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A Σ14 WELLORDER OF THE REALS WITH NS�1 SATURATED

SY-DAVID FRIEDMANAND STEFANHOFFELNER

Abstract. We show that, assuming the existence of the canonical inner model with oneWoodin cardinal
M1, there is a model of ZFC in which the nonstationary ideal on �1 is ℵ2-saturated and whose reals admit
a Σ14-wellorder.

§1. Preliminaries.
1.1. Introduction. The investigation of the nonstationary ideal on a regular car-
dinal has a long history, being strongly tied to the development of several central
concepts of modern set theory such as generic ultrapower constructions, Martin’s
Maximum MM, Woodin’s Pmax -forcing, the stationary tower and many more. The
question regarding the length of antichains of stationary subsets modulo nonsta-
tionarity, first posed by A. Tarski, generated particular interest as it became clear
over time that its answer relies on large cardinals and has deep and surprising effects
on the surrounding set theoretic universe. We start with defining the central notion:

Definition 1.1. Let κ be a regular, uncountable cardinal and NSκ the ideal of
nonstationary subsets of κ. For a regular cardinal � we say that NSκ is �-saturated
if there are no antichains of length � in P(κ)/NSκ, where antichains are meant to
be modulo NSκ-small intersections of their elements.

An equivalent way of saying that NSκ is �-saturated is therefore the statement
that the Boolean algebra P(κ)/NSκ has the �-cc, which highlights the importance
of the notion in the context of generic ultrapowers where conditions are stationary
sets ordered by the subset relation.
There is a long list of research which has been devoted to studying the possible
lengths of antichains in P(κ)/NSκ, involving many prominent set-theorists. In
culminating work, M. Gitik and S. Shelah in [3] proved that NSκ can never be
κ+-saturated for κ > ℵ1. The situation for κ = �1 behaves differently though. It
was known since the early seventies from the work of K. Kunen (see [6]) that there
can be ℵ2-saturated ideals on �1 in the presence of a huge cardinal. Focusing on
the nonstationary ideal, the problem was investigated from a different angle using
completely different methods by J. Steel and R. VanWesep who forced over a model
of a stronger version of AD to obtain a model of choice where NS�1 is saturated. In
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A Σ14 WELLORDEROF THE REALSWITH NS�1 SATURATED 1467

a different line of research, again, the result was later improved with the discovery
of Martin’s MaximumMM, known to be consistent from a supercompact cardinal,
which outright implies that NS�1 is ℵ2-saturated. The ultimate solution to the
problem of the consistency of the statement “NS�1 is ℵ2-saturated” from optimal
large cardinal assumptions was eventually found by S. Shelah who showed in the
early 80s that already a Woodin cardinal suffices. In 2006, R. Jensen and J. Steel
[5] proved that the assumption of a Woodin cardinal is in fact sharp in terms of
consistency strength.
There is a deep and surprising connection between the statement “NS�1 is
saturated” and the ContinuumHypothesis CH. Woodin, improving the earlier men-
tioned result of Steel and Van Wesep, was able to show that given a measurable
cardinal, the saturation of NS�1 implies a projective failure of CH (see [11], The-
orem 3.17). Definable wellorders of the reals enter the picture via a result of G.
Hjorth (see [4]), who showed that in the presence of “every real has a sharp,” a
Σ13-wellorder of the reals implies CH.
The Goal of our article will be to construct a model where NS�1 is saturated
and whose reals admit a Σ14-wellorder. In the light of the abovementioned results
the Σ14-definable wellorder we obtain is optimal in the presence of a measurable
cardinal. Put into a more general context, this work can be seen as an attempt
to find new coding methods which work at the level of inner models for Woodin
cardinals.

1.2. Some of the notions used. We start to introduce the main notions we will use
throughout the proof.

Definition 1.2. A cardinal Λ is aWoodin cardinal if for every functionf : Λ→
Λ there is a κ < Λ with f”κ ⊂ κ, and an elementary embedding j : V →M with
critical point κ such that Vj(f)(κ) ⊂M .
Definition 1.3. Let A be an arbitrary set then a cardinal κ is A-strong up to the
cardinal Λ iff ∀� < Λ ∃j : V →M which is elementary such that
1. crit j = κ ∧ � < j(κ).
2. Vκ+� ⊂M .
3. A ∩ Vκ+� = j(A) ∩ Vκ+� .
We will use the following characterization of a Woodin cardinal.

Fact 1.4. The following are equivalent

• Λ is Woodin.
• For any A ⊂ VΛ, {α < Λ : α is A-strong up to Λ} is stationary in Λ.
We will need a bit more, namely a Woodin cardinal with a ♦-sequence living
below it:

Definition 1.5. Let Λ be a Woodin cardinal then we say that Λ is Woodin with
♦ iff there is a sequence (aκ : κ < Λ) such that for each κ, aκ ⊂ Vκ and for every
A ⊂ VΛ the set

{κ < Λ : A ∩ Vκ = aκ ∧ κ is A-strong up to Λ}
is stationary in Λ.
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1468 SY-DAVID FRIEDMAN AND STEFANHOFFELNER

In terms of consistency strength this adds nothing to being a Woodin cardinal.
If we start with an arbitrary ground model V with a Woodin cardinal Λ, then it
is known (see [8], Lemma 0.3) that forcing with Λ-Cohen forcing will produce a
generic extension of V in which Λ is Woodin with♦. The classical argument which
produces a ♦-sequence in L can be applied to show that in canonical inner models
of large cardinals, if Λ is Woodin in such an inner model, then Λ is in fact Woodin
with ♦ in that model (see [8], Lemma 0.2). Indeed, these models satisfy a sufficient
amount of condensation such that the original proof of Jensen applies.

Fact 1.6. Assume thatM is an inner model of the form L[ �E], where �E is a fine
extender sequence, which contains a Woodin cardinal Λ. Then Λ is Woodin with ♦
inM .

Next, we briefly discuss the central notion of forcing which is used to bound
lengths of antichains in P(�1)/NS�1 . Assume that �S = (Si : i < κ) is a maximal
antichain in P(�1)/NS�1 and we want to pass to a suitable generic extension where
�S has size ℵ1. The naive approach would be to simply collapse κ to ℵ1 but the
drawback is that in the resulting generic extension, �S might lose its maximality,
rendering any iterative argument pointless.
Consequentially in order to show that NS�1 can be ℵ2-saturated, one needs a
way to bound the lengths of antichains in P(�1)/NS�1 , yet preserve maximality of
antichains in P(�1)/NS�1 .

Definition 1.7. Assume that �S is an antichain of stationary subsets of �1. Then
the so-called sealing forcing S(�S) consists of conditions of the form (p, c) where
p : α+1→ �S is a function and c : α+1→ �1 is a function with closed image and
such that

∀� ≤ α(c(�) ∈
⋃
i∈�
p(i))

holds. We let (q, d ) < (p, c) if q and d end-extend p and c respectively.

