Easton's theorem and large cardinals from the optimal hypothesis

SY-DAVID FRIEDMAN and RADEK HONZIK

Kurt Gödel Research Centre for Mathematical Wahringer Strasse 25 1090 Vienna Austria sdf@logic.univie.ac.at

Charles University, Department of Logic, Celetná 20, Praha 1, 116 42, Czech Republic radek.honzik@ff.cuni.cz

The second autho was supported by postdoctoral grant of the Grant Agency of the Czech Republic 201/09/P115

Abstract In this paper we prove the equiconsistency of the assumption that there is a measurable cardinal κ with the Mitchell order $o(\kappa) = \kappa^{++}$ with the statement that there exists a measurable cardinal κ violating GCH such that the continuum function on regular cardinals below κ can be anything not outright inconsistent with the measurability of κ (see Corollary 3.2).

This settles the question of the optimal large cardinal strength needed to not only violate GCH at a measurable cardinal κ , but also determine the continuum function below κ , generalizing [3] to a large-cardinal setting.

 $\mathit{Keywords:}$ Easton's theorem, large cardinals, Mitchell order.

AMS subject code classification: 03E35,03E55.

1 Introduction

As shown by W. Mitchell and M. Gitik, see [8] and [6], the following holds:

(*) The failure of GCH at a measurable cardinal is equiconsistent with the existence of a measurable cardinal of Mitchell order κ^{++} : $o(\kappa) = \kappa^{++}$.

It seems to be a reasonable assumption that (*) can be generalized for example to:

(**) The existence of κ such that $o(\kappa) = \kappa^{++}$ is equiconsistent with the existence of κ such that $2^{\kappa} = \kappa^{++}$, κ is measurable, and for all regular cardinals $\alpha < \kappa$, $2^{\alpha} = \alpha^{++}$.

Though $(^{**})$ may seem to be only a minor generalization of $(^{*})$, it is not so, and as a matter of fact $(^{**})$ was not resolved in [6], nor [4]. $(^{**})$ is a paradigmatical case of a still more general question which studies the

possible behaviours of the continuum function with respect to large cardinals (large cardinals restrict the continuum function beyond the ZFC conditions identified in [3]). See the paper [4] for details.

The interesting direction in the equivalence $(^{**})$, which does not follow from $(^{*})$, is from the left to the right. We have shown the analogous implication in [4] from the slightly stronger assumption of κ being κ^{++} -strong (see Section 1.1 for definitions).

In Theorem 3.1, we show that $(^{**})$ is true; in Corollary 3.2, we generalize $(^{**})$ along the lines of [3]. The proof is structured as follows. By the construction in [6], the assumption $o(\kappa) = \kappa^{++}$ together with GCH implies that there exists a generic extension V^* satisfying GCH and an elementary embedding $j: V^* \to M$ with the critical point κ , which satisfies:

- (i) M is closed under κ -sequences in V^* ,
- (ii) $(\kappa^{++})^M = \kappa^{++}$.

In this paper, we will call such a j a κ^{++} -correct embedding (to our knowledge, no terminology is as yet fixed for embeddings satisfying (i) and (ii)).

We start with GCH and a κ^{++} -correct embedding j and define a cofinalitypreserving forcing \mathbb{R} such that in $V^{\mathbb{R}}$:

- (i) $2^{\alpha} = \alpha^{++}$ for every regular cardinal $\alpha \leq \kappa$, and
- (ii) κ is measurable.

We achieve (ii) by lifting the embedding j to $V^{\mathbb{R}}$. The crucial step in the lifting argument, see Theorem 2.1, where the weaker assumption of κ^{++} -correctness needs to be taken into account, concerns the V-regular cardinal $(\kappa^{++})^M = \kappa^{++}$. Since κ^{++} is regular in M, the forcing iteration $j(\mathbb{R})$ is non-trivial at κ^{++} . Since the entire $H(\kappa^{++})$ may not be included in M, the forcing at κ^{++} in $j(\mathbb{R})$ (which typically uses conditions in $H(\kappa^{++})$) tends to behave erratically in the universe.

Inspired by U. Abraham's paper [1], we show that if we include in \mathbb{R} some preparatory forcing, we can "force" $j(\mathbb{R})$ to behave properly at κ^{++} . In some sense, this preparatory forcing makes a κ^{++} -correct embedding look more like a κ^{++} -strong embedding, as far as the proximity of $H(\kappa^{++})^M$ to the real $H(\kappa^{++})$ is concerned. Once the problematic step of κ^{++} is resolved, the rest of the lifting to $V^{\mathbb{R}}$ is standard.

