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Abstract. Developing a new forcing notion for adjoining self-coding
co�nitary permutations, we show that consistently there is a Π1

2-de�nable
maximal co�nitary group of cardinality µ, where ℵ1 < µ < c. Here Π1

2

is optimal and so the result appears a natural counterpart to the co-
analytic Cohen indestructible maximal co�nitary group from [14], as
well as the Borel maximal co�niatry of Horowitz and Shelah from [17].
Our theorem has its maximal almost disjoint families analogue, which
extends a long line of results regarding the de�nability properties of mad
families in models of large continuum.

1. Introduction

We will be interested in subgroups of S∞, the group of all permutations

of the natural numbers which have the additional property that all of their

non-identity elements have only �nitely many �xed points. Such groups are

referred to as co�nitary groups, while permutations which have only �nitely

many �xed points are referred to as co�nitary permutations. A co�nitary

group which is not properly contained in another co�nitary group, is called

a maximal co�nitary group, abbreviated MCG. The existence of maximal

co�nitary groups follows from the axiom of choice, which leaves many ques-

tions open regarding their possible cardinalities and their descriptive set-

theoretic de�nability.

The study of the the spectrum of maximal co�nitary groups, i.e. of the

set of di�erent sizes of MCG's,

spec(MCG) := {|G| : G is a maximal co�nitary group}

was of interest since the early development of the subject. Adeleke [1] proved

that every maximal co�nitary groups is uncountable, Neumann showed that
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there is always a maximal co�nitary group of size c, while Zhang [23] showed

whenever ω < κ ≤ c, consistently there is a maximal co�nitary group of size

κ. A systematic study of spec(MCG) is found in [5], a study which was later

generalized to analyze also the spectrum of the κ-maximal co�nitary groups

(see [7]), where κ is an arbitrary regular uncountable cardinal. In [15] it was

shown that the minimum of spec(MCG), denoted ag, can be consistently of

countable co�nality.

De�nition 1.1. We refer to maximal co�nitary groups of cardinality µ,

as witnesses to µ ∈ spec(MCG) and to values µ ∈ spec(MCG) such that

ℵ1 < µ < c as intermediate cardinalities (or values).

Note that any two distinct elements of a co�nitary group are eventually dif-

ferent reals and so co�nitary groups can be viewed as particular instances of

almost disjoint families. Exactly this similarity was one of the major driving

forces in the early studies of the de�nability properties of maximal co�ni-

tary groups. While there are no analytic maximal almost disjoint families, a

well-known result of A. R. D. Mathias, see [20], in the constructible universe

L there is a co-analytic maximal almost disjoint family (see [21]). Regard-

ing the de�nability properties of maximal co�nitary groups, Gao and Zhang

(see [16]) constructed in L a maximal co�nitary group with a co-analytic

set of generators, a result which was later improved by Kastermans [19],

who showed that in L there is a co-analytic maximal co�nitary group. The

existence of analytic maximal co�nitary groups was one of the most inter-

esting open questions in the area, a question which was answered in 2016

by Horowitz and Shelah [17], who showed that there is a Borel maximal

co�nitary group.1 Further studies of the de�nability properties of maximal

almost disjoint families can be found in [3, 10, 13, 22]. Note that in all of

those instances, the maximal almost disjoint family of interest is always of

cardinality c (except in [22]).

The situation regarding maximal co�nitary groups is similar. Even though,

there is a large volume of literature concerning the de�nability properties of

witnesses to either ℵ1 or c in spec(MCG), there is very little known about

the de�nability properties of witnesses of intermediate size. The present pa-

per is motivated by the question: What can we say about the de�nability

properties of maximal co�nitary groups G such that ℵ1 < |G| < c? Clearly a

Borel maximal co�nitary group must be of size continuum and a Σ1
2 maxi-

mal co�nitary group must be either of size ℵ1 or continuum, since a Σ1
2 set

is the union of ℵ1 many Borel sets. This observation states in particular,

that the lowest projective complexity of witnesses to intermediate values in

spec(MCG) is Π1
2. This leads us to the notion of good projective witness

(see De�nition1.5), which will allow us to summarize many of the results

1Another interesting dissimilarity between MAD families and MCGs is the fact that
consistently d = ω1 < ag = ω2 (see [18]), while the consistency of d = ω1 < a = ω2 is a
well-known open problem.
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regarding the de�nability properties of various combinatorial sets of reals in

models of ℵ1 < c. Our main theorem states:

Theorem 1.2. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving

generic extension of the constructible universe L in which

ag = b = d = ℵM < c = ℵN
and there is a Π1

2 de�nable maximal co�nitary group of size ℵM .

Remark 1.3. Providing a model in which there is a maximal co�nitary group

of cardinality µ where ℵ1 < µ < c and either ℵω < c, or even ℵω ≤ µ are

possible using Jensen coding, however for the sake of clarity we have chosen

in this paper to work with values of the continuum below ℵω.

The cardinal characteristics b and d referred to in the above theorem are

the bounding number and the dominating number. For readers unfamiliar

with them, we review de�nitions of all cardinals characteristics mentioned in

this paper in the next section. Our techniques allow us to have also M = 1,

i.e., to construct a model in which ag = d = ℵ1 < c = ωN and in which ag is

witnessed by a Π1
2-maximal co�nitary group. The projective de�nition to the

witness of ag though in this model is perhaps not optimal. The consistency

of ag = d = ℵ1 < c with a Π1
1 witness to ag is work in progress of the �rst

and third authors (see [12]).

The main result of the paper, should also be compared to [14], where

the authors construct a co-analytic, Cohen indestructible maximal co�nitary

group in L. Thus, consistently ag = ω1 < d = c with a Π1
1-witness to ag. The

methods of [14] and the current paper di�er signi�cantly. While the result

of [14] is rooted in the preservation properties of a specially constructed

co�nitary group in L, and so necessarily of cardinality ℵ1, the techniques of

the current paper allow us to control the value of ag beyond ℵ1.

There are two further challenges, which we needed to overcome in obtain-

ing the above theorem:

(1) adjoining a new generator to an uncountable group, while requiring

that all new permutations satisfy a self referential recurrence leading

eventually to the Π1
2-de�nition of the �nal generic group;

(2) providing enough eventually di�erent reals at initial stages of the

forcing construction, which allow (1) and which are not excluded by

the generic hitting property of the co�nitary group iterands;

Resolving the �rst problem, resulted in a carefully designed forcing notion

which we present in Section 3 of the paper. Even though this new poset

can be compared to earlier forcing notions adjoining generic generators to a

given co�nitary group, it is far more intricate and allows for a much �ner

control over the group members. The second problem was eventually resolved

by a very careful arrangement of the entire forcing iteration (see items 4.a

and 4.b of the road-map given in the beginning of Section 4) and gives a

very necessary �exibility of the entire construction, without which our �nal
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goal could not be achieved. These new technical developments not only

suggest more elegant proofs to already existing theorems, but also present

promising and robust techniques to address existing open problems. Some

of the many naturally occurring remaining open questions are discussed in

our �nal section.

Our techniques easily modify to the study of maximal almost disjoint

families and provide the following result:

Theorem 1.4. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving

generic extension of the constructible universe L in which

a = b = d = ℵM < c = ℵN
and there is a Π1

2 de�nable maximal almost disjoint family of size ℵM .

The results discussed in this section lead to the following notion:

De�nition 1.5. A good projective witness to µ ∈ spec(MCG) (resp. µ ∈
spec(MAD)2) is a mcg (resp. mad family) of cardinality µ in a model of

ℵ1 < c which is also of lowest projective complexity.

