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Abstract In this paper we prove the equiconsistency of the as-
sumption that there is a measurable cardinal k with the Mitchell
order o(k) = kT with the statement that there exists a measur-
able cardinal x violating GCH such that the continuum function
on regular cardinals below x can be anything not outright incon-
sistent with the measurability of x (see Corollary 3.2).

This settles the question of the optimal large cardinal strength
needed to not only violate GCH at a measurable cardinal , but
also determine the continuum function below &, generalizing [3]
to a large-cardinal setting.
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1 Introduction

As shown by W. Mitchell and M. Gitik, see [8] and [6], the following holds:

(*) The failure of GCH at a measurable cardinal is equiconsistent with the
existence of a measurable cardinal of Mitchell order k™1: o(k) = k1.

It seems to be a reasonable assumption that (*) can be generalized for ex-
ample to:

(**) The existence of x such that o(k) = k*T is equiconsistent with the
existence of x such that 2° = k™1, k is measurable, and for all regular
cardinals a < K, 2% = o™,

Though (**) may seem to be only a minor generalization of (*), it is not
so, and as a matter of fact (**) was not resolved in [6], nor [4]. (**) is
a paradigmatical case of a still more general question which studies the



possible behaviours of the continuum function with respect to large cardinals
(large cardinals restrict the continuum function beyond the ZFC conditions
identified in [3]). See the paper [4] for details.

The interesting direction in the equivalence (**), which does not follow from
(*), is from the left to the right. We have shown the analogous implication in
[4] from the slightly stronger assumption of x being k**-strong (see Section
1.1 for definitions).

In Theorem 3.1, we show that (**) is true; in Corollary 3.2, we generalize
(**) along the lines of [3]. The proof is structured as follows. By the
construction in [6], the assumption o(k) = k™ together with GCH implies
that there exists a generic extension V* satisfying GCH and an elementary
embedding j : V* — M with the critical point &, which satisfies:

(i) M is closed under k-sequences in V*,
(i) (kT )M = g+,

In this paper, we will call such a j a k™ -correct embedding (to our knowl-
edge, no terminology is as yet fixed for embeddings satisfying (i) and (ii)).

We start with GCH and a x*"-correct embedding j and define a cofinality-
preserving forcing R such that in VE:

(i) 2% = a™T for every regular cardinal o < k, and
(ii) & is measurable.

We achieve (ii) by lifting the embedding j to V®. The crucial step in the
lifting argument, see Theorem 2.1, where the weaker assumption of x™T-
correctness needs to be taken into account, concerns the V-regular cardinal
(k)M = kx++. Since kt is regular in M, the forcing iteration j(R) is
non-trivial at 1. Since the entire H(x"1) may not be included in M, the
forcing at £ in j(R) (which typically uses conditions in H (k")) tends to
behave erratically in the universe.

Inspired by U. Abraham’s paper [1], we show that if we include in R some
preparatory forcing, we can “force” j(R) to behave properly at x*t+. In
some sense, this preparatory forcing makes a k' '-correct embedding look
more like a kT *-strong embedding, as far as the proximity of H (k™)™ to
the real H(x* ) is concerned. Once the problematic step of k™ is resolved,
the rest of the lifting to VR is standard.

1.1 Terminology

We say that k is a #-strong cardinal, where x < 6 and @ is a cardinal, if
there exists an elementary embedding j from V into some transitive class
M with the critical point x such that j(k) > 6, and H(#) is included in M.
If GCH is assumed, and 6 is regular (this is sufficient for our purposes here),



then the elementary embedding witnessing the #-strength of k¥ can be taken
to have the additional property that M = {j(f)(a)|f : kK — V,a < 0},
0 < j(k) < 0%, and M is closed under x-sequences in V (such a j is called
an extender ultrapower embedding). See [2] for details.

We will focus in this paper on the case when § = x*+.

If we omit the condition that H () is included in M, we obtain a weaker
notion.

Definition 1.1 Assume GCH. We say that j : V. — M with the critical
point Kk is a kT T-correct embedding if j satisfies:

(i) K7 = ()M,

(ii) M 1is closed under k-sequences in V.

