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Czech Republic

radek.honzik@ff.cuni.cz

The second autho was supported by postdoctoral grant
of the Grant Agency of the Czech Republic 201/09/P115

Abstract In this paper we prove the equiconsistency of the as-
sumption that there is a measurable cardinal κ with the Mitchell
order o(κ) = κ++ with the statement that there exists a measur-
able cardinal κ violating GCH such that the continuum function
on regular cardinals below κ can be anything not outright incon-
sistent with the measurability of κ (see Corollary 3.2).

This settles the question of the optimal large cardinal strength
needed to not only violate GCH at a measurable cardinal κ, but
also determine the continuum function below κ, generalizing [3]
to a large-cardinal setting.
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1 Introduction

As shown by W. Mitchell and M. Gitik, see [8] and [6], the following holds:

(*) The failure of GCH at a measurable cardinal is equiconsistent with the
existence of a measurable cardinal of Mitchell order κ++: o(κ) = κ++.

It seems to be a reasonable assumption that (*) can be generalized for ex-
ample to:

(**) The existence of κ such that o(κ) = κ++ is equiconsistent with the
existence of κ such that 2κ = κ++, κ is measurable, and for all regular
cardinals α < κ, 2α = α++.

Though (**) may seem to be only a minor generalization of (*), it is not
so, and as a matter of fact (**) was not resolved in [6], nor [4]. (**) is
a paradigmatical case of a still more general question which studies the
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possible behaviours of the continuum function with respect to large cardinals
(large cardinals restrict the continuum function beyond the ZFC conditions
identified in [3]). See the paper [4] for details.

The interesting direction in the equivalence (**), which does not follow from
(*), is from the left to the right. We have shown the analogous implication in
[4] from the slightly stronger assumption of κ being κ++-strong (see Section
1.1 for definitions).

In Theorem 3.1, we show that (**) is true; in Corollary 3.2, we generalize
(**) along the lines of [3]. The proof is structured as follows. By the
construction in [6], the assumption o(κ) = κ++ together with GCH implies
that there exists a generic extension V ∗ satisfying GCH and an elementary
embedding j : V ∗ → M with the critical point κ, which satisfies:

(i) M is closed under κ-sequences in V ∗,
(ii) (κ++)M = κ++.

In this paper, we will call such a j a κ++-correct embedding (to our knowl-
edge, no terminology is as yet fixed for embeddings satisfying (i) and (ii)).

We start with GCH and a κ++-correct embedding j and define a cofinality-
preserving forcing R such that in V R:

(i) 2α = α++ for every regular cardinal α ≤ κ, and
(ii) κ is measurable.

We achieve (ii) by lifting the embedding j to V R. The crucial step in the
lifting argument, see Theorem 2.1, where the weaker assumption of κ++-
correctness needs to be taken into account, concerns the V -regular cardinal
(κ++)M = κ++. Since κ++ is regular in M , the forcing iteration j(R) is
non-trivial at κ++. Since the entire H(κ++) may not be included in M , the
forcing at κ++ in j(R) (which typically uses conditions in H(κ++)) tends to
behave erratically in the universe.

Inspired by U. Abraham’s paper [1], we show that if we include in R some
preparatory forcing, we can “force” j(R) to behave properly at κ++. In
some sense, this preparatory forcing makes a κ++-correct embedding look
more like a κ++-strong embedding, as far as the proximity of H(κ++)M to
the real H(κ++) is concerned. Once the problematic step of κ++ is resolved,
the rest of the lifting to V R is standard.

1.1 Terminology

We say that κ is a θ-strong cardinal, where κ < θ and θ is a cardinal, if
there exists an elementary embedding j from V into some transitive class
M with the critical point κ such that j(κ) > θ, and H(θ) is included in M .
If GCH is assumed, and θ is regular (this is sufficient for our purposes here),
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then the elementary embedding witnessing the θ-strength of κ can be taken
to have the additional property that M = {j(f)(α) | f : κ → V, α < θ},
θ < j(κ) < θ+, and M is closed under κ-sequences in V (such a j is called
an extender ultrapower embedding). See [2] for details.