While earlier results show that good projective witnesses to ℵ1 and c

being members of spec(MCG) (resp. spec(MAD)) exist, our main theo-

rem states that good projective witnesses for intermediate values can exist.

For example, the co-analytic Cohen indestructible maximal co�nitary group

from [14] is a good projective witness to ℵ1 ∈ spec(MCG), while the Borel

maximal co�nitary group of Horowitz-Shelah is a good projective witness

to c ∈ spec(MCG). A good witness to c ∈ spec(MAD) is constructed by

Brendle and Khomskii in [3], while a Cohen indestructible co-analyitc max-

imal almost disjoint family in L is a good witness to ℵ1 ∈ spec(MAD). The

study of projective witnesses does not limit to mcgs and mad families. Let

spec(IND) denote the set of possible cardinalities of maximal independent

families. One of the main results of [4] shows that ℵ1 ∈ spec(IND) has a

good projective witness, while the existence of a good projective witness to

c ∈ spec(IND) is still open.

Structure of the paper: In section 2 we introduce relevant notation and termi-

nology used throughout the paper. Section 3 presents a new poset, which ad-

joins self-coding permutations to a given co�nitary group. Section 4 presents

the entire forcing construction leading to our main result. Our main result

is established in Section 5. List of open problems is given in Section 6.

2. Some Notation and Terminology

Given an index set A, we will call a mapping ρ : A→ S∞ such that im(ρ)

generates a co�nitary group, a co�nitary representation. In particular, given

a freely generated co�nitary group with generating set {ga : a ∈ A}, the

2Here spec(MAD) denotes the set of cardinalities of maximal almost disjoint families.
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mapping ρ : A → S∞ sending each a to ga is a co�nitary representation.

Given such a co�nitary representation ρ and an index a which does not

occur in dom(ρ), we denote by Wρ,{a} the set of all words w of the form

w = ajnn · · · aj11 where for each l such that 1 ≤ l ≤ n we have al ∈ dom(ρ) ∪
{a}, jl ∈ {1,−1} and no cancellations are allowed; or n = 0 and w = ∅.3
An injective partial function s : N ⇀ N will be referred to as a partial

permutation. Given a word w ∈ Wρ,{a} and a (possibly partial) injective

mapping s, we denote by w[s] the (possibly partial) injective mapping w[s]

obtained by substituting each occurrence of bj where b ∈ dom(ρ) and j ∈
{−1, 1} with ρ(b)j and aj where j ∈ {−1, 1} with sj . Now, given a word

w ∈ Wρ,{a}, w = ajnn · · · aj11 , where jl ∈ {−1, 1} and a (possibly partial)

injective mapping s, the evaluation path of a given integer m under w[s] is

the sequence 〈mk : k ∈ ω′〉, where m0 = m, for each k if k = nl + i, then

mk = (ajii [s] ◦ · · · ◦ aj11 [s] ◦ wnl[s])(m),

where ω′ is either ω, or denotes the least natural number for which mω′ is

not de�ned.

Following the notation of [14], we denote by use(w, s,m) the set of natural

numbers appearing in the evaluation path of m under w[s].

Another notion naturally appearing in the analysis of the �xed points and

evaluation paths associated to a given word w, is the notion of a circular shift

of a word (see [14]). More precisely, given a word w = wn · · ·w1, where wi =

ajii , ji ∈ {−1, 1} for each i, and a permutation σ : {1, · · · , n} → {1, · · · , n}
such that σ(i) = i+ k mod n for some k ∈ N, we will refer to wσ(n) · · ·wσ(1)

as a circular shift of w. Thus, in particular, for each n there are only �nitely

many circular shifts of a given word.

Finally, for w0, w1 ∈ Wρ,{a} we say w1 is a proper conjugate subword of

w0 if w0 = w−1w1w for some word w ∈Wρ,{a} \ {∅} and w1 6= ∅.

We review de�nitions of the well-known cardinal characteristics a, ag, b,

and d (for an introduction to cardinal characteristics, see [2]). An almost

disjoint family is a collection of in�nite subsets of ω any two of which have

�nite intersection. A maximal almost disjoint (short MAD) family is an

almost disjoint family which is not a proper subset of an almost disjoint

family.

Write ωω for the set of functions from ω to ω. Given f, g ∈ ωω write f≤∗g
to mean that {n : f(n) > g(n)} is �nite. Now

a = min{|A| : A ⊆ P(ω), A is an in�nite MAD family},
ag = min{|G| : G ⊆ ωω, G is a MCG},
b = min{|F| : F ⊆ ωω, (∀g ∈ ωω)(∃f ∈ F) f 6≤∗ g},
d = min{|F| : F ⊆ ωω, (∀g ∈ ωω)(∃f ∈ F) g ≤∗ f}

where of course |x| denotes the cardinality of x.

3Such words are referred to as reduced words.
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3. Adding cofinitary groups of coding permutations

Fix a recursive bijection

ψ : ω × ω → ω.

Suppose that ρ : A → S∞ is a co�nitary group presentation and let a

be an index not included in A (i.e., we ask a, a−1 /∈ A). Write G for the

group generated by im(ρ), W = Wρ,{a} for the set of reduced words in the

alphabet dom(ρ) ∪ {a, a−1}, WD for the set of words from W in which a or

a−1 occurs at least once, and WS for the set of words w ∈ WD without a

proper conjugate subword.

Further, suppose that we are given

• F = {fm,ξ : m ∈ ω, ξ ∈ ω1}, a family of almost disjoint permutations

(i.e., the graphs are pairwise almost disjoint subsets of ω×ω) so that
fm,ξ /∈ im(ρ) and 〈im(ρ), fm,ξ〉 is co�nitary for each m ∈ ω, ξ ∈ ω1.

• For each w ∈WS, a family Yw = {Y w
m : m ∈ ω} of subsets of ω1,

• For each w ∈WS a subset zw of ω.

Write F for 〈F : w ∈WS〉, Y for 〈Yw : w ∈WS〉, and z̄ for 〈zw : w ∈WS〉.
We will de�ne a σ-centered poset, denoted QF ,Y,z̄ρ,{a} , which adjoins a generic

permutation g such that the mapping ρ̂ : A ∪ {a} → S∞, which extends ρ

and sends a to g is a co�nitary representation; moreover, for each w ∈WS

• the permutation w[g] codes (in a sense about to be de�ned) the real

zw,

• for each m ∈ ψ[g], w[g] almost disjointly via the family Fm = {fm,ξ :

ξ ∈ ω1} codes Y w
m .

In order to de�ne the poset we must discuss how each zw will be coded

and introduce some related terminology. To this end, let S0 be the unique

function from WS into the set of words in the alphabet {a, a−1, y, y−1} which
in each word replaces each letter from A with y (and inverses of letters from A

with y−1). Moreover, �x a function S : WS→ ω such that for all w,w′ ∈WS:

• S(w) = S(w′) ⇐⇒ S0(w) = S0(w),

• lh(w) < lh(w′)⇒ S(w) < S(w′), and

• S(w) > 1.

De�nition 3.1 (Coding). Let a sequence χ ∈ 2≤ω be given. Suppose σ is a

partial function from ω to ω and w ∈WS.

(1) We say (w, σ) codes χ with parameter m if and only if

(3.1) (∀k < lh(χ)) σS(w)·(k+1)(m) ≡ χ(k) (mod 2).