If j is kT -correct, one can use the usual extender ultrapower construction to
get an even better embedding. We call j a k*'-correct extender embedding
if j satisfies conditions (i)—(iii) above, and moreover satisfies:

(i) M ={j(f) ()| f:r—V,a<r}

We say that k is k*-correct if there is a kT -correct embedding with the
critical point k.

Fact 1.2 shows that in some sense a k**-strong embedding is substantially
stronger than a x*"-correct embedding.

Fact 1.2 (GCH) While there are k-many measurable cardinals below every
kT -strong cardinal k, a KT -correct cardinal k may be the least measurable
cardinal.

Let us note that Fact 1.2 is implicit in the proof of the main theorem in [6].

The weaker notion of a k™ T-correct embedding is important because it has
the same strength (in terms of consistency) as the assumption that x has
the Mitchell order kT o(k) = kT (see [6]).

We know provide a quick review of the notion of lifting of embeddings.

Fact 1.3 Let P be a forcing notion and j : V. — M an embedding with the
critical point k. Then the following holds (for proofs, see [2]):

(i) (Silver) Assume G is P-generic over V and H is j(IP)-generic over
M such that j[G] € H. Then there exists an elementary embedding
j* : VIG] — M[H] such that j* |V = j, and H = 7*(G). We say that
j lifts to VT,



(ii) If j is moreover an extender ultrapower embedding then if P is a k-

distributive forcing notion and G is P-generic over V', then the filter
G* in j(P) defined as

G ={q|Ipe G jp) <q}

is j(P)-generic over M.
(iii) If j7* : V|G] — MI[H] is the lifting of j, then if j was an extender
ultrapower embedding, so is j*.

2 The crucial step: k"

Theorem 2.1 captures the main idea of this paper. Theorem 3.1 and Corol-
lary 3.2 are direct applications of Theorem 2.1 based on results in [5] and

[4].

Theorem 2.1 Assume GCH and let j: V — M be a k+1-correct extender
embedding with the critical point k. Then there exists a cofinality-preserving
forcing notion P such that if G is P-generic, the following holds:

(i) 2% = o™t for every reqular cardinal o < Kk which is a double successor
of an inaccessible cardinal B < k, where a is a double successor of 5
if o = BT,

(ii) The embedding j lifts to j* : V|G] — M[j*(G)], and j* is a kT -correct
extender embedding in V[G].

Proof. The proof of the theorem will be given in a sequence of lemmas.

For a regular cardinal o, we write Add(«, 1) for the Cohen forcing which
adds a single Cohen subset of «: a condition p is in Add(a, 1) if and only if p
is a function of size < « from « to 2. We also write Add(a, 1) for the Cohen
forcing viewed as adding a single Cohen function from « to a: a condition p
is in Add(a, 1) if and only if p is a function of size < a from « to a. These
two descriptions are equivalent as far as forcing goes; we will use the one
which is best suited for our purposes (we will indicate which representation
we choose). If « is a regular cardinal and  an ordinal greater than 0, we
write Add(a, B) to denote the standard Cohen forcing which adds [-many
subsets of a. A condition p belongs to Add(«, ) if and only if p is a function
from a x 3 to 2 of size < a. At times, we view Add(a, 3) as a (-product
with < a-support of the forcing Add(«, 1). Again, these two descriptions of
Add(a, ) equivalent, and we will therefore use the one which best suits the
given context (we will indicate which representation we have in mind).

Let us now define the forcing P. P will be a two stage iteration PO x P!,
where:



(1) P is an iteration of length x with Easton support, PV = <(IP’2, Qg) | <

k), where Q¢ is a name for a trivial forcing unless & is an inaccessible
cardinal < k, in which case

(2.1) IP’? I+ “Qg is the forcing Add(¢T,671) « Add(eFF, 7). ”

where Add(£T,£61T) is viewed as a product forcing which adds £17+-
many Cohen functions from ¢+ to ¢, and Add(¢+T, M) is viewed as
adding ¢T*-many Cohen subsets of £77.

