
Coding over Core Models∗

Sy-David Friedman†

KGRC, Vienna

Ralf Schindler‡

WWU Münster

David Schrittesser§

KGRC, Vienna

March 8, 2014

Early in their careers, both Peter Koepke and Philip Welch made major
contributions to two important areas of set theory, core model theory (see
[?]) and coding (see [?]), respectively. In this article we aim to survey some
of the work that has been done which combines these two themes, extending
Jensen’s original Coding Theorem from L to core models witnessing large
cardinal properties.

The original result of Jensen can be stated as follows.

Theorem 1 (Jensen, see [?]) Suppose that (V,A) is a transitive model of
ZFC + GCH (i.e., V is a transitive model of ZFC+ GCH and replacement
holds in V for formulas mentioning A as an additional unary predicate).
Then there is a (V,A)-definable, cofinality-preserving class forcing P such
that if G is P -generic over (V,A) we have:
(a) For some real R, (V [G], A) � ZFC + the universe is L[R] and A is
definable with parameter R.
(b) The typical large cardinals properties consistent with V = L are preserved
from V to V [R]: inaccessible, Mahlo, weak compact, Π1

n indescribable, subtle,
ineffable, α-Erdős for countable α.
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Corollary 2 It is consistent to have a real R such that L, L[R] have the
same cofinalities but R belongs to no set-generic extension of L.

The theme of this article is to consider the following question: To what
extent is it possible to establish an analagous result when L is replaced
by a core model K and the large cardinal properties in (b) are strength-
ened to those consistent with V = K (measurable, hypermeasurable, strong,
Woodin)?

A brief summary of the situation is as follows. Coding up to one measur-
able cardinal is unproblematic (see [?]), although already in this case there
are some issues with condensation and the interesting new phenomenon
of “ultrapower codings” arises. At the level of hypermeasurable cardinals
there are serious condensation issues which obstruct a fully general result;
nevertheless variants of Corollary ?? can be established and very special
predicates A as in Theorem ?? can be coded (such as a generic for a Prikry
product, see [?]). In addition, although one is able to lift enough of the total
extenders on the hierarchy of a core model witnessing hypermeasurability, it
requires extra effort to lift more than one total extender for the same critical
point (and it is not in general possible to lift all of the extenders (partial
and total) on a fixed critical point κ satisfying o(κ) = κ+++; we conjecture
that this can be improved to o(κ) = κ++). At the level of Woodin cardinals,
even Corollary ?? is not possible if the aim is to lift all total extenders in a
witness to Woodinness via the “A-strong” definition of this notion; however
this obstacle is removed by instead considering witnesses to the definition
of Woodinness in terms of “j(f)(κ) strength” (see [?]).

There are a number of applications of coding over core models. In ad-
dition to those found in [?] based on Jensen’s original method, we mention
two other examples.

Theorem 3 (Friedman-Schrittesser [?]) Relative to a Mahlo cardinal it is
consistent that every set of reals in L(R) is Lebesgue measurable but some
projective (indeed lightface ∆1

3) set of reals does not have the Baire property.

Theorem 4 (Friedman-Golshani [?]) Relative to a strong cardinal (indeed
relative to a cardinal κ that is H(κ+++)-strong) it is consistent to have
transitive models V ⊆ V [R] of ZFC where R is a real, GCH holds in V and
GCH fails at every infinite cardinal in V [R]. One can further require that
V , V [R] have the same cardinals.
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About Jensen coding

To make what follows more intelligible it is worthwhile to first review
the case of Jensen coding. No matter how you look at it, even this argument
is complicated, although major simplifications can be made if one assumes
the nonexistence of 0# in the ground model V . Our aim here however is
not to delve into the fine points of the proof (and in particular we will not
reveal how the nonexistence of 0# can be exploited), but rather to give
the architecture of the argument in order to facilitate a later discussion of
generalisations.

For simplicity consider the special case where the cardinals of the ground
model V are the same as those in L and the ground model is (L[A], A) where
A is a class of ordinals such that H(α) = Lα[A] for each infinite cardinal α
(the latter can be arranged using the fact that the GCH holds in V ).

Coding is based on the method of almost disjoint forcing. Suppose that
A is a subset of ω1. Then we can code A into a real as follows: For each
countable ordinal ξ attach a subset bξ of ω (so that the bξ’s are almost
disjoint) and force a real R such that R is almost disjoint from bξ iff ξ

belongs to A. Actually it is convenient to modify this to: R almost contains
bξ iff ξ belongs to A (where almost contains means contains with only finitely
many exceptions). The conditions to achieve this are pairs (s, s∗) where s

is an ω-Cohen condition (i.e. element of <ω2) and s∗ is a finite subset of A;
when extending to (t, t∗) we extend s to t, enlarge s∗ to t∗ and insist that
if s(n) is undefined but t(n) equals 0 then n does not belong to bξ for any ξ

in s∗. Then the generic G is determined by the union G0 of the s for (s, s∗)
in G and we can take R to be the set of n such that G0(n) equals 1. The
forcing has the ccc and ensures that A belongs to L[R] using the hypothesis
ω1 = ωL