(2) Suppose now that lh(χ) < ω. Write w = w1w0 where w0 is shortest

so that its leftmost letter is a or a−1. We say that (w, σ) exactly

codes χ with parameter m if (w, σ) codes χ and in addition

w0w
S(w)·lh(χ)[σ](m) is unde�ned,

that is, if the path of m under w[σ] terminates as soon as possible.
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(3) We say that m′ is a critical point in the path of m under (w, σ) if this

path terminates with m′ and has length S(w)(k+ 1)− 1 for some k.

Note that clearly (w, σ) can only exactly code χ if the latter is �nite and

σ is not a bijection (i.e., σ or σ−1 is a partial function).

Finally given F ,Y, z̄, ρ, {a} as above we de�ne Q = QF ,Y,z̄ρ,{a} . First we

de�ne an auxiliary forcing Q0; it consists of all tuples p = 〈sp, F p, m̄p, sp,∗〉
where:

(1) sp is an injective �nite partial function from ω to ω;

(2) F p is a �nite subset of WS which is closed with respect to taking

subwords;

(3) m̄p = 〈mp
w : w ∈ dom(m̄p)〉 with dom(m̄p) ⊆ F p and each mp

w ∈ ω;
(4) sp,∗ = 〈sp,∗w : w ∈ dom(sp,∗)〉 is a �nite partial function from F p to{

fm,ξ : m ∈ ψ
[
w[s]

]
, ξ ∈ Y w

m

}
;

The extension relation for Q0 is de�ned as follows: q = 〈sq, F q, m̄q, sq,∗〉 ≤0

p = 〈sp, F p, m̄p, sp,∗〉 if and only if

(A) sq end-extends sp, F q ⊇ F p;
(B) for every w ∈ F p ifm ∈ �x(w[sq]), then there is a non-empty subword

w′ of w such that letting w = w1w
′w0 and letting 〈. . .m1,m0〉 be the

(w, sq)-path of m, mk ∈ fix(w′[sp]) where k is the length of w0; i.e.,

the path has the following form:

m
w1←−− mk

w′←−− mk
w0←− m

(C) sq,∗ ⊇ sp,∗ and for all f ∈ sp,∗, sq\sp ∩ f = ∅.
(D) m̄q � (dom(m̄p) ∩ dom(m̄q)) = m̄p � (dom(m̄p) ∩ dom(m̄q))

Finally, Q is de�ned to be the set of p ∈ Q0 which in addition to items

(1)�(4) above also satisfy

(5) for each w ∈ dom(m̄p) there exists a (unique) l which we denote by

lpw such that (w, s) exactly codes χzw�l with parameter mp
w;

The ordering on Q, which we denote by ≤ is just ≤0 ∩ (Q×Q).

Proposition 3.2. Let G be a Q-generic �lter and let

σG =
⋃
{s : ∃F, m̄, s∗ s.t. 〈s, F, m̄, s∗〉 ∈ G}.

The permutation σG has the following properties:

(A) The group 〈im(ρ) ∪ {σG}〉 is co�nitary.
(B) If f is a ground model permutation, f /∈ 〈im(ρ)〉, 〈{f} ∪ im(ρ)〉 is

co�nitary and f is not covered by �nitely many permutation in F ,
then there are in�nitely many n such that f(n) = σG(n) and so

〈im(ρ) ∪ {σG} ∪ {f}〉 is not co�nitary;
(C) For each w ∈ WS there is mw ∈ ω such that w[σG] codes the char-

acteristic function of zw with parameter mw.
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(D) For each w ∈WS, for all m ∈ ψ[w[σG]], for all ξ ∈ ω1

|w[σG] ∩ fm,ξ| < ω i� ξ ∈ Y w
m .

We shall now show these properties to hold, in a series of lemmas. It

is most convenient to start with the most involved of the series; it has a

precursor in [14, Lemma 3.12] and in conjunction with the following lemmas,

it proves Property (C).

Lemma 3.3 (Generic Coding). For any w ∈WD and any l ∈ N, let Dcode
w,l

denote the set of q ∈ Q such that w ∈ dom(m̄q) and for some l′ ≥ l, q exactly
codes zw � l′ with parameter m̄q

w. Then Dcode
w,l is dense in Q.

Proof. Suppose p ∈ Q and w ∈ WS are given. If w /∈ dom(m̄p) it is clear

that we can choose m large enough so that letting

q = 〈sp, F p, m̄p ∪ {(w,m)}, sp,∗〉

we obtain a condition q ∈ Q with lqw = 0 (i.e., that we can chose m so that

(w, sp) codes the trivial string ∅ with parameter m).

So suppose w ∈ dom(m̄p). Write m for m̄p
w and l for lpw. It su�ces to �nd

s ⊇ sp such that letting

q = 〈s, F p, m̄p, sp,∗〉

we obtain a condition q ∈ Q with lqw = l + 1.

Letm0 be the terminating value in the path ofm under w and suppose the

next letter in w that should be applied is ai for i ∈ {−1, 1}. Let W0 denote

the set of words w′ in dom(m̄p) whose path from mp
w′ also terminates with

m0 and with next letter also ai (we cannot avoid extending coding paths of

words in W0 and have to ensure exact coding for all of them). Note that

this path has length lpw′ · S(w′) if the right-most letter of w′ is a or a−1 and

lpw′ · S(w′) + 1 otherwise.

For each w′ ∈ W0 let g(w′) ∈ im(ρ) ∪ {∅} be the rightmost letter if this

letter is not a nor a−1, and g(w′) = ∅ otherwise. Then

m0 = g(w′)w′
S(w′)·lp

w′ [sp](m).

The next point in the path at which we must meet a coding requirement

for a word w′ ∈W0 will be reached after applying (w′)S(w′) to g(w′)−1(m0).

Write W (w′) for the set of initial segments of (w′)S(w′) and consider the tree

T =
⋃

w′∈W0

W (w′)

ordered by end-extension. We make �nitely many extensions of sp, each

time extending a coding path starting with m0 by one step, working along

all words in T by induction on their length.

So suppose w′ ∈ T and we have already extended sp to s′ so that

w′[s′](m0) = m′,
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and that for no extension w′′ of w′ in T is w′′[s′](m0) de�ned, and �x a word

ajw′ ∈ T where j ∈ {−1, 1}. For each w∗ ∈ W0 denote by l(w∗) the length

of the path of mp
w∗ under (w, s′). We shall now �nd s′′ extending s′.

Let

E = dom(s′) ∪ ran(s′) ∪ ran(m̄p)

and let F consist of all subwords of circular shifts of words in F p. Find m′′

satisfying the following requirements:

m′′ /∈
⋃
{fix(u[s′]) : u ∈ F \ {∅}},(3.2)

m′′ /∈
⋃
{fix(g−1

0 g1[s′]) : u0, u1 ∈ F ∩ 〈im(ρ)〉 \ {∅}, g0 6= g1},(3.3)

m′′ /∈
⋃
{giuj [s′][E] : i, j ∈ {−1, 1}, u ∈ F, g ∈ F ∩ 〈im(ρ)〉},(3.4)

and if m′ is a critical point in the path under (w∗, s′) of m̄p
w∗,

m′′ ≡ zw∗
(

l(w∗) + 1

S(w∗) lh(w∗)

)
(mod 2).(3.5)

Note that all but the last requirement exclude only �nitely many values for

m′′. To see that m′′ as above can be found, we show that m′ is a critical

point in the path under (w∗, s′) of m̄p
w∗ for at most a single w∗. Therefore

we can chose m′′ to be any large enough number with the parity prescribed

by (3.5).