It is well known that the sealing forcing S(�S) is �-distributive and preserves all
stationary subsets of elements �S, i.e., if Si ∈ �S and T ⊂ Si is stationary, then
T remains stationary in the generic extension by S(�S). Consequentially S(�S) is
stationary subsets of �1 preserving if �S is maximal. In accordance with standard
terminology we will say from now on that a forcing notion P preserves stationary
sets whenever we actually mean that P preserves stationary subsets of �1. With the
sealing forcing available, the natural approach to produce a generic extension in
which NS�1 is saturated is to seal off all the antichains in P(�1)/NS�1 iteratively. A
maximal antichain, once sealed off remains maximal in all stationary set preserving
outer models, as can be easily seen using the generically added club we shot through
the diagonal union of elements of the antichain. Thus once we seal off one maximal
antichain, its length becomes �1 and we have made progress in our attempt of
finding a model for NS�1 saturated.
Knowing what to do in successor stages, we still need to iterate these forcings
in a stationary set preserving way. Shelah was able to get around this problem as
follows. He introduced a weaker form of properness, namely, semiproperness and
found a more general form of the usual countable support iteration, the so-called
revised countable support iteration which can be used to preserve semiproperness.
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A Σ14 WELLORDEROF THE REALSWITH NS�1 SATURATED 1469

A partial order P is said to be semiproper if and only if there is a cardinal 	 > 2|P|

and there is a club C ⊂ [H	 ]� of elementary submodelsM ≺ (H	,∈, <, . . .) such
that every condition p ∈ P ∩M has an (M,P)-semigeneric condition q below it;
and a condition q is (M,P)-semigeneric if and only if whenever α̇ is a name for a
countable ordinal inM then q � α̇ ∈M . Note that a semiproper notion of forcing
preserves stationary subsets of �1.

Definition 1.8. Let (P
 , Q̇
)
<α be an iteration, α a limit ordinal. Then, Pα is
an RCS-limit (short for revised countable support) of P
 , 
 < α if it is a subset of
the inverse limit of the forcings (P
 : 
 < α) such that each p ∈ Pα satisfies

for each q < p there is an ordinal � < α and a P� -condition r such that
r ≤ q � � and in the forcing P� it holds that r �� cf(α) = � or for each 
 ≥ �
p � [�, 
) �P�,


p(
) = 1.

The following theorem justifies the added complications in the definition of RCS-
iterations (see [7], Theorems 5 and 17).

Fact 1.9. Iterations with RCS-support whose factors are semiproper result in a
semiproper forcing notion.Moreover, if we split an RCS iteration into two pieces, then
the tail iteration, as seen from the intermediate model, will look like an RCS iteration
again. More precisely, if (Pα, Q̇α : α ≤ 
) is an RCS iteration and if Ṗ�
 denotes
the factor forcing of P
 over the model V P� , then 1 �� “Ṗ�
 is an RCS-iteration,” for
every � < 
 .

Leaving out almost all the details, Shelah’s proof for making NS�1 saturated
from aWoodin cardinal then proceeds as follows: we let Λ be aWoodin cardinal, fix
some bookkeeping device to list the maximal antichains in P(�1)/NS�1 and start to
seal them off, provided the sealing forcing is semiproper. Taking revised countable
support guarantees that this forcing is semiproper, hence stationary set preserving.
We iterate Λ-many times and theWoodin cardinal is used to show that in the end no
long antichain has survived. A detailed proof of this will be given at the end of this
article. We shall say however that Shelah’s argument allows some alterations, i.e.,
we can force with additional posets during the iteration, as long as the forcings used
are semiproper and the stages where we seal off maximal antichains in P(�1)/NS�1
remains stationary below the Woodin cardinal.

1.3. M#1 andM1. Forcing a definable wellorder of the reals becomes easier if we
assume that the ground model we start with already has some robust definability
properties. Hence, we quickly introduce a couple of properties ofM1, the canonical
inner model with one Woodin cardinal, which will serve as the ground model for
our forcing construction.
M#1 denotes as always the least countable mouse which is not 1-small, i.e., there
is a � which is the critical point of an extender on theM-sequence and a κ < �
such that JM

� |= κ is a Woodin cardinal.M1 is the result of iterating away the last
extender, henceM1 is a class sized model with one Woodin cardinal.
J. Steel in [9] showed that for M1 there is a weaker variant I(M) of the usual
iteration game played on a premouseM which still ensures a sufficient amount of
comparison. We say that a premouseM is Π12-iterable if player II has a winning
strategy for I(M). As the notation suggests, the set of countable premice which are
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1470 SY-DAVID FRIEDMAN AND STEFANHOFFELNER

Π12-iterable is Π
1
2-definable itself (see [10], Lemma 1.7). The winning strategy for II

for I(M) guarantees thatM can be compared with any countable premouse which
is an initial segment of M1, on the other hand, premice N which are embeddable
into initial segments of M1 will hand player II a winning strategy in the iteration
game I(N ). This implies that a nice definition of a cofinal set of countable initial
segments of M1 exists in �1-preserving forcing extensions M1[G ] of M1: we can
consider the set B of countable premice which are Π12-iterable, �-sound and which
project to �. If we consider inM1[G ] an elementM of B and assume it would not
be fully iterable, then one can show that in factM would have to contain all the
reals ofM1. But asM was assumed to be countable, this contradicts the fact that
M1[G ] is an �1-preserving extension of M1. HenceM must be fully iterable and
we can compare it with some N = JM1� , � < �1 an �-projecting initial segment of
M1. As both modelsM andN are �-sound and �-projecting, they actually do not
move during the iteration and therefore we obtain thatM � N or N � M must
hold. If we let the height of N increase we see that certainly an � < �1 exists such
thatM � N = JM1� holds. Thus the following is true:

Lemma 1.10. Let M1[G ] be an �1-preserving forcing extension of M1. Then in
M1[G ] there is Π12-definable set I of premice which are of the form JM1� for some
� < �1. I is defined as

I := {M ctbl premouse : M is Π12-iterable, �-sound and projects to �},
and the set

{� < �1 : ∃N ∈ I(N = JM1� )}
is cofinal in �1.

1.4. Coding reals by triples of ordinals. We present a coding method invented by
A. Caicedo and B. Velickovic which we will use in the argument. All results in this
section are due to them (see [1]).

Definition 1.11. A �C -sequence, or a ladder system, is a sequence (Cα : α ∈
�1, α a limit ordinal), such that for every α, Cα ⊂ α is cofinal and the order type
of Cα is �.

For three subsets x, y, z ⊂ � we can consider the oscillation function. First, turn
the set x into an equivalence relation ∼x , defined on the set � − x as follows: for
natural numbers in the complement of x satisfying n ≤ m, let n ∼x m if and only
if [n,m] ∩ x = ∅. This enables us to define:
Definition 1.12. For a triple of subset of the natural numbers (x, y, z) list the
intervals (In : n ∈ k ≤ �) of equivalence classes of ∼x which have nonempty
intersection with both y and z. Then, the oscillation map o(x, y, z) : k → 2 is
defined to be the function satisfying

o(x, y, z)(n) =

{
0 if min(In ∩ y) ≤ min(In ∩ z),
1 else.