1.1 Terminology

We say that κ is a θ -strong cardinal, where $\kappa < \theta$ and θ is a cardinal, if there exists an elementary embedding j from V into some transitive class M with the critical point κ such that $j(\kappa) > \theta$, and $H(\theta)$ is included in M. If GCH is assumed, and θ is regular (this is sufficient for our purposes here), then the elementary embedding witnessing the θ -strength of κ can be taken to have the additional property that $M = \{j(f)(\alpha) \mid f : \kappa \to V, \alpha < \theta\},$ $\theta < j(\kappa) < \theta^+$, and M is closed under κ -sequences in V (such a j is called an extender ultrapower embedding). See [2] for details.

We will focus in this paper on the case when $\theta = \kappa^{++}$.

If we omit the condition that $H(\theta)$ is included in M, we obtain a weaker notion.

Definition 1.1 Assume GCH. We say that $j : V \to M$ with the critical point κ is a κ^{++} -correct embedding if j satisfies:

- (*i*) $\kappa^{++} = (\kappa^{++})^M$,
- (ii) M is closed under κ -sequences in V.

If j is κ^{++} -correct, one can use the usual extender ultrapower construction to get an even better embedding. We call j a κ^{++} -correct extender embedding if j satisfies conditions (i)-(iii) above, and moreover satisfies:

(iv) $M = \{j(f)(\alpha) \mid f : \kappa \to V, \alpha < \kappa^{++}\}.$

We say that κ is κ^{++} -correct if there is a κ^{++} -correct embedding with the critical point κ .

Fact 1.2 shows that in some sense a κ^{++} -strong embedding is substantially stronger than a κ^{++} -correct embedding.

Fact 1.2 (GCH) While there are κ -many measurable cardinals below every κ^{++} -strong cardinal κ , a κ^{++} -correct cardinal κ may be the least measurable cardinal.

Let us note that Fact 1.2 is implicit in the proof of the main theorem in [6].

The weaker notion of a κ^{++} -correct embedding is important because it has the same strength (in terms of consistency) as the assumption that κ has the Mitchell order κ^{++} : $o(\kappa) = \kappa^{++}$ (see [6]).

We know provide a quick review of the notion of lifting of embeddings.

Fact 1.3 Let \mathbb{P} be a forcing notion and $j: V \to M$ an embedding with the critical point κ . Then the following holds (for proofs, see [2]):

(i) (Silver) Assume G is \mathbb{P} -generic over V and H is $j(\mathbb{P})$ -generic over M such that $j[G] \subseteq H$. Then there exists an elementary embedding $j^*: V[G] \to M[H]$ such that $j^* \upharpoonright V = j$, and $H = j^*(G)$. We say that j lifts to $V^{\mathbb{P}}$. (ii) If j is moreover an extender ultrapower embedding then if P is a κ⁺distributive forcing notion and G is P-generic over V, then the filter G^{*} in j(P) defined as

$$G^* = \{q \mid \exists p \in G, j(p) \le q\}$$

is $j(\mathbb{P})$ -generic over M.

(iii) If $j^* : V[G] \to M[H]$ is the lifting of j, then if j was an extender ultrapower embedding, so is j^* .

2 The crucial step: κ^{++}

Theorem 2.1 captures the main idea of this paper. Theorem 3.1 and Corollary 3.2 are direct applications of Theorem 2.1 based on results in [5] and [4].

Theorem 2.1 Assume GCH and let $j : V \to M$ be a κ^{++} -correct extender embedding with the critical point κ . Then there exists a cofinality-preserving forcing notion \mathbb{P} such that if G is \mathbb{P} -generic, the following holds:

- (i) $2^{\alpha} = \alpha^{++}$ for every regular cardinal $\alpha < \kappa$ which is a double successor of an inaccessible cardinal $\beta < \kappa$, where α is a double successor of β if $\alpha = \beta^{++}$.
- (ii) The embedding j lifts to $j^* : V[G] \to M[j^*(G)]$, and j^* is a κ^{++} -correct extender embedding in V[G].

Proof. The proof of the theorem will be given in a sequence of lemmas.