We will focus in this paper on the case when θ = κ++.

If we omit the condition that H(θ) is included in M , we obtain a weaker
notion.

Definition 1.1 Assume GCH. We say that j : V → M with the critical
point κ is a κ++-correct embedding if j satisfies:

(i) κ++ = (κ++)M ,
(ii) M is closed under κ-sequences in V .

If j is κ++-correct, one can use the usual extender ultrapower construction to
get an even better embedding. We call j a κ++-correct extender embedding
if j satisfies conditions (i)–(iii) above, and moreover satisfies:

(iv) M = {j(f)(α) | f : κ → V, α < κ++}.

We say that κ is κ++-correct if there is a κ++-correct embedding with the
critical point κ.

Fact 1.2 shows that in some sense a κ++-strong embedding is substantially
stronger than a κ++-correct embedding.

Fact 1.2 (GCH) While there are κ-many measurable cardinals below every
κ++-strong cardinal κ, a κ++-correct cardinal κ may be the least measurable
cardinal.

Let us note that Fact 1.2 is implicit in the proof of the main theorem in [6].

The weaker notion of a κ++-correct embedding is important because it has
the same strength (in terms of consistency) as the assumption that κ has
the Mitchell order κ++: o(κ) = κ++ (see [6]).

We know provide a quick review of the notion of lifting of embeddings.

Fact 1.3 Let P be a forcing notion and j : V → M an embedding with the
critical point κ. Then the following holds (for proofs, see [2]):

(i) (Silver) Assume G is P-generic over V and H is j(P)-generic over
M such that j[G] ⊆ H. Then there exists an elementary embedding
j∗ : V [G] → M [H] such that j∗ �V = j, and H = j∗(G). We say that
j lifts to V P.

3



(ii) If j is moreover an extender ultrapower embedding then if P is a κ+-
distributive forcing notion and G is P-generic over V , then the filter
G∗ in j(P) defined as

G∗ = {q | ∃p ∈ G, j(p) ≤ q}

is j(P)-generic over M .
(iii) If j∗ : V [G] → M [H] is the lifting of j, then if j was an extender

ultrapower embedding, so is j∗.

2 The crucial step: κ++

Theorem 2.1 captures the main idea of this paper. Theorem 3.1 and Corol-
lary 3.2 are direct applications of Theorem 2.1 based on results in [5] and
[4].

Theorem 2.1 Assume GCH and let j : V → M be a κ++-correct extender
embedding with the critical point κ. Then there exists a cofinality-preserving
forcing notion P such that if G is P-generic, the following holds:

(i) 2α = α++ for every regular cardinal α < κ which is a double successor
of an inaccessible cardinal β < κ, where α is a double successor of β
if α = β++.

(ii) The embedding j lifts to j∗ : V [G] → M [j∗(G)], and j∗ is a κ++-correct
extender embedding in V [G].

Proof. The proof of the theorem will be given in a sequence of lemmas.

For a regular cardinal α, we write Add(α, 1) for the Cohen forcing which
adds a single Cohen subset of α: a condition p is in Add(α, 1) if and only if p
is a function of size < α from α to 2. We also write Add(α, 1) for the Cohen
forcing viewed as adding a single Cohen function from α to α: a condition p
is in Add(α, 1) if and only if p is a function of size < α from α to α. These
two descriptions are equivalent as far as forcing goes; we will use the one
which is best suited for our purposes (we will indicate which representation
we choose). If α is a regular cardinal and β an ordinal greater than 0, we
write Add(α, β) to denote the standard Cohen forcing which adds β-many
subsets of α. A condition p belongs to Add(α, β) if and only if p is a function
from α × β to 2 of size < α. At times, we view Add(α, β) as a β-product
with < α-support of the forcing Add(α, 1). Again, these two descriptions of
Add(α, β) equivalent, and we will therefore use the one which best suits the
given context (we will indicate which representation we have in mind).

