Uncountable ZF-Ordinals

RENÉ DAVID AND SY D. FRIEDMAN

Let T be a theory such as ZF, KP, KP_n (= Σ_n -admissibility). Say that α is a T-ordinal if L_{α} is a model of T. For a subset x of some cardinal κ , let $\alpha_T(x)$ be the least ordinal $\alpha > \kappa$ such that $L_{\alpha}(x)$ is a model of T.

Assume V = L. In [3,4] the second author gave a characterization of the ordinals $\alpha_{\mathrm{KP}_n}(x)$ $(n \ge 1, x \subset \kappa)$ for every cardinal κ . This is a generalization of a theorem of Sacks which says that every countable KP-ordinal is an $\alpha_{\mathrm{KP}}(x)$ for some $x \subset \omega$.

In [2] the first author showed that every countable ZF-ordinal is an $\alpha_{ZF}(x)$ for some $x \subset \omega$. This result has been proved independently by A. Beller (see [1]).

In this paper we give a characterization of the ordinals $\alpha_{ZF}(x)$ $(x \subset \kappa)$ for every cardinal κ .

We use both the techniques of [3,4 and 2]. The situation for ZF is very different from that of KP. For the latter the ordinals have cofinality equal to the cofinality of κ whereas in the present case they have cofinality ω .

Let us mention that to prove this characterization much of the work of R. Jensen on the fine structure of L is used: the usual tools for fine structure but also the coding theorem and even the covering theorem, although we are working inside L.

THEOREM. Assume V = L. Let α be a ZF-ordinal of cardinality κ , $\alpha > \kappa$. Then α is an $\alpha_{ZF}(x)$ for some $x \subseteq \kappa$ if and only if one of the following holds:

- (1) $L_{\alpha} \vDash \kappa$ is singular and α is a successor ZF ordinal and $L_{\alpha} \vDash$ the sup of the ZF-ordinals has cardinality κ .
 - (2) κ is regular and there is a $\beta < \alpha$ and a sequence $(X_n | n < \omega)$ such that
 - (i) $\forall \gamma < \kappa \, \forall f : \gamma \to \beta \, (f \, bounded \to f \in L_{\alpha});$
- (ii) $X_n \in L_\alpha$ and $L_\alpha \operatorname{card}(X_n) < \beta$ for $n \in \omega$, $L_\alpha = \bigcup_n X_n$;
 - (iii) β is a regular cardinal in L_{α} .

¹⁹⁸⁰ Mathematics Subject Classification. Primary 03E35, 03D25.

- (3) κ is singular but $L_{\alpha} \models \kappa$ is regular, and there is a $\beta < \alpha$ and a sequence $(X_n | n < \omega)$ such that (ii) and (iii) of (2) hold and
 - (i) $\forall \lambda < \beta \exists f: L_{\lambda} \rightarrow \kappa, f \text{ one-one and tame, i.e.,}$

$$\forall \gamma < \kappa f^{-1}[\gamma] \in L_{\alpha}.$$

(*Note*. (3(i)) can be replaced by (3(i')): $\exists f: L_{\alpha} \to \kappa$, f one-one and tame, when $\cot \kappa = \omega$. (2(i)) \leftrightarrow (3(i)) when κ is regular.)

We shall deal with the three cases separately.

I. The following lemma will be often used:

Lemma I.1. Let κ be a cardinal $\geqslant \omega_2$, $x \subseteq \kappa$ such that $x \in L$ and $L_{\alpha}(x) \models ZF$. Let $f \in L_{\alpha}(x)$ $f : \gamma < \kappa \to \alpha$.

Then $f \in L_{\alpha}$.

