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Abstract

We extend the work of [7] by presenting a method for controlling cardinal characteristics
in the presence of a projective wellorder and 2% > N,. This also answers a question of
Harrington [11] by showing that the existence of a Aé wellorder of the reals is consistent
with Martin’s axiom and 2™ = N;.
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1. Introduction

In [7] the present authors established the consistency of the existence of a Hé maxi-
mal almost disjoint family together with a lightface projective wellorder and b = 2™ =
N3. As the argument used there was only suitable for handling countable objects, it left
open the problem of obtaining projective wellorders with 2™ greater than N, while si-
multaneously controlling cardinal characteristics of prominent interest. We solve this
problem in the present paper, using an iteration based on the specialization and branch-
ing of Suslin trees. As an application we obtain the consistency of p = b = Ny < a =
s = 2% = K3 with a lightface Aé wellorder.

A consequence of our work is the consistency of Martin’s Axiom with a lightface A;
wellorder and 2% = N;. This improves a result of [9], where 2% = N, was obtained,
and also answers a question of Harrington from [11], where he obtained the same result
with a boldface A} wellorder.
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2. Martin’s Axiom, Projective Wellorders and Large Continuum

We work over the constructible universe L. Fix a canonical sequence S = (Sq :
1 < @ < ws) of stationary subsets of w, N cof(w;) and a nicely definable almost disjoint
family B = (Bg : & € wy) of subsets of w;. More precisely S is 2i-definable over
L, with parameter w, (the S,’s are obtained from a {-sequence as in [7]) and Bis
X-definable over L, with parameter w;. For each & < w3, let W, be the L-least subset
of wy which codes @. Say that a transitive ZF~ model M is suitable if wéw exists and
wéw = w%M. From this it follows, of course, that cuf’( = wlLM.

We will define a finite support iteration (P,,Qg : @ < w3,8 < ws3) such that in
LP“’S, MA holds, 2“ = w3, and there is a A;—deﬁnable wellorder of the reals. The
construction can be thought of as a preliminary stage followed by a coding stage. In the
preliminary stage we provide the necessary apparatus, in order to force a A; definition
of our wellorder of the reals.

0

Preliminary Stage: For each 0 < @ < w3z and n € w, let K}, ..,

be the poset for
adding a Suslin tree 7.4+, With countable conditions, see [12, Theorem 15.23]. Let
Koo = [Tnew K .44, With full support. Then Ko, is countably closed and has size 2.
In particular, it does not collapse cardinals provided that CH holds in the ground model.

In what follows we shall identify the 7,’s with subsets of w; using the L-least bijec-
tion between w<*! and w;. And vice versa, the phrase “A C w; is an w;-tree” means

throughout the paper that the preimage of A under the L-least bijection between w<*! of

L

L and w is an w-tree. (We can consider such a preimage only in models of w; = wys

which is the case in suitable models.)

In LXoo code T,.q4n Via a stationary kill of S ¢, .(w-a+n)+y fOr ¥ € T).q4n. More precisely,

1

forevery 1 < a < w3 let Kion = [1ew, Kany

with full support where for y € T,.q+n,
K}m’y adds a closed unbounded subset Cy,,.(w-a+n)+y Of w2 disjoint from S, .(w-a+n)+y and

for Y ¢ Ty a+ns Kl

a,n,y

is the trivial poset. Then K, = [],c., Ki.o.n With full support is
countably closed, w,-distributive, and ws-c.c. provided that GCH holds in the ground
model 2.

Next, we shall introduce some auxiliary notation. For a set X of ordinals we denote
by 0(X), I(X), and II(X) the sets {n : 3n € X}, {n :3n+1 € X}and {n : 3n+2 € X},
respectively. Let Even(X) be the set of even ordinals in X and Odd(X) be the set of odd
ordinals in X.

2A more general fact will be proven later after we define the final poset
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In the following we treat O as a limit ordinal. Let D,,.,+, be a subset of w; coding
Weo-atns Wara, and the sequence (Cy,,.(w-a+n)+y : ¥ € Twarn). More precisely, 0(Dy,.q+1) =
Woasns I(Dw.ain) = Wea» and I1(Dy.q1,) equals