Let us now define the forcing P. P will be a two stage iteration P0 ∗ Ṗ1,
where:
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(1) P0 is an iteration of length κ with Easton support, P0 = 〈(P0
ξ , Q̇ξ) | ξ <

κ〉, where Q̇ξ is a name for a trivial forcing unless ξ is an inaccessible
cardinal < κ, in which case

(2.1) P0
ξ  “Q̇ξ is the forcing Add(ξ+, ξ++) ∗Add(ξ++, ξ+4), ”

where Add(ξ+, ξ++) is viewed as a product forcing which adds ξ++-
many Cohen functions from ξ+ to ξ+, and Add(ξ++, ξ+4) is viewed as
adding ξ+4-many Cohen subsets of ξ++.

(2) Notice that P0 is an element of M . Ṗ1 is defined in M to be a P0-name
which satisfies:

(2.2) M |= “P0  “Ṗ1 is the forcing Add(κ+, κ++) ∗Add(κ++, 1), ””

where Add(κ+, κ++) is viewed as a product forcing which adds κ++-
many Cohen functions from κ+ to κ+, and Add(κ++, 1) is viewed as
adding a single Cohen subset of κ++.

P is cofinality-preserving.

The forcing P0 is clearly cofinality-preserving by a standard argument. Let
Gκ be a P0-generic filter over V . By κ++-correctness of j, P0 is in M and
Gκ is P0-generic over M . In order to verify that P is cofinality-preserving,
it suffices to check that the forcing (Ṗ1)Gκ defined in M [Gκ] preserves cofi-
nalities when forced over V [Gκ]. Notice first that Add(κ+, κ++) of M [Gκ]
is the same set as Add(κ+, κ++) of V [Gκ]: this is because P0 has κ-cc,
and hence by standard arguments M [Gκ] is still closed under κ-sequences
in V [Gκ]. Let g be a Add(κ+, κ++)V [Gκ]-generic over V [Gκ]. Then by the
previous sentence, g is also Add(κ+, κ++)M [Gκ]-generic over M [Gκ]. Work
in M [Gκ ∗ g] and let Q∗ denote the forcing Add(κ++, 1) of M [Gκ ∗ g]. Then
the claim that P preserves cofinalities follows from the following lemma:

Lemma 2.2 The forcing Q∗ is still κ++-distributive over V [Gκ ∗ g].

Proof. First note that this lemma in non-trivial: if the original M missed
some subsets of κ+ in V , then Q∗ is a proper subset of Add(κ++, 1) of
V [Gκ ∗ g], and hence Q∗ is certainly not κ++-closed over V [Gκ ∗ g].

We will argue that the preparatory forcing Add(κ+, κ++) ensures that Q∗

is still κ++-distributive over V [Gκ ∗ g].

Let us work in V [Gκ ∗ g]. Assume that p ∈ Q∗ is a condition and ḟ is a
name for a function from κ+ to ordinals:

(2.3) p  ḟ : κ+ → ORD.

We will show that there exists q ≤ p which decides all values of ḟ .
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Write H(κ++) of M [Gκ ∗ g] as Lκ++ [B] for some subset B of κ++, B in
M [Gκ ∗ g]. This is possible because H(κ++) of M [Gκ ∗ g] has size κ++ in
M [Gκ∗g]. Fix an elementary submodel N of some large enough H(θ)V [Gκ∗g]

which has size κ+, is transitive below κ++, is closed under κ-sequences and
contains as elements B, Q∗, p and ḟ . We will show that p has an extension
q ≤ p which hits all dense subsets of Q∗ which belong to N ; this will imply
that q decides all values of ḟ as required.

Let β be the the ordinal N ∩ κ++ and let π be a transitive collapse of N to
N̄ . Then π(Q∗), which is equal to Q∗ ∩ N , belongs to M [Gκ ∗ g] because
Q∗ is definable in Lκ++ [B], and so by π being an isomorphism, π(Q∗) is
definable in Lπ(κ++)[π(B)] = Lβ[B ∩ β]. It suffices to extend π(p) = p to a
condition q which hits all dense subsets of π(Q∗) which belong to N̄ .