1 to produce the bξ’s in L (and therefore also in L[R]).1

There is nothing to stop us from coding a subset A of ω2 into a real in
a similar fashion: First we use the hypothesis ω2 = ωL

2 to choose subsets bξ

1In a more general setting we have to worry about how to find the bξ’s in L[R]. Jensen’s
trick to achieve this is to “reshape” A into a stronger predicate A′ with the property that
any countable ordinal ξ is in fact countable in L[A′

∩ ξ]; then after R decodes A′
∩ ξ it can

find bξ and continue the decoding. A clever argument shows that such an A′ can be added
over L[A] by an ω-distributive forcing; when A is not just a subset of ω1 but a subset of
some larger cardinal or even a proper class of ordinals, then the “reshaping” forcing must
be woven into the coding forcing itself.
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of ω1 to set up a forcing to code A into a subset B of ω1 via the equivalence
ξ ∈ A iff B almost contains bξ, and then we code B into a real as in the
previous paragraph. It is pretty clear how to do this for a subset of any ωn,
n finite.

If we have a subset A of ℵω then we have to force subsetsAn of ωn for each
n so that An codes both An+1 and A∩ωn. At first this is confusing because
there is no “top”, i.e. no largest n to begin with, but further reflection
reveals that there is no problem at all, as we don’t need to know all of An+1

to talk about conditions to add An. More precisely, a condition p will assign
to each n a pair (sn, s

∗
n) so that sn is an ωn-Cohen condition and s∗n is a size

less than ωn subset of the set of ξ such that sn+1(ξ) is defined with value 1.
This makes sense even though sn+1 is not defined on all of ωn+1. We also
insist that all of the bξ’s consist of even ordinals and that each A ∩ ωn is
coded into sn using its values at odd ordinals. In the end A gets coded into
a real and cofinalities are preserved since for any n the forcing factors into
an ωn-closed forcing (the n-th upper part) followed by an ωn-cc forcing (the
n-th lower part).

Coding a subset A of ℵω+1 into a real requires a new idea. Actually by
the previous paragraph it’s enough to see how to code A into a subset of
ℵω. Again we would like to assign a subset bξ of ℵω to each ξ < ℵω+1 and
then hope to force a subset B of ℵω which almost contains bξ iff ξ belongs to
A; how are we going to do that? The conditions to add B cannot be built
from “ℵω-Cohen conditions” as this makes no sense for the singular cardinal
ℵω. Instead they should look like conditions in the product of the ωn-Cohen
forcings, i.e. of the form (sn | n ∈ ω) where each sn is an ωn-Cohen condition
(as in the previous paragraph but without the “restraints” s∗n). Actually it
is very convenient to instead write (sωn | n ∈ {−1} ∪ ω) where ω−1 = 0
and sωn is an ωn+1-Cohen condition for each n ≥ −1, and to think of sn as
an ωn+1-Cohen condition on the interval [ωn, ωn+1) rather than on ωn+1, to
separate the domains of the different sωn ’s. Thus the characteristic function
of the generic subset B of ℵω is the union of all of the sωn ’s which appear
in the generic.

As said above we’d like to choose the bξ’s so that ξ belongs to A iff
the generic subset B of ℵω almost contains bξ (i.e. contains bξ with a set
of exceptions which is bounded in ℵω). This is done using a scale, i.e. a
sequence (fξ | ξ < ℵω+1) of functions in

∏
n≥−1[ωn, ωn+1) which is cofinal
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mod finite. Then we take bξ to be the range of fξ. Again it is convenient
to change notation: instead of writing fξ(n) we write fξ(ωn). So the coding
is: ξ belongs to A iff Gωn(fξ(ωn)) = 1 for sufficiently large n, where Gωn

denotes the union of the sn’s which appear in the generic.

As we are using a scale we can arrange the following: if p = (sωn | −1 ≤
n < ω) is a condition then for some ordinal |p| < ℵω+1 called the height of p,
if ξ is less than |p| then ξ ∈ A iff sωn(fξ(ωn)) = 1 for sufficiently large n and
if ξ is at least |p| then fξ(ωn) is not in the domain of sωn for sufficiently large
n. In other words, p already codes A below |p| but provides no information
about future coding on the interval [|p|,ℵω+1). Notice the difference from
the successor coding case: a single condition will definitively code an initial
segment of A, in the sense that its values on a final segment of bξ for ξ in an
initial segment of ℵω+1 have already been fixed (restraints are not needed).
Of course no condition will code all of A, so this initial segment of A is
proper.