For a regular cardinal α , we write $\operatorname{Add}(\alpha, 1)$ for the Cohen forcing which adds a single Cohen subset of α : a condition p is in $\operatorname{Add}(\alpha, 1)$ if and only if pis a function of size $< \alpha$ from α to 2. We also write $\operatorname{Add}(\alpha, 1)$ for the Cohen forcing viewed as adding a single Cohen function from α to α : a condition pis in $\operatorname{Add}(\alpha, 1)$ if and only if p is a function of size $< \alpha$ from α to α . These two descriptions are equivalent as far as forcing goes; we will use the one which is best suited for our purposes (we will indicate which representation we choose). If α is a regular cardinal and β an ordinal greater than 0, we write $\operatorname{Add}(\alpha, \beta)$ to denote the standard Cohen forcing which adds β -many subsets of α . A condition p belongs to $\operatorname{Add}(\alpha, \beta)$ if and only if p is a function from $\alpha \times \beta$ to 2 of size $< \alpha$. At times, we view $\operatorname{Add}(\alpha, \beta)$ as a β -product with $< \alpha$ -support of the forcing $\operatorname{Add}(\alpha, 1)$. Again, these two descriptions of $\operatorname{Add}(\alpha, \beta)$ equivalent, and we will therefore use the one which best suits the given context (we will indicate which representation we have in mind).

Let us now define the forcing \mathbb{P} . \mathbb{P} will be a two stage iteration $\mathbb{P}^0 * \dot{\mathbb{P}}^1$, where:

(1) \mathbb{P}^0 is an iteration of length κ with Easton support, $\mathbb{P}^0 = \langle (\mathbb{P}^0_{\xi}, \dot{Q}_{\xi}) | \xi < \kappa \rangle$, where \dot{Q}_{ξ} is a name for a trivial forcing unless ξ is an inaccessible cardinal $< \kappa$, in which case

(2.1)
$$\mathbb{P}^0_{\xi} \Vdash ``\dot{Q}_{\xi}$$
 is the forcing $\mathrm{Add}(\xi^+, \xi^{++}) * \mathrm{Add}(\xi^{++}, \xi^{+4}), "`$

where $\operatorname{Add}(\xi^+, \xi^{++})$ is viewed as a product forcing which adds ξ^{++} many Cohen functions from ξ^+ to ξ^+ , and $\operatorname{Add}(\xi^{++}, \xi^{+4})$ is viewed as adding ξ^{+4} -many Cohen subsets of ξ^{++} .

(2) Notice that \mathbb{P}^0 is an element of M. $\dot{\mathbb{P}}^1$ is defined in M to be a \mathbb{P}^0 -name which satisfies:

(2.2) $M \models "\mathbb{P}^0 \Vdash "\dot{\mathbb{P}}^1$ is the forcing $\operatorname{Add}(\kappa^+, \kappa^{++}) * \operatorname{Add}(\kappa^{++}, 1), ""$

where $\operatorname{Add}(\kappa^+, \kappa^{++})$ is viewed as a product forcing which adds κ^{++} many Cohen functions from κ^+ to κ^+ , and $\operatorname{Add}(\kappa^{++}, 1)$ is viewed as adding a single Cohen subset of κ^{++} .

$\mathbb P$ is cofinality-preserving.

The forcing \mathbb{P}^0 is clearly cofinality-preserving by a standard argument. Let G_{κ} be a \mathbb{P}^0 -generic filter over V. By κ^{++} -correctness of j, \mathbb{P}^0 is in M and G_{κ} is \mathbb{P}^0 -generic over M. In order to verify that \mathbb{P} is cofinality-preserving, it suffices to check that the forcing $(\dot{\mathbb{P}}^1)^{G_{\kappa}}$ defined in $M[G_{\kappa}]$ preserves cofinalities when forced over $V[G_{\kappa}]$. Notice first that $\operatorname{Add}(\kappa^+, \kappa^{++})$ of $M[G_{\kappa}]$ is the same set as $\operatorname{Add}(\kappa^+, \kappa^{++})$ of $V[G_{\kappa}]$: this is because \mathbb{P}^0 has κ -cc, and hence by standard arguments $M[G_{\kappa}]$ is still closed under κ -sequences in $V[G_{\kappa}]$. Let g be a $\operatorname{Add}(\kappa^+, \kappa^{++})^{V[G_{\kappa}]}$ -generic over $V[G_{\kappa}]$. Then by the previous sentence, g is also $\operatorname{Add}(\kappa^+, \kappa^{++})^{M[G_{\kappa}]}$ -generic over $M[G_{\kappa}]$. Work in $M[G_{\kappa} * g]$ and let Q^* denote the forcing $\operatorname{Add}(\kappa^{++}, 1)$ of $M[G_{\kappa} * g]$. Then the claim that \mathbb{P} preserves cofinalities follows from the following lemma:

Lemma 2.2 The forcing Q^* is still κ^{++} -distributive over $V[G_{\kappa} * g]$.