X({<7’ 77> Y€ Towa+ns ne Cwl-(a)-a+n)+y}),

where y : w| X wy — w3 is some nicely definable bijection. Let E,,.q+, be the club in wy
of intersections with wy of elementary submodels of L(y.q+n)+w,[Dw-a+n] Which contain
w1 U{D.q+n} as a subset. (These elementary submodels form an w;-chain.) Now choose
Zy-a+n to be a subset of wy such that Even(Z,.q+n) = Dy.gin, and if B < wo is wg"‘ for
some suitable model M such that Z,.,+, N B € M, then B8 belongs to E,.q+n N Eyq.
(This is easily done by placing in Z,.,+, a code for a bijection ¢ : §; — w; on the
interval (8o, B0 + w1 ) for each adjacent pair By < 81 from E.o+, N E.e.) Using the same
argument as in [7] we have:

(#)an: If B < wy and M is any suitable model such that w; ¢ M, wé\’( =B, and Z,.qn N
B Zwa N By Toarn € M, then M E Y(w1, w2, Zoain N B Toratns Zawa N B), where
W(wi,w,Z,T,7’) is the formula

“O(Even(Z)) and I(Even(Z)) = I(Even(Z’)) are the L-least codes for ordinals w -

M
3

{{y,m) : y € T,n € C,}, where T is an w-tree and C, is a closed unbounded

& +nand w - & for some & € w;" and n € w, respectively, and Y '[II(Even(2))] =

subset of wy disjoint from S ,,.(w-G+n)+y for all y € T7.

In LKoo Ko Jet K(zw add a subset X,.q+, Of w; which almost disjointly codes Z,.q+-
More precisely, let Kin be the poset of all pairs (s, s*) € [w1]"" X [Zy.qn]™“', Where
a pair (z,1*) extends (s, s*) if and only if ¢ end-extends s and r\s N By = () for every
Ees' LetKoy = [Nhew K(zw with full support. Then K, is countably closed and
wo-c.c. provided that CH holds in the ground model.

As a result of this manipulation we get the following:

(#%)an: If B < wy and M is any suitable model such that w; € M, wé” = 3, and
Xow-a+n> Xw-a> Tw-arn € M, then M E (w1, w2, Xp-a4n> Twratns Xwa), Where plwr, w2, X, T, X’)
is the following formula:

“Using the sequence B, the sets X, X’ almost disjointly code subsets Z,Z" of w;
such that Y(w;, wy,Z,T,Z’) holds”.

Fix ¢ as above and consider the following poset:
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Definition 2.1. Let X, X', T C wy, be such that ¢(w;, wz, X, T, X’) holds in any suitable
model M containing X, X', T as elements and such that wf = w{w. Denote by L(X, T, X")
the poset of all functions r : |r| — 2, where the domain || of r is a countable limit ordinal
such that:

1. ify <|rltheny € X iff r(3y) =1,

2. ify<|rltheny e X iff rGy+1) =1,

3. if y < |r|, M is a suitable model containing » | 7y as an element, then M F
d(wr, w2, XNy, TNy, X Ny).

The extension relation is end-extension.

Set Kg’m = L Xw-a+m> Twa+m> Xwa) for every @ € w3\{0}, m € w, and set Kgm
; )

@, m

to be the trivial poset for every m € w. Let Kz, = [l,ec0 K, With full support.

If @ € w3\{0}, m € w, then K3 adds a function Y .q4m : w3 — 2 such that for

a,m

every suitable model M such that Y, 4+, [ 7 and Ty.q+m N 7 are in M, we have M F
A1, w2, Xyarm N0, Twrarm N1 Xepa N 1).

Let K, = Ko * Ky o %K o ¥ K3 4. We shall consider only p = (p;)i<3 € K, with the
property that K,, | i forces (i.e., the maximal condition in K, | i forces) p; € Ki,w, where
Ko [ iis of course the iteration of K;,’s for j < i. This entails no loss of generality
since for every p € K, we can find an equivalent condition p’ with the property above.
In its turn, each p; is a sequence {p;,, : m € w), where p; ,, is forced by K, [ i to be an

element of Kgm And finally, py ,, can be written as a sequence {p1 ¢ : { € w1), where

1
am(”

one @ € w3, we will write p; o, piam and p1 g m instead of p;, p;, and py ..

Pimy 1s forced by Ko, to be an element of K Whenever we consider more than

For every i < 3 the poset K, [ i is countably closed, and hence the set D, of such
p € K, that p; is (the canonical K, [ i-name for) an element of L,,, for all i € {0, 2,3} is
dense in K,,.

Let I € w3 and p € [],e; Ko. Denote by supp,,(p) and supp,, (p) the sets {(i, @) :
i€{0,2,3},a € I, pi o is not the maximal condition in K; .} and {{1,@,m,{) : @ € I,m €
w,{ € w1, P1,a,m¢ 18 not the maximal condition in Ké m (}, respectively. We say that
P € [laer Kq is a condition with mixed support if |supp,,(p)| = w and [supp,, (p)| = wi.
Let Py be the suborder of [],.,, K, consisting of all conditions with mixed support and
D =Py N [To<wy Do It follows from the above that D is a dense subset of Py.