Next, we want to define how suitable countable subsets of ordinals can be used
to code reals. For that suppose that �1 < 
 < � < � are fixed limit ordinals, and
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A Σ14 WELLORDEROF THE REALSWITH NS�1 SATURATED 1471

that N ⊂ M are countable subsets of �. Assume further that {�1, 
, �} ⊂ N and
that for every � ∈ {�1, 
, �}, M ∩ � is a limit ordinal and N ∩ � < M ∩ �. We
can use (N,M ) to code a finite binary string. Namely, let M̄ denote the transitive
collapse ofM , let  :M → M̄ be the collapsing map and let αM := (�1), 
M :=
(
), �M := (�) �M := M̄ . These are all countable limit ordinals. Furthermore,
set αN := sup(“(�1 ∩N)) and let the height n(N,M ) of αN in αM be the natural
number defined by

n(N,M ) := card (αN ∩ CαM ),
where CαM is an element of our previously fixed ladder system. As n(N,M ) will
appear quite often in the following we write shortly n for n(N,M ). Note that as the
order type of each Cα is �, and as N ∩ �1 is bounded belowM ∩ �1, n is indeed
a natural number. Now, we can assign to the pair (N,M ) a triple (x, y, z) of finite
subsets of natural numbers as follows:

x := {card ((�) ∩ C
M ) : � ∈ 
 ∩N}.
Note that x again is finite as ”(
 ∩ N) is bounded in the cofinal in 
M -set C
M ,
which has ordertype �. Similarly we define

y := {card ((�) ∩ C�M ) : � ∈ � ∩N}
and

z := {card ((�) ∩ C�M : � ∈ � ∩N}.
Again, it is easily seen that these sets are finite subsets of the natural numbers. We
can look at the oscillation o(x\n, y\n, z\n) and if the oscillation function at these
points has a domain bigger or equal to n then we write

s
,�,�(N,M ) :=

{
o(x\n, y\n, z\n) � n if defined,
∗ else.

We let s
,�,�(N,M ) � l = ∗ when l ≥ n. Finally we are able to define what it means
for a triple of ordinals (
, �, �) to code a real r.

Definition 1.13. For a triple of limit ordinals (
, �, �), we say that it codes a real
r ∈ 2� if there is a continuous increasing sequence (N� : � < �1) of countable sets
of ordinals, also called a reflecting sequence, whose union is � and which satisfies
that whenever � < �1 is a limit ordinal then there is a � < � such that

r =
⋃
�<�<�

s
,�,�(N�,N�).

Witnesses to the coding can be added with a proper forcing. Moreover there
is a certain amount of control for fixed triples of ordinals and the behavior of
continuous, increasing sequences on them:
Theorem 1.14 (Caicedo-Velickovic). (†) Given ordinals�1 < 
 < � < � < �2
of cofinality �1, there exists a proper notion of forcing P
�� such that after
forcing with it the following holds: There is a reflecting, i.e., increasing and
continuous sequence (N� : � < �1) such that N� ∈ [�]� whose union is � such
that for every limit � < �1 and every n ∈ � there is � < � and sn� ∈ 2n such
that

s
��(N�,N�) � n = sn�
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1472 SY-DAVID FRIEDMAN AND STEFANHOFFELNER

holds for every � in the interval (�, �). We say then that the triple (
, �, �) is
stabilized.

(‡) Further if we fix a real r there is a proper notion of forcing Pr such that the
forcing will produce for a triple of ordinals (
r, �r , �r) of size and cofinality ℵ1
a reflecting sequence (P� : � < �1), P� ∈ [�r ]� such that

⋃
�<�1
P� = �r and

such that for every limit � < �1 there is a � < � such that⋃
�<�<�

s
r�r �r (P�, P�) = r.

We say then that the real r is determined by the triple (
r, �r , �r).

Note here that for (‡) there is no way of controlling the triple of ordinals (
, �, �)
for whichPr adds an increasing sequence (P� : � < ℵ1) of countable sets of ordinals
which code r.
The coding can be used to generically produce a hierarchy on H (�2) which is
robust under stationary set preserving notions of forcing. Recall that two reals r, s
are almost disjoint if r ∩ s is finite. Using our fixed ladder system �C we can define
from �C an almost disjoint family of reals F �C := (rα : α < �1). Then, if X ⊂ �1 is
arbitrary, the almost disjoint coding forcing introduces a new real rX such that the
following holds:

∀� < �1 (� ∈ X iff rX ∩ r� is finite).
It is well known that this forcing is ccc, therefore proper.

Definition 1.15. Fix a ladder system �C and let F �C be a family of almost disjoint
reals which is definable from �C . Let T �C denote the following list of axioms:

1. ∀x(|x| ≤ ℵ1).
2. ZF−.
3. Every subset of �1 is coded by a real, relative to the almost disjoint family F �C .
4. Every triple of limit ordinals is stabilized in the sense of † using �C .
5. Every real is determined by a triple of ordinals in the sense of ‡ using �C .
A highly useful feature of models of T �C is that they are uniquely determined by
their height, consequentially the uncountable T �C -models form a hierarchy below
H (�2).

Theorem 1.16. Let �C be a ladder system inM , assumed to be a transitive model
of T�C . Then,M is the unique model of T �C of heightM ∩Ord .
Proof. Assume that M and M ′ are transitive, M ∩ Ord = M ′ ∩ Ord , �C ∈
M ∩M ′, which implies thatM andM ′ have the right �1, and bothM andM ′ are
T �C -models. We work towards a contradiction, so assume thatX ∈M yet X /∈M ′.
As every set in M has size at most ℵ1 we can assume that X ⊂ �1, hence there is
a real rX ∈ M which codes X with the help of the the almost disjoint family F �C .
Now rX is itself coded by a triple of ordinals (
, �, �) ∈M , thus there is a reflecting
sequence (N� : � < �1) ∈ M witnessing that rX is determined by (
, �, �). As
M ∩Ord = M ′ ∩Ord , (
, �, �) is inM ′ as well, and there is a reflecting sequence
(P� : � < �1) ∈ M ′ which witnesses that (
, �, �) is stabilized in M ′. The set
C := {� < �1 : P� = N�} is a club on �1, hence if � is a limit point of C , the
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A Σ14 WELLORDEROF THE REALSWITH NS�1 SATURATED 1473

reflecting sequence (P� : � < �1) ∈ M ′ will stabilize at � and compute rX , hence
X is an element ofM ′ which is a contradiction. �

§2. NS�1 saturated and a projective wellorder. The Goal of this section is the
proof of the following result:
Theorem 2.1. Assume thatM1 exists, then there exists a generic extensionM1[G ]
ofM1 such that inM1[G ] NS�1 is ℵ2-saturated and there is a lightface Σ14-definable
wellorder of the reals.
Its proof is organized as follows. We start with M1 as our ground model, let
Λ be its Woodin cardinal. We will use an RCS-iteration of length Λ guided by a
♦-sequence (aα)α<Λ, which will seal off long maximal antichains in P(�1)/NS�1 as
long as the forcing is semiproper, code reals into triples of ordinals, stabilize sets of
triples of ordinals, add almost disjoint reals, and constantly localize the information
we obtained during the process into subsets of �1 whose information can be read
off already by suitable countable transitive models of ZF−. As the factors are all
semiproper, the iteration will be a semiproper, hence stationary-preserving forcing.
In the end the Woodin cardinal Λ will be used to show that NS�1 in fact is ℵ2-
saturated in the final model. Yet we will have produced a sequence of T �C -models
whose heights are unbounded in�2, and the fact that we did produce local witnesses
for being a T �C -model will guarantee us that the wellorder can be seen in suitable,
countable, transitive models which ultimately yield a Σ14-definable wellorder.