But how do we know that this coding of A ⊆ ℵω+1 into a subset of
ℵω preserves the cardinal ℵω+1? For each n we can factor the forcing as
the part ≥ ωn followed by the part below ωn, and as the latter is a small
forcing it causes no problems with cardinal-preservation; so we want to
show that the forcing ≥ ωn (using conditions p = (sωk

| k ≥ n)) is ωn+1-
distributive, i.e. does not add new ωn-sequences. For simplicity suppose
that n is 0, so we want to hit ω-many open dense sets below any condition
p = (sωk

| k ≥ 0). Here is the worry: maybe things are going fine with the
sequence p = p0 ≥ p1 ≥ · · · with corresponding heights |p0| ≤ |p1| ≤ · · · so
we can conclude that the limit pω of the pn’s will code A up to the limit
|pω| of the |pn|’s. But there is the danger that pω “overspills” in the sense
that it already has assigned cofinally many values on bξ for some ξ ≥ |pω|.
This unintended assignment may conflict with the desired coding of A at
the ordinal ξ.

The solution is to guide the construction using sufficiently elementary
submodels and to refine our concept of scale. Namely, when we build the
pn’s we also build a definable ω-chain of size ℵω sufficiently elementary
submodels M0 ≺ M1 ≺ · · · of the universe which are transitive below ℵω+1;
we ensure that the pn’s are chosen from the Mn’s and have heights |pn|
which interleave with the ordinals γn = Mn ∩ ℵω+1. The result is that the
supremum of the |pn|’s is exactly γω = Mω ∩ ℵω+1, where Mω is the union
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of the Mn’s. Now how does this help? The point is that we can arrange for
pω, the limit of the pn’s, to be definable over Mω and therefore also over its
transitive collapseMω; if we can also arrange our scale so that fγω eventually
dominates any function in

∏
n[ωn, ωn+1) which is definable over Mω, then

pω will leave a final segment of the range of fγω untouched, as the sequence
(|pω(ωn)| | n ∈ ω) is indeed definable over Mω. Finally, arranging our scale
in this way is not a problem, as Mω is an initial segment of L which is so
short that it still thinks that γω is a cardinal (it is the image of ℵω+1 under
the transitive collapse of Mω) and we can define fξ to eventually dominate
any function in

∏
n[ωn, ωn+1) which belongs to a model which still thinks

that ξ is a cardinal (fξ is defined using Skolem hulls inside some big initial
segment which sees that ξ is not a cardinal).

The reason we discussed the fine point above about the coding of a sub-
set of ℵω+1 into ℵω is to note that there is some condensation involved (we
needed that Mω is an initial segment of our hierarchy). This is unproblem-
atic for L (and even for L[U ] where U is a single normal measure) but is a
serious problem for large core models. The use of condensation is even more
substantial when looking at ℵω2 , where one needs to simultaneously consider
transitive collapses of unions of chains of sufficiently elementary submodels
of any fixed size ℵω·n and worry about their transitive collapses being initial
segments of the hierarchy. Indeed it is this issue with condensation which
obstructs a fully general coding result over core models as in Theorem ??.
Nearly all of the successes with coding over core models are variants of the
weaker Corollary ??.

Now the fact that the strategy to code a subset of ℵω+1 into ℵω fits so
nicely with the strategy to code a subset of ℵω into a real means that we can
combine the two codings into a single coding of a subset of ℵω+1 into a real.
Thus a condition is a function p that for each finite n assigns a pair (sn, s

∗
n)

as in the latter coding so that in addition the sequence of sn’s is a condition
in the former coding. For later use we change notation slightly: the domain
of p consists of 0 together with the ωn’s and for each α in the domain of p,
p(α) = (pα, p

∗
α) where pα is an α+-Cohen condition on the interval [α,α+)

(0+ is taken to be ω). And of course the restraint p∗α is a size at most α

subset of the set of ξ such that pα+(ξ) is defined with value 1. We also
require that pα codes A ∩ |pα| where the domain of pα is [α, |pα|), using its
values at odd ordinals. Finally, for some |p| < ℵω+1, if ξ is less than |p| then
ξ belongs to A iff pα(η) = 1 for sufficiently large η in bξ = ran(fξ) and when
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ξ is at least |p|, sufficiently large η in bξ lie outside the domain of the pα’s.

Thus ends our introduction to Jensen coding. For arbitrary infinite car-
dinals α, the coding from a subset of α++ into a subset of α+ is similar to
the coding of a subset of ω1 into a real and for arbitrary singular cardinals
α, the coding of a subset of α+ into a subset of α is similar to the above
coding of a subset of ℵω+1 into a subset of ℵω. The final case of the coding
of a subset of α+ into a subset of α for inaccessible α uses either full sup-
port and thereby resembles the singular coding, or uses Easton support and
thereby resembles the successor coding. In nearly all cases (including [?])
full support is used (it faciliates the preservation of large cardinals); Easton
support coding is however needed in [?].