Claim 3.4. There is at most one word w∗ ∈ W0 such that the path of mp
w∗

under (w∗, s′) terminates at m′ and l(w∗) + 1 = (lpw∗ + 1) · S(w∗) · lh(w∗),

i.e., so that we must respect the coding requirement (3.5) for w∗.

Proof. Suppose there are w∗0 6= w∗1 with the above property. Depending

on whether g(w∗i ) = ∅ or g(w∗i ) ∈ im(ρ) we have l(w∗i ) = k · lh(w∗i ) or

l(w∗i ) = k · lh(w∗i )− 1 for each i ∈ {0, 1}. First assume the words are not of

equal length, w.l.o.g. lh(w∗0) < lh(w∗1). But then

S(w∗0) · lh(w∗0) < S(w∗1) · lh(w∗1)− 1

so for at most one i ∈ {0, 1} can the length of the path from m0 to m′ under

(w∗i , s
′) be of length S(w∗0) · lh(w∗0) or S(w∗0) · lh(w∗0)−1. If on the other hand

lh(w∗0) = lh(w∗1) then since w∗0 6= w∗1 the path of m0 under (w∗0, s
′) must

diverge from its path under (w∗1, s
′) before reaching m′: These paths diverge

at some mk where w
∗
0 and w∗1 disagree at the next letter since by induction,

s′ was chosen to satisfy Requirements (3.3) and (3.4) each time we made

an extension; and these paths are long enough to witness a disagreement

between w∗0 and w∗1 because S(w∗i ) > 1 (this is necessary and su�cient to

deal with words where the only di�erence is in the �rst letter and this letter

is from im(ρ)). Claim 3.4. �

Let s′′ = s′ ∪ {(m′,m′′)}; the next two claims shall show that p′ =

〈s′′, F p, m̄p, sp,∗〉 is a condition in Q0 below p (that is, a condition in Q
except for the requirement of exact coding).
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Claim 3.5. For any w ∈ dom(m̄p)\W0, the path of mp
w under (w, sp) is the

same as under (w, s′′).

Proof. This is obvious by Requirement (3.4) above. Claim 3.5. �

The next claim shows that p′ ≤0 p.

Claim 3.6. For every w ∈ F p and m ∈ fix(w[s′′]) there is a non-empty

subword w0 of w such that letting w = w′w0w
′′ and letting 〈. . .m1,m0〉 be

the (w, s′′)-path of m, mk ∈ fix(w0[s′]) where k is the length of w′′; i.e., the

path has the following form:

m
w′←−− mk

w0←−− mk
w′′←− m.

Proof. Fix w ∈ F p. Assume that m0 ∈ fix(w[s′′]) \ fix(w[s′]). As the (w, s′)-

path of m0 di�ers from the (w, s′′)-path, the latter must contain an applica-

tion of a to m′ or of a−1 to m′′. Write this latter path as

(3.6) . . .mk(3)
w′′←− mk(2)

aj←− mk(1)
w′←− mk(0) = m0

where j ∈ {−1, 1} and mk(1) = n when j = 1, mk(1) = n′ when j = −1;

moreover we ask that w′, w′′ ∈W are the maximal subwords of w such that

from mk(0) to mk(1) and mk(2) to mk(3), the path contains no application of

a to m′ or of a−1 to m′′ (allowing either of w′, w′′ to be empty). Thus, w′

and w′′ correspond to path segments where s′ and s′′ agree:

w′[s′′](mk(0)) = w′[s′](mk(0)) = mk(1),

w′′[s′′](mk(2)) = w′′[s′](mk(2)) = mk(3).

It is impossible that w = w′′ajw′ and m0 = mk(3) (for then

m′′ = (w′w′′)−j [s′′](m′),

again contradicting the choice of m′′). Therefore, at step k(3) again a is

applied to m′ or a−1 to m′′ by maximality of w′′. Write the path as

. . .
aj
′

←− mk(3)
w′′←− mk(2)

aj←− mk(1)
w′←− mk(0) = m0

with j′ ∈ {−1, 1} and observe:

1. mk(2) = mk(3); for otherwise, m′′ = (w′′)i[s′](m′) for some i ∈
{−1, 1}, contradicting the choice of m′′.

2. Thus, w′′ 6= ∅, since on one side of w′′ we have a and on the other

a−1 and w is in reduced form.

3. As m′′ /∈ fix(w′′[s′]), we have that mk(2) = mk(3) = m′.

So m′ ∈ fix(w′′[s′]) proving the claim. Claim 3.6. �

Repeating the above argument for each relevant word in T we obtain a

condition q ≤ p also satisfying the exact coding condition (5) and such that

for each w∗ ∈W0, l
q
w∗ = lpw∗ + 1 as promised. Lemma 3.3. �

The next lemma shows that g is permutation of ω.
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Lemma 3.7. For each n ∈ ω the sets Dn = {q ∈ Q : n ∈ dom(sq)} and

Dn = {q ∈ Q : n ∈ ran(sq)} are dense in Q.

Proof. To see Dn is dense, let p ∈ Q be given and �nd q ∈ Dn, q ≤ p.
If n occurs as the last value in a coding path, the previous lemma applies.

Otherwise let W ∗ be the set of subwords of circular shifts of words in F p

and pick n′ arbitrary such that

n′ /∈
⋃{

fix(w′[sp]) : w′ ∈W ∗ \ {∅}
}
,

n′ /∈
⋃{

w′[sp]i(n) : i ∈ {−1, 1}, w′ ∈W ∗
}
, and

n′ /∈ ran(sp).

Let s′ = s ∪ {(n, n′)} and q = 〈s′, F p, m̄p, sp,∗〉. Then q ∈ Q and q ≤ p by

exactly the same argument as in Claims 3.5 and 3.6 above. The case Dn is

symmetrical and is left to the reader. �

Property (A) above is established by the previous lemma and the following

one.

Lemma 3.8. For each w ∈Wρ,{a}, the set

Dw = {q ∈ Q : q 
 |fix(w[σG])| <∞}

is dense in Q.

Proof. First note that q 
 |fix(w[σG])| <∞ if w ∈ F q: This is because such
q forces�by the de�nition of the ordering on Q�that any �xed point of

w[σG] must arise from a �xed point of w′[sq] where w′ is a subword of w and

there are only �nitely many such points.

Therefore clearly Dw is dense, since we may always add the shortest con-

jugated subword of any word w to F q to form a new condition, and of course

w[σG] has the same number of �xed points as its shortest conjugated sub-

word. �

The next lemma shows Property (B) above. Moreover, Property (D) is

a direct corollary to this lemma and the almost disjoint requirement in the

extension relation of our poset.

Lemma 3.9. Suppose we are given m ∈ ω, w ∈WS and τ ∈ S∞.
(1) If τ /∈ 〈im(ρ)〉, 〈im(ρ), τ〉 is co�nitary, and τ is not covered by �nitely

many elements of F , the set Dhit
τ,m = {q ∈ Q : (∃n ≥ m) w[sq](n) =

τ(n)} is dense.
(2) If τ ∈ F , τ = fwn,ξ, and ξ /∈ Y w

m then too is the set Dhit
τ,m dense.

(3) If τ ∈ F , τ = fwn,ξ, and ξ ∈ Y w
m the set Dhit

τ,m∪{p ∈ Q : n ∈ ψ[w[sp]]}
is dense in Q.

