can be obtained using finite support iteration of ccc
posets. We will slightly modify the coding stage of the construction of [4]. Let
(Pyg, Qg ta < wy,f < wy) be a finite support iteration such that Py is the poset
defined in [4, Lemma 1]. Suppose P, has been defined. If av is a limit, @ = wy -’ +¢&
where £ < w; and o’ > 0, define Q, as in Case 1 of the original construction. If «
is not of the above form, i.e. « is a successor or o« < wy, let Qa be a name for the
following poset adding an eventually different real:

Qa = {<S(),Sl> 80 € w<w7sl € [O't-(<g)]<w}7

where (to,71) < (so,s1) if and only if s¢ is an initial segment of 7y, s; C 1, and for
all £ € 51 and all j € [|sol, [fo]) we have #(j) # x¢(j), where x¢ is the £-th real in
L[G,]Nw® according to the wellorder <g“ . The sets A, are defined as in [4]. With this
the definition of IP,,, is complete. Following the proof of the original construction one
can show that PP, does add a A% -definable wellorder on the reals (note that in our case
VPer = ¢ = R,.) Since the eventually different forcing adds a Cohen real and makes the
ground model reals meager, we obtain that VP |- cov(M) = non(M) = X,. Since
all iterands of our construction are o-centered, by [2, Theorems 6.5.30 and 6.5.29]
[P, does not add random reals and so VPer E cov(N) = N;. The ground model reals
remain an unbounded family and so a witness to b = X in VF«2. We should point out
that the coding techniques allow one to obtain the consistency of the existence of a A%

wellorder of the reals with non(M) = cov(M) = X3 and b = cov(N) = N;. O

Theorem 4.7 The constellation determined by 9 = non(N) = X, and cov(M) =
non(M) = RNy is consistent with the existence of a Aé wellorder of the reals.

Proof For o even, let Q¥ be the rational perfect tree forcing PT and for o odd,
let Q% be the poset Sq.¢+ (see [2, 7.3.C]). Note that ||—Sg7g* 2NV € N and so
VPe E non(N) = X,. On the other hand PT adds an unbounded real, which implies
that (0 = NZ)V%2 . Also S, o+, PT and C(Y) preserve CCohen which by Theorem 2.11
implies that V"2 E non(M) = X;. To see that there are no Cohen reals added by
the iteration we use the S-(f, g)-bounding property. More precisely, PT and C(Y)
are Laver and so (f, g)-bounding for all f,g. The poset Sg ¢+ is (g, g*)-bounding,
which implies that all iterands are S-(g, g*)-bounding. Thus by Theorem 2.17, P,,, is
S-(g, g*)-bounding, and so the entire iteration does not add Cohen reals. a
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Theorem 4.8 The constellation determined by cov(M) = N, non(M) = Ny is
consistent with the existence of a A% wellorder of the reals.

Proof For every o < ws, let Q2 be Cohen forcing. By [2, Theorem 6.3.18] C
preserves ECohen’ by Theorem 3.4 Sacks coding preserves ECohen‘ Then by The-
orem 2.11 the entire iteration P,, preserves non-meager sets and so in particular
VB E2Y NV ¢ M. i

Theorem 4.9 The constellation determined by non(N) = 0 = non(M) = R, and
cov(N) = b = cov(M) = N is consistent with the existence of a Aé wellorder of the
reals.

Proof For o an even successor, let QY be the rational perfect tree forcing PT, for v an
odd successor let Q°, be PTy , (see [2, Definition 7.3.3]) and for « limit, let Q% = S ,+ .
Clearly non(N) = 9 = non(M) = N,. To show that cov(N) = cov(M) = N| use
the fact that all forcing notions used in the iteration are S-(f, #)-bounding and so by
Theorem 2.17 P, is S-(f,)-bounding. Thus no real in V¥2 is Cohen or random
over V. To show that b = N; in the final extension, use the facts that all iterands are
almost “w-bounding. |

Theorem 4.10 The constellation determined by add(N') = X, is consistent with the
existence of a A% wellorder of the reals.

Proof Note that if A is amoeba forcing then V2 = | J(W N V) € V. Thus in order to
obtain the desired result, it is sufficient to require that for every every a < wa, Q0 is
the amoeba forcing. O

Theorem 4.11 The constellation determined by cof(N) = N is consistent with the
existence of a Aé wellorder of the reals.