For γ < κ++, let us denote g � γ = {q ∈ g | q � γ = q}. Pick some γ <
κ++ such that N̄ is in V [Gκ ∗ g � γ], and π(Q∗) and some enumeration
〈p∗ξ | ξ < κ+〉 of π(Q∗) are in M [Gκ ∗ g � γ]. Such γ exists by κ+-cc of
the forcing Add(κ+, κ++) and the fact that N̄ is a transitive set of size
κ+. Let h be the generic function κ+ → κ+ at the coordinate γ in g:
h = {q(γ) | q ∈ g, γ ∈ dom(q)}. So h is Add(κ+, 1)-generic over V [Gκ ∗g �γ].
Note that h ∈ M [Gκ ∗ g].

Define inductively in M [Gκ ∗ g] a decreasing sequence of conditions 〈pξ | ξ <
κ+〉 with p0 = p, pλ =

⋃
ξ<λ pξ for λ a limit ordinal < κ+, and:

pξ+1 =
{

p∗h(ξ) if p∗h(ξ) extends pξ,
pξ otherwise.

Since all the parameters used in this construction, i.e. the sequence 〈p∗ξ | ξ <

κ+〉, and h, π(Q∗), p, are in M [Gκ∗g], so is the whole sequence 〈pξ | ξ < κ+〉.
Let q be the greatest lower bound of this sequence, q =

⋃
ξ<λ pξ. Since

〈pξ | ξ < κ+〉 is in M [Gκ ∗ g], q ∈ Q∗.

We will show in V [Gκ∗g �γ][h] that the sequence 〈pξ | ξ < κ+〉 is (N̄ , π(Q∗))-
generic. This already implies that that q decides all the values of ḟ : For
each ξ < κ+, the set

Dξ = {p ∈ π(Q∗) | p decides π(ḟ)(ξ)}

is a dense open set in π(Q∗), which is an element of N̄ . If pζ for some ζ < κ+

meets Dξ, then pζ = π−1(pζ) decides the value of ḟ(α), and so does q ≤ pζ .

The (N̄ , π(Q∗))-generocity is proved by using the generic h. Let D be a dense
open set in π(Q∗) which is an element of N̄ . We will show in V [Gκ ∗ g �γ][h]
that there is some pξ which meets D. To this end, it suffices to show that

D̄ = {q | q  “∃ξ < κ+ pξ ∈ D”}
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is dense in Add(κ+, 1) in V [Gκ ∗ g � γ]. Given a condition q, extend q first
into some q′ such that dom(q′) = δ for some δ < κ+; then q′ decides the
construction of 〈pξ | ξ < κ+〉 up to δ (because it decides h up to δ): for
some p′ ∈ π(Q∗), q′  pδ = p′. Pick p′′ ≤ p′ in D. In the enumeration
〈p∗ξ | ξ < κ+〉, p′′ is some condition p∗η. Set q′′ = q′ ∪ {〈δ, η〉}. Then q′′ 
“pδ+1 extends pδ and meets D”, and so q′′ ≤ q is in D̄. It follows that D̄ is
dense and the proof is finished. �

This shows that P is cofinality-preserving over V . We now show that the
embedding j can be lifted to V P.

The embedding j lifts to j∗.

Let G = Gκ ∗ g ∗ g′ be a P-generic over V , where Gκ is P0-generic, g
is Add(κ+, κ++)M [Gκ]-generic over V [Gκ], and g′ is Add(κ++, 1)M [Gκ∗g]-
generic over V [Gκ ∗ g]. We need to find a j(P)-generic H over M such
that j[G] ⊆ H.

By κ++-correctness of j, j(P0)κ = P0, and so we start building H by plugging
in Gκ as the j(P0)κ-generic over M .

The next forcing in j(P) above κ is Q = Add(κ+, κ++) ∗ Add(κ++, κ+4) as
defined in M [Gκ]. We need to find in V [G] a Q-generic over M [Gκ]. It
is here, where we make use of the preparatory forcing Ṗ1: By definition of
Ṗ1, g is Add(κ+, κ++)M [Gκ]-generic over V [Gκ] (and hence over M [Gκ]). To
complete the construction of a Q-generic, it remains to find some h, which
will be Add(κ++, κ+4)M [Gκ∗g]-generic over M [Gκ ∗ g].