Proof. Let τ and m as in the lemma be given. Note that in all three cases

τ /∈ 〈im(ρ)〉 and 〈im(ρ), τ〉 is co�nitary and we can assume τ /∈ s∗,p (for in
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the third case, otherwise n ∈ ψ[w[sp]]) and therefore that

(3.7) |τ \
⋃
sp,∗| = ω.

Let E′ = dom(sp) ∪ ran(sp) ∪ ran(m̄p), and �nd n ∈ ω \m such that

n /∈ τ−1
[⋃{

fix(w[s]) : w ∈ F ∗ \ {∅}
}]
,

n /∈ τ−1
[⋃{

g−1w′[s]i[E′] : i ∈ {−1, 1}, w′ ∈ F ∗, g ∈ F ∗ ∩ 〈 im(ρ)〉
}]
,

n /∈
⋃{

fix(τ−1g−1w′[s]i) : i ∈ {−1, 1}, w′ ∈ F ∗, g ∈ F ∗ ∩ 〈 im(ρ)〉
}
, and

τ(n) 6= f(n) for each f ∈ sp,∗.

The �rst two requirements obviously exclude only �nitely many n; the same

holds for the third requirement since τ /∈ 〈im(ρ)〉 and 〈im(ρ), τ〉 is co�nitary.
Since the last requirement holds for in�nitely many n by (3.7), we can pick

n satisfying all the requirements.

It follows that letting n′ = τ(n) and E = {n}∪dom(sp)∪ran(sp)∪ran(m̄p),

n′ satis�es the requirements from (3.2)�(3.5). Therefore as in Lemma 3.3 we

can let s = sp ∪ {(n, n′)} and q = 〈s, F p, m̄p, sp,∗〉 is a condition below p

satisfying q ∈ Dhit
τ,m. �

Finally we show the following.

Lemma 3.10. The forcing Q is Knaster.

Proof. It is straightforward to check that if p, q ∈ Q are such that sp = sq

and m̄p agrees with m̄q on dom(m̄p) ∩ dom(m̄q) then

r = 〈sp, F p ∪ F q, m̄p ∪ m̄q, sp,∗ ∪ sq,∗〉

is a condition in Q and r ≤ p, q. Therefore Q is Knaster by a standard

∆-systems argument. �

4. The forcing iteration

Since the proof is long and involved, we present a short road-map which

may also be used as a reference for notation. We proceed in several steps:

(1) We start with the constructible universe L as the ground model.

We chose a sequence 〈Sδ : δ < ωM 〉 of stationary subsets of ωM−1

and force to add a sequence 〈Cδ : δ < ωM 〉 such that Cδ is a club

in ωM−1 which is disjoint from Sδ, �killing� the stationarity of Sδ.

Then we force to add a sequence 〈Yδ : δ < ωM 〉 such that Yδ ⊆ ω1

and Yδ �locally codes� Cδ. By �locally coding� we mean the property

(∗ ∗ ∗)γ,m below. For this purpose we also have to add a sequence

W = 〈W 0
γ : γ ∈ Lim(ωM )〉 of auxillary subsets of ω1 where W 0

γ will

serve as a code for the ordinal γ.

The forcing that adds 〈Cδ : δ < ωM 〉, the auxillary setsW, as well

as 〈Yδ : δ < ωM 〉 is denoted by P∗0, and the (P∗0, L)-generic extension

is denoted by V1. It will be the case that P(ω)V1 = P(ω)L.
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(2) We force over V1 to add a sequence

C = 〈cWγ : γ ∈ Lim(ωM )〉

of reals such that cWγ codes W 0
γ . We denote the forcing that adds C

by P(C) and the (V1,P(C))-generic extension by V2.

(3) We increase 2ω by adding ωN -many reals forcing with Add(ω, ωN ).

Write V3 for the (V2,Add(ω, ωN ))-generic extension.

(4) We now force to add the de�nable MCG. This is done in an itera-

tion P(G) := 〈PGα, Q̇Gα : α ∈ ωM 〉 of length ωM over V3. The �nal

(V3,P(G))-generic extension is denoted by L[G].

We denote the (V3,PGα)-generic extension by V3[GGα]. At step α <

ωM in the iteration we force over V3[GGα] with Qα = PFα ∗ PcdFα ∗ P
G
α

where:

(a) The �rst forcing PF adds a family Fα of size ω1 consisting of

co�nitary permutations of ω. We do this so that in the �nal

model L[G] the graphs of any two elements of
⋃
α<ωM

Fα will

be almost disjoint.

(b) The next forcing PcdFα adds a real cFα which almost disjointly

codes Fα via a de�nable almost disjoint family F∗ ∈ L which

remains �xed throughout the iteration.

(c) Finally PGα is the forcing discussed in the previous section adding

a single generator of our MCG, using all the machinery added in

the previous steps to ensure de�nability of the resulting group.

Step (1) is described in Section 4.1 below. In this part we do not add

countable sequences. Steps (2) and (3) are described in Section 4.2. Finally

Steps (4a)�(4c), in which we force to add a MCG of size less than 2ω, are

described in Section 4.3.

4.1. Preparing the Universe. We will work over the constructible uni-

verse L. Fix 2 ≤ M < N < ω arbitrary. We will show that consistently

ag = ωM < c = ωN with a Π1
2 de�nable witness to ag.

Let S̄ = 〈Sδ : δ < ωM 〉 be a sequence of stationary costationary subsets

of ωM−1 consisting of ordinals of co�nality ωM−2 and such that for δ 6= δ′,

Sδ ∩ Sδ′ is non-stationary. We also ask that S̄ be de�nable in LωM . Every

element of the intended Π1
2-de�nable maximal co�nitary group will witness

itself by encoding a pattern of stationarity, non-stationarity on a segment

(a block of the form [γ, γ + ω) for γ ∈ Lim(ωM )) of S̄. To achieve this, the

following terminology will be useful.

De�nition 4.1. A suitable model is a transitive model M such that M �
ZF−, (ωM )M exists and (ωM )M = (ωM )L

M
(by ZF− we mean an appropriate

axiomatization of set theory without the Power Set Axiom).

For each ordinal γ ∈ Lim(ωM ) write Wγ for the L-least subset of ωM−1

such that

〈γ,<〉 ∼= 〈Wγ ,∈〉.
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For each m = 1, · · · ,M − 2, let S̄m = 〈Smξ : ξ < ωM−m〉 be a sequence

of almost disjoint subsets of ωM−m−1 which is de�nable LM−m−1 (without

parameters). Successively using almost disjoint coding with respect to the

sequences S̄m (see [11]), we can code each Wγ into a set W 0
γ ⊆ ω1 such that

the following holds:

If ω1 < β ≤ ω2 andM is a suitable model with ωM2 = β, {W 0
γ } ∪ ω1 ⊆M,

thenM � �Using the sequences {S̄m}m=M−2
m=1 , the set W 0

γ almost disjointly

codes a set W such that for some γ < ωM , 〈γ,<〉 ∼= 〈W,∈〉�.

Write PW for the forcing which adds W = 〈W 0
γ : γ ∈ Lim(ωM )〉. It is

easy to see that this forcing preserved stationarity of each Sδ for δ < ωM ,

preserves co�nalities, and does not add countable sequences (see again [11]).

Fix (until the last paragraph of this section) some δ < ωM . Using bounded

approximations adjoin a closed unbounded subset Cδ of ωM−1 such that

Cδ ∩ Sδ = ∅. The forcing Pclδ which adds Cδ preserves stationarity of Sη for

each η ∈ ωM \ {δ}, has size ωM−1, preserves cardinals and co�nalities, and

doesn't add any countable sequences.