The following proposition resembles [7, Lemma 1].

Proposition 2.2. P is w-distributive.

Proof. Given a condition pgy € Py and a collection {O,},¢, of open dense subsets of P,

choose the least countable elementary submodel N of some large Ly (6 regular) such
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that {po} U {Po} U {Op}new € N. Build a subfilter g of Py N N, below pg, which hits all
dense subsets of Py which belong to N. Let g, be a K,-generic filter over N such that
8 C [aews 8a- Write g, in the form go, * g1.¢ * 82,0 * &3.0- Where g;, is a K; ,-generic
over N[*<igjal-

Now for every @ € N N w3 the filter g9, * 1.0 * 2.0 has a greatest lower bound
Do.a * Pla * D2o because the forcing Ko, * K4 * Ky o is w-closed. The condition
{(Po.a> P1.a> P2y 18 Obviously (N, Ko, * Kj o * K 4)-generic.

On each component @ € N N w3 and m € w define p3 4, = J g3,0[,m.3 It suffices
3

to verify that p3 4, is a condition in K, ,,,

for this will give us a condition in Py which
meets each of the O,,’s.
Let G := Go0,0 * Goam * G1,0,0 * Glam * G2,0,0 * G2om bE @ Kgo * KO, * K(IXO *

a,m

K}l’m * K(ZLO s Kim—generic filter over L containing

<p0,a,0, Po,a,ms> P1,a,05 Pla,ms P2,2,05 p2,a,m>'

. . 1 1 2 2 . .o .
Since the latter is a (N, Kg,o * Kg,m * Koo *_Ka,m * K o * Ko )~ generic condition,
the isomorphism 7 of the transitive collapse N of N onto AV extends to an elementary
embedding from

No := N180.a,0 * 80.a.m * 81.a,0 * &l.a,m * 82,4.0 * 82.a,m]

into Ly[G]. Here g5, = ﬂ_l[g,-,a,j], where i € 2 and j € {0,m}, and & = ﬂ_l(f)
for all ¢ € N N Ord. By the genericity of G we know that, letting X,., = (U G240
and Xy.q+m = U G2.qem, the property (sx),,, holds. By elementarity, N is a suitable
model and Ny F ¢(w1, W2, Xergrms lraams Xora)s Where Xoa = 7 [U 820,01 = U 82,40,
Xw-a+m = ﬂ_l[U 82.aml = U&2am> and lygim = ﬂ_l[U go.aml = UZ&oam- By the
construction of Py and elementarity, No = N[xy.5, Xo-a+m] and hence

Nxwa> Xw-a+ml F (w1, W2, Xea+m> Lo-arm> Xw-a)-

Let £ be such that N = L¢ and let M be any suitable model containing p3 o, and
such that wf’( = w1 N N(= domps 4,,). We have to show that

ME (w1, W2, Xeyarms Lo-a+ms Xw-a)-

Set 7 = M N Ord and consider the suitable model My € M, My = Ly[Xe.a5 Xw-a4+m]-
Three cases are possible.

3Formally this is UHrs.0m 2 130 € 830 and (Fig)ics € Dy}
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Case a). n > £. Since N was chosen to be the least countable elementary submodel
of Ly containing the initial condition, the poset and the sequence of dense sets, it follows
that £ (and therefore also a)/lv ) is collapsed to w in Lg;o, and hence this case cannot

happen.
Case b). n = &. In this case My F ¢(w1, W2, Xw.grm» Lw-arms Xw-a). (Indeed, My =
Ly[Xwa> Xw-a+m] = N Xwa» Xwasm] = Np.) Since ¢ is a £;-formula, a)iwz = w{w and

M
w2 = WM, we have M E (w1, W2, Xepg+ms L Xerd)-

2 2

Case c¢). n < &. In this case M, is an element of N Xwas Xoa+ml. Since Lg[G]
satisfies (#*), ,, by elementarity so does the model Nxwar Xo-aem] With Xop-as Xeoarms

Twa> Towarm replaced by Xu.a, Xp-a+m> twd» twa+rm, respectively. In particular, My F

(W1, W2, Xe-Grms Lo-g+m» Xoa). Since ¢ is a Xq-formula, a)i“z = a)f’(, wéwz = wé\/‘, we
have M E ¢(w1, w2, Xe-g+m> Lw-a+ms Xw-a), Which finishes our proof. O

We say that ¢ <* pif g < p, supp,(p) = supp,(q), and p;, = q;, for all {,a) €
supp,,(p).