2.1. Coding the reals. Wewill use theT �C models to set up a wellorder of the reals.
It is a fact that every transitive T �C modelM can define a wellorder <M of (�

�)M

via letting r <M s if and only if the antilexicographically least triple of ordinals
(αr, 
r , �r) which codes r in the sense of (‡) is less than the antilexicographically
least triple which codes s . If we assume thatV is a universe such thatH (�2) |= T �C ,
then the local wellorders <M of the T �C -models M ∈ V can be put together in a
straightforward way to form a new wellorder of �� .

Definition 2.2. Assume that V is a universe such thatH (�2) |= T �C . We define
a function f : �� → Ord ; for a real r we let f(r) be the least ordinal � such that r
is in the unique T �C -model of height �. Then for r, s ∈ �� we set r < s if and only if
f(r) < f(s) or f(r) = f(s) = α and r <Mα s , forMα being the unique T �C -model
of height α, and <Mα being the local wellorder defined above.

The just defined wellorder is very robust.
Lemma 2.3. Assume that V is some universe such thatH (�2) |= T �C . The order<
has a Δ1( �C ) definition. Consequentially any transitive ZF−-modelM which contains
�C and satisfies that every real is contained in some T �C -model will correctly compute
the relation x < y for x, y ∈M , i.e.,M |= x < y if and only if V |= x < y.
Proof. The functionf which maps every real to the height of the leastT �C -model
containing it is Δ1( �C ). The definition of the local wellorder <Mα is Δ1( �C , α) so <
is defined via a Δ1( �C )-formula. �
2.2. Definition of the iteration. Next, we describe how to code reals nicely while
making NS�1 ℵ2-saturated. In order to get NS�1 ℵ2-saturated, we need an RCS-
iteration of length Λ, where Λ is the Woodin cardinal. We fix a ♦-sequence
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1474 SY-DAVID FRIEDMAN AND STEFANHOFFELNER

(aα : α < Λ) in the ground model V = M1 and use the already introduced,
cofinal set ofM1-initial segments I whose set of codes is Π12-definable, to construct
a ladder system �C which is Σ13-definable in the codes and whose definition will con-
tinue to produce a ladder system in �1-preserving outer models ofM1. Simply let
(α,Cα) ∈ �C if and only if there is a countableM1 initial segmentM ∈ I which con-
tains (α,Cα) andwhich sees thatCα is the<M -least set inM (where<M denotes the
usual definable wellorder on the premouseM ) which is cofinal in α and has order
type �. The definition is Σ13. This particular �C will be our fixed ladder system we
use in our proof. We additionally fix an almost disjoint family of reals F �C of size ℵ1
which we can compute from the ladder system �C , via turning the set of reals which
code elements of �C into an almost disjoint family of reals using the standard trick
of turning an arbitrary set of reals into an almost disjoint family. As an alternative,
we could also use again the wellorder <M to define an almost disjoint family F ,
both ways work but we stick with the first.
We describe first informally how the iteration looks. As always we have stages
which are used to code informationyielding the definablewellorder and stageswhere
we seal off long antichains in P(�1)/NS�1 . We ensure that we code all the reals we
generate during the iteration into triples of ordinals (
, �, �) using the proper forcing
of (‡). At the same time, we ensure that all the triples of ordinals below �2 stabilize
using the forcing described in (†), and that every set X ⊂ �1 we create will be
coded by a real rX relative to the almost disjoint family of reals F �C . Additionally,
whenever our♦-sequence hits the name of a long antichain in P(�1)/NS�1 we seal
it off, if doing so is semiproper. As we have stationarily many inaccessible cardinals
below the Woodin Λ, we will stationarily often hit inaccessible stages α such that
the model (M1)α[Gα ] (where we write (M1)α for JM1α ) is equal toH (�2)M1[Gα] and
satisfies the already defined theory T �C . So

(1) (M1)α [Gα] |= ZF− and ∀x(|x| ≤ ℵ1).
(2) (M1)α [Gα] |= ∀
, �, �((
, �, �) is stabilized).
(3) (M1)α [Gα] |= ∀r ∈ ��∃(
r , �r , �r) (r is determined by (
r, �r , �r)).
(4) (M1)α [Gα] |= ∀X (X ⊂ �1 ∃rX ∈ ��(rX codesX with the help of the almost
disjoint family F �C )).

Whenever we hit such a stage everything (M1)α[Gα ] sees about < will be preserved
in all future extensions in our iteration by Lemma 2.3. Thus, we will additionally
localize the T �C -model (M1)α[Gα ] i.e., we add a subset Yα of �1 such that every
countable transitive model N of ZF− which contains Yα ∩ �N1 will also contain
�C � �N1 and see that there is a T �C��N1 -model which witnesses true assertions about
the wellorder <. This uses a proper forcing again. As all the iterands are proper
or semiproper, using an RCS-iteration will yield a semiproper notion of forcing.
In the end, we will argue that indeed NS�1 is saturated and there is a Σ

1
4-definable

wellorder of the reals.
We start now with a more detailed description of how the iteration should look.
We will construct the iteration recursively, so assume that α < Λ and we have
already constructed P
 for 
 ≤ α. We define the forcing Q̇α in V Pα as follows:

(i) Assume that aα is a Pα-name of a real rα . Then we let Q̇α be the Pα-name
of the forcing which codes rα into a triple of ordinals (
rα , �rα , �rα ), such
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A Σ14 WELLORDEROF THE REALSWITH NS�1 SATURATED 1475

that 
rα , �rα , �rα < �2 and using the already fixed �C -sequence. This forcing
is followed by considering all the triples of ordinals (
 ′, � ′, �′) which are
antilexicographically below (
rα , �rα , �rα ) and which have not been stabilized
yet. We use a countable support iteration of forcings which stabilize each
such triple (
 ′, � ′, �′). As a summary Q̇α is an �1-long iteration of proper
forcings with countable support, resulting in a proper forcing, andwe obtain
a model where the real rα is coded into the triple (
rα , �rα , �rα ) with the help
of the ladder system �C , and each other triple of ordinals below it will be
stabilized.

(ii) Assume thatα is an inaccessible, further thataα is thePα-name of amaximal
antichain Sα in P(�1)/NS�1 , and assume that the sealing forcing S(Sα) is
semiproper. Then force with it, i.e., let Q̇α be S(Sα).
Otherwise force with Col(2ℵ2 ,ℵ1), the usual Lévy collapse which collapses
2ℵ2 down to ℵ1.

(iii) If aα is a Pα-name of a subsetX of�1 then use almost disjoint coding forcing
to add a real rX which codes X with the help of the almost disjoint family
of reals F �C .

(iv) If α is an inaccessible cardinal and if (M1)α [Gα] is such that (M1)α [Gα]
equals H (�2)M1[Gα ] and (M1)α [Gα] |= T �C , then we first collapse its size
down to ℵ1, and subsequently add a subset Y of �1 which should code the
T �C -model (M1)α [Gα ] in a more suitable way. This set Y will then be coded
into a real rY using almost disjoint coding forcing.