(2) Notice that P? is an element of M. P! is defined in M to be a PY-name
which satisfies:

(2.2) M k= “P° I “P! is the forcing Add(sT,x*+) » Add(st+,1),7”

where Add(kt,xT") is viewed as a product forcing which adds xk*+-
many Cohen functions from % to kT, and Add(k™",1) is viewed as
adding a single Cohen subset of k™.

P is cofinality-preserving.

The forcing P is clearly cofinality-preserving by a standard argument. Let
G, be a PY-generic filter over V. By xt*-correctness of j, P is in M and
G, is PO-generic over M. In order to verify that PP is cofinality-preserving,
it suffices to check that the forcing (P')%* defined in M[G,] preserves cofi-
nalities when forced over V[G]|. Notice first that Add(k*, ") of M[G,]
is the same set as Add(x*,x"T) of V[G,]: this is because PV has k-cc,
and hence by standard arguments M[G,] is still closed under k-sequences
in V[G.]. Let g be a Add(xt, st T)VICxl_generic over V[G,]. Then by the
previous sentence, g is also Add(kT, xtT)MICsl_generic over M[G,]. Work
in M[G, * g] and let Q* denote the forcing Add(k*",1) of M[Gy * g]. Then
the claim that P preserves cofinalities follows from the following lemma:

Lemma 2.2 The forcing Q* is still k™t -distributive over V|G, * g].

Proof. First note that this lemma in non-trivial: if the original M missed
some subsets of kT in V, then Q* is a proper subset of Add(k*™+,1) of
V|G * g], and hence Q* is certainly not £t +-closed over V|G, * g].

We will argue that the preparatory forcing Add(x™, k™) ensures that Q*
is still kT T-distributive over V|G, * g].

Let us work in V[Gj * g]. Assume that p € Q* is a condition and fisa
name for a function from x* to ordinals:

(2.3) pl-f:xkt — ORD.

We will show that there exists ¢ < p which decides all values of f .



Write H(k™T) of M[Gy x g] as L,.++[B] for some subset B of x*+, B in
M|Gy * g]. This is possible because H(k1) of M[G, * g] has size k™ in
M|G *g]. Fix an elementary submodel N of some large enough H (8)V[Gr*d]
which has size kT, is transitive below ™1, is closed under s-sequences and
contains as elements B, Q*, p and f . We will show that p has an extension
g < p which hits all dense subsets of Q* which belong to IV; this will imply
that ¢ decides all values of f as required.

Let 3 be the the ordinal N N ™" and let 7 be a transitive collapse of N to
N. Then 7(Q*), which is equal to Q* N N, belongs to M[G * g] because
Q* is definable in L,++[B], and so by 7 being an isomorphism, 7(Q*) is
definable in L. ++[7(B)] = Lg[B N f]. Tt suffices to extend 7(p) = p to a
condition ¢ which hits all dense subsets of 7(Q*) which belong to N.

For v < k™7, let us denote g [ v = {q € g|lq v = q}. Pick some v <
kTT such that N is in V[Gx * g | 7], and 7(Q*) and some enumeration
PE|€ < w*) of m(Q*) are in M[Gy x g | 7]. Such ~ exists by x*-cc of
the forcing Add(k™,x™") and the fact that N is a transitive set of size
kT. Let h be the generic function k™ — kT at the coordinate 7 in g:
h={q(v)|q € g,v € dom(q)}. So h is Add(x™, 1)-generic over V[Gy * g [7].
Note that h € M[Gy, * g].

Define inductively in MG * g] a decreasing sequence of conditions (pe¢ | £ <
k) with pg = p, py = Ug< pe for A a limit ordinal < kT, and:

o if py . extends pg,
Per1 = { h() he) | ¢
De otherwise.

Since all the parameters used in this construction, i.e. the sequence <pz 1€ <
kT, and h, m(Q*), p, are in M[G, *g], so is the whole sequence (p¢ | £ < KkT).
Let ¢ be the greatest lower bound of this sequence, ¢ = U5 <xDPg¢. Since
(pe|€ < KT)isin M[Gyx *g], g € Q™.