The proof of the following statement resembles that of [14, Proposition 3.7] and its
idea seems to be often used in the context of mixed support iterations.

Proposition 2.3. If vy ¢ Ty.qy+n for some ag < w3 and n € w, then S, .(w-ag+n)+y IS
stationary in L. In particular, Py does not collapse w.

Proof. Let p € D be such that p I y ¢ T.q0+n for some @p < w3 and n € w, and
C be a Pp-name for a club. We shall construct a condition ¢ < p which forces C N
Swl-(w-flo+n)+7 # 0.

Let us construct an increasing chain (M; : i < w,) of elementary submodels of Ly,
where 6 is big enough, such that

(i) M; > [M;]% for all i € wy;
(i) M; = Uj<,~ M for all i € w; of cofinality wy; and
(i) wy U {p,Py,C,a,...} C M.

Now a standard Fodor argument yields i € w; such thati = M; N wy € Sy, (wag+n)+y
and i ¢ Spforany B € M; \ {w; - (w-aop+n) +7y}. Letalso (O : £ < wy) € M
be the sequence in which all <*-dense subsets of Py which are elements of M; appear
cofinally often. Construct by induction on & a <*-decreasing sequence {¢* : £ < w;) €
(D N M;)* such that ¢° = p and ¢¢ € O¢ for all ¢ < wy. Let g € []4<q, Ko be such
that supp(q) = Ug<w, SUPP(GE), Gra = Pio for all (I, @) € supp,(p), and go.o I g1ams =
Us<en @ o (Ui} forall (1, @,m, {) € supp,,, (q).
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Claim 2.4. g € P,

Proof. Since w; € M; and qf € M; for all ¢ < w;, we conclude that supp(qf ) C M; and
qf € M; for all v € supp(q®). Let us fix any (1, a,m, ) € supp,,, (¢) and find & such
that (1, @, m, {) € supp,, (¢%). For every j < i the set O of those conditions r € Py such
that ro, IFK,, maxryeme > jis <*-dense and belongs to M;, consequently O = O
for some & > &j, which implies that ¢p, = qg’a IFk,, max qia’m’ ;> Jj- Therefore
g0, FK,, i > max qia,m’ ;> J> consequently qo o IFK,, i = sup Us<w, qslcam Iz It follows
from the above that w; - (w-a+m)+{ € M; and w; - (wW-a+m)+{ # w1 - (W-ag+n)+7y,
and the choice of i was made to ensure i ¢ Sgforallf € §; \ {w; - (w-ag +n) +y}. Thus
qo,« forces that g1 o m ¢ = U§<w1 q‘ia,m’ ; U {i} is a closed bounded subset of w; disjoint
from S o, .(w-a+m)+¢ Which completes our proof. O

Claim 2.5. For every open dense subset E € M; of Py and r < q there exists r; € ENM;
such that r and r\ are compatible. In other words, q is an {M;, Py)-generic condition.

Proof. Fix E,r as above and set K = supp,,(r) N M;. Without loss of generality, r € ID.
Then K € M; and ri, € M; for all <k,a) € K because M; O [M;]“. Let O be the
set of u € Py such that either u is <*-incompatible with p, or u <* p and there exists
D N E > z < u with the following properties:

(1) K c supp(z), and for all (k, @) € K we have rrq < Zka}

(2) 20,0 IF 21,0m¢ = U1,0,m¢ Tor all ¢k, ) € K and { € wy.

It is easy to see that O € M;. We claim that O is a <*-dense subset of Py. So let us
fix s € Py. If s is <* incompatible with p, then s € O. Otherwise there exists t <* s, p.
Let w € Pg be such that supp,,(w) = K, w [ K = r [ K, supp,, (w) = supp,, (1), and
w [ supp,, (W) =t [ supp,, (#). Since t <* p and r < g < p, w is a condition in D and
w < t. Extend w to a condition z € £ N D and let u# be such that supp,,(«) = supp,(p),
u | supp,(p) = p [ supp,,(p), supp,,, (u) = supp,,, (z), and u | supp,, (z) = z | supp,,, ().
Since z € D we conclude that u € Py and hence u <* p. By the definition we also have
that z < u, and z < w together with the definition of w imply that z satisfies (1). Thus z
witnesses that u € O. Moreover, z < w < t implies u <* #, and therefore u <* s. This
completes the proof that O is <*-dense.