One measurable cardinal

Suppose that there is a measurable cardinal κ in V . Can we code V into
a real R preserving the measurability of κ?

Of course the model that results after coding into R cannot be L[R], but
it could be L[UR, R] where UR is a normal measure on κ extending a given
normal measure U on κ in V . As alluded to above there are serious issues
with condensation when coding over core models and for this reason we’ll
only discuss here how to establish a version of Corollary ??: It is possible to
force a real R over L[U ] which preserves cofinalities, is not set-generic over
L[U ] and preserves the measurability of κ. Even in this special situation it
is very helpful (and essential for further generalisations) to use a hierarchy
for L[U ] with good condensation properties, which we write as L[E]. Note
that the L[U ]-hierarchy does not obey even the weakest of consequences
of condensation, the property that subsets of an infinite cardinal α appear
in the hierarchy at a stage before α+. The L[E] hierarchy inserts “partial
measures” which ensure this property and more without altering the model:
L[E] = L[U ]. The measure U (or something very close to it) is placed on
the L[E] hierarchy at an appropriate stage between κ+ and κ++, its index
on the L[E]-hierarchy, and there will be many approximations to it placed
on the hierarchy at indices cofinal in any uncountable cardinal up to and
including κ+.

So proceed now to form conditions p in L[E] which resemble the coding
conditions from Jensen coding: For α either 0 or an infinite cardinal, p(α)
is a pair (pα, p

∗
α) where pα is an α+-Cohen condition on [α,α+) and p∗α is
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a size at most α set of ξ such that pα+(ξ) = 1. Also for limit cardinals λ

we have a scale (fξ | ξ ∈ [λ, λ+)) of functions in
∏

α+<λ[α
+, α++) and for

ξ < |pλ|, pλ(ξ) = 1 iff pα+(fξ(α
+)) = 1 for sufficiently large α+ < λ. And

p ↾ λ does not interfere with future coding on [|pλ|, λ
+) in the sense that

for ξ ≥ |pλ|, pα+(fξ(α
+)) is not defined for sufficiently large α+ < λ. The

previous applies both to inaccessible and singular limit cardinals λ.

Now we need a strategy for showing that this forcing preserves the mea-
surability of κ. It is best to think of measurability in terms of embeddings:
In the ground model V = L[U ] = L[E] there is an elementary embed-
ding j : V → M = UltU with critical point κ, derived from the ultra-
power given by U . The hierarchy provided by E is defined so that we have
j : L[E] → L[E∗] where E, E∗ agree up to the index of U (an ordinal be-
tween κ+ and κ++); for the present discussion we only need to know that
this agreement persists at least up to the κ++ of M , the ultrapower of V
by U . This has the important consequence that our coding forcing P agrees
with P ∗ = j(P ), the coding forcing of the ultrapower M , up to the κ++

of M . More precisely, a function p defined at 0 together with the infinite
cardinals ≤ κ+ such that p(α) = (pα, p

∗
α) for each α and p∗

κ+ = ∅ belongs to
P ∗ iff it belongs to P , |pκ+ | is less (κ++)M and p∗κ is a subset of (κ++)M .2

Now Silver taught us that if we want to preserve the measurability of κ we
should lift the embedding j : V → M to an embedding j∗ : V [G] → M [G∗]
whereG∗ is generic overM for P ∗ = j(P ). The key is to chooseG∗ to contain
the pointwise image j[G] of G as a subclass. There are many examples
of such liftings in the context of reverse Easton forcing, where there are
typically many choices for G∗. But notice that with coding there is only one
candidate for G∗, the P ∗-generic coded into the same real R that codes G.
This is because j∗(R) will equal R for any possible lifting j∗ of j to V [G].

Of course our desired generic G∗ must include the image j(p) of any
condition p in G; it would be ideal if G∗ were simply generated by these
conditions in the sense that G∗ is obtained as the class of all conditions
extended by a condition in j[G]. This will however not be the case and it is
instructive to see why not.

2This may not be entirely clear, as V has more subsets of κ+ than M . However the
coding is defined so that pκ+ will belong to M provided its length is less than the κ++ of
M .
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For G∗ to be generic it must intersect all L[E∗]-definable dense classes D
on the forcing P ∗. As L[E∗] is the ultrapower of L[E] by the measure U we
can write D as j(f)(κ) for some definable function f with domain κ in L[E]
so that f(α) is dense on P for each α. Now our coding forcing P satisfies the
following useful form of “diagonal distributivity”: We say that a subclass D
of P is γ-dense for a cardinal γ if any condition in P can be extended into D

without changing its values below γ. Now suppose that f(α) is α+-dense for
each cardinal α < κ and p is a condition. Then p has an extension q which
meets each f(α). It follows that some condition p in G has this diagonal
distributivity property and therefore on the ultrapower side, j(p) will meet
j(f)(κ) = D provided D is κ+-dense on P ∗. In particular this means that
the j(p) for p in G will indeed provide us with a generic for the forcing P ∗

above κ+, i.e. a generic subset of the κ++ of L[E] that in turn codes an
entire generic class for the forcing P ∗ above κ+. As the embedding j is the
identity below κ, j[G] also provides us with a generic below κ and indeed a
generic subset Gκ of κ+, as this is coded in both L[E] and L[E∗] into the
generic below κ in the same way.