We will show in V|G, *g [7][h] that the sequence (p¢ | € < kT) is (N, m(Q))-

generic. This already implies that that ¢ decides all the values of f: For
each £ < k™, the set

De = {p € 7(Q") | p decides 7(f)(€)}

is a dense open set in 7(Q*), which is an element of N. If p¢ for some ¢ < &
meets Dg, then pe = 7~ !(p¢) decides the value of f(«), and so does g < p¢.

The (N, 7(Q*))-generocity is proved by using the generic h. Let D be a dense
open set in 7(Q*) which is an element of N. We will show in V|G, * g [ 7][h]
that there is some pe which meets D. To this end, it suffices to show that

D={qlqlF “IE <Kk pe €D’}



is dense in Add(x™,1) in V|G, * g [7]. Given a condition ¢, extend ¢ first
into some ¢’ such that dom(q’) = § for some 6 < x™; then ¢’ decides the
construction of (p¢|§ < k1) up to § (because it decides h up to §): for
some p' € 7(Q*), ¢ I+ ps = p/. Pick p” < p/ in D. In the enumeration
(PE1€ < wT), p" is some condition p;. Set ¢” = ¢' U {(d,n)}. Then ¢" I
“ps41 extends ps and meets D7, and so ¢” < ¢ is in D. It follows that D is
dense and the proof is finished. O

This shows that P is cofinality-preserving over V. We now show that the
embedding j can be lifted to V.

The embedding j lifts to j*.

Let G = G. * g * ¢ be a P-generic over V, where G, is PY-generic, ¢
is Add(xt, ktT)MIGrlgeneric over V[G,], and ¢ is Add(xtt,1)MGrgl
generic over V[G, * g]. We need to find a j(IP)-generic H over M such
that j[G] C H.

By xt+-correctness of 5, j(PY),, = P, and so we start building H by plugging
in G, as the j(IP?),.-generic over M.

The next forcing in j(PP) above  is Q@ = Add(k+, kTT) x Add(kTT, k1?) as
defined in M[G,]. We need to find in V[G] a Q-generic over M[G,]. It
is here, where we make use of the preparatory forcing P!: By definition of
P!, g is Add(xt, sTH)MIGxl_generic over V[G,] (and hence over M[G,]). To
complete the construction of a Q-generic, it remains to find some h, which
will be Add(k*+, sT4)MIG* ] generic over M[G,, * g].

When we look at the generics at our disposal, the natural candidate for h
is the generic filter ¢’. Clearly, ¢’ will need to be tweaked a little because it is
only Add(xt+,1)MGr*dl_generic over V[G*g], but not Add(k*+, x+4)MIGrral
generic over V[Gy * g]. Note that there is a good reason for this apparent
deficiency of ¢: While Lemma 2.2 shows that Add(s*t,1)M[Cx*d] is suffi-
ciently distributive over V[Gj * g], the forcing Add(xtT, kT4)MIGr9l never
is, in fact it collapses k™ :

Observation 2.3 Lety be an ordinal < j(k) which has V -cofinality k*, and
its cofinality in M is > k. Then the forcing Add(k++,y)MIC*d] collapses
kT to kT if forced over V[Gy * g].

Proof. Notice that every M-regular cardinal in the interval (k™1, (k)] has
V-cofinality x* (this uses GCH in V, and the extender representation of
M), and so setting v = (k7)™ achieves the desired claim. Fix X to be
a cofinal subset of v of order type k™. Now, for each ¢ € k™1 and every
p € Add(kTt,)MGr*9l one can find ¢ < p and € € X such that ¢ at the
coordinate &€ codes ( in the sense that it contains (-many 1’s followed by 0.
Hence it is dense that every ¢ € k™" is coded at some element £ € X. [



Thus we have no choice but to try to use g’ to obtain the desired generic filter
h. A priori, this strategy may work because Add(kT+, kT*)MICx*d] is small
in V[Gg * g x ¢']: it has size k™ here. The following Lemma suggests that
perhaps Add(ktT,1)MGr9] can be “stretched” to Add(kT+, xH4)MICGr*g],

Lemma 2.4 Let j : V — M be a k*F-correct extender ultrapower embed-
ding. Let v = (kt)M. Then:

(i) There exists in V a bijection 7 : v — kT which is locally M-correct

in the sense that whenever X C ~y is in M and has in M size < k+T,
the restriction w[ X is also in M.