Let £ < w be such that O = Ogz. Thenr < g <* g¢ <* p and there exists z
witnessing that ¢¢ € 0, i.e., DNE 3 z < ¢* and z satisfies (1), (2) with ¢¢ instead of u.
Moreover, since all relevant objects are elements of M;, we can additionally assume that
z € M;. Therefore supp(z) € M;, which together with (1), (2) implies that supp,(z) N
supp,,(r) = K and supp,, (z) = suppwl(qf ) C supp,, (r). Define y as follows: supp,,(y) =
supp,,(r) U supp,,(2), supp,,, (¥) = supp,,, (r), Yka = Zka for (k, @) € supp,,(2), Yo = ke
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for (k, @) € supp,(r) \ supp,(z) = supp,(r) \ M;, and y [ supp,, (v) = r [ supp,,, (r).
A direct verification shows that y € Py and y < r, z, which completes the proof of the
claim. O

Finally, we shall show that g forces cn S w1-(w-ap+n)+y # 0. For this it suffices to
prove that g I- i € C. Suppose to the contrary that r I C N (j, i) = @ for some r < p and
j < i. Let E be the set of those conditions z € Py such that there exists § > j with the
property z I- 8 € C. E is an open dense subset of Py and E € M;. Therefore there exists
z€ ENM;andy € PPy such that y < z,r. Since z, j,C,Py € M; and there exists S > j
such that z I B € C, there exists such a 8 € M;, which means that 8 € (j, ). Therefore
y I B € C for some S € (j, i), which together with y < r and our choice of r leads to a
contradiction. O

A simple A-system argument gives the following
Proposition 2.6. Py has the ws-chain condition.

Combining Propositions 2.2, 2.3, and 2.6 we conclude that [Py preserves cardinals.

Coding stage. We define a finite support iteration (P, Qﬁ o £ ws,fB < ws)ofcce.c.
posets such that in L, Martin’s axiom holds and there is a A; definable wellorder of
the reals. Let Py be the poset defined above and let F : w3\{0} — L, be a bookkeeping
function such that for all a € L,,,, the preimage F ~1(a) is cofinal in both Succ(ws3) and
Lim(w3). At limit stages of our iteration we will introduce the wellorder of the reals
and at successor stages of the iteration we will take care of all instances of Martin’s
axiom. Fix a nicely definable sequence of almost disjoint subsets of w, C = (Cepp -
& € wi,n € w-3). We will assume that all names for reals are nice. Recall that an
H-name f for a real is called nice if f = Uieo((4, jfu),p) : p € Ai(f)} where for all
i € w, Ai(f) is a maximal antichain in H, j,, € w and for all p € A(f), p IF f() = j,.
If @ < B < w3, we can assume that all P,-names precede in the canonical wellorder <,
of L all Pg-names for reals which are not IP,-names. For x a real in L[G,], where G,
is IP,-generic, let y, be the least y such that x has a ’,-name and let o be the <;-least
[P, .-name for x. For x, y reals in L[G,] define x <, y if and only if (y, < yy) or (yx =,
and 0§ <p o-;’). Then clearly <, is an initial segment of <g, for @ < B. Now if G is
a IP,,-generic filter, then <C= Ua<w3{<g : @ < w3} where <, is a P,-name for <,, is
the desired wellorder of the reals. For any pair of reals x,y in L[G] such that x <, y, let
xxy={2n:nexjuU{2n+1:ney}andlet A(x*y) ={2n:n e xxy}U{2n+1 :n ¢ x=y}.
We proceed with the inductive definition of PP,,,. Suppose P, has been defined.



If @« = w-B+nis asuccessor: Suppose that F(a) = o. If o is a P,-name for a c.c.c.
poset which involves only conditions p € P, such that p(0)(n) is the trivial condition in
K, forall n > a, let Q(, = 0. Otherwise, let Q(, be a P,-name for the trivial poset.

If @ is a limit: If @ = 0 let Q, be a P,-name for the trivial poset. If @ € Lim(w3)\{0},
@ = w - B, then let Q, be the two stage iteration Q¥ * Q}Y defined as follows. First note
that:

Claim 2.7. {T.q+n : n € W} is a sequence of Suslin trees in LFe,

Proof. Let Py <, and Pg 5, be the suborders of [],., K, and [],s, K, respectively, of
all conditions with mixed supports. Let P, be the factor poset P, /Py.