Proof. First note that this lemma in non-trivial: if the original M missed some subsets of κ^+ in V, then Q^* is a proper subset of $\operatorname{Add}(\kappa^{++}, 1)$ of $V[G_{\kappa} * g]$, and hence Q^* is certainly not κ^{++} -closed over $V[G_{\kappa} * g]$.

We will argue that the preparatory forcing $\operatorname{Add}(\kappa^+, \kappa^{++})$ ensures that Q^* is still κ^{++} -distributive over $V[G_{\kappa} * g]$.

Let us work in $V[G_{\kappa} * g]$. Assume that $p \in Q^*$ is a condition and \dot{f} is a name for a function from κ^+ to ordinals:

$$(2.3) p \Vdash \dot{f} : \kappa^+ \to \text{ORD}.$$

We will show that there exists $q \leq p$ which decides all values of \dot{f} .

Write $H(\kappa^{++})$ of $M[G_{\kappa} * g]$ as $L_{\kappa^{++}}[B]$ for some subset B of κ^{++} , B in $M[G_{\kappa} * g]$. This is possible because $H(\kappa^{++})$ of $M[G_{\kappa} * g]$ has size κ^{++} in $M[G_{\kappa} * g]$. Fix an elementary submodel N of some large enough $H(\theta)^{V[G_{\kappa} * g]}$ which has size κ^{+} , is transitive below κ^{++} , is closed under κ -sequences and contains as elements B, Q^*, p and \dot{f} . We will show that p has an extension $q \leq p$ which hits all dense subsets of Q^* which belong to N; this will imply that q decides all values of \dot{f} as required.

Let β be the the ordinal $N \cap \kappa^{++}$ and let π be a transitive collapse of N to \overline{N} . Then $\pi(Q^*)$, which is equal to $Q^* \cap N$, belongs to $M[G_{\kappa} * g]$ because Q^* is definable in $L_{\kappa^{++}}[B]$, and so by π being an isomorphism, $\pi(Q^*)$ is definable in $L_{\pi(\kappa^{++})}[\pi(B)] = L_{\beta}[B \cap \beta]$. It suffices to extend $\pi(p) = p$ to a condition q which hits all dense subsets of $\pi(Q^*)$ which belong to \overline{N} .

For $\gamma < \kappa^{++}$, let us denote $g \upharpoonright \gamma = \{q \in g \mid q \upharpoonright \gamma = q\}$. Pick some $\gamma < \kappa^{++}$ such that \bar{N} is in $V[G_{\kappa} * g \upharpoonright \gamma]$, and $\pi(Q^*)$ and some enumeration $\langle p_{\xi}^* \mid \xi < \kappa^+ \rangle$ of $\pi(Q^*)$ are in $M[G_{\kappa} * g \upharpoonright \gamma]$. Such γ exists by κ^+ -cc of the forcing $\operatorname{Add}(\kappa^+, \kappa^{++})$ and the fact that \bar{N} is a transitive set of size κ^+ . Let h be the generic function $\kappa^+ \to \kappa^+$ at the coordinate γ in g: $h = \{q(\gamma) \mid q \in g, \gamma \in \operatorname{dom}(q)\}$. So h is $\operatorname{Add}(\kappa^+, 1)$ -generic over $V[G_{\kappa} * g \upharpoonright \gamma]$. Note that $h \in M[G_{\kappa} * g]$.

Define inductively in $M[G_{\kappa} * g]$ a decreasing sequence of conditions $\langle p_{\xi} | \xi < \kappa^+ \rangle$ with $p_0 = p$, $p_{\lambda} = \bigcup_{\xi < \lambda} p_{\xi}$ for λ a limit ordinal $< \kappa^+$, and:

$$p_{\xi+1} = \begin{cases} p_{h(\xi)}^* & \text{if } p_{h(\xi)}^* \text{ extends } p_{\xi}, \\ p_{\xi} & \text{otherwise.} \end{cases}$$

Since all the parameters used in this construction, i.e. the sequence $\langle p_{\xi}^* | \xi < \kappa^+ \rangle$, and $h, \pi(Q^*), p$, are in $M[G_{\kappa} * g]$, so is the whole sequence $\langle p_{\xi} | \xi < \kappa^+ \rangle$. Let q be the greatest lower bound of this sequence, $q = \bigcup_{\xi < \lambda} p_{\xi}$. Since $\langle p_{\xi} | \xi < \kappa^+ \rangle$ is in $M[G_{\kappa} * g], q \in Q^*$.