So j[G] in fact gives us a subset G∗
κ+ of (κ++)M which codes an entire P ∗-

generic above (κ++)M , as well as a subsetGκ = G∗
κ of κ+ which is generically

coded (in both the P and P ∗ forcings) into a real; what is missing is to ensure
that Gκ, which generically codes Gκ+ over V [Gκ+ ], also generically codes
G∗

κ+ over M [G∗
κ+ ]. We have to fit the “ultrapower coding” of G∗

κ+ into
Gκ together with the “V -coding” of Gκ+ into Gκ, in order to produce the
desired P ∗-generic G∗.

It is tempting now to make use of the fact that V = L[E] and M = L[E∗]
actually agree up to (κ++)M in the sense that the hierarchies given by E

and E∗ are the same up to that point. Indeed it is natural to expect that Gκ

will generically code G∗
κ+ using E ↾ (κ++)M , since it generically codes Gκ+

using E and E∗ ↾ (κ++)M is an initial segment of E. This is encouraging,
however it leads to a contradiction, as what Gκ codes below the ordinal
(κ++)M using E is Gκ+ restricted to this ordinal, an element of V , whereas
what we want Gκ to code over M , namely G∗

κ+ , cannot be an element of
V (else both G∗

j(κ) and its preimage Gκ would belong to V , reducing our

class-forcing to a set-forcing).

Thus we need a different approach, in which the codings over L[E] and
L[E∗] do not agree at κ+, in the sense that the generic subset Gκ of κ+
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codes the generic subset Gκ+ of κ++ using E in a way which accomodates,
but differs from, the way it codes the generic subset G∗

κ+ using E∗. The
solution is this: When defining conditions p(κ) = (pκ, p

∗
κ) to almost disjoint

code pκ+ : [κ+, |pκ+ |) → 2 we use sets bξ for ξ < κ++ as before to ensure
that pκ+(ξ) = 1 iff pκ(δ) = 1 for sufficiently large δ ∈ bξ; however we
additionally have sets b∗ξ for ξ < (κ++)M to ensure that for ξ < (κ++)M ,
j(p)κ+(ξ) = 1 iff pκ(δ) = 1 for sufficiently large δ ∈ b∗ξ . Thus there are two
codings taking place simultaneously, one of pκ+ and the other of j(p)κ+ , with
two different forms of restraint. To avoid conflicts between these codings we
choose the bξ’s to be very “thin” making use of the measure U . We choose
a scale (fξ | ξ ∈ [κ+, κ++)) of functions from κ+ to κ+ so that the least
function fκ+ of this scale eventually dominates all functions from κ+ to κ+

in M = L[E∗]; this is possible as there are only κ+-many such functions in
M . The net effect is that the resulting subset Gκ of κ+ which is generic over
L[E] will also be generic over L[E∗], as the thinness of the sets bξ allows us
to show that conditions can be extended to meet the necessary dense sets
from the L[E∗] coding without conflicting with the restraint imposed by the
bξ for ξ in p∗

κ+.

Measures of higher order

Suppose now that we are in a “Mitchell model” L[E] where we now have
two normal measures U0, U1 on κ with U0 below U1 in the Mitchell order.
Thus U0 belongs to the ultrapower of V by the measure U1. Can we create
a real which is class-generic but not set-generic lifting both of the measures
U0 and U1?

It is convenient to reformulate the situation of the last section (with
a single measure U) as follows. Recall that at κ+ we have two codings,
that of j(p)κ+ into Gκ ⊆ κ+ over the ultrapower UltU of V by U , and the
other of pκ+ into Gκ over V . As the latter coding takes place “above” the
former (ultrapower) coding, it is natural to think of the κ++-Cohen condition
pκ+ : [κ+, |pκ+ |) → 2 in two parts: there is pκ+ on [κ+, |j(p)κ+ |) coinciding

with j(p)κ+ and then pκ+ on [(κ++)UltU , |pκ+ |), which is coded using the
bξ’s which “lie above” the ultrapower UltU . In this way there is in a sense
just one coding, which uses restraints from UltU below the κ++ of UltU and
restraints from V between the κ++ of UltU and the real κ++. In fact p ↾ κ

is responsible for the coding below κ++ of UltU (via the embedding j) and
pκ+ is responsible for the coding above. But notice that viewed this way,
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the domain of pκ+ is no longer an interval, but the union of two intervals,

namely [κ+, |j(p)κ+ |) and [(κ++)UltU , |pκ+ |). So pκ+ is what one might call
a “perforated string”.