By definition of the finite support iteration, not only B, € LFo, but in fact P, € LFo<e,
Then identifying P, with its Po-name we have

]Pa = IP)O * Ipa = (IP)O,<(I X PO,Z(Y) * Pa = (PO,<(Z * Pa) X PO,ZQ-

Thus in particular, for every n € w, Ty.q+n is generic over LFo<*Fe and so T4+, remains
y
a Suslin tree in L. O

Recall that if 7 is an & -tree, then the poset consisting of all finite partial functions p
from T to w such that if p(s) = p(¢) then s and ¢ are comparable with extension relation
superset, adds a specializing function for 7. We will be referring to this poset as a forcing
notion for specializing T. By a result of Baumgartner, if 7" has no w-branch then this
poset has the countable chain condition (see [2, Theorem 8.2]).

If F(a) is not a pair {0y, o'} of names for some reals ., y in L« which involve only
conditions p € P, such that p(0)(n7) is the trivial condition in K, for all 7 > «, let Q, be
a P,-name for the finite support iteration (P>?, Q%% : n € w), where Q% is a P%*-name
for specializing T,.q+n for all n € w. Otherwise, let x = (0'§)Gf', y = (0';’)G“. In LF«
define Q0 to be the finite support iteration (P, Q0% : n e w) where if n € A(x * y)
then Q% is a P%*-name for specializing T,.q.4n; otherwise let Q2 be a P“-name for
Ty.a+n- For every n € w let A,,.4+n be the generic subset of w; added by Qg’”.

Then let Q}I almost disjoint code the sequences (Ay.q+n : 1 € W), Ypatn : 1 € W)
and (Ty.q+n : 1 € w). More precisely, in LP QG et Q}l be the poset of all pairs (s, s*)
where s € [w]*” and s* € [(u,n) : n € w, i € Yool Uw,n) : 7 € [w,w -
24 € Apain] ™ UKu,n) :n € fw-2,w-3),u € Tyam]™®. The extension relation is
(t,1*) < (s,s") if and only if ¢ end extends s and (\s) N C,,;; = O for all (u,n) € s*. Let
R, be the generic real added by Q}l and let Q, = Qg * Q}I

With this the inductive construction of IP,,, is complete. Clearly in Lo, MA holds
and ¢ = w3. We will see that the wellorder <©, where G is P,,-generic, has a A}-

definition.
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Lemma 2.8. x <y if and only if there is a real R such that for every countable suitable
model M such that R € M, there is a limit ordinal @ € [w - 2, wé\’() such that for every
n € w the set {y € wy : S, .(a+n)+y IS nOt stationary} is an wy-tree, which is specialized
for n € A(x *y) and has a branch for n ¢ A(x = y).

Proof. Let G be P,,-generic and let x,y be reals in L[G]. Suppose x < y. Then there
is 0 < @ < w3, a limit ordinal, « = w - B, such that F(a) = {0'3,0'3} and o¥¢, (T;’
involve only conditions p € P, such that p(0)() is the trivial condition in K, for all
n > a. Let R, be the real added by Q! and let M be a suitable model containing R,,.
Then the sequences (Yy,.q4n NN : 1 € W), Tipqen NN i N € W), (Apain NN : N € W)
also belong to M. Fix n. Since X,.q+n N1, Xu.o N 71 are in M, we have that M F
oW1, W2, Xparn NNy Tepgin N 1, X N'1). This means that M models the following
statement:

Using the sequence ﬁ, the sets X,,.q+n N 17, Xu.o N 1 almost disjointly code subsets Z,, Z
of wy, respectively, such that O(Even(Z,)) and I(Even(Z,)) = I(Even(Z)) are the L-least
codes for ordinals &, +#» and &,, for some limit @, < w3, and /\(‘1 [{I(Even(Z))] = {{y,{) :
Y € Topqin N0, L € Cy}, Where Tyqin N1 is an wy-tree and Cy is a closed unbounded
subset of w; disjoint from S, .(d,+n)+y for all y € Ty,.q4n N y.

Since Z does not depend on n, we conclude that all @,’s coincide and we shall denote
them simply by @. Let us also note that A+, N1 € M is a specializing function for
(resp. a branch through) 7,4+, N 17 provided so is A,.q+, With respect to T',.q4p.

Thus in M there is a limit ordinal @ € [w - 2, w3) such that for every n € w the set
Twan NN ={y € w1 : Sy, (a+n)+y 1S NOL stationary} is a w;-tree, which is specialized for
n € A(x *y) and has a branch for n ¢ A(x * y).