PROOF. Let $A=\{\left\langle i,f(i)\right\rangle|i<\gamma\}$ where $\left\langle \cdot\,,\cdot\right\rangle$ is the Gödel pairing function. By Jensen's covering theorem there is a B such that: $B\in L_{\alpha},\ B\supset A$ and $L_{\alpha}(x)\vDash\overline{B}=\operatorname{Max}(\omega_{1},\overline{A})<\kappa$. Since $x\in L,L_{\alpha}\vDash\mu=\overline{B}<\kappa$. Let $g\in L_{\alpha}g\colon\mu\to B$ bijective, and $c=g^{-1}[A]$; then c is a subset of μ and so $c\in L_{\alpha}$. It follows that A and $f\in L_{\alpha}$. \square

LEMMA I.2 Let κ be a cardinal, $x \subset \kappa$, $x \in L$ such that $L_{\alpha}(x) \vDash ZF + \kappa$ singular. Then $x \in L_{\alpha}$.

PROOF. By Jensen's covering theorem, $L_{\alpha} \models \kappa$ is singular and (since $x \in L$) $L_{\alpha} - \operatorname{cof}(\kappa) = L_{\alpha}(x) - \operatorname{cof}(\kappa)$. Let $(\kappa_i | i < \lambda) \in L_{\alpha}$ be a normal sequence coverging to κ where $\lambda = L_{\alpha} - \operatorname{cof}(\kappa)$. Define $f : \lambda \to L_{\alpha}$ by $f(i) = \operatorname{the} L$ -code for $x \cap \kappa_i$. By Lemma I.1, $f \in L_{\alpha}$ and so $x \in L_{\alpha}$. \square

Case (1) of the Theorem is now clear: If $L_{\alpha} \vDash \kappa$ singular by Lemma I.2, $x \in L_{\alpha}$. Let $\beta < \alpha$ be least such that $x \in L_{\beta}$. Then clearly α is the least ZF-ordinal greater than β and (since $x \subset \kappa$) $L_{\alpha} \vDash \beta < \kappa^+$.

The opposite is trivial: it is enough to take for x a code for an ordinal greater than the ZF-ordinals below α .

II.

LEMMA II.1. Let κ be a cardinal and α be $\alpha_{ZF}(x)$ for some $x \subseteq \kappa$. Then there is a $\beta < \alpha$ and a sequence $(X_n | n < \omega)$ such that (2(ii)) and (2(iii)) of the Theorem hold.

PROOF. Let β be such that $L_{\alpha}(x) \models \beta = \kappa^{+}$ and set $y_{n} = \{t \in L_{\alpha}(x) | t \text{ is } \Sigma_{n}\text{-definable in } L_{\alpha}(x) \text{ with parameters from } \kappa \cup \{x\}\}$. Then clearly $y_{n} \in L_{\alpha}(x)$; $y_{n} \in y_{n+1}$ and $L_{\alpha}(x) - \operatorname{card}(y_{n}) = \kappa$.

Set $y = \bigcup_n y_n$. Clearly $y \prec L_{\alpha}(x)$.

Set $\pi: y \to {}^{\cong} L_{\gamma}(x)$. Then $\gamma = \alpha$ since $L_{\alpha}(x) \models ZF$ and $L_{\alpha}(x) \models \forall \delta L_{\delta}(x) \not\models ZF$. So $y = L_{\alpha}(x)$ since every element of y is y-definable from $\kappa \cup \{x\}$.

Now let $x_n \in L_\alpha$ be such that $x_n \supset y_n \cap L_\alpha$ and $L_\alpha(x) \models \operatorname{card}(x_n) = \kappa$. Then clearly $L_\alpha = \bigcup x_n$ and $L_\alpha - \operatorname{card}(x_n) < \beta$. \square

To prove that (2(i)) is true in the case κ is regular, we shall first assume $\kappa \geqslant \omega_2$. This proof does not work for $\kappa = \omega_1$ since it uses Lemma I.1 which is not true for ω_1 by a theorem of Bukovsky. The proof we shall give for ω_1 works for every regular cardinal κ , but since it is a bit more complicated, it seems useful to give first the simplest one.

LEMMA II.2. Let κ be a regular cardinal and α be $\alpha_{ZF}(x)$ for some $x \subset \kappa$. Then (2) of the Theorem holds.

PROOF. It remains to show (2(i)); let $L_{\alpha}(x) = \beta = \kappa^{+}$.