The points (i), (ii), and (iii) are clear, thus we shall discuss (iv) in detail: So assume
that α is an inaccessible cardinal, Gα is the generic filter for the iteration we have
produced so far, �C is the ladder system whose codes form a Σ13-definable subset of
the reals, F �C the almost disjoint family of reals we define from �C , (M1)α [Gα] =
H (�2)M1[Gα ], and (M1)α [Gα] |= T �C .
We collapse the size of (M1)α [Gα ] to ℵ1 using Lévy-collapse and let H be the
generic filter over M1[Gα ]. For the following fix a pair of Δ1- definable functions
dec1 and dec2 (dec for decoding) which act on subsets of �1.

Fact 2.4. InM1[Gα ][H ] there is a set Xα ⊂ �1 such that
1. dec1(Xα) = �C , and for every limit ordinal � < �1, dec1(Xα ∩ �) = �C � �.
2. dec2(Xα) = (M1)α [Gα].

The construction of such a set Xα is straightforward. As a consequence, every
transitive model M of ZF− which contains Xα will see that dec1(Xα) is a ladder
system and dec2(Xα) is the unique Tdec1(Xα)-model of height α.
The goal now is to rewrite Xα into a set Yα ⊂ �1 such that not only ℵ1-sized,
but already suitable, countable ZF−-models M which contain Yα ∩ �M1 see that
dec1(Yα ∩�M1 ) is a ladder system and dec2(Yα ∩�M1 ) is a Tdec1(Yα∩�M1 )-model. We
can force the existence of such a set Yα with a proper notion of forcing. In the
next Lemma we will use our suitable decoding functions deci from above, but we
demand that deci(Y ) will act only on the even elements of Y . To be more precise
for every set of ordinals Y we collect the even elements Yeven of Y and when-
ever we write deci(Y ) we actually mean deci(Yeven). This facilitates the notation
slightly.
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1476 SY-DAVID FRIEDMAN AND STEFANHOFFELNER

Lemma 2.5. Let the set Xα be just as above. There is a proper notion of forcing R
which introduces a set Yα ⊂ �1 such that ifH ′ is an R-generic filter,M1[Gα ][H ][H ′]
satisfies that for any countable, transitive N , � := �N1 , which contains Yα ∩ � then
for our fixed, recursively definable decoding functions deci , which act only on the even
entries of Yα , the following holds in N :

1. dec1(Yα ∩ �) = �C � �.
2. dec2(Yα ∩ �) is a Tdec1(Yα∩�)-model.
Proof. Working in M1[Gα ][H ] we have that (M1)α[Gα ] is a model T �C of size

ℵ1. Fix a model of the form (M1)�[Gα ][H ] for � > α which contains the set
Xα ⊂ �1 from above and consider the club C of countable, elementary submodels
of (M1)�[Gα][H ] which contain Xα . If we pick an arbitrary M ∈ C then M will
contain �C and (M1)α [Gα], thus for the transitive collapse M̄ ofM we have that

M̄ |= dec1(Xα ∩ �M̄1 ) is the ladder system �C � �M̄1 for �M̄1 .
M̄ |= dec2(Xα ∩ �M̄1 ) is a Tdec1(Xα∩�M̄1 )-model.

In order to get the full statement of the Lemma, we add additional information
to Xα which yields Yα such that any countable transitive model N of ZF

−, which
contains Yα ∩ �N1 must have its �1 to be an �M1 for someM ∈ C . To achieve this,
we use forcing.
Let R be the following partial order: conditions p ∈ R are �1-Cohen condi-
tions, i.e., functions from limit ordinals � < �1 with �� = � (in terms of ordinal
exponentiation) to 2, ordered by end-extension which additionally satisfy:

1. the even ordinals of {� < � : p(�) = 1}, where � = dom(p) code the set
Xα ∩ �.

2. for every limit ordinal � ≤ dom(p) with �� = �, p � � satisfies that whenever
M |= ZF− is countable and transitive and � = �M1 and (p � �) ∈M then
(a) if we consider p � � as a subset of �,M |= dec1(p � �) = �C � �.
(b) M |= dec2(p � �) is a T �C�� -model.

Note that whenever we do have a condition p ∈ R, and � < �1 is a limit ordinal,
we can extend p to a condition q < p such that � ∈ dom(q). This is clear as we
can pick a function q end-extending p with domain some countable limit ordinal
� > � and write into the odd ordinals of the first �-block of q following dom(p) a
surjection of � to �, while the even entries of q in the interval (dom(p), �) just code
Xα ∩ �. Then no countable transitive modelM of ZF−, which contains q can have
its �1 in the interval (dom(p), �], thus the second property for being a condition in
R is satisfied automatically.
Consequentially, the set D� := {p ∈ R : � ∈ dom(p)} is dense for every � < �1
and the generic will produce a subset of �1, Yα with the desired properties for
countable, transitive models of ZF− inM1[Gα][H ]. This already suffices as we will
see below that the forcing R is also �-distributive.
What is left is to show that the forcing R is proper: for that we pick the
(M1)�[Gα ][H ] from above and recall that the club C was defined to be the set
of all countable elementary submodels of (M1)�[Gα][H ] which contain the set Xα .
IfM ∈ C , and p ∈ R∩M then we shall construct a q < p which is (M,R)-generic.
We list all the dense sets Dn inM and recursively construct a descending sequence
of conditions starting at p = p0 > p1 > · · · such that pn ∈ Dn and such that the
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supremum of the (dom(pn))’s equals �1 ∩M . If we can show that the limit p� is a
condition in R, we are done.
Thus, we shall argue that whenever � ≤ dom(p�), p� ∩ � is contained in a
countable, transitive model N |= ZF− such that � = �N1 then it will satisfy that
dec1(p� � �) equals �C � � and dec2(p� � �) is a T �C��-model. This is clear by

definition of R for every � < dom(p�). If � = dom(p�) then as � = �M̄1 ,M ∈ C
we know by the above that

M̄ |= dec1(Xα ∩ �) is the ladder system �C � � and
M̄ |= dec2(Xα ∩ �) is a Tdec1(Xα∩�)-model.

Consequentially if N |= ZF− is a countable, transitive model which contains p�
and dom(p�) = � = �N1 , then N will also contain Xα ∩ �, as this is coded into
the even entries of p�. As the decoding functions deci are absolute for transitive
models, N will compute the information written into Xα ∩ � just in the same way
as M̄ does. The notion of being a ladder system and the notion of being a T-
model is absolute for transitive models as well, thusN will satisfy that dec1(p� � �)
equals �C � � and dec2(p� � �) is a T �C��-model. So p� is indeed a condition in
R and the forcing is proper. Note that the same argument shows that R is also
�-distributive. �
It is important to note the following: assume that dec2(Xα) = H (�2)M1[Gα ] thinks
that for two reals x and y, x < y holds. Then, any countable transitive model N ,
� = �N1 which contains Yα ∩ �, x and y will see that dec2(Yα ∩ �) |= x < y. This is
immediate from the above proof and will play an important role later.
In the next step, we will code the setYα ⊂ �1 into a real rYα , using almost disjoint
coding relative to our fixed almost disjoint family of reals F �C = (r� : � < �1).
Thus, we introduce a real rYα such that the following holds:

∀� < �1 (� ∈ Yα iff rYα ∩ r� is finite).
It is well known that this forcing is ccc, therefore proper. This ends the definition and
the discussion of the forcing we use in Case (iv) in the definition of our iteration.
We close this section with a discussion of what we have produced following the
definition of the iteration.
The effect of the real rYα is that any countable, transitive model M of some
reasonable fragment of ZFC which contains it will also contain the set Yα as long
asM knows enough about the almost disjoint family F �C . These models will play a
important role in our proof thus we define rigorously what we mean with a suitable
model.