Following the notation of [11], for a set of ordinals X, Even(X) denotes

the subset of all even ordinals in X. Furthermore reproducing the ideas

of [11], in L[Cδ] we can �nd subsets Zδ ⊆ ωM−1 such that

(∗)δ: If β < ωM−1 and M is a suitable model such that ωM−2 ⊆ M,

(ωM−1)M = β, and Zδ ∩ β ∈ M, then M � θ(ωM−1, Zδ ∩ β), where

θ(ωM−1, X) is the formula �Even(X) codes a triple (C̄, W̄ , X̄) where W̄ ,

X̄ are the L-least codes of ordinals γ, δ < ωM respectively such that γ is the

largest limit ordinal not exceeding δ, and C̄ is a club in ωM−1 disjoint from

Sδ".

Using the same sequences S̄m as when coding Wδ into W
0
δ , we code the

sets Zδ into subsets Xδ of ω1 with the following property (again using the

construction from [11]):

(∗∗)δ: Suppose that ω1 < β ≤ ω2,M is a suitable model with ωM2 = β, and

letting γ be the largest limit ordinal below δ, it holds that {W 0
γ , Xδ} ∪ω1 ⊆

M. Then M � ϕ(W 0
γ , Xδ), where ϕ(W,X,m) is the formula: �Using the

sequences {S̄m}m=M−2
m=1 , the set W almost disjointly codes W̄ 0 ⊆ ωM−1 and

X almost disjointly codes a subset Z of ωM−1 whose even part codes the

triple (C̄, W̄ , X̄) with W̄ = W̄ 0 and where W̄ , X̄ are the L-least codes of

ordinals γ, δ < ωM such that δ = γ + m and C̄ is a club in ωM−1 disjoint

from Sδ�.

Note that ϕ is a statement about (ωM−1)M and ({S̄m}m=M−2
m=1 )M, i.e.,

about the interpretation of their de�nition in M (indeed of course these

objects are generally too large to be a parameter in ϕ).
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The forcing Pcdδ over L[W][Cδ] described above which codes Zδ into Xδ

preserves stationarity of preserves stationarity of Sη for each η ∈ ωM \ {δ},
has size ωM−1, preserves cardinals and co�nalities, and doesn't add countable

sequences.

Next, suppose δ = γ +m for γ ∈ Lim(ωM ). We will force over L[W][Xδ]

(which is the same as L[W][Cδ][Xδ]) to achieve localization of the pair of

sets W 0
γ , Xδ (see [11, De�nition 1]). Let ϕ be as above.

De�nition 4.2. Let W , X be subsets of ω1 such that ϕ(W,X,m) holds in

any suitable model M with (ω1)M = (ω1)L containing both W and X as

elements. Denote by L(W,X,m) the poset of all functions r : |r| → 2, where

the domain |r| of r is a countable limit ordinal such that

(1) if ξ < |r| then ξ ∈ X i� r(3 · ξ) = 1,

(2) if ξ < |r| then ξ ∈ X ′ i� r(3 · ξ + 1) = 1,

(3) if ξ ≤ |r|, M is a countable suitable model containing r�ξ as an

element and ξ = ωM1 , then

M � ϕ(W ∩ ξ,X ∩ ξ,m).

The extension relation is end-extension.

For each γ ∈ Lim(ωM ) and m ∈ ω we use the poset L(W 0
γ , Xγ+m,m) to

add the characteristic functions of a subset Yγ+m of ω1 such that:

(∗ ∗ ∗)γ,m: If β < ω1, M is suitable with ωM1 = β, W 0
γ ∩ β ∈ M, and

Yγ+m ∩ β ∈M, thenM � ϕ(W 0
γ ∩ β,Xγ ∩ β,m).

With this the preliminary stage of the construction is complete. We let

P0 denote the forcing

PW ∗
∏
δ∈ωM

Pclδ ∗ Pcdδ ∗ L
(
W 0
γ(δ), Xδ,m(δ)

)
.

where γ(δ) is the greatest limit ordinal below δ andm(δ) is the uniquem such

that δ = γ(δ) +m and where the product is with the appropriate support as

in [11]. Denote by V0 the resulting model. Note that V0 ∩ [ω]ω = L ∩ [ω]ω.

4.2. Adding reals. Fix (for the rest of the proof) a constructible almost

disjoint family

F∗ := {ai,j,ξ : i ∈ ω, j ∈ 2, ξ ∈ ω1 · 2}
which is Σ1 (without parameters) in Lω2 and such that ai,j,ξ ∈ Lµ whenever

Lµ � |ξ| = ω. Next force with the �nite support iteration

P(C) := 〈PWδ , Q̇Cδ : δ ∈ Lim(ωM )}

where for each δ, Q̇2
δ adds the real c

W
δ which almost disjointly via the family

F∗ codes W 0
δ . Let V2 be the (Ṗ(C), V0)-generic extension .

Using the standard forcing Add(ω, ωN ) (�nite partial functions from ωN×
ω into 2) adjoin ωN -many reals to V2 to increase the size of the continuum

to ωN and denote the resulting model to obtain a model V3.
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4.3. Adding the MCG. We shall now de�ne a �nitely supported iteration

P(G) := 〈PGα, Q̇Gα : α ∈ ωM 〉 which adds a self-coding MCG to the model V3.

Along the iteration, for each α ∈ ωM we will de�ne a PGα-name İα ⊆
[βα, βα+1) for a set of ordinals, such that at stage α of the construction we

adjoin reals encoding a stationary kill of Sδ (that is, a real locally coding Cδ)

for δ ∈ Iα. We then show that there is �no accidental coding of a stationary

kill� in Lemma 5.1.

In order to de�ne P(G) := 〈PGα, Q̇Gα : α ∈ ωM 〉, �rst �x primitive set

recursive bijections

ψ : ω × ω → ω

and ψ′ : ω1×ω×ω → ω1. The function ψ
′ will be used to identify the family

Fα which we add at stage α with a subset of ω1.

Suppose now by induction we are in the (V3,PGα)-generic extension by

V3[GGα]. We presently de�ne Qα = PFα ∗ PcdFα ∗ P
G
α.

For the de�nition of PFα assume by induction that at previous stages we

have added families Fβ for β < α consisting of co�nitary permutations. We

now adjoin a family

Fα = 〈fαm,ξ : m ∈ ω, ξ ∈ ω1〉

of permutations such that |fαξ ∩ f
β
ξ′ | < ω when β < α or ξ 6= ξ′. For this we

can use a �nite support iteration of the σ-centered posets with �nite condi-

tions de�ned in [15]. Denote this forcing by PFα and by Vα,1 the resulting

model.

Next let PcdFα be the forcing to add a real cα which almost disjointly via

the family F∗ (see Section 4.2) codes

ψ′

 ⋃
ξ<ω1

{ω · ξ +m} × fαm,ξ

 ,
a subset of ω1 which via ψ′ codes Fα. Let Vα,2 be the extension of Vα,1 which

contains cFα .

Finally, working in Vα,2 we de�ne PGα, the forcing which adds a new group

generator.