- (*) Assume first $\kappa \geqslant \omega_2$: Let $f: \gamma < \kappa \to \mu < \beta$ and let $g \in L_{\alpha}(x)$ $g: \mu \to \kappa$ bijective, and $h = g \circ f: \gamma \to \kappa$. Since κ is regular, h is bounded and so $h \in L_k$ and $f \in L_{\alpha}(x)$. Now using Lemma I.1, $f \in L_{\alpha}$. Note that we have used here not only the fact that $L_{\alpha}(x) \models \kappa$ is regular, but also the fact that κ is regular.
- (**) Assume now $\kappa = \omega_1$: the proof uses the second author's notion of critical projecta defined in [3]. We prove exactly as in [3, Lemmas 9–11] that the ρ_i , ρ'_i have cofinality ω_1 , where the ρ_i , ρ'_i are the critical projecta of β and then (this is Theorem 13 in [3]) that (2(i)) holds. \square

We now have to prove the converse part. So assume from now on that (2) of the Theorem holds. We have to find $x \subset \kappa$ such that $\alpha = \alpha_{ZF}(x)$. We shall build x by a 3-step forcing iteration over L_{α} . The main problems are to show that we can find in L the generics we need.

We first find an $x_0 \subset \beta$ such that

$$L_{\alpha}(x_0) \vDash ZF + \beta = \kappa^+$$
.

Since β is regular in L_{α} it is either a successor cardinal or an inaccessible one.

- (*) Assume first $L_{\alpha} \vDash \beta = \theta^+$ for some $\theta < \beta$ let **P** be the usual poset to collapse θ on κ . By (2(i)), **P** is $< \kappa$ -closed (that means: if $(p_i | i < \gamma < \kappa)$ is a decreasing sequence of conditions in or out of L_{α} , then there is a $p \in \mathbf{P}$ such that $p \le p_i \forall i < \gamma$). Since $\overline{L}_{\alpha} = \kappa$ it is easy to find in L a **P** generic over L_{α} and from that an x_0 such that $L_{\alpha}(x_0) \vDash \mathbf{ZF} + x_0 \subset \kappa + \beta = \kappa^+$.
- (**) Assume next $L_{\alpha} \vDash \beta$ is inaccessible. Let **P** be the usual poset to collapse all the cardinals between κ and β : more precisely let $I = L_{\alpha}$ -card $\bigcap \kappa$, β and

$$\mathbf{P} = \Big\{ p = \big(p_j \big)_{j \in J} | J \subset I \, \overline{\overline{J}} < \kappa, \operatorname{dom}(p_j) \subset \kappa, \operatorname{card}(\operatorname{dom} p_j) < \kappa \\ p_j \colon \operatorname{dom} p_j \to j \Big\}.$$

Note that we do not ask $J \in L_{\alpha}$. Also note that (by (2(i))) $\forall j \in Ip_j \in L_{\alpha}$. Set $\tilde{\mathbf{P}} = \mathbf{P} \cap L_{\alpha}$. $\tilde{\mathbf{P}}$ is, in L_{α} , the usual poset to make $\beta = \kappa^+$.

LEMMA II.3. Let $D \subset \tilde{\mathbf{P}}$, $D \in L_{\alpha}$ be dense in $\tilde{\mathbf{P}}$. Then D is predense in \mathbf{P} .

PROOF. Let $A \subset D$ be a maximal antichain in $\tilde{\mathbf{P}}$, $A \in L_{\alpha}$. Since it is well known that $\tilde{\mathbf{P}}$ has, in L_{α} , the $<\beta$ chain condition there is a $\theta < \beta$ such that for $p \in A J_p \subset \theta$.