Proof Sacks coding has the Sacks property and so by [2, Lemma 6.3.39] C(Y) pre-
serves T2 (and so it S-preserves-C2). For every a let Q(‘)“ be the trivial poset.
Then by theorem 2.12 P,,, preserves the base of the ideal of measure zero sets, that is
VEe E cof (V) = cof (W)Y = Ry. O

Theorem 4.12 The constellation determined by add(M) = cov(N) = N, and
add(N') = N is consistent with the existence of a A% wellorder of the reals.
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Proof For o even successor let Q¥ be the random real forcing B, for o odd successor
let QY be Cohen forcing C, and for « limit let Q¥ be Laver forcing LT. Then clearly
in VP2 we have that add(M) = cov(N) = X,. To show that there are no amoeba
reals in the final generic extension, and so add(N) = Ry, proceed by induction using
Theorem 2.16 at limit stages. O

Theorem4.13 The constellation determined by cof(N') = X, and non(N') = cof (M)
Ny is consistent with the existence of a A% wellorder of the reals.

Proof Foreach « let Q¥ be the poset U defined on page 339 in [2]. This poset is “w-
bounding, preserves L™ preserves CC°"" and does not have the Sacks property.
By Theorem 2.6, the ground model reals dominate the reals in V¥~2 andso 9 = X;. On
the other hand since all iterands S-preserves- Crandom and § -preserve- CCohen i yPw,
we have non(M) = non(M) = X;. Thus in particular V**2 E cof(M) = non(N) =
N;. To see that cof(N) = X, in VP2 use the fact that U does not have the Sacks
property. |

Theorem 4.14 The constellation determined by cov(N) = b = non(\N) = R, and
cov(M) = N; is consistent with the existence of a A% wellorder of the reals.

Proof For o even let Qg be random real forcing, for a an odd successor let Q, be
the poset S, o+ defined in [2, Section 7.3.C] and for « limit, let QP be Laver forcing.
To see that cov(M) = N; in the final generic extension, note that all iterands are
(F, g)-preserving and so by [2, Theorems 7.2.29 and 7.2.24] P,,, does not add Cohen
reals. O

Theorem 4.15 The constellation determined by the equations non(M) = N, and
non(N') = cov(N') = 0 = N is consistent with the existence of a A% wellorder of the
reals.

Proof For each o < w», let Qg be a P, -name for PTy .. Note that by [2, Theorem
7.3.6] we have that vPTrs E VN“w € M. Therefore in VP2 we have that non(M) =
N;. The poset PTy, is (f, h)-bounding for some 4, and so all iterands are S-(f, h)-
bounding. Then by Theorem 2.17 P,,, is S-(f, #)-bounding, which implies that P,
does not add random reals. Thus cov(N) = N, in the final generic extension. Since
all iterands are “w-bounding, by Theorem 2.6 the ground model reals are a witness to
0 = wy in VF«2. By [2, Theorem 7.3.15] the poset PT;, preserves Crandom gacks
coding preserves Erandom and so by Theorem 2.10 [P, preserves outer measure.
Thus VP« E non(\) = N;. m|
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Theorem 4.16 The constellation determined by the equalities cov(N) = b = N, and
non(N') = W is consistent with the existence of a A% wellorder of the reals.

Proof For a even let Q¥ be the random real forcing B and for o odd let Q2 be Laver
forcing LT. Then we immediately get that cov(\N) = b = X, in VF«2. By [2, Theorem
7.3.39] LT preserves Erandom’ by [2, Theorem 6.3.12] B preserves Erandom and
Sacks coding preserves C1MAOM Thep by Theorem 2.10 VE« = 2% AN ¢ N and
so VP« E non(N) = N;. O

Theorem 4.17 The constellation determined by cov(N') = X, and non(N) = 0 = N
is consistent with the existence of a Aé wellorder of the reals.

Proof For each «, let Q¥ be the random real forcing B. Since B and the Sacks
coding preserve Erandom, Theorem 2.10 implies that V¥« £ non(N) = ®;. By
Lemma 2.6 PP, is “w-bounding and so ® = N; in the final generic extension. O

Theorem 4.18 The constellation determined by add(M) = R, and cov(N) = N is
consistent with the existence of a A; wellorder of the reals.

Proof For « even, let Q7 be the Cohen forcing C and for o odd, let Q2 be the Laver
forcing. Clearly add(M) = min{b, cov(M)} = X, in VP2 | To show that P, does
not add random reals proceed by induction using Theorem 2.15 at limit steps.