When we look at the generics at our disposal, the natural candidate for h
is the generic filter g′. Clearly, g′ will need to be tweaked a little because it is
only Add(κ++, 1)M [Gκ∗g]-generic over V [Gκ∗g], but not Add(κ++, κ+4)M [Gκ∗g]-
generic over V [Gκ ∗ g]. Note that there is a good reason for this apparent
deficiency of g′: While Lemma 2.2 shows that Add(κ++, 1)M [Gκ∗g] is suffi-
ciently distributive over V [Gκ ∗ g], the forcing Add(κ++, κ+4)M [Gκ∗g] never
is, in fact it collapses κ++:

Observation 2.3 Let γ be an ordinal < j(κ) which has V -cofinality κ+, and
its cofinality in M is > κ+. Then the forcing Add(κ++, γ)M [Gκ∗g] collapses
κ++ to κ+ if forced over V [Gκ ∗ g].

Proof. Notice that every M -regular cardinal in the interval (κ++, j(κ)] has
V -cofinality κ+ (this uses GCH in V , and the extender representation of
M), and so setting γ = (κ+4)M achieves the desired claim. Fix X to be
a cofinal subset of γ of order type κ+. Now, for each ζ ∈ κ++ and every
p ∈ Add(κ++, γ)M [Gκ∗g], one can find q ≤ p and ξ ∈ X such that q at the
coordinate ξ codes ζ in the sense that it contains ζ-many 1’s followed by 0.
Hence it is dense that every ζ ∈ κ++ is coded at some element ξ ∈ X. �
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Thus we have no choice but to try to use g′ to obtain the desired generic filter
h. A priori, this strategy may work because Add(κ++, κ+4)M [Gκ∗g] is small
in V [Gκ ∗ g ∗ g′]: it has size κ++ here. The following Lemma suggests that
perhaps Add(κ++, 1)M [Gκ∗g] can be “stretched” to Add(κ++, κ+4)M [Gκ∗g].

Lemma 2.4 Let j : V → M be a κ++-correct extender ultrapower embed-
ding. Let γ = (κ+4)M . Then:

(i) There exists in V a bijection π : γ → κ++ which is locally M -correct
in the sense that whenever X ⊆ γ is in M and has in M size ≤ κ++,
the restriction π �X is also in M .

(ii) And more generally, if R is a forcing notion in M and R has κ+3-cc
in M , then the bijection π in (i) is MR-locally correct.

Proof. Ad (i). List all f : κ → κ in V as 〈fi | i < κ+〉. For β < κ+ let
Sβ denote the set of all j(fi)(α), where i < β and α < κ++, such that
j(fi)(α) < γ:

Sβ = {j(fi)(α) | i < β, α < κ++, j(fi)(α) < γ}.

Then each Sβ belongs to M , the Sβ’s form an increasing chain under inclu-
sion, and the union

⋃
{Sβ |β < κ+} is equal to γ. Moreover, if X ∈ M is

a subset of γ of size ≤ κ++ in M , then X is contained in some Sβ. The
sequence of Sβ ’s can be used to construct a bijection π′ : γ → κ+ × κ++

with the property that π′ �X is in M for any X as above. If f is a bijection
in M between κ+ × κ++ and κ++, then the composition π = π′ ◦ f is the
desired bijection.

Ad (ii). Let F be R-generic over M . If X is a subset of γ in M [F ] which
has size ≤ κ++ in M [F ], then by κ+3-cc of R there is some X ′ ⊇ X in M
which has size ≤ κ++ in M . Then the claim follows by application of (i).

�

Note that the inverse function π−1 may not be “locally M -correct” in the
sense of the previous Lemma. Indeed, if 〈cξ | ξ < κ+〉 is cofinal in (κ+4)M ,
then for X = {cξ | ξ < κ+}, the set π[X] may be in M (for instance when κ
is κ++-strong), while π−1[π[X]] = X is certainly not in M .