Now let $q \in \mathbf{P}$ and define \tilde{q} by $J_{\tilde{q}} = J_q \cap \theta$ and for $j \in J_{\tilde{q}} \tilde{q}_j = q_j$; then, by (2(i)), $\tilde{q} \in \tilde{\mathbf{P}}$. Since A is a maximal antichain \tilde{q} is compatible with some $r \in A$ but since $J_r \subset \theta$, q also is compatible with r. \square

Using this lemma it is not difficult to find a $\tilde{\mathbf{P}}$ generic over L_{α} . Let $(D_i|i<\kappa)$ be an enumeration of the open dense subsets of $\tilde{\mathbf{P}}$ in L_{α} . Define a decreasing sequence $(p_i|i<\kappa)$ of elements of \mathbf{P} such that: $\forall i\ p_i\in D_i$ as follows: $p_0=\varnothing$. Assume $(p_j|j< i<\kappa)$ has been defined. Set $p=\bigcup_{j< i}p_j$. Then $p\in\mathbf{P}$. By Lemma II.3 let p_i be the least q such that $q\leqslant p$ and $q\in D_i$.

Set $p_{\kappa} = \bigcup_{i < \kappa} p_i$. Then $G = \{ q \in \tilde{\mathbf{P}} | \forall j \in J_q q_j = (p_{\kappa})_j \upharpoonright \text{dom } q_j \}$. It is clear that G is $\tilde{\mathbf{P}}$ generic over L_{κ} .

So we have proved

LEMMA II.4. There is a subset x_0 of β such that

(1) $L_{\alpha}(x_0) \vDash ZF + \beta = \kappa^+$;

(2)
$$L_{\alpha}(x_0) = \bigcup X_n$$
 where $X_n \in L_{\alpha}(x_0)$ and $L_{\alpha}(x_0) - \operatorname{card}(X_n) = \kappa$.

In the second step we use the results of [2] to find a subset x_1 of β to kill all the ZF-ordinals. Let $\mathbf{P} = \mathbf{P}_{\kappa}$ with the notations of [2]. \mathbf{P} is a class in $L_{\alpha}(x_0)$. It is shown in [2] that in a \mathbf{P} generic extension of $L_{\alpha}(x_0)$ all the ZF-ordinals are killed and that this extension satisfies $V = L_{\alpha}(x_1)$ for some $x_1 \subset \beta$. Moreover, \mathbf{P} is κ -distributive in $L_{\alpha}(x_0)$.

For $n < \omega$ let $(\Delta_i^n | i < \kappa)$ be an enumeration of the open dense subclasses of **P** definable by a Σ_n -formula with parameters from X_n . By the distributivity of **P**, $D_n = \bigcap_{i < \kappa} \Delta_i^n$ is an open dense subclass of **P**.

Define a sequence $(p_n|n < \omega)$ of elements of **P** by $p_0 = \emptyset$, $p_{n+1} = \text{some}$ $p \le p_n$ such that $p \in D_n$. Then clearly $\bigcup p_n$ is **P** generic over $L_n(x_0)$.

It remains now to code x_1 by a subset of κ . So it is enough to show

Lemma II.5. Let κ be a regular cardinal, α , β be ordinals of cardinality κ , and x a subset of β such that

$$L_{\alpha}(x) \vDash ZF + \beta = \kappa^{+}$$
.

Then there is, in L, a subset y of κ such that

$$L_{\alpha}(y) \vDash ZF + \beta = \kappa^{+} + x = \{ \xi < \beta | S_{\xi} \cap y \text{ is bounded } \},$$

where $(S_{\xi}|\xi < \beta)$ is some nice sequence of almost disjoint subsets of κ ; i.e., S_{ξ} is uniformly $L_{\alpha}(x \cap \xi)$ -definable.

(*Note*. If β had (true) cofinality κ , there would be no problems since then the forcing that gives y would be $< \kappa$ -closed. But here β has cofinality ω !)

PROOF. We use Solovay's trick (see [1, p. 12]); the S_{ξ} are $S(b_{\xi})$ where the b_{ξ} are mutually generic. Let \mathbf{P} be the poset of conditions (not necessarily in $L_{\alpha}(x)$) to code x by a subset of κ . Let $\tilde{\mathbf{P}} = \mathbf{P} \cap L_{\alpha}(x)$. The lemma similar to Lemma II.3 with the new forcing is proved in [1, Lemma 1.3, p. 13]. From that it is easy to find the generic we need: Do as after Lemma II.3. \square

The proof of the second case is now complete.