Alternative proof: The result can be obtained using finite support iteration of ccc posets,
by slightly modifying the coding stage of the poset forcing a A% definable wellorder
on the reals from [4]. Let (P,, (@5; a < wy, f < wy) be afinite support iteration where
Py is the poset defined in [4, Lemma 1]. Suppose P, has been defined. If « is a limit
and a = wy - o/ + & where £ < w; and o’ > 0, define Q,, as in Case 1 of the original
construction. Otherwise, if « is a successor or o < w; let Q, be the poset from Case
2 of the same paper. Note that in this case Q, adds a dominating real. In either case
A, is defined as in [4]. With this the definition of P,,, is complete. Following the
proof of the original iteration, one can show that P, adds a Al-definable wellorder
of the reals. Note that in VF«2 we have add(M) = R, since cofinally often we add
dominating and Cohen reals. To show that cov(\') remains small, i.e. that random
reals are not added, use the fact that all iterands are o-centered and [2, Theorems
6.5.30, 6.5.29]. We should point out that the coding techniques allow one to obtain the
consistency of the existence of a A% wellorder of the reals with add(M) = N3 and
cov(N) = Ny. O
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Theorem 4.19 The constellation determined by cof(M) = X and non(N) = X, is
consistent with the existence of a A% wellorder of the reals.

Proof For each « let Qg be the poset S, o« defined in [2, Section 7.3.C]. Note
that VS« E VN 2¢ € N. Thus clearly VP = non(N) = X,. Now cof(N) =
max {0, non(M)}. Thus it is sufficient to show that both ® and non(M) remain small
in the final generic extension. However S o« is “w-bounding and preserves [ Cohen,
Then theorems 2.6 and 2.11 imply that @ = non(M) = X; in VFe. a

Theorem 4.20 The constellation determined by non(N) = b = X, and cov(N) =
cov(M) = Ny is consistent with the existence of a A% wellorder of the reals.

Proof For « even let QY be S, .+ and for « odd, let Q0 be the Laver forcing LT.
Since all iterands are S-(g, g*)-bounding, by theorem 2.17 P,,, is S-(g, g")-bounding,
which implies (see [2, Lemma 7.2.15]) that no real in VP2 is Cohen or random over
V. Therefore cov(N) = cov(M) = X, in VF«2 . Recall also that II—SM* F29NVeN
and LT adds a dominating real. a

Theorem 4.21 The constellation determined by non(M) = non(N) = N, and
cov(N) = 0 = Ny is consistent with the existence of a A% wellorder of the reals.

Proof For o even let QY be PT;, and for a odd, let QY be S, . Since II—Png
2NV e M and |Fsg,g* 2NV e N, we have VP E non(M) = non(N) = X,. All

iterands are S-(f, h)-bounding and “w-bounding, which implies that in V2 there are
no random reals over V and the ground model reals form a dominating family. O

Theorem 4.22 The constellation determined by b = X, and non(N') = cov(N) = N;
is consistent with the existence of a A% wellorder of the reals.

Proof Forevery a let Q¥ be the Laver forcing LT. Since LT adds a dominating func-
tion clearly b = 8,. Since LT and Sacks coding S-preserve-C"*"%" by Theorem 2.10
the ground model reals V N 2% are not null in V+2 . Since LT and Sacks coding have
the Laver property, they are (f, g)-bounding which implies that the iteration does not
add random reals. O

Theorem 4.23 The constellation determined by cov(N') = non(N) = N, and 0 = N
is consistent with the existence of a A% wellorder of the reals.
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Proof For « even let Qg be the forcing notion S, .+ defined in [2, Section 7.3.C] and
for o odd let Q2 be the random real forcing B. Since S, o« makes the ground model
reals a null set, V<2 = non(\N) = ®,. Clearly cov(\) is large in the final extension
and since all iterands are “w-bounding the ground model reals remain a witness to
0 =Ny in VFe, O

5 Questions

We would like to conclude with some open questions. It is of interest whether all
of the constellations can in fact be obtained without the existence of a A% wellorder
of the reals. Note that this would follow if one could simultaneously have that all
A% sets enjoy some regularity property that conflicts a A; wellorder. Can we even
guarantee that there are no projective wellorders at all? Another direction is the
question whether an assignment of larger values to the cardinal invariants in the Cich6n
diagram is consistent with the existence of a A% wellorder. What about constellations
in which the invariants have more than two distinct values? Are those consistent with
the existence of a A} wellorder of the reals?
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