Definition 2.6. A countable, transitive modelM of ZF− is said to be suitable if
(M1)�M1 ∈M and every α < �M1 is already countable in (M1)�M1 .

Note that the statement “N is a suitable model” is Σ13 for the N ’s whose �1
coincides with the �1 of an (M1)� ∈ I, where I is the Π12-definable family of
countable initial segments of M1, as we can write “N is suitable” if and only if
∃M (M ∈ I ∧ M ∈ N ∧ �N1 = �M1 ). It can also be written in a Π13-way, as
∀M (M ∈ I ∧ �M1 = �N1 → M ∈ N) yields that N is suitable. If we want to
quantify over all suitable models N , we can use the latter formulation as well: a
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1478 SY-DAVID FRIEDMAN AND STEFANHOFFELNER

formula ∀N(N is suitable→ ϕ(N, . . .)) can be equivalently written as ∀N∀M (M ∈
I ∧�N1 = �M1 ∧M ∈ N → ϕ(N, . . .)) which has the advantage that its antecedent
is a Π12-formula.
As already mentioned above, suitable models containing rYα also contain Yα up
to their local�1. Indeed, ifM is suitable and rYα ∈M , thenM will contain �C ∩�M1 ,
as it can use (M1)�M1 and take advantage of the fact that

�C is uniformly definable in
all initial segments ofM1. Thus F �C ∩ �M1 ∈ M , as the latter is definable from the
ladder system in an absolute way. SoM can decode from rYα and obtain Yα ∩�M1 .
We have already shown that the containment ofYα causes every countable transitive
model to see that it also contains a local T �C model. To summarize the above, in
Case (iv) of the definition of the iteration we force with a three step iteration of
proper forcings which introduce a real rYα such that the following holds:

♥ Every suitable model M of ZF− which contains rYα thinks that rYα codes
Yα∩�M1 such that dec1(Yα∩�) = �C � �. Further, dec2(Yα∩�) is aTdec1(Yα∩�)-
model. Moreover if x ∈M and y ∈M are two reals such thatM1[Gα ] |= x <
y, then dec2(Yα ∩ �) |= x < y.

2.3. NS�1 is saturated and a projective wellorder. Let G be a generic filter for
the Λ-long iteration we defined in the last section. We shall discuss the important
properties of our resulting universeM1[G ] and eventually show that the model will
indeed satisfy thatNS�1 is saturated and there is a Σ

1
4 definable wellorder of the reals.

Note first that M1[G ] will contain many T �C -models, in fact H (�2)
M1[G ] is a T �C -

model itself and {α < �2 : ∃Nα(Nα is the T �C model of height α)} is unbounded
(in fact stationary) in �2. We will use the T �C -models to witness the wellorder <
of the reals. Recall that x < y was defined to hold whenever the least T �C -model
containing x has shorter ordinals height than the least such model for y or else if
M |= x <M y. It is a direct consequence of Lemma 2.3 that T �C -models can be
used to witness the relation x < y, i.e., for arbitrary reals in M1[G ] it holds that
x < y if and only if there is a T �C -modelM which itself contains unboundedly many
T �C -models such thatM |= x < y. Thus, in order to obtain a projective wellorder
of the reals it is sufficient to find a projective way of defining T �C -models. InM1[G ]
this can be done by the way we defined our iteration.

Lemma 2.7. There is aΠ13-formula 	(x) for which the following holds inM1[G ]:

∀r ∈ ��(if 	(r) holds then r is the almost disjoint code for a Y ⊂ �1 and
dec2(Y ) is a T �C -model relative to the almost disjoint family F �C ).

Proof. First we let �(x) be the Σ13-formula which implies that x is a code for a
suitable model, i.e., �(x) := ∃z (z is a code for an element of I ∧ �z1 = �x1 ∧ z ∈
x) ∧ x |= ZF−, where I is the Π12-definable family of countable initial segments of
M1. Recall that ifM is a suitable model, we can use (M1)�M1 ∈M to define �C � �M1 ,
by picking always the <(M1)�M1

-least real coding a cofinal set of ordertype �. Once

we have �C � �M1 , we also get the almost disjoint family F �C � �M1 . Let �(x, y) be the
formula, stating that x is anM1-initial segment and y being the ladder system we
get, when forming a ladder system recursively via always picking the <x-least real.
Note that �(x, y) can be written as a Π12-formula: �(x, y) ↔ (x ∈ I and x |= y
is the ladder system one obtains when always picking the <x-least real). Likewise,
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there is a Π12-formula �(x, y) which implies that x is anM1-initial segment and y
is the almost disjoint family F �C � �x1 .
We let 	(r) be the following formula:

	(r) ↔ ∀M (�(M ), and r ∈ M and ∃F (�((M1)�M1 , F ) and M |= “r is the
almost disjoint code for a set Y ⊂ �1 using F ” and �((M1)�M1 , dec1(Y ))
then dec2(Y ) is a Tdec1(Y )-model).

Note that 	(r) is of the form ∀M (Σ13 ∧Δ0 ∧∃F (Π12 ∧Δ12)∧Π12 → Δ12), thus 	(r) is a
Π13-formula. In plain words 	(r) says that every suitable modelM containing r will
decode out of r a subset Y of �M1 which in turn codes two things namely a ladder
system inM (which also is the ladder systemM would construct with the help of its
M1 initial segment) and aT-model inM relative to that ladder system. Note further
that we ensured that inM1[G ] there are plenty of such reals r for which 	(r) holds,
as we cofinally often added them whenever we were in Case (iv) in the definition
of our iteration. This is a consequence of the fact that ♥ holds in that situation for
such r.
What is left is to show that whenever 	(r) holds in M1[G ], then r is indeed
an almost disjoint code relative to the almost disjoint family F �C for a T �C model.
Assume not, thus r is the almost disjoint code of a set which is not a T �C -model even
though 	(r) holds. We pick a large enough,M1-inaccessible cardinal κ and some
suitable � < Λ such that (M1)κ[G�] thinks that the real r does code Y and dec2(Y )
is not a T �C -model. So ((M1)κ[G�],∈, (M1)�1 ) satisfies that �C is the outcome when
applying the Σ13-definition of our ladder system in (M1)�1 , it satisfies that F �C is the
(M1)�1 -evaluated almost disjoint family and Y ⊂ �1 is the decoded r, yet dec2(Y )
is not a T �C -model.
We can always choose a countable elementary submodel (N,∈, (M1)�1 ) ≺
((M1)κ[G�],∈, (M1)�1 ) containing r such that its transitive collapse (N̄ ,∈, (M1)�N̄1 )
is such that (M1)�M̄1 ∈ I, thus �(N̄) holds. Moreover, N̄ models the rest of
the antecedent of 	(r) yet still thinks that r does not code a T �C��N̄1 -model

by elementarity of N . But then N̄ witnesses that 	(r) is not true which is a
contradiction. �
Wewill use the projective formula for being aT �C -model to findwitnessingmodels
which are correct about the wellorder< of the reals. AsT �C -models are correct about
< we can internalize the wellorder, thus arriving at a Σ14-definition.