Now let’s return to the more complex case of two measures U0, U1. At
κ+ the strings are doubly-perforated, as their domains consist of the union of

three intervals: [κ+, |jU0
(p)κ+ |), [(κ++)UltU0 , |jU1

(p)κ+ |) and [(κ++)UltU1 , |pκ+ |).
For cardinals κ̄ of Mitchell order 0 (i.e. carrying only normal measures con-
centrating on non-measurables), strings at κ̄+ will only be singly-perforated
and at non-measurables we return to non-perforated strings. The situation
is similar, but more complicated, when dealing with measurable κ of Mitchell
order less than κ++ (the “real” coding takes place above the supremum of

the (κ++)UltU for U a normal measure on κ on the L[E] hierarchy).

But if we go as far as o(κ) = κ++, where (κ++)U can be arbitrarily
large in κ++ for measures U on κ, and wish to lift all of these measures,
then we have a problem, as it seems that there is no longer room to code,
as the entire interval [κ+, κ++) has been covered with ultrapower codings
which must be respected. In fact, we cannot expect to add a class-generic
real which is not set-generic but lifts all extenders, partial and total, when
o(κ) = κ+++:

To see this, work in K = L[E] and assume that o(κ) = κ+++, κ is the
largest measurable cardinal, but L[E] is also closed under sharps. Let S0, S1

be a canonical partition of S = {ξ < κ+++ | cof (ξ) = κ++} into stationary
sets. Fix i ∈ {0, 1}. Let T i = Si ∪ {ξ < κ+++ | cof (ξ) < κ++}. For later
use, let T i

λ denote the set defined just like T i but with κ replaced by λ, for
regular λ. Assume now that there is a forcing P i in K such that in the
P i-generic extension there exists a real ri with the following property:

(∗) For all ξ such that K|ξ �“ZF−, λ is the largest measurable cardinal and
o(λ) = λ+++”, there is a club through (T i

λ)
K|ξ in K|ξ[ri]. Moreover every

(partial or total) extender on E lifts to K[ri].

By the last sentence we mean that every iteration tree on K can be
lifted to one on K[r]. Now force with P = P 0 × P 1, obtaining reals r0, r1

as above (note that P collapses κ+++, but this is irrelevant), and let g

be generic for the collapse of κ++ to ω over K[r0, r1]. By an unpublished
construction of Woodin (see [?]), K[g] is Σ1

4-correct in K[g, ri]; this makes
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vital use of the fact that enough extenders from K lift to K[ri] (cofinally
many total extenders suffice here). But the following Π1

3 statement Ψi(ri)
holds in K[g, ri], where we let Γ(λ) denote the theory “ZF−∧λ is the largest
measurable cardinal and o(λ) = λ+++”:

(∗∗) Every countable mouse M0 such that M0 � Γ(λ) has a simple countable
iterate M1 such that ri lifts all extenders on the M1-sequence, and if M0

is a countable mouse such that M0 � Γ(λ) and ri lifts all extenders on the
M0-sequence, then there is a club through (T i

λ)
M0 in M0[r

i].

That this statement is Π1
3 boils down to the fact that being a mouse, in

our setting, is Π1
2. By a simple iterate we mean that there are no drops.

To see that the first part of (∗∗) holds of ri, let M0 be a countable mouse.
Co-iterate M0 with K until you reach M1 ⊳K

′, where K ′ is an iterate of K.
Since ri lifts all extenders on E, we can push forward (∗) to K ′ in the sense
that (∗) holds with initial segments of K replaced by those of K ′, so M1 is
as desired. If M1 is not countable, then by taking a countable hull we will
obtain a countable iterate of M0 which is as desired. To see the second part
of (∗∗), we may argue in a similar fashion, this time co-iterating M0[r

i] with
K[ri].

By Σ1
4-correctness, we find s0, s1 in K[g] such that K[g] � Ψ0(s0) ∧

Ψ1(s1).

We claim that for i ∈ {0, 1}, K has a simple iterate K ′ such that si

lifts all extenders on the K ′-sequence and there is a club through (T i
κ′)K

′
,

where κ′ is the image of κ under the iteration map. Otherwise this is false
for some K|θ |= Γ(λ), and we may pick some cardinal Ω > θ and some
σ: K̄ [si] → K|Ω[si] with θ ∈ ran(π) and K̄[si] ∈ K[g] is transitive and
countable in K[g]. Let h ∈ K[g] be Col(ω, θ)-generic over K̄[si]. By our
hypothesis that L[E] is closed under sharps, K̄[si][h] will be Σ1