We know show that the previous Lemma can be used to stretch the Add(κ++, 1)-
generic g′ over V [Gκ ∗ g] to a Add(κ++, κ+4)M [Gκ∗g]-generic over M [Gκ ∗ g].

Let Q∗ = Add(κ++, 1)M [Gκ∗g], and Q̃ = Add(κ++, κ+4)M [Gκ∗g].

Lemma 2.5 There exists in V [Gκ ∗ g ∗ g′] a Q̃-generic over M [Gκ ∗ g]. Let
us denote this generic as h.

Proof. Let π∗ : κ++ × (κ+4)M → κ++ be a bijection obtained by composing
the bijection π from Lemma 2.4 with any bijection in M between κ++ ×
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(κ+4)M and (κ+4)M . Then π∗ is locally M [Gκ ∗ g]-correct in the sense of
Lemma 2.4(ii). For p ∈ Q̃, write p∗ to denote the image of p under π∗:
dom(p∗) = π∗[dom(p)], and for each (ξ, ζ) in the domain of p, p∗(π(ξ, ζ)) =
p(ξ, ζ). By the local M [Gκ ∗ g]-correctness of π∗, each p∗ is in M [Gκ ∗ g],
and hence it is a condition in Q∗:

{p∗ | p ∈ Q̃} ⊆ Q∗.

Note that the inclusion is proper because Q∗ is κ++-distributive over V [Gκ∗
g], while Q̃ is not (see Observation 2.3).

Let us set
h = {p | p∗ ∈ g′}.

We show that h is as required. Assume A lies in M [Gκ ∗ g] and it is a
maximal antichain in Q̃, and so in particular A has size ≤ κ++ in M [Gκ ∗g].
Let us denote dom(A) =

⋃
{dom(p) | p ∈ A}. Let us write A∗ = {p∗ | p ∈ A}

and dom(A∗) =
⋃
{dom(p∗) | p∗ ∈ A∗}; then A∗ is an antichain in Q∗ and

π∗ � dom(A) is in M [Gκ ∗ g] by the local M [Gκ ∗ g]-correctness of π∗. To
show that h is as required, it suffices to show that A∗ is a maximal antichain
in Q∗. Let q be any condition in Q∗; since q is in M [Gκ ∗ g], the intersection
dom(q)∩dom(A∗) is in M [Gκ ∗g]. Since π∗ �dom(A) is in M [Gκ ∗g], the set
(π∗)−1[dom(q)∩dom(A∗)] is also in M [Gκ∗g]. If q′ denotes the condition in Q̃
with the domain (π∗)−1[dom(q)∩dom(A∗)] defined by q′(ξ, ζ) = q(π∗(ξ, ζ)),
then there exists by the maximality of A some p ∈ A compatible with q′. It
follows that p∗ ∈ A∗ is compatible with q because it is compatible with q on
dom(p∗) ∩ dom(q). Thus A∗ indeed maximal, and h meets A as required.

�

Based on the previous Lemma, we see that Gκ∗g∗h is j(P0)κ+1-generic over
M . The iteration j(P0) in the interval (κ + 1, j(κ)) is κ+++-distributive in
M [Gκ ∗ g ∗ h], and so all the relevant dense open sets in M [Gκ ∗ g ∗ h] can
be met in κ+-many steps, using the extender representation of M (see [4]
for details). Let the resulting generic be denoted as h̃. Then Gκ ∗ g ∗ h ∗ h̃
is j(P0)-generic over M , and we can partially lift to

j′ : V [Gκ] → M [Gκ ∗ g ∗ h ∗ h̃].

It remains to lift j′ to P1 = Add(κ+, κ++) ∗ Add(κ++, 1) of M [Gκ ∗ g]. By
Lemma 2.2, P1 is κ+-distributive over V [Gκ], and therefore by Fact 1.3, the
filter ˜̃

h generated by the j′ image of g ∗ g′ is M [Gκ ∗ g ∗ h ∗ h̃]-generic over
j′(P1):

˜̃
h = {q | ∃p ∈ g ∗ g′, j′(p) ≤ q}.