Lemma 2.8. There is a Σ14-formulaΦ(x, y) such that inM1[G ], x < y is true if and
only if Φ(x, y) holds.

Proof. We take advantage of the fact thatx < y if and only if there is aT �C -model
N which satisfies that x < y holds. Recall the formula 	(r) which asserts that every
suitable modelM will decode out of r a ladder system and a T-model relative to it.
Now all that is left is to add that this local T-model in fact witnesses x < y.
Let Φ(x, y) be the formula

∃r∀M (if �(M ) ∧ r, x, y ∈ M ∧ ∃F ∈ M (�((M1)�M1 , F ) and M |= “r and
F code a set Y ⊂ �1” and �((M1)�M1 , dec1(Y )) then dec2(Y ) ∈ M is a
Tdec1(Y )-model which sees x < y)).
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Φ(x, y) is of the form ∃r∀M (Σ13 ∧ Δ0 ∧ ∃F (Π12 ∧ Δ12) ∧ Π12 → Δ12)), hence Σ14. We
shall show that inM1[G ], x < y is true if and only if Φ(x, y) is true.
For the direction from left to right, note that if x < y then there will be a
sufficiently large α < Λ such that (M1)α [Gα] is a T �C -model and the H (�2) of
M1[Gα]. We can assume that {x, y} ∈ M1[Gα ]. We know already that at such a
stage we will add a real r such that ϕ(r) and ♥ holds, thus Φ(x, y) is true.
For the direction from right to left note that when Φ(x, y) holds, this means
in particular that 	(r) holds. By the last Lemma, r is the almost disjoint code
for a T �C -model, and by the last paragraph it sees x < y. Thus x < y is true in
M1[G ]. �
What is left is to show that in M1[G ] the nonstationary ideal NS�1 is indeed

ℵ2-saturated. But this does not cause any problems as the coding forcings were all
seen to be proper, the sealing forcings were only used when semiproper and we used
RCS-iteration for the limit steps. Therefore the iteration yields a semiproper, thus
stationary set preserving extension ofM1 and we can just repeat Shelah’s proof that
NS�1 is ℵ2-saturated in the final model.
Theorem 2.9. If G denotes the generic filter for the iteration then in M1[G ] the
nonstationary ideal NS�1 is ℵ2-saturated.
Proof. The proof draws heavily from R. Schindler’s notes [8]. Assume for a
contradiction thatNS�1 is notℵ2-saturated inV [G ], i.e., there is amaximal antichain
�S = (Si : i < �2) in P(�1)/NS�1 . Let � be a P-name for the sequence. As
V [G ] |= ℵ2 = Λ for our Woodin cardinal Λ, we claim that it is possible to find an
inaccessible κ below Λ such that the following three properties hold:

1. κ is P⊕ �-strong up to Λ in V .
2. κ = �V [G�κ]2 .
3. �S � κ = (Si : i < κ) = (� ∩ Vκ)G�κ is the maximal antichain in V [G � κ]
which is picked by the ♦-sequence at stage κ.

This is clear as we can assume that our♦-sequence lives on the stationary subset of
inaccessible cardinals below �, and for all inaccessible κ property 2 automatically
holds. Moreover the sets

C1 := {κ < � : �S � κ = (Si : i < κ) = (� ∩ Vκ)V [G�κ]}
and

C2 := {κ < � : ∀α < κ∀S ∈ P(�1) ∩V Pα stationary ∃S̄ ∈ �S � κ(S ∩ S̄ /∈ NS)}
are both clubs, therefore hitting the stationary set T consisting of the points κ < Λ
where � ∩ Vκ = aκ and κ is �-strong up to Λ. Thus, if κ is in the nonempty
intersectionC1∩C2∩T then 1 and 2 are satisfied, and the recursive definition of our
forcing P yields that at stage κ, as aκ = � ∩ Vκ, the sealing forcing S((� ∩ Vκ)G�κ)
is at least considered, and in order to show property 3, it suffices to show that
(� ∩ Vκ)G�κ) = S̄ � κ is maximal in V [G � κ]. But this is clear as by the definition
of RCS iteration and as |Pα| < κ we take at inaccessible κ’s the direct limit of the
Pα ’s, thus each stationary S ⊂ �1 in V Pκ is already included in a V Pα for α < κ. So
we have ensured the existence of a κ with all the 3, above stated properties.
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Now the forcing S(�S � κ) cannot be semiproper at stage κ, as otherwise we would
have to force with it, therefore killing the antichain �S. So there exists a condition
(p, c) ∈ S(�S � κ) such that the set

T̄ := {X ≺ (Hκ+)V [G�κ] : |X | = ℵ0 ∧ (p, c) ∈ X ∧ �Y ⊃ X (Y ≺ (Hκ+)V [G�κ]
∧ |Y | = ℵ0 ∧ (X ∩ �1 = Y ∩ �1) ∧ ∃(q, d ) ≤ (p, c) ((q, d ) is Y-semigeneric))}
is stationary in V [G � κ], and by construction of our iteration, the κ-th forcing in
P is Col(�1, 2ℵ2 ), so in V [G � κ+1] there is a surjection f : �1 → (Hκ+)V [G�κ]. As
Col(�1, 2ℵ2 ) is proper the set T̄ remains stationary in V [G � κ + 1] which implies
that

T := {α < �1 : f”α ∈ T̄ ∧ α = f”α ∩�1}
is stationary in V [G � κ + 1]. As the tail P[κ+2,Λ) remains semiproper, seen as an
iteration withV [G � κ+1] as groundmodel, we can infer thatT remains stationary
in V [G ] and hence there exists an i0 < Λ such that

(∗∗) T ∩ Si0 is stationary in V [G ].
Let us shortly reflect the situation we are in. The idea is to find a model X ∈ T̄
such that we can find a (X,S(�S � κ))-semigeneric condition (q, d ) < (p, c), thus
arriving at a contradiction. In order to do so we have to ensure thatα = X ∩�1 is in
some Si ∈ �S � κ. As �S was assumed to be maximal there is indeed an index i0 < �
which is as desired, this index however might be bigger than κ. This is where the
large cardinal assumption comes into play. We can find an elementary embedding
j : V → M which fixes the name for the antichain �S and such that j(κ) > i0. We
shall use a lifted version of this elementary embedding j to derive a contradiction.
First, let � < Λ, � > max(i0, κ + 1) be such that (� ∩ V�)G�� = �S � �, so we
have (� ∩ V�)G��(i0) = Si0 . As κ was chosen to be P ⊕ �-strong up to Λ we let
j : V → M be an elementary embedding with critical point κ, such that M is
transitive,Mκ ⊂M , V�+� ⊂M , j(P) ∩ V� = P ∩ V�, and j(�) ∩V� = � ∩ V�.
H should denote the generic filter for the segment (P[�+1,j(κ)])