Suppose by induction that PGα has added a co�nitary representation ρα. Its
image generates a co�nitary group Gα. Suppose by induction that dom(ρα) =

{βξ}ξ<α and write CDα = {βγ}γ<α, the set of generators used at a stage

before α. Moreover suppose ρα(βξ) = gξ for each ξ < α. Our next forcing

will add the generic permutation gα thus enlarging our group to Gα+1, the

group generated by Gα ∪ {gα}.
If α is a limit, let

βα = sup{βξ : ξ < α}
and otherwise, let

βα = βα−1 + |α · ω|
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(we mean ordinal addition of course). This is the ordinal generator to which

we associate the generic generator gα so that

ρα+1 = ρα ∪ {(βα, gα)}

is a co�nitary representation.

Every element of the group freely generated by CDα ∪{a} corresponds to
a reduced word in the alphabet CDα ∪ {a}, where a = βα. Let WDα be the

set of such words in which a occurs. Note that the set WDα corresponds to

the new permutations in the group Gα+1. More precisely, every permutation

in Gα+1\Gα is of the form w[gα] (which is the same as ρα+1(w) by de�nition)

for some w ∈WDα.

As before write WSα for the set of words in WDα which do not have a

proper conjugated subword. Let iα : WSα → Lim(|α|) be a bijection sending

a to 0; we shall use iα to associate the ordinal βα + iα(w) to each w ∈WSα.

We note that those elements of Gα+1 \ Gα which correspond via ρ−1
α+1 to

words in WSα will be associated to ordinals in [βα, βα+1), and in fact gα
is associated to βα (elements of Gα+1 which are not of the form ρα(w) for

w ∈WD \WS we can ignore for now) .

For each w ∈ WSα it is the pattern of stationarity on the block of S̄

consisting of the next ω ordinals after βα + iα(w) that will code w. Let for

such w ∈WSα

zw = {2m : m ∈ cFα } ∪ {3m : m ∈ cWβα+iα(w)}

and de�ne

z̄ = 〈zw : w ∈WSα〉.
Further, de�ne

Y w
m = Yβα+iα(w)+m

for each w ∈WSα and let

Y = 〈Y w
m : w ∈WSα,m ∈ ω〉.

With the notation from Section 3 we now de�ne

QGα = QFα,Y,z̄ρα,{βα}.

In Proposition 3.2 we have seen that QGα adjoins a new generator gα such

that the following properties hold:

(Aα) The group 〈im(ρα) ∪ {gα}〉 is co�nitary.
(Bα) If f ∈ V Pα\Gα is a permutation which is not covered by �nitely many

members of Fα and 〈Gα ∪ {f}〉 is co�nitary, then for in�nitely many

k, f(k) = gα(k). This property, will eventually provide maximality

of GωM .

(Cα) for each w ∈ WSα there is mw ∈ ω such that for all k ∈ ω,

w2k[gα](mw) = χzw(k) mod 2. That is, every new permutation

w[gα] encodes Fα via the real cFα as well as W 0
βα+iα(w) via the real

cWβα+iα(w).
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(Dα) for each w ∈WDα, for all m ∈ ψ
[
w[gα]

]
, for all ξ ∈ ω1

|w[gα] ∩ fαm,ξ| < ω i� ξ ∈ Y w
m .

That is, w[gα] encodes Y w
m for each m ∈ ψ−1(w[gα]).

As we are going to see in the next section, property (Dα) implies that the

new permutation w[gα] encodes itself via a stationary kill on the segment

〈Sδ : βα + iα(w) ≤ δ < βα + iα(w) + ω〉. Furthermore, this stationary kill is

accessible to countable suitable models containing w[gα].

Let İα be a P̄Gα+1-name for

Iα =
{
βα + iα(w) +m : w ∈WSα,m ∈ ψ

[
w[gα]

]}
.

Thus Iα denotes the set of indices of the stationary sets for which we explicitly

adjoin reals encoding a stationary kill at stage α of the iteration. Note that

βα = sup Iα. With this the inductive construction is complete.

5. Definability and maximality of the group

Forcing with P(G) over V3 we obtain a generic G over L for the entire

forcing

P := P∗0 ∗ P(C) ∗Add(ω, ωN ) ∗ P(G)

recalling that P∗0 was the product which added the sets W 0
α and Yα+m, and

P(C) added a real cWα �locally coding� the ordinal α for each α ∈ Lim(ωM );

Add(ω, ωN ) made 2ω = ωN ; and �nally P(G) added a generic self-coding

subgroup of S∞. Also recall that all the forcings after P∗0 are Knaster, and

P∗0 did not add any countable sequences.

Work in L[G] from now on. We shall now show that in this model there

is a MCG of size ℵN . First we must show that no real codes an �accidental�

stationary kill.

Lemma 5.1. For each δ which is not in

I =
⋃
{Iγ : γ ∈ Lim(ωM )}

there is no real in L[G] coding a stationary kill of Sδ, i.e., there is no r ∈
P(ω) ∩ L[G] such that L[r] � Sδ ∈ NS.

Proof. The argument closely follows [11, Lemma 3]; for the readers conve-

nience we give a brief sketch. Let İ be a name for I and suppose that for all

γ ∈ Lim(ωM ) we have p 
 δ̌ /∈ İ. In the (L,PW)-generic extension, write

P 6=δ0 =
∏

ξ∈ωM\{δ}

Pclξ ∗ Pcdξ ∗ L(W 0
sup ξ∩lim, Xξ)

and

Pδ0 = Pclδ ∗ Pcdδ ∗ L(W 0
γ , Xγ ,m).

where γ is the greatest limit ordinal below δ and m is the unique m such

that δ = γ +m.
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Use that P∗0 = PW ∗ (P 6=δ0 ×Pδ0) to decompose the P0-generic G0 as follows:

G0 = GW ∗ (G 6=δ0 ×G
δ
0).

Working in L[G0] = L[GW ][G 6=δ0 ][Gδ0] let

P′ =
(

Add(ω, ωN ) ∗ P(G)
)
� p

be the quotient P/P∗0 below p, it is easy to verify that P′ ∈ L[GW ][G 6=δ0 ] since

the iteration never uses Yδ. Thus letting G
′ be shorthand for the P′ generic,

we may decompose G = (GW ∗G 6=δ0 ∗G′)×Gδ0.
Let r be any real in L[G] = L[GW ][G 6=δ0 ][G′][Gδ0] and write

V∗ = L[GW ][G 6=δ0 ]

Then in fact r ∈ V∗[G
′] = L[GW ][G 6=δ0 ][G′] since Pδ0 adds no countable se-

quences over V∗ and since P′ is Knaster and so Pδ0 also adds no countable

sequences over V∗[G
′]. But since PW ∗P 6=δ∗P′ preserves stationarity of Sδ, the

latter is still stationary in V∗[G
′] = L[GW ][G 6=δ0 ][G′] and hence in L[r]. �

Let G be the group generated by {gα : α ∈ ωM} =
⋃
α<ωM

im(ρα). Given

w ∈ WDα, we write wG for ρα(w), i.e., for the interpretation of w that

replaces every generator index βγ by the corresponding generic permutation

gγ .

Lemma 5.2. The group G is a maximal co�nitary group.

Proof. By property (Aα) of the iterands Q̇α the group G is co�nitary. It

remains to show maximality. Suppose by contradiction that G is not max-

imal. Then there is a co�nitary permutation h /∈ G such that the group

generated by G ∪{h} is co�nitary. Find β such that h ∈ V3[Gβ]. Then there

is β′ ∈ {β, β + 1} such that h is not a subset of the union of �nitely many

members of Fβ′ : For otherwise by the pigeonhole principle we �nd f ∈ Fβ
and f ′ ∈ Fβ+1 such that |f ∩ f ′| = ω, contradicting the choice of Fβ and

Fβ+1. Letting α = β′ + 1, by property (Bα) of the poset Qα in V3[Gα], the

generic permutation gα in�nitely often takes the same value as h, and so

gα ◦ h−1 is not co�nitary, which is a contradiction. �

It remains to show that G is Π1
2.

