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Uncountable ZF-Ordinals

RENE DAVID AND SY D. FRIEDMAN

Let T be a theory such as ZF, KP, KP, (= Z,-admissibility). Say that « is a
T-ordinal if L is a model of 7. For a subset x of some cardinal k, let ay(x) be the
least ordinal & > & such that L _(x) is a model of 7.

Assume V = L. In [3,4] the second author gave a characterization of the
ordinals ayp (x) (n > 1, x C k) for every cardinal «. This is a generalization of a
theorem of Sacks which says that every countable KP-ordinal is an aygp(x) for
some x C w.

In [2] the first author showed that every countable ZF-ordinal is an a g (x) for
some x C . This result has been proved independently by A. Beller (see [1]).

In this paper we give a characterization of the ordinals ag(x) (x C ) for
every cardinal k.

We use both the techniques of [3.4 and 2]. The situation for ZF is very
different from that of KP. For the latter the ordinals have cofinality equal to the
cofinality of k whereas in the present case they have cofinality w.

Let us mention that to prove this characterization much of the work of R.
Jensen on the fine structure of L is used: the usual tools for fine structure but also
the coding theorem and even the covering theorem, although we are working
inside L.

THEOREM. Assume V = L. Let a be a ZF-ordinal of cardinality x, a > k. Then a
is an ap(x) for some x C « if and only if one of the following holds:

(1) L & « is singular and a is a successor ZF ordinal and L, = the sup of the
ZF-ordinals has cardinality .

(2) « is regular and there is a B < a and a sequence ( X, |n < w) such that

() Vy < «Vf:y = B(fbounded — f € L,);
(i) X, € L,and L, — card(X,) < Bforn€ w, L, =U, X,;
(iii) B is a regular cardinal in L.
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(3) « is singular bur L, = k is regular, and there is a B < «a and a sequence
(X,|n < w) such thar (i1) and (iii) of (2) hold and
(1) VA < B3f: L, — k, fone-one and tame, i.e.,

vy<kfllyleL,

(Note. (3(i)) can be replaced by (3(1")): 3f: L, — «. f one-one and tame, when
cof k = w. (2(1)) « (3(i)) when k is regular.)
We shall deal with the three cases separately.

I. The following lemma will be often used:

LEMMA 1.1. Let & be a cardinal > w,, x C & such that x € L and L (x) = ZF.
Letf € LX) fiy< g o
Thenf € L,.

PrOOF. Let A = {{i, f(i))|i <y} where { - ,-) is the Godel pairing function.
By Jensen’s covering theorem there is a B such that: BE L, B> A4 and
L(x)E B = Max(w,, A) < k.Sincex € L, L Fu=B <k Letge L igvtirs
B bijective, and ¢ = g~'[A]; then ¢ is a subset of p and so ¢ € L. It follows that
Aandfe L, O

LEMMA 1.2 Let « be a cardinal, x C k, x € L such that L (x)Ee ZF + «
singular. Then x € L.

PrROOF. By Jensen’s covering theorem, L, = k is singular and (since x € L)
L, — cof(k) = L (x) — cof(x). Let (x,Ji <A) € L, be a normal sequence coverg-
ing to k where A = L_ — cof(x). Define f: A = L_ by f(i) = the L-code for
X Nk,.ByLemmall,fe L andsox€ L, O

Case (1) of the Theorem is now clear: If L,k k singular by Lemma 1.2,
x € L,. Let B <a be least such that x € L,. Then clearly a is the least
ZF-ordinal greater than § and (sincex C k)L, F B < k™.

The opposite is trivial: it is enough to take for x a code for an ordinal greater
than the ZF-ordinals below a.

IL

LeEMMA I1.1. Let k be a cardinal and a be a,(x) for some x C k. Then there is a
B < a and a sequence (X, |n < w) such that (2(ii)) and (2(iii)) of the Theorem hold.

PROOF. Let B be such that L (x) = B =« and sety, = {r € L (x)|t is Z,-
definable in L (x) with parameters from & U {x}}. Then clearly y, € L (x):
Yy € Yy and L (x) — card(y,) = «

Sety =U,»,. Clearly y < L (x).

Set m: y = = L (x). Then y = & since L,(x)F ZF and L,(x)E V8 Ly(x)
ZF. Soy = L (x) since every element of y is y-definable from k U {x}.

Now let x,, € L, be such that x, D y, N L, and L (x) = card(x, )— . Then
clearly L, = Ux,and L, — card(x,) < 8. O
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To prove that (2(i)) is true in the case k is regular, we shall first assume k > w,.
This proof does not work for k = , since it uses Lemma 1.1 which is not true for
w, by a theorem of Bukovsky. The proof we shall give for w; works for every
regular cardinal k, but since it is a bit more complicated, it seems useful to give
first the simplest one.