2-correct in
K[g]. This means that if we look at the family F of all M ∈ K̄[si][h] which in
K̄[si][h] are countable iterates of K̄|θ, then using (∗∗) densely many M ∈ F
will be such that ri lifts all extenders on the M -sequence, and there is a club
through (T i

λ)
M in M [ri] (where M |= Γ(λ)). But then if M̃ is the direct

limit of all mice in F , then M̃ ∈ K̄[si] by the homogeneity of Col(ω, θ), ri

lifts all extenders on the M̃ -sequence, and there is a club through (T i
λ)

M̃

in M̃ [ri] (where M̃ |= Γ(λ)). Moreover, in K̄[si], M̃ can be absorbed by
an iterate of K̄|θ which has the same properties. But the elementarity of σ
then yields a contradiction.
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We first find a simple iterate K ′ of K as in Ψ0(s0). There is a club
D0 through j0(T

0) in K ′[s0], where j0:K → K ′ is the resulting embedding.
We can also find a further simple iterate K ′′ of K ′ which is a witness to
Ψ1(s1). We have j1:K

′ → K ′′ and since s0 lifts all extenders on EK ′
, we

can assume j1:K
′[s0] → K ′′[s0]. Thus there is a club D1 through j0(T

1) in
K ′′[s1], where j = j1 ◦ j0. Let D̄0 = j1(D

0), noting this is a club through
j(T 0), and let D denote the limit points of j−1[D̄0 ∩D1]. Obviously, D is
club in κ+++ and D ∈ K[g]. As S remains stationary in K[g], we can find
η ∈ S ∩ D. Since j is continuous at points whose K-cofinality is greater
than κ, we have j(η) ∈ D̄0 ∩D1, and by elementarity j(η) ∈ j(S). This is
a contradiction, since j(S) ∩ j(T 0) ∩ j(T 1) = ∅, finishing the argument that
no real ri as in (∗) can exist.

We now argue that the problem with (∗) lies not in its first sentence, the
coding part, but in its second sentence, the lifting of extenders. Consider
the following weakening of (∗):

For all ξ, if K|ξ � “λ is the greatest measurable and o(λ) = λ+++” and
K|ξ[ri] � “ZF− and λ+++ = (λ+++)K|ξ”, then there is a club through
(T i

λ)
K|ξ in K|ξ[ri],

We can produce a real ri satisfying this by first shooting a club through
T i and then forcing to code it with localization (using a core model analogue
of David’s trick; see [?, theorem 6.18]). The club is added by a κ+++

distributive forcing (a forcing adding no new κ++-sequences) of K; then,
the condensation provided by K suffices for the distributivity of the second
forcing, as we can take Skolem hulls in K (as in [?]). In fact, if we weaken
(∗) by just dropping the last requirement (i.e. that all extenders lift), we
obtain a statement which should be forceable using a core model analogue
of strong coding (see [?]). For these reasons we believe that the problem
with (∗) lies with its second assertion, that all extenders lift.

In fact we conjecture that it is not possible to add a class-generic real
which is not set-generic while lifting all normal measures on a measurable
κ of order κ++; in fact we conjecture that it is not even possible to do this
while lifting all normal measures in a “cofinal” collection S ∈ L[E] of such

measures. (By “cofinal” we mean that the ordinals (κ++)UltU for U in S
are cofinal in κ++.) But this does not mean that we cannot preserve the
property o(κ) = κ++! As we’ll see in the next section, it is possible to
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preserve cases of hypermeasurability, which in turn implies that the set of
normal measures that are lifted is cofinal; it is not however clear that this
set can contain a cofinal subset in the ground model.

Hypermeasurables

Can we preserve stronger forms of measurability? Suppose that κ is
hypermeasurable in V = L[E] in the sense that some total extender F on
the E-sequence with critical point κ witnesses that κ is H(κ++)-strong, i.e.
the ultrapower jF : V → M has the property that H(κ++) is contained
in M . (This is the same as saying that F is indexed past κ++ in the E-
hierarchy.) Can we add a real which is class-generic but not set-generic and
lifts F?

Again we want to set up our conditions so that the embedding j = jF
can be lifted to V [G]. This time we have that the union of the j(p)κ++ is
not in V yet like pκ++ must be coded into the same subset Gκ+ of κ++. As
in the one measure case this can be resolved by starting the coding of pκ++

above (κ+++)UltF , below which the former coding takes place. But we have
a new problem: the union of the j(p)κ+ would appear to not belong to V

and as V and UltF completely agree below κ++, the set Gκ+ will code it in
exactly the same way as it codes Gκ++. This is a serious obstacle and the
only way around it is to thin out the coding conditions to ensure that in
fact the j(p)κ+ will be empty for each condition p.