Lemma 5.3. Let g ∈ S∞ ∩ L[G]. Then g = wG for some w ∈
⋃
α<ωM

WSα
if and only if there is γ ∈ Lim(ωN ) and k ∈ ω such that

(5.1) ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS} =

{m ∈ ω : (∃r ∈ P(ω)) L[r] � Sγ+m ∈ NS}

Proof. Suppose g = wG for w ∈ WSα and w has no proper conjugated

subword. We prove the lemma for γ = βα + iα(w). By property (Cα) of the

poset Qα the real g codes zw and therefore

Fβα+iα(w) ∈ L[g].



20 FISCHER, FRIEDMAN, SCHRITTESSER, AND TÖRNQUIST

By property (Dα) of the poset Qα the real g codes almost disjointly via the

family Fα codes Yβα+iα(w)+m for each m ∈ ψ[g]. However Yβα+iα(w)+m codes

Xβα+iα(w)+m which implies that for every m ∈ ψ[g], the real g codes the

closed unbounded subset Cβα+iα(w)+m, which is disjoint from Sβα+iα(w)+m.

If m /∈ ψ[g], then βα + iα(w) +m /∈ Iα and so by Lemma 5.1, there is no

real r in L[G] coding the stationary kill of Sβα+iα(w)+m (i.e., such that in

L[r], Sβα+iα(w)+m is no longer stationary).

Now, suppose there is γ ∈ Lim(ωM ) and k ∈ ω such that the following

holds for all n ∈ ω: L[g] � Sγ+m ∈ NS if and only if m ∈ ψ[g]. Then by

Lemma 5.1, ψ[g] = {n ∈ ω : γ + n /∈ Iα} = ψ[wG] where w is such that

βα + iα(w) = γ for some α < ωM . So g = w[gα] = wG. �

Lemma 5.4. Let g = wG for some w ∈ WSα with α < ωM . Then for

every countable suitable model M such that g ∈ M there is a limit ordinal

γ < (ωM )M such that

(L[wG])M � ψ[g] = {m ∈ ω : L[wG] � Sγ+m ∈ NS}.

Proof. LetM be a countable suitable model and let g ∈M. Let γ = iα(w).

Since wG encodes zw (by property (Cα) of Qα) we have that

{fαm,ξ : m ∈ ω, ξ < (ω1)M} ∈ M

and W 0
γ ∩ (ω1)M ∈ M. By property (Dα), wG almost disjointly codes

Yγ+m ∩ (ω1)M for each m ∈ ψ[gα] and hence Yγ+m ∩ (ω1)M ∈ M and also

Xγ+m ∩ (ω1)M ∈ M. These sets belong also to L[g]M. Then for each

m ∈ ψ[g], by (∗ ∗ ∗)γ,m we have that L[g]M � ϕ(W 0
γ ∩ β,Xγ+m ∩ β) where

β = (ω1)M. This means:

Using the sequences {S̄k}k=M−2
k=1 , the set W 0

γ ∩ β almost disjointly codes

W̄ 0 ⊆ ωN−1 and Xγ+m∩β almost disjointly codes a subset Z of ωM−1 whose

even part codes the triple (C̄, W̄ , X̄) with W̄ = W̄ 0 and where W̄ , X̄ are

the L-least codes of ordinals γ̄, δ̄ < ωM such that δ̄ = γ̄+m and C̄ is a club

in ωM−1 disjoint from Sγ̄ .

In particular, in the above γ̄ = γ, δ̄ = γ+m and C̄ is a club disjoint from

Sγ+m. As m ∈ ψ−1[g] was arbitrary, γ indeed witnesses that the lemma

holds. �

Lemma 5.5. Let g be a real such that for every countable suitable modelM
containing g as an element there is γ < (ωM )M such that

(L[g])M � ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS}.

Then for some α < ωM , g = wG where w ∈WSα.

Proof. By Löwenheim-Skolem take a countable elementary submodel M0

of Lωn+1 such that g ∈ M0 and let M be the unique transitive model

isomorphic toM0. Then by assumption

(L[g])M �
(
∃γ ∈ Lim(ωM )

)
ψ[g] = {m ∈ ω : Sγ+m is non-stationary}
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so by elementarity the same holds with (L[g])M replaced by LωM+1 [g], and

hence for some γ ∈ Lim(ωM )

L[g] � ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS}.

But at some stage α < ωM we adjoined a generic permutation wG such that

βα + iα(w) = γ and by (5.1) we have

ψ[wG] = {m ∈ ω : (∃r ∈ P(ω) L[r] � Sγ+m ∈ NS}.

Since there is no accidental coding of a stationary kill (Lemma 5.1) ψ[g] ⊆
ψ[wG], and so g = wG. �

Lemma 5.6. The MCG G is Π1
2 in L[G].

Proof. Recall that we denote by g0 the �rst generator added by PG1 = QG0 over

V3. Note �rst that g ∈ G if and only if there is k ∈ ω, α < ωM , and w ∈WSα
(i.e., w has no proper conjugated subwords) such that (g0)kg = wG.

By the previous lemmas, g ∈ G if and only if g ∈ S∞ and the following

statement Φ(g) holds: For every suitable countable model M if for some

g∗ ∈M∩ S∞
L[g∗]

M � ψ[g∗] = {m ∈ ω : Sm is stationary}

then for some k ∈ ω

L[(g∗)
kg]M �

(
∃γ ∈ Lim(ωM )

)
ψ
[
(g∗)

kg
]

=
{
m ∈ ω : Sγ+m is stationary

}
.

It is standard to see Φ(g) can be expressed by a Π1
2 formula. �

Thus we obtain our main result:

Theorem 5.7. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving

generic extension of the constructible universe L in which

ag = b = d = ℵM < c = ℵN
and in which there is a Π1

2 de�nable maximal co�nitary group of size ag.

Proof. The construction outlined in steps (1) − (4) and developed in detail

in Sections 4 and 5, provide a generic extension in which there is a Π1
2-

de�nable maximal co�nitary group of cardinality ℵM , while c = ℵN . To

guarantee that in the same model there are no maximal co�nitary groups of

cardinality strictly smaller than ℵM , we slightly modify the de�nition of Qα

from step (4) to PFα ∗PcdFα ∗P
G
α ∗ Ḋ, where D is Hechler's forcing for adding a

dominating real. Thus in the �nal model, there is a scale of length ωM and

so b = d = ℵM . Since b ≤ ag we obtain ag = ℵM . �

6. Questions

In this section, we state some of the remaining open questions.

(1) Can one construct in ZFC a countable co�nitary group which can

not be enlarged to a Borel MCG? Note that in L, every countable

group can be enlarged to a Π1
1 MCG.
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(2) Can we add a countable co�nitary group which cannot be enlarged

to a Π1
1 MCG using forcing?

(3) Is there a model where 2ω > ω1 and every co�nitary group G0 of size

< 2ω is a subgroup of a de�nable MCG of the same size as G0?

(4) Suppose that α < 2ω is a cardinal and there is a Σ1
2 MCG of size α.

Is there a Π1
1 MCG of size α?

(5) Is there a model where there is a projective MCG of size α with

ω1 < α < 2ω but there is no MED family of size α?
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