(ii) And more generally, if R is a forcing notion in M and R has k™3-cc
in M, then the bijection 7 in (i) is M®-locally correct.

Proof. Ad (i). List all f: x — xin V as (fi|i < 7). For B < k™ let
S denote the set of all j(f;)(«), where i < 8 and o < x™, such that
j(fi)(a) <:

Sp={i(fi)(@) i < B, < &7, 5(fi)(a) <A}

Then each S belongs to M, the Sg’s form an increasing chain under inclu-
sion, and the union (J{S3 |3 < T} is equal to 7. Moreover, if X € M is
a subset of v of size < k™t in M, then X is contained in some Sz. The
sequence of Sg’s can be used to construct a bijection 7 : v — kT x kT
with the property that 7/ | X is in M for any X as above. If f is a bijection
in M between T x k™ and kT, then the composition 7 = 7’ o f is the
desired bijection.

Ad (ii). Let F' be R-generic over M. If X is a subset of v in M[F] which
has size < k™1 in M[F], then by £™3-cc of R there is some X’ O X in M
which has size < ™1 in M. Then the claim follows by application of (i).

U

Note that the inverse function 7~ may not be “locally M-correct” in the

sense of the previous Lemma. Indeed, if (c¢ | < k) is cofinal in (k)M
then for X = {c¢|£{ < T}, the set 7[X] may be in M (for instance when x
is kt*t-strong), while 7~ ![r[X]] = X is certainly not in M.

We know show that the previous Lemma can be used to stretch the Add(x 1, 1)-
generic ¢’ over V|G, * g] to a Add(kT+, k) MICs*9]_generic over M[G,, * g].

Let Q* = Add(kT1, 1)MICs*d] and Q = Add(kT, sH4)MIGr*a],

Lemma 2.5 There exists in V|G, x g+ ¢'] a Q-generic over M[G,, % g]. Let
us denote this generic as h.

Proof. Let 7* : kT+ x (k)M — kT be a bijection obtained by composing
the bijection 7 from Lemma 2.4 with any bijection in M between ™ x



(kM and (k**)M. Then 7* is locally M[G, * g]-correct in the sense of
Lemma 2.4(ii). For p € Q, write p* to denote the image of p under 7*:
dom(p*) = 7*[dom(p)], and for each (&, () in the domain of p, p*(7(§,()) =
p(§,¢). By the local M[G,  g]-correctness of 7*, each p* is in M[G, * g],
and hence it is a condition in Q*:

{rlpeQ}cQ

Note that the inclusion is proper because Q* is #* *-distributive over V|G,
g], while @ is not (see Observation 2.3).

Let us set
h={plp*€d'}.

We show that h is as required. Assume A lies in M[G, * g] and it is a
maximal antichain in Q, and so in particular A has size < k** in M (G xg].
Let us denote dom(A) = (J{dom(p) |p € A}. Let us write A* = {p* |p € A}
and dom(A*) = [J{dom(p*) |p* € A*}; then A* is an antichain in Q* and
™ [ dom(A) is in M[G * g] by the local M[G, * g]-correctness of 7*. To
show that h is as required, it suffices to show that A* is a maximal antichain
in Q*. Let ¢ be any condition in Q*; since ¢ is in M[G,; * g, the intersection
dom(q) Ndom(A*) is in M[Gy xg]. Since 7* [ dom(A) is in M[G, *g|, the set
(7*)~Hdom(q)Ndom(A*)] is also in M[G*g]. If ¢’ denotes the condition in Q
with the domain (7*)~![dom(q) Ndom(A*)] defined by ¢'(&,¢) = q(7*(&,()),
then there exists by the maximality of A some p € A compatible with ¢’. Tt
follows that p* € A* is compatible with ¢ because it is compatible with ¢ on
dom(p*) N dom(g). Thus A* indeed maximal, and h meets A as required.