To ensure the latter we require that for any condition p there is a closed
unbounded subset C of κ such that for inaccessible α in C, pα+ is the empty
string. This ensures that j(p)κ+ will also be the empty string. The price one
pays for this is that we only have a weaker form of diagonal distributivity:
If f(α) is α++-dense for each cardinal α < κ then any condition can be
extended to meet each f(α). This only ensures that the pointwise image
j[G] will generate a generic over the ultrapower UltF above κ++, coded into
the subset G∗

κ++ of (κ+++)M consisting of the union of the j(p)κ++ for p in
G. G provides a generic below κ++ and now the task is to ensure that Gκ+

will code not only Gκ++ but also G∗
κ++ . This is dealt with as in the one

measure case, by starting the former coding “above” the latter, making use
of an appropriate scale.

For a stronger total extender (of sucessor cardinal strength) the pattern
is similar: Thin out the conditions to guarantee that j(p)α is empty for
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cardinals α strictly between κ and the strength of the total extender. At the
strength there are two codings which must be performed simultaneously, one
over V and the other over the ultrapower. Conflicts between these codings
are avoided by allowing the V -coding to make use of the total extender F

when defining the coding sets bξ via an appropriate scale.

The above ideas are sufficient to lift a class S of total extenders (each of

successor cardinal strength) which is bounded (the set of (α+)UltF for total
extenders F in S of strength exactly α is bounded in α+ for each cardinal
α) and uniform (or coherent) (if F belongs to S then jF (S) agrees with
S below the index of F in the L[E]-hierarchy), provided that in L[E] no
inaccessible α is the stationary limit of cardinals which are strong up to α.
This yields a version of Corollary ?? up to the level of a proper class of
strong cardinals, but handling a stationary-limit of strong cardinals requires
new ideas.

Woodin cardinals

As coding makes heavy use of condensation it is only reasonable to con-
sider ground models for which a suitable core model theory is available,
currently up to the level of Woodin cardinals.

Recall that δ is Woodin if for each A ⊆ δ there is a κ < δ which is A-
strong in δ, i.e. the critical point of embeddings j : V → M such that j(A)
agrees with A up to γ, for each γ < δ. At first it appears that this indicates
the end of the coding method, as Woodin proved the following (see [?] and
[?, theorem 7.14]): If S is a set of total extenders in V sufficient to witness
Woodinness in this sense and R is a real such that each total extender in S
lifts to V [R], then in fact R is generic over V for a (δ-cc) forcing of size δ. So
there appears to be no version of Corollary ?? in the context of a Woodin
cardinal.

But actually there is another definition of Woodin cardinal with a dif-
ferent notion of witness: δ is Woodin if for each f : δ → δ there is a κ < δ

closed under f which is f -strong, meaning that some embedding j : V → M

with critical point κ is j(f)(κ)-strong (i.e., H(j(f)(κ)) is contained in M).
It is shown in [?] that if δ is Woodin in V = L[E] then in L[E] there is a
witness T to Woodinness in this latter sense which can be lifted by a non-
set-generic real R, thereby preserving the Woodinness of δ. And indeed this
can be done simultaneously for all Woodin cardinals in L[E].
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The proof of the latter result is much more involved than in the case
of nonstationary limits of strongs. In that simpler setting, one can use the
strength function α 7→ (sup of the strengths of total extenders with critical
point α) to thin out the codings uniformly below each inaccessible cardinal.
In the Woodin cardinal setting one must instead use a uniform witness T to
the Woodinness of each Woodin cardinal whose total extenders have non-
Woodin critical point, and then thin out the codings using functions which
witness the failure of these critical points to be Woodin. A major difference
from the easier setting is that for total extenders F that are to be lifted
and conditions p, it is no longer the case that jF (p) will be trivial between
the critical point and strength of F ; instead one must deal with this extra
information at a cardinal α between the critical point and strength of F
until reaching a condition which “recognises” that each of the finitely-many
total extenders in T overlapping α has non-Woodin critical point; this is
essential for showing that this extra information stabilises to a set in V .

Future work

The story is far from over regarding coding over core models. In terms
of versions of Corollary ??, the current frontier is the preservation of mea-
surable Woodinness, which will need a technique beyond what is sketched
above for plain Woodinness. Going back all the way to hypermeasurable
cardinals, there remains the difficult problem of condensation, which ob-
structs a satisfying version of Theorem ??. As mentioned, the special case
of coding a generic for a Prikry product is handled in [?], but this is an ex-
tremely special case and it is quite possible that there is a counterexample
for the coding of more general predicates while preserving hypermeasura-
bility. And of course it will be worthwhile to look at generalisations to the
large cardinal setting of the many applications of Jensen coding (and its
iterations), as found in [?, ?]. Finally, can one do something with coding at
the level of supercompact cardinals? Of course the core model theory is not
yet available there, but there has been considerable progress in showing that
many of the nice features of L[E] models can be forced consistently with the
strongest of large cardinal properties (see for example [?]). Are there coding
theorems to be proved over such “pseudo” core models? A positive answer
may have very interesting consequences.
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