III. We assume now that κ is a singular cardinal but $L_{\alpha} = \kappa$ is regular.

For the "only if" part of the Theorem we have to prove (3(i)). The proof of that is exactly as in [4, Theorem 9], using the critical projects of β .

To prove (3(i')) in the case $cof \kappa = \omega$ we use the following, which is proved in [4] (see Theorem 3).

Claim. Assume $cof(\alpha) = \omega$ and for all $y \in L_{\alpha}$ there is a $\lambda < \alpha$ and $(y_n | n < \omega)$ such that $y = \bigcup y_n$ and $\forall n < \omega \ y_n \in L_{\lambda}$ and $card(y_n) < \kappa$. Then there is a tame injection from L_{α} into κ .

So it is enough to prove the hypothesis of that claim. By Lemma II.1 and by (3(i)), if $y \in L_{\alpha}$ we can write $y = \bigcup y_n$ with $y_n \in L_{\alpha}$ and $L_{\alpha} - \operatorname{card}(y_n) < \kappa$. Now since $y \subset L_{\mu}$ for some $\mu < \alpha$, $\forall n \ y_n \in L_{\mu^+}$.

To prove the converse part of the Theorem, it is enough to show that we can get a generic for the first and third steps of the iteration given in §II. (The second one is exactly as in §II.) This is done as follows: In each case we have to meet the open dense subsets of some poset \mathbf{P} which is (inside L_{α}) < κ -closed (since in L_{α} , κ is regular).

It is enough to prove

Lemma III.1. Let $\lambda = \operatorname{cof}(\kappa) < \kappa$ and $f : \gamma < \lambda \to \mu < \beta$. Then $f \in L_{\alpha}$ (note that —in fact—in the "only if" part of the Theorem this is proved before proving (3(i)), but it turns out that it is a consequence of it).

LEMMA III.2. There is a sequence $(D_i|i < \lambda)$ of open dense subsets of **P** such that every subset of **P** that meets all the D_i is **P** generic over L_{α} .

From these lemmas we can find—by the same techniques as in §II—the generics we need.

PROOF OF LEMMA III.1. Let $f: \gamma < \lambda \to \mu < \beta$. By (3(i)), there is a $g: \mu \to \kappa$ one-one and tame. Let $h = g \circ f: \gamma \to \kappa$. Then h is bounded in κ and $h \in L_{\alpha}$.

But then $f = (g^{-1} \upharpoonright \rho) \circ h$ for some $\rho < \kappa$ and so $f \in L_{\alpha}$ since g is tame. \square

Note that we have used here that $g^{-1} \upharpoonright \rho \in L_{\alpha}$ for $\rho < \kappa$ and not only $g^{-1}[\rho] \in L_{\alpha}$. This comes from the fact that $g^{-1} \upharpoonright \rho = g_0 \circ g'$ where $g' \colon \rho \to \rho' \in L_{\kappa}$, $\rho' = \operatorname{ordertype}(g^{-1}[\rho]) < \kappa$ and $g_0 \colon \rho' \to g^{-1}[\rho]$ lists $g^{-1}[\rho]$ in increasing order.

PROOF OF LEMMA III.2. By (2(ii)) there is a sequence $(\Delta_n | n < \omega)$ such that $\Delta_n \in L_\alpha$, $L_\alpha - \operatorname{card}(\Delta_n) < \beta$, and $\bigcup_n \Delta_n$ is the set of the open dense subsets of P. Now by (3(i)) there is an enumeration $(\Delta_\xi^n | \xi < \kappa)$ of Δ_n for each n such that $(\Delta_\xi^n | \xi < \nu) \in L_\alpha$ for each $n < \omega$ and $\nu < \kappa$.

Let $(\kappa_i|i < \lambda)$ be a normal sequence converging to κ . Set $D_{n,i} = \bigcap_{\xi < \kappa_i} \Delta_{\xi}^n$. Then $D_{n,i} \in L_{\alpha}$ for $n < \omega$ and $i < \lambda$ and since **P** is, in L_{α} , $< \kappa$ -closed: $D_{n,i}$ is open dense. It is then enough to rearrange the $D_{n,i}$'s into a λ -sequence. \square

This achieves the proof of the Theorem.