If we define H = Gκ ∗ g ∗ h ∗ h̃ ∗ ˜̃
h, then H is as required:

j∗ : V [Gκ ∗ g ∗ g′] → M [H].
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This finishes the proof of Theorem 2.1. �

Remark 2.6 Note that the forcing P is trivial at κ, and hence the proof
of Theorem 2.1 did not need to take special care to ensure the coherence
condition j[G] ⊆ H (except at Gκ, but this is satisfied automatically). See
next section where the forcing at κ is non-trivial.

3 Easton’s theorem and large cardinals from the
optimal hypothesis

Theorem 3.1 Assume GCH and let j : V → M be a κ++-correct extender
embedding with the critical point κ. Then there exists a cofinality-preserving
forcing notion R such that if G is R-generic, the following holds:

(i) 2α = α++ for every regular cardinal α ≤ κ.
(ii) The embedding j lifts to j∗ : V [G] → M [j∗(G)], and j∗ is a κ++-correct

extender embedding in V [G]. In particular, κ is still measurable.

Proof. Let I(κ) denote the set of all inaccessible cardinals < κ, and R(κ)
the set of all regular cardinals < κ. Set B = {α ∈ R(κ) | ∃β ∈ I(κ), α =
β or α = β+} ∪ {κ}, and A = R(κ) \B. Then A∪B is the set of all regular
cardinals ≤ κ.

We define R as a two-stage iteration RA ∗ ṘB. RA will be a cofinality-
preserving forcing which will force the failure of GCH at every element in A.
In V RA , ṘB will be a cofinality-preserving forcing which will violate GCH
at the remaining regular cardinals ≤ κ, i.e. at the elements in B.

The definition of RA is a modification of P, as defined in Theorem 2.1. RA

is a two stage iteration R0
A ∗ Ṙ1

A, where:

(1) R0
A is an iteration of length κ with Easton support, R0

A = 〈(R0
A)ξ, Q̇ξ) | ξ <

κ〉, where Q̇ξ is a name for a trivial forcing unless ξ is a limit cardinal
< κ, in which case there are two possibilities:
(a) If ξ is regular (and hence inaccessible), then

(3.4) (R0
A)ξ  “Q̇ξ is the forcing

[Add(ξ+, ξ++) ∗Add(ξ++, ξ+4)]×
∏

ξ++<γ<ξ+ω Add(γ, γ++), ”

where Add(ξ+, ξ++) is viewed as a product forcing which adds ξ++-
many Cohen functions from ξ+ to ξ+, Add(ξ++, ξ+4) is viewed as
adding ξ+4-many Cohen subsets of ξ++, and

∏
ξ++<γ<ξ+ω Add(γ, γ++)

is the standard Easton product, which adds γ++-many Cohen sub-
sets to each regular cardinal γ such that ξ++ < γ < ξ+ω (where ξ+ω

is the least limit cardinal above ξ).
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(b) If ξ is singular, then

(3.5) (R0
A)ξ  “Q̇ξ is the forcing

∏
ξ<γ<ξ+ω Add(γ, γ++), ”

where
∏

ξ++<γ<ξ+ω Add(γ, γ++) is the standard Easton product,
where γ ranges over regular cardinals.

(2) Notice that R0
A is an element of M . Ṙ1

A is defined in M to be a R0
A-name

which satisfies:

(3.6) M |= “R0
A  “Ṙ1

A is the forcing Add(κ+, κ++) ∗Add(κ++, 1), ””

where Add(κ+, κ++) is viewed as a product forcing which adds κ++-
many Cohen functions from κ+ to κ+, and Add(κ++, 1) is viewed as
adding a single Cohen subset of κ++.