LeMMA 11.2. Let k be a regular cardinal and a be a,p(x) for some x C k. Then
(2) of the Theorem holds.

PROOE. It remains to show (2(i)); let L (x) = B =k .

(*) Assume first k > w,: Let fi y<k—>p<fBandlet ge L (x) gt p—>«
bijective, and h = go f: y = k. Since « is regular, 4 is bounded and so h € L,
and f € L (x). Now using Lemma L1, f € L,. Note that we have used here not
only the fact that L (x) I k is regular, but also the fact that « is regular.

(#*) Assume now k = w,: the proof uses the second author’s notion of critical
projecta defined in [3]. We prove exactly as in [3, Lemmas 9-11] that the p,, p;
have cofinality «,, where the p,, p; are the critical projecta of B and then (this is
Theorem 13 in [3]) that (2(i)) holds. O

We now have to prove the converse part. So assume from now on that (2) of the
Theorem holds. We have to find x C k such that @ = a,(x). We shall build x by
a 3-step forcing iteration over L,. The main problems are to show that we can
find in L the generics we need.

We first find an x, € B such that

L(x,)EZF + B =«".

Since B is regular in L, it is either a successor cardinal or an inaccessible one.

(*) Assume first L, = B =07 for some # < 8 let P be the usual poset to
collapse 6 on k. By (2(i)), P is < k-closed (that means: if (p|i <y <k)is a
decreasing sequence of conditions in or out of L,, then there is a p € P such that
p < p; Vi < y). Since L, = kit is easy to find in L a P generic over L, and from
that an x, such that L (x,) F ZF + x, Ck + B =« .

(**) Assume next L_ = f is inaccessible. Let P be the usual poset to collapse all
the cardinals between k and 8: more precisely let I = L -card N ], B[ and

P= {p = ()0 © 1J < x,dom( p,) C «,card(dom p,) < k
p;: dom p, —>j}.
Note that we do not ask J € L,. Also note that (by (2(1))) Vj € Ip, € L,.
Set P = PN L, Pis,in L, the usual poset to make 8 = x .
LeEMMA I1.3. Ler D € P, D € L, be dense in P. Then D is predense in P.

PROOF. Let A C D be a maximal antichain in P, 4 € L. Since it is well known
that P has, in L_, the < B chain condition there is a § < B such that for
peEA Jp cé.
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Now let ¢ € P and define § by J; = J, " @ and for j € J,§, = g, then, by
(2(i)), § € P. Since 4 is a maximal anucham g is compatible with some r € 4 but
since J, C @, ¢ also is compatible with ». O

Using this lemma it is not difficult to find a P generic over L,. Let (D,|i < k)
be an enumeration of the open dense subsets of P in L,. Define a decreasing
sequence ( p,| i < k) of elements of P such that: Vi p, € D, as follows: p, = @.
Assume (p,| j <i<«) has been defined. Set p =U, _, p,. Then p € P. By
Lemma I1.3 let p, be the least g such that ¢ < p and ¢ € D,.

Set p, = U,<xP;- Then G= {geP|Vje J,q,=(p,); I domg,}. It is clear
that G is P generic over L.

So we have proved

LeMMA 11.4. There is a subset x, of B such that
M L(xg)EZF + B=«";
(2) L (xg) = UX, where X, € L (x,)and L (x,) — card(X,) = &

In the second step we use the results of [2] to find a subset x, of B to kill all the
ZF-ordinals. Let P = P, with the notations of [2]. P is a class in L (x,). It is
shown in [2] that in a P generic extension of L (x,) all the ZF-ordinals are killed
and that this extension satisfies ¥ = L _(x,) for some x, € B. Moreover, P is k-
distributive in L _(x).

For n < w let (A i < k) be an enumeration of the open dense subclasses of P
definable by a = -formula with parameters from X,. By the distributivity of P,
D, =N,_, A"is an open dense subclass of P.

Define a sequence (p,|n < w) of elements of P by p, = &, p,., = some
p < p,such that p € D,. Then clearly Up, is P generic over L _(x).

It remains now to code x, by a subset of k. So it is enough to show

LeMMA IL5. Let k be a regular cardinal, a, B be ordinals of cardinality k. and x a
subset of B such that

L(x)eZF + g=x".
Then there is, in L, a subset y of k such that
L(y)EZF + B=«"+x= (&< B|S, N yis bounded },

where (S| £ < B) is some nice sequence of almost disjoint subsets of «; i.e., S; is
uniformly L _(x N §)-definable.

(Note. If B had (true) cofinality k, there would be no problems since then the
forcing that gives y would be < k-closed. But here £ has cofinality «!)