M [G��] of j(P) over
M [G � �]. Then, we lift j to an elementary embedding

j∗ : V [G � κ]→M [G � �,H ].
Notice that (V�+�)V [G��] = (V�+�)M [G��].
Now we let (Xi : i < �1) ∈ V [G � κ + 1] be an increasing continuous chain
of countable elementary substructures of (Hj(κ)+)

M [G�κ+1] with {� ∩ V�, i0} ⊂ X0
satisfying for all i < �1 the following three properties:

(a) i ∈ Xi+1.
(b) f”(Xi ∩ �1) ⊂ Xi .
(c) j”(Xi ∩ (Hκ+)V [Pκ]) ⊂ Xi .
Let Ḡ := G � [κ + 2, �], then we have that

{Xi [Ḡ ] ∩ �1 : i < �1} ∈ V [G � �]
is a club in �1 so intersecting it with the stationary set defined in (∗∗) we find some
i < �1 such that Xi [Ḡ ] ∩ �1 = Xi ∩ �1 ∈ T ∩ Si0 .
Write X := Xi , α := X ∩ �1. As at stage κ we had to force with the �-closed
Col(2ℵ2 ,ℵ1) we know thatX ∩(Hκ+)V [G�κ] ∈ V [G � κ]. Remember thatf ∈ V [G �
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κ+1] was chosen as a surjection of �1 onto (Hκ+)V [G�κ], so as α ∈ T by definition
of T f”α ∈ T̄ and α = f”α ∩ �1, and hence by (b)

f”α ⊂ X ∩ (Hκ+)V [G�κ] ∈ V [G � κ].

As α = f”α ∩ �1, f”α ∈ T̄ and f”α ⊂ X ∩ (Hκ+)V [G�κ] we get that X ∩
(Hκ+)V [G�κ] ∈ T̄ and therefore

(∗ ∗ ∗) j∗(X ∩ (Hκ+)V [G�κ]) ∈ j∗(T̄ ).
Note that our second generic H , denoting the generic filter for the segment
(P[�+1,j(κ)])

M [G��] of j(P) overM [G � �] has not been specified yet. As the segment
(P[�+1,j(κ)])

M [G��] of j(P) over M [G � �] is semi-proper we have that there is a
condition q in the segment (P[�+1,j(κ)])M [G��] of j(P) which is (X [Ḡ ],P[�+1,j(κ)])-
semigeneric. If we pick H such that q ∈ H , then by semigenericity of q, we obtain
X [Ḡ,H ] ∩ �1 = X [Ḡ ] ∩ �1 = X ∩ �1 = α ∈ Si0 = (� ∩ V�)G��(i0) ∈ X [Ḡ,H ].
But also due to (c) we have that

j∗(X ∩ (Hκ+)V [G�κ]) = j∗”(X ∩ (Hκ+)V [G�κ]) ⊂ X [Ḡ,H ].
This gives us the desired contradiction as we can find an (X [Ḡ ,H ], j(S(�S � κ)))-
semigeneric condition below j(p, c) = (p, c). Indeed we can just list the countably
many names for countable ordinals inX [Ḡ,H ] alongwith conditions of j(S(�S � κ))
deciding them below (p, c) and let (p′, c′) ∈ j(S(�S � κ)) be just the condition
with dom(c′) = dom(d ′) = α + 1, c′(α) = α and p′(i) = Si0 for some i < α.
Note here that we can assume that (p′, c′) is also an element of V [G � κ], as
we can assume that the extender which gives rise to the elementary embedding
j : V → M is κ-closed. So X [Ḡ,H ] together with (p′, c′) < (p, c) witness that
j∗(X ∩ (Hκ+)V [G�κ]) /∈ j∗(T̄ ), contradicting (∗ ∗ ∗). �
We end with a short remark and an open question. The natural follow up to ask
is whether the Σ14-wellorder can be improved to a Σ

1
3-wellorder? This question is tied

to the notorious problem of whether NS�1 and CH are consistent, as by the already
mentioned result of G. Hjorth (see [4]), a Σ13-definable wellorder in the presence of
“every real has a sharp” implies CH. Thus, there could be a possibility of an even
better projective wellorder of the reals and its existence could settle Con(NS�1 is
saturated + CH). Of course this can happen only in a model with no measurable
cardinal by Woodin’s result.
A second interesting problem is the question of the definability of NS�1 over
the structure H (�2) if we additionally demand NS�1 to be saturated. Woodin has
shown that from�manyWoodin cardinals one obtains amodel in whichNS�1 is�1-
dense (i.e., RO(P(�1)/NS�1 ) has an ℵ1-sized, dense subfamily), which implies its
saturation and Δ1-definability of stationarity using the dense family as a parameter.
In [2] it is asked whether the large cardinal assumptions can be lowered. That this
is indeed the case has been shown recently by the second author, who showed that
given a Woodin cardinal there is a model of ZFC where NS�1 is saturated and
Δ1(�1)-definable.

Acknowledgments. The results in this article form a part of the second author’s
Ph.D. thesis, supervised by the first author. Both would like to thank the Austrian

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2019.43
Downloaded from https://www.cambridge.org/core. IP address: 81.5.243.212, on 06 Jan 2020 at 11:18:44, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2019.43
https://www.cambridge.org/core


A Σ14 WELLORDEROF THE REALSWITH NS�1 SATURATED 1483

Science Fund FWF for its generous support through research project P25748. The
second author was additionally funded by FWF project I1272.

REFERENCES

[1] A. Caicedo and B. Velickovic, The bounded proper forcing axiom and wellorderings of the reals.
Mathematical Research Letters, vol. 13 (2006), no. 2–3, pp. 393–408.
[2] S. D. Friedman and L.Wu, Large cardinals and the Δ1-definability of the nonstationary ideal, to

appear.
[3] M.Gitik and S. Shelah,Less saturated ideals.Proceedings of the AmericanMathematical Society,

vol. 125 (1997), no. 5, pp. 1523–1530.
[4] G. Hjorth, The size of the ordinal u2. Journal of the London Mathematical Society (2), vol. 52

(1995), no. 3, pp. 417–433.
[5] R. Jensen and J. Steel, K without a measurable, this Journal, vol. 78 (2013), no. 3, pp. 708–734.
[6] K.Kunen, Saturated ideals, this Journal, vol. 43 (1978), no. 1, pp. 65–76.
[7] C. Schlindwein, Simplified RCS iterations. Archive for Mathematical Logic, vol. 32 (1993), no.

5, pp. 341–349.
[8] R. Schindler, On NS�1 being saturated. Online Notes, 2016. Available at http://www.math.

uni-muenster.de/u/rds/sat ideal better version.pdf.
[9] J. Steel, Inner models with many Woodin cardinals. Annals of Pure and applied Logic, vol. 65

(1993), pp. 185–209.
[10] , Projectively wellordered inner models. Annals of Pure and Applied Logic, vol. 74 (1995),

no. 1, pp. 77–104.
[11] H. W. Woodin, The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, De

Gruyter, Berlin 2001.
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