By standards argument, see [4], and Lemma 2.2 applied in the present con-
text, the forcing RA is cofinality-preserving. By [4], and an easy modification
of Theorem 2.1, j lifts to a κ++-correct extender embedding j′ in V RA : in
the proof generalizing the proof of Theorem 2.1, one just needs to take into
account the product

∏
κ++<γ<κ+ω Add(γ, γ++) at the stage κ of the itera-

tion j(R0
A). However, since in M j(R0

A)κ , Add(κ+, κ++) ∗Add(κ++, κ+4) has
κ+3-cc and the product

∏
κ++<γ<κ+ω Add(γ, γ++) is κ+3-closed, it follows

by Easton’s lemma that these two forcing are mutually generic. Accord-
ingly, an Add(κ+, κ++) ∗ Add(κ++, κ+4)-generic over M j(R0

A)κ is obtained
as in Theorem 2.1, while a

∏
κ++<γ<κ+ω Add(γ, γ++)-generic is obtained by

a standard construction using the κ+3-distributivity of the forcing.

Let GA denote a RA-generic, then the following holds in V [GA]:

(i) GCH holds in V [GA] at every inaccessible cardinal α ≤ κ and at the
successors of these inaccessible cardinals.

(ii) 2α = α++ for every regular cardinal < κ other than in (i) in the
previous line.

(iii) There exists in V [GA] a κ++-correct extender embedding j′ : V [GA] →
M [j′(GA)] which is a lifting of the original j.

In V [GA], we define RB as follows.

RB is an iteration of length κ+1 with Easton support, RB = 〈(RB)ξ, Q̇ξ) | ξ <
κ + 1〉, where Q̇ξ is a name for a trivial forcing unless ξ is an inaccessible
cardinal ≤ κ, in which case there are two cases:

(a) If ξ < κ, then

(3.7) (RB)ξ  “Q̇ξ is the forcing Sacks(ξ, ξ++)×Add(ξ+, ξ+3), ”

where Sacks(ξ+, ξ++) is the generalized Sacks product forcing at ξ which
adds ξ++-many new subsets of ξ (see [7], and [5] for details), and
Add(ξ+, ξ++) is viewed as adding ξ+3-many Cohen subsets of ξ+.
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(b) If ξ = κ, then

(3.8) (RB)ξ  “Q̇ξ is the forcing Sacks(ξ, ξ++)×Add(ξ+, 1).”

By standard results, see [4], RB is cofinality-preserving over V [GA] (here, it
is important that Add(ξ+, ξ+3) is still ξ+-distributive over Sacks(ξ, ξ++)).

Let GB be a RB-generic over V [GA]. Using the “tuning-fork” argument
in the original paper [5], together with [4], one can show that j′ lifts to
V [GA][GB]. Notice here that it is sufficient to add just one Cohen subset of
κ+, cf. (3.8), in order to lift, and so GCH holds in V [GA][GB] above κ (if so
desired).

If we set G = GA ∗GB, then V [G] is as required. �

We can achieve even more generality, along the lines [3] and [4]. We say that
a proper-class function F from regular cardinals into cardinals is an Easton
function, if for all regular cardinals κ, λ:

(i) κ < λ → F (κ) ≤ F (λ),
(ii) cf(F (κ)) > κ.

A cardinal µ is said to be a closure point of F if F (ν) < µ for every regular
cardinal ν < µ.

We say that F is realised in some cofinality-preserving extension V R if F is
the continuum function in V R on regular cardinals.

Corollary 3.2 Assume GCH and let κ be κ++-correct cardinal. If an Eas-
ton function F satisfies:

(i) κ is a closure point of F , F (κ) = κ++, and
(ii) There exists a κ++-correct embedding j : V → M with the critical

point κ such that j(F )(κ) ≥ F (κ),

then there exists a cofinality-preserving forcing R such that the Easton func-
tion F is realised in V R, and j lifts to V R; in particular κ is still measurable
in V R.

Proof. This is just like the relevant part of [4], with the arguments in
Theorems 2.1 and 3.1 added to be able to prove this result from the optimal
hypothesis of a κ++-correct embedding (Lemma 2.4 must be generalized to
j(F )(κ++) instead to (κ+4)M ; this is straightforward since the cofinality of
j(F )(κ++) is strictly greater than κ++). �
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