U

Based on the previous Lemma, we see that Gy, x g h is j(P?),.1-generic over
M. The iteration j(P°) in the interval (k + 1,5(k)) is T+ -distributive in
MGy, = g % h], and so all the relevant dense open sets in M[G, * g * h] can
be met in xT-many steps, using the extender representation of M (see [4]

for details). Let the resulting generic be denoted as h. Then G, * g * h x h
is j(PY)-generic over M, and we can partially lift to

§' V[Ge] = MGy % g * hxh].

It remains to lift j to P* = Add(k*, kTF) x Add(k* T, 1) of M[G, * g]. By
Lemma 2.2, P! is k*-distributive over V[G], and therefore by Fact 1.3, the
filter h generated by the j’ image of g x ¢/ is M[G, * g * h % h]-generic over
j'(BY): N

h={q|Fpeg=d.i'®) <aq}
If we define H = G, * g % h * h * ;L, then H is as required:

J* 1 V[Gi*g*g]— M[H].



This finishes the proof of Theorem 2.1. U

Remark 2.6 Note that the forcing P is trivial at x, and hence the proof
of Theorem 2.1 did not need to take special care to ensure the coherence
condition j[G] C H (except at G, but this is satisfied automatically). See
next section where the forcing at k is non-trivial.

3 Easton’s theorem and large cardinals from the
optimal hypothesis

Theorem 3.1 Assume GCH and let j: V — M be a k™ -correct extender
embedding with the critical point k. Then there exists a cofinality-preserving
forcing notion R such that if G is R-generic, the following holds:

(i) 2% = o™ for every regular cardinal o < K.
(ii) The embedding j lifts to j* : V|G] — M[j*(G)], and j* is a kT -correct
extender embedding in V[G]. In particular, k is still measurable.

Proof. Let I(k) denote the set of all inaccessible cardinals < k, and R(k)
the set of all regular cardinals < k. Set B = {a € R(k) |30 € I(k),a =
Bora=ptU{k}, and A= R(x)\ B. Then AU B is the set of all regular
cardinals < k.

We define R as a two-stage iteration R4 RB. R4 will be a cofinality-
preserving forcing which will force the failure of GCH at every element in A.
In VR4, Rp will be a cofinality-preserving forcing which will violate GCH
at the remaining regular cardinals < k, i.e. at the elements in B.

The definition of R4 is a modification of P, as defined in Theorem 2.1. R4
is a two stage iteration R% * R}L‘, where:

(1) RY is an iteration of length  with Easton support, RY = (R} )¢, Q¢) | € <
k), where Qg is a name for a trivial forcing unless £ is a limit cardinal
< K, in which case there are two possibilities:

(a) If € is regular (and hence inaccessible), then

(3.4) (RY)e IF “Q is the forcing
[Ad(EF,€77) * Add(T, €)X [ers cpcgrw Add(7,7T),”

where Add(£1,£7T) is viewed as a product forcing which adds £+F-
many Cohen functions from &+ to £, Add(¢FF,¢11) is viewed as
adding ¢ **-many Cohen subsets of €T+, and [Te++ <yegrw Add(y,7")
is the standard Easton product, which adds v "-many Cohen sub-
sets to each regular cardinal  such that 71 < v < £t (where £T¥
is the least limit cardinal above &).
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(b) If £ is singular, then
(3.5) (R%)e I “Qy is the forcing [T cerw Add(y,7F7),”

where [[er+ et Add(v,7%F) is the standard Easton product,
where v ranges over regular cardinals.
(2) Notice that RY is an element of M. RY is defined in M to be a R%-name
which satisfies:

(3.6) M = “RY I “RY is the forcing Add(x™, ™) x Add(x*T,1),7”

where Add(k™*,xT") is viewed as a product forcing which adds x*+-
many Cohen functions from % to k™, and Add(k™",1) is viewed as
adding a single Cohen subset of k™.