To see the other implication, suppose x,y are reals in L[G] and there is a real R
such as in the formulation. By Lowenheim-Skolem theorem, the same property holds
for M = L,,. This means that in L,, (and hence also in L) there is a limit ordinal
@ € [w - 2,w;3) such that for every n € w the set [, = {y € wi : S, .(G+n)+y 18 NOt
stationary} is an wi-tree, which is specialized for n € A(x * y) and has a branch for
n ¢ A(x *y). By the definition of Py and Proposition 2.3 we have that I, = T, and
& = w - p for some limit ordinal 3. Thus for some n € w there exists a branch through
T, j+n> Which means that F (B) is a pair {0'5, of} for some reals a < b in L'?, Qg’ﬁ isa
Pg’ﬁ -name for specializing T, 3., for all n € A(a = b), and @2”* isa Pg’ﬁ -name for 7,5,

otherwise. It follows from the above that A(x * y) = A(a * b), consequently x = a and
y = b, and hence x < y. O

Thus we have obtained the following.
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Theorem 2.9. The existence of a Aé—deﬁnable wellorder of the reals is consistent with
Martin’s axiom and ¢ = w3.

3. Cardinal characteristics, projective wellorders and large continuum

We will conclude by pointing out that the model constructed above can be easily
modified to obtain the consistency of ¢ = w3, the existence of a A%—deﬁnable wellorder
of the reals and certain inequalities between some of the cardinal characteristics of the
real line. An excellent exposition of the subject of cardinal characteristics of the real line
can be found in [4].

Let « be a regular uncountable cardinal. In [5, Theorem 3.1], Brendle shows that if
V is a model of ¢ = «, 2¢ = k*, H = (f, : @ < k) is an unbounded, <*-wellordered se-
quence of strictly increasing functions in “w and A is a maximal almost disjoint family,
then in V there is a ccc poset P(A, H) of size k which preserves the unboundedness of
9H and destroys the maximality of A. A similar result concerning the bounding and the
splitting numbers, was obtained by Fischer and Steprans. In [8, Lemma 6.2] they show
that if V is a model of VA < (2% < «), H is an unbounded <*-directed family in “w and
cov(M) = «, then there is a ccc poset P(H) of size « which preserves the unboundedness
of H and adds a real not split by V N [w]®. Thus if V is a model of YA < x(2* < k), H is
an unbounded <*-directed family in “w, then there is a ccc poset P(H) which preserves
the unboundedness of H and adds a real not split by VN [w]® (just take C, = P(H) where
Cy is the poset for adding k many Cohen reals).

Also, recall that if # is an unbounded directed family of reals such that each count-
able subfamily is dominated by an element of the family, then in order to preserve the
unboundedness of H along a finite support iteration of ccc posets, it is sufficient to pre-
serve its unboundedness at each successor stage of the iteration (see [13]). Note also
that the unboundedness of unbounded directed families of reals is preserved by posets
of size smaller than the size of the family (see [1]).

Corollary 3.1. There is a generic extension of the constructible universe L in which
there is a Aé-deﬁnable wellorder of the reals and

p:b:82<a:5=c=?’¢3.

Proof. We will modify the coding stage of the construction from Section 2, which pro-
duces Theorem 2.9, by changing the successor stages of this construction. Instead of
going over all possible names for ccc posets, we will consider only specific ones associ-
ated to the chosen cardinal characteristics.
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In the following for j € {0, 1,2} let Succ(ws3) be the set of all successor ordinals «
such that wy < @ < w3 and @ = j(mod3). Let F : w3\{0} — L, be a bookkeeping
function such that for all a € L,,, the set F ~!(a) is cofinal in each of the following:
Succ(ws), Lim(w3) and Succ j(w3) for every j € {0, 1,2}. We will define a finite support
iteration (P, @B : @ £ w3, B < ws) such that in ¥ there will be a A;—deﬁnable well
order of the reals and p = b = N, < a = s = ¢ = N3. At successor stages @ < w;, we will
add a <*-scale H of length w,, which will be our witness of b < N, in the final generic
extension LF«s. For this we will use the Hechler poset D for adding a dominating real
(see [12]). Recall that D consists of all pairs (s, E) € w<“ X [w®]<“. A condition (¢, H)
extends (s, E) if s C ¢, E C H and if i € dom(?)\dom(s) then #(i) > f(i) forall f € E. If
G is D-generic, then the function & = [ J{s : AE(s, E) € G}, referred to as the generic real
added by D, dominates all ground model reals. At successor stages a > w,, we will take
care of the values of the remaining cardinal characteristics in which we are interested.

Let Py be the poset Py defined in section 2.

Case 1. Let 0 < a < w,. Suppose P, has been defined and

]pa = (EDO,<(2 * ]1:)11) X EDO,ZQ

wher_e }f”o,@ = Py <q» PO,ZQ = Py o (here Py <, and Py >, are the posets from section 2)
and P, is the factor poset P, /Py. Since Posa = PO,ZQ is w-distributive, we have

1Fe N [w]“ = L Po<a*Po)XPoza A [w]” = [Fo<a*Fa A [w]“.