PROOF. We use Solovay’s trick (see [1, p. 12]); the S, are S(b;) where the b, are
mutually generic. Let P be the poset of conditions (not necessarily in L (x)) to
code x by a subset of k. Let P =P N L (x). The lemma similar to Lemma I1.3
with the new forcing is proved in [1, Lemma 1.3, p. 13]. From that it is easy to
find the generic we need: Do as after Lemma [1.3. O

The proof of the second case is now complete.
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III. We assume now that « is a singular cardinal but L, & k is regular.

For the “only if " part of the Theorem we have to prove (3(i)). The proof of
that is exactly as in [4, Theorem 9), using the critical projecta of .

To prove (3(i")) in the case cof k = w we use the following, which is proved in
[4] (see Theorem 3).

Claim. Assume cof(a) = w and for all y € L_ thereis a A < a and (¥, n < w)
such that y = Uy, and Vn < w y, € L, and card( ¥,) < k. Then there is a tame
injection from L_ into .

So it is enough to prove the hypothesis of that claim. By Lemma II.1 and by
(3(1), if y € L, we can write y = Uy, with y, € L_ and L_ — card( ¥,) < k. Now
sincey C L, for somep < a, Vn y, € L,..

To prove the converse part of the Theorem, it is enough to show that we can get
a generic for the first and third steps of the iteration given in §II. (The second one
1s exactly as in §I1.) This is done as follows: In each case we have to meet the
open dense subsets of some poset P which is (inside L,) < x-closed (since in L, k
is regular).

It is enough to prove

LEMMA IIL.1. Ler A = cof(x) < k andf: y <X - p < B. Then f € L_ (note that
—in fact—in the “only if ” part of the Theorem this is proved before proving (3(i)),
but it turns out that it is a consequence of it).

LEMMA 111.2. There is a sequence (D,| i < \) of open dense subsets of P such that
every subset of P that meets all the D, is P generic over b

From these lemmas we can find—by the same techniques as in §I1—the
generics we need.

PROOF OF LEMMA IIL1. Let f: y <A - p < B. By (3(i)), there is a g: u — &
one-one and tame. Leth = go f: y — k. Then A is bounded in k and 4 = Ly

But then f = (g™' I p)e A for some p < kand so f € L, since gis tame. 0O

Note that we have used here that g-'} p e L, for p <k and not only
g '[p] € L,. This comes from the fact that g7'! p=g,°g where ghp—op €
L., p" = ordertype(g~'[p]) < x and g,: p’ — g '[p] lists g '[p] in increasing
order.

PROOF OF Lemma II1.2. By (2(ii)) there is a sequence (A,] n < w) such that
A,eL,L,— card(A,) < B, and U, A, is the set of the open dense subsets of P.
Now by (3(i)) there is an enumeration (A% € < k) of A, for each n such that (A%
§<v)e L foreachn < wand v < k.

Let (x| i < A) be a normal sequence converging to k. Set D, ; = Ng<, A% Then
D,, €L, for n<wandi<A\ and since P is, in L, < k-closed: D, , is open
dense. It is then enough to rearrange the D, /s into a A-sequence. O

This achieves the proof of the Theorem.

IV. Some final comments.
(1) The Theorem can be easily generalized to sequences of ZF ordinals:
following [2] we can give sufficient conditions for a sequence of length < k™ of ZF
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ordinals of cardinality k to be an initial segment of the a, such that L (x) is a
model of ZF, for some x C k. As in [2] the essential fact is to assume Sup Q N «
< a for @ € Q, where Q is the given sequence.

(2) It would be interesting to find some classes 4 (or for which classes?) for
which there is a subset x of w such that 4 is exactly the class of the a such that
L,(x)is a model of ZF. This is done in [5] for KP instead of ZF.

(3) Finally note that in the Theorem (2(ii)) cannot be replaced by a simple
condition on the cofinality of a and 8; for example cof(a) = cof(f) = w. To see
that, assume that there is a B such that

w, <B<w, and Lz, ;F Bisinaccessible.

We shall find a of cofinality @ for which there is no sequence (X,| n < w)
satisfying (2(ii)): we first find a y such that

(*) (L, Fyis inaccessable) and (cof y = w,) and (for § <y if L . E &
regular then cof(8) = w,). (Define x, = the Skolem Hull of &, in Lz, :

= SH(x, Ul{x )} Lgia)s * == U x, for limiti.
j<i
Letw:x, =% L., It is easy to see that y has the desired properties.)

Now define the sequence (a, ), -, as follows: a, = @;; a,,,, = @, in the sense
of L; a,,,, = the least @ > a,,,,, such that L, < L, (such an a exists since
Loes e y is inaccessible). Set « = Ua,. Let L, < L, so « is a ZF ordinal and
cof(a) = w. Assume there is a 8 < a and a sequence (x,,l n < w) such that (2(i1))
holds. Choose j1 = a,, ., > f; then, by (*) cof(p) = w; but p = U, (x, N p), and
since L, — card(x, N p) < p, cof(p) = w, a contradiction.
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