By standards argument, see [4], and Lemma 2.2 applied in the present con-
text, the forcing R 4 is cofinality-preserving. By [4], and an easy modification
of Theorem 2.1, j lifts to a k™ t-correct extender embedding j/ in VE4: in
the proof generalizing the proof of Theorem 2.1, one just needs to take into
account the product [],++_. ,+. Add(y,777) at the stage « of the itera-
tion j(RY). However, since in M/®Dx Add(k*, xt) % Add(sT, k1) has
k13-cc and the product [Lot+ <yento Add(y,7) is k1T3-closed, it follows
by Easton’s lemma that these two forcing are mutually generic. Accord-
ingly, an Add(k", k7) % Add(sT, kT)-generic over MI®x is obtained
as in Theorem 2.1, while a [],++ .+ Add(v,7"")-generic is obtained by
a standard construction using the x3-distributivity of the forcing.

Let G4 denote a R 4-generic, then the following holds in V|G 4]:

(i) GCH holds in V[G 4] at every inaccessible cardinal o < k and at the
successors of these inaccessible cardinals.
(i) 2¢ = a't for every regular cardinal < k other than in (i) in the
previous line.
(iii) There exists in V[G 4] a kT T-correct extender embedding j' : V[G 4] —
M]j'(G 4)] which is a lifting of the original j.

In V]G 4], we define Rp as follows.

Rp is an iteration of length x+1 with Easton support, R = ((Rp)e, Q¢) | € <
k + 1), where ()¢ is a name for a trivial forcing unless ¢ is an inaccessible
cardinal < k, in which case there are two cases:

(a) If £ < K, then
(3.7)  (Rp)e IF “Qg is the forcing Sacks(&, £77) x Add(¢T,£73),”

where Sacks(£T, £11) is the generalized Sacks product forcing at & which
adds ¢TT-many new subsets of £ (see [7], and [5] for details), and
Add(et,€1F) is viewed as adding ¢ 3-many Cohen subsets of £7.
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(b) If € = kK, then
(3.8) (Rp)e IF “Q is the forcing Sacks(&,€71) x Add(€T,1).

By standard results, see [4], Rp is cofinality-preserving over V[G 4] (here, it
is important that Add(¢+,£+3) is still ¢*-distributive over Sacks(&,£11)).

Let Gp be a Rp-generic over V[G4]. Using the “tuning-fork” argument
in the original paper [5], together with [4], one can show that j" lifts to
V|G 4][GB]. Notice here that it is sufficient to add just one Cohen subset of
kT, cf. (3.8), in order to lift, and so GCH holds in V[G 4][Gp] above & (if so
desired).

If we set G = G4 * G, then V[G] is as required. O

We can achieve even more generality, along the lines [3] and [4]. We say that
a proper-class function F' from regular cardinals into cardinals is an Faston
function, if for all regular cardinals k, A:

(i) k< A= F(k) < F(\),
(ii) cf(F(k)) > k.

A cardinal p is said to be a closure point of F' if F(v) < u for every regular
cardinal v < p.

We say that F is realised in some cofinality-preserving extension VR if F is
the continuum function in V® on regular cardinals.

Corollary 3.2 Assume GCH and let k be k™ -correct cardinal. If an Eas-
ton function F satisfies:

(i) K is a closure point of F, F(k) = k', and
(11) There exists a kK -correct embedding j : V. — M with the critical
point Kk such that j(F)(k) > F(k),

then there exists a cofinality-preserving forcing R such that the Easton func-
tion F is realised in VX, and j lifts to VX, in particular & is still measurable
in VE.

Proof. This is just like the relevant part of [4], with the arguments in
Theorems 2.1 and 3.1 added to be able to prove this result from the optimal
hypothesis of a k™ T-correct embedding (Lemma 2.4 must be generalized to
§(F)(xkT) instead to (x*4)M; this is straightforward since the cofinality of
J(F) (k™) is strictly greater than x*T). O
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