If « 1s a successor, in LPo<arPa Jet Q. = D and let &, be the generic real added by Q,.
Let @a be a Po,m * f"a—name for Q,. Since ]f"o,m * If"a is a complete suborder of P, we
can assume that @a is in fact a P,-name. Also note that &, dominates the reals of LPe.
If « 1s a limit, define Qa as in the limit case of the definition of IP,,, from Section 2.

With this the definition of sz is complete. In LFo Jet H = (h, : @ € Succ(wy)).
Then H is a <*-scale. Observe that by the definition of ITDM,

H C [FocrPor oy,

Case 2. Let wy < a < w3. Suppose P, has been defined, P, = (Po,m * ]1:%) X PO,ZQ
and # is unbounded in LPe. In particular, by the w-distributivity of Po,za we have that
the reals of LF coincide with the reals of LPo<a*Fa, i

Case 2.1. Suppose a € Succi(ws). Note that LPOW_*P“ E VA< 802 < R)). By the
result of Fischer-Steprans mentioned earlier, in LFo<a*Fa there is a ccc poset Q, ‘which
preserves the unboundedness of H and adds a real not split by the reals of [Fo<arPa et
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Q, be a Py .o * P,-name for Q,. Since Py ., * P, is a complete suborder of B,, we can
assume that @a is a P,-name. We have that

]poz * @a = (fP)O,<a * Iﬁ)a * @a) X l—P>O,2(1-

Since H is unbounded in LFo<*Fa*Qa and Pg.>o does not add any new reals, the family
H is unbounded in LP« *@a Clearly, the real added by Q, which is not split by the reals
of LFo<Po , remains unsplit by LFen [w]®.

Case 2.2. Suppose @ € Succy(ws) and F(a) = o is a P,-name for a maximal almost
disjoint family (A, which involves only conditions p € P, such that p(0)(n) is the trivial
condition in K;, for all n > @. Then by Brendle’s result mentioned earlier, in LPo<arPa
there is a ccc poset Q, which preserves the unboundedness of H and adds a real which
has finite intersection with every element of A. Let Qa be a IP’O <a ¥ IP -name for Q,.
Since Po <q * IP’ is a complete suborder of P,, we can assume that Qa is a P,-name.
Also

]INDO/ * @a = (fP)O,<a * Iﬁ)a * @a) X EDO,Z(I-

Thus H remains‘ unbounded in L]pf'*@a, as Po,za is w-distributive, and clearly (A is not
maximal in LFe*Q,

If F(a) is not of the above form, let Qa be the trivial poset.

Case 2.3. Suppose a € Succo(ws) and F(a) = o is a P,-name for a o-centered
poset of size < N; which involves only conditions p € P, such that p(0)() is the trivial
condition in K, for all > a, let @a = 0. If F(@) is not of the above form, let @a be a
P,-name for the trivial poset.

Case 2.4. Suppose « is a limit. Then define @a just as Q, in the limit case of the
definition of P, from section 2.

With this the definition of If”ws is complete. Clearly in LFos there is a Aé—deﬁnable
well order of the reals and ¢ = N3. Since alpng the iteration we have forced with all
o-centered posets of size < N, we have LFos E MA_,,(o-centered). However by
Bell’s theorem m(o-centered) = p, where m(o-centered) is the least cardinal « for which
MA,(o-centered) fails (see [3] or [4, Theorem 7.12]). Therefore 1Foy p = N,. Since
p < b we have also that [P N> < b.

The posets used to produce the Aé—deﬁnable wellorder of the reals are of size N1 and
so each of them preserve the unboundedness of the family /. Thus at every successor
stage if the iteration (P,, @’3 D@ < w3, B < ws) the family H is preserved unbounded and
so by the preservation theorem mentioned earlier [P (H is unbounded). Therefore
P EXy <b<|H =K,

On the other hand along the iteration cofinally often we have added reals not split

by the ground model reals, which implies that [For E 5 = N3. It remains to observe
13



that since F~'(a) is cofinal in Succs(w3) for all a € L, every max~imal almost disjoint
family of size < N5 has been destroyed along the iteration and so LF £ a = N3. O

The authors expect that similar methods can be used to establish the results of the
paper for 2™ = N, where n € w. The following question remains of interest.

Question. Ts there a generic extension of the constructible universe L in which 2™ = ,
Martin’s axiom holds and there is a projective wellorder of the reals, where « is the least
L-cardinal of uncountable L-cofinality such that L, satisfies ¢ for some sentence ¢?
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