IV. Some final comments.

(1) The Theorem can be easily generalized to sequences of ZF ordinals: following [2] we can give *sufficient* conditions for a sequence of length $< \kappa^+$ of ZF

ordinals of cardinality κ to be an initial segment of the α , such that $L_{\alpha}(x)$ is a model of ZF, for some $x \subset \kappa$. As in [2] the essential fact is to assume Sup $Q \cap \alpha < \alpha$ for $\alpha \in Q$, where Q is the given sequence.

(2) It would be interesting to find some classes A (or for which classes?) for which there is a subset x of ω such that A is exactly the class of the α such that $L_{\alpha}(x)$ is a model of ZF. This is done in [5] for KP instead of ZF.

(3) Finally note that in the Theorem (2(ii)) cannot be replaced by a simple condition on the cofinality of α and β ; for example $cof(\alpha) = cof(\beta) = \omega$. To see that, assume that there is a $\overline{\beta}$ such that

$$\omega_1 < \overline{\beta} < \omega_2$$
 and $L_{\overline{\beta}+3} \vDash \overline{\beta}$ is inaccessible.

We shall find α of cofinality ω for which there is no sequence $(X_n | n < \omega)$ satisfying (2(ii)): we first find a γ such that

(*) $(L_{\gamma+2} \models \gamma \text{ is inaccessable})$ and $(\text{cof } \gamma = \omega_1)$ and $(\text{for } \delta < \gamma \text{ if } L_{\gamma} \models \delta \text{ regular then } \text{cof}(\delta) = \omega_1)$. (Define $x_0 = \text{the Skolem Hull of } \omega_1 \text{ in } L_{\overline{\beta}+2}$;

$$x_{i+1} = SH(x_i \cup \{x_i\}, L_{\overline{\beta}+2}); \quad x_i = \bigcup_{j < i} x_j \text{ for limit } i.$$

Let $\pi: X_{\omega_1} \to \mathcal{L}_{\gamma+2}$. It is easy to see that γ has the desired properties.)

Now define the sequence $(\alpha_n)_{n<\omega}$ as follows: $\alpha_0=\omega_1$; $\alpha_{2n+1}=\alpha_{2n}^+$ in the sense of L_γ ; $\alpha_{2n+2}=$ the least $\alpha>\alpha_{2n+1}$ such that $L_\alpha< L_\gamma$ (such an α exists since $L_{\gamma+2}\models\gamma$ is inaccessible). Set $\alpha=\cup\alpha_n$. Let $L_\alpha< L_\gamma$ so α is a ZF ordinal and $cof(\alpha)=\omega$. Assume there is a $\beta<\alpha$ and a sequence $(x_n|n<\omega)$ such that (2(ii)) holds. Choose $\mu=\alpha_{2n+1}>\beta$; then, by (*) $cof(\mu)=\omega_1$ but $\mu=\bigcup_n(x_n\cap\mu)$, and since $L_\alpha-card(x_n\cap\mu)<\mu$, $cof(\mu)=\omega$, a contradiction.

REFERENCES

- 1. A Beller, R. B. Jensen and P. Welch, *Coding the universe*, Cambridge Univ. Press, London and New York, 1981.
 - 2. R. David, Some applications of Jensen's coding theorem, Ann. Math. Logic 22 (1982), 177-196.
- 3. Sy D. Friedman, Uncountable admissibles. I, Forcing, Trans. Amer. Math. Soc. 270 (1982), 61-73.
 - 4. _____, Uncountable admissibles. II. Compactness, Israel J. Math. 40 (1981), 129-149.
- Strong coding (to appear).
 - 6. R. B. Jensen, Coding the universe by a real, manuscript, 1975.

DEPARTMENT OF MATHEMATICS, UNIVERSITÉ TOULOUSE LE MIRAIL, 109 RUE VAUQUELIN 31058 TOULOUSE CEDEX, FRANCE

Massachusetts Institute of Technology, Department of Mathematics, Cambridge, Massachusetts 02139