We will show in $V[G_{\kappa} * g \upharpoonright \gamma][h]$ that the sequence $\langle p_{\xi} | \xi < \kappa^+ \rangle$ is $(\bar{N}, \pi(Q^*))$ generic. This already implies that that q decides all the values of \dot{f} : For
each $\xi < \kappa^+$, the set

$$D_{\xi} = \{ p \in \pi(Q^*) \mid p \text{ decides } \pi(f)(\xi) \}$$

is a dense open set in $\pi(Q^*)$, which is an element of \bar{N} . If p_{ζ} for some $\zeta < \kappa^+$ meets D_{ξ} , then $p_{\zeta} = \pi^{-1}(p_{\zeta})$ decides the value of $\dot{f}(\alpha)$, and so does $q \leq p_{\zeta}$. The $(\bar{N}, \pi(Q^*))$ -generocity is proved by using the generic h. Let D be a dense open set in $\pi(Q^*)$ which is an element of \bar{N} . We will show in $V[G_{\kappa} * g \upharpoonright \gamma][h]$ that there is some p_{ξ} which meets D. To this end, it suffices to show that

$$\bar{D} = \{q \mid q \Vdash ``\exists \xi < \kappa^+ \ p_{\xi} \in D''\}$$

is dense in $\operatorname{Add}(\kappa^+, 1)$ in $V[G_{\kappa} * g \upharpoonright \gamma]$. Given a condition q, extend q first into some q' such that $\operatorname{dom}(q') = \delta$ for some $\delta < \kappa^+$; then q' decides the construction of $\langle p_{\xi} | \xi < \kappa^+ \rangle$ up to δ (because it decides h up to δ): for some $p' \in \pi(Q^*), q' \Vdash p_{\delta} = p'$. Pick $p'' \leq p'$ in D. In the enumeration $\langle p_{\xi}^* | \xi < \kappa^+ \rangle, p''$ is some condition p_{η}^* . Set $q'' = q' \cup \{\langle \delta, \eta \rangle\}$. Then $q'' \Vdash$ " $p_{\delta+1}$ extends p_{δ} and meets D", and so $q'' \leq q$ is in \overline{D} . It follows that \overline{D} is dense and the proof is finished. \Box

This shows that \mathbb{P} is cofinality-preserving over V. We now show that the embedding j can be lifted to $V^{\mathbb{P}}$.

The embedding j lifts to j^* .

Let $G = G_{\kappa} * g * g'$ be a \mathbb{P} -generic over V, where G_{κ} is \mathbb{P}^{0} -generic, g is $\mathrm{Add}(\kappa^{+}, \kappa^{++})^{M[G_{\kappa}]}$ -generic over $V[G_{\kappa}]$, and g' is $\mathrm{Add}(\kappa^{++}, 1)^{M[G_{\kappa}*g]}$ -generic over $V[G_{\kappa} * g]$. We need to find a $j(\mathbb{P})$ -generic H over M such that $j[G] \subseteq H$.

By κ^{++} -correctness of $j, j(\mathbb{P}^0)_{\kappa} = \mathbb{P}^0$, and so we start building H by plugging in G_{κ} as the $j(\mathbb{P}^0)_{\kappa}$ -generic over M.

The next forcing in $j(\mathbb{P})$ above κ is $Q = \operatorname{Add}(\kappa^+, \kappa^{++}) * \operatorname{Add}(\kappa^{++}, \kappa^{+4})$ as defined in $M[G_{\kappa}]$. We need to find in V[G] a Q-generic over $M[G_{\kappa}]$. It is here, where we make use of the preparatory forcing $\dot{\mathbb{P}}^1$: By definition of $\dot{\mathbb{P}}^1$, g is $\operatorname{Add}(\kappa^+, \kappa^{++})^{M[G_{\kappa}]}$ -generic over $V[G_{\kappa}]$ (and hence over $M[G_{\kappa}]$). To complete the construction of a Q-generic, it remains to find some h, which will be $\operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa}*g]}$ -generic over $M[G_{\kappa}*g]$.

When we look at the generics at our disposal, the natural candidate for h is the generic filter g'. Clearly, g' will need to be tweaked a little because it is only $\operatorname{Add}(\kappa^{++}, 1)^{M[G_{\kappa}*g]}$ -generic over $V[G_{\kappa}*g]$, but not $\operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa}*g]}$ -generic over $V[G_{\kappa}*g]$. Note that there is a good reason for this apparent deficiency of g': While Lemma 2.2 shows that $\operatorname{Add}(\kappa^{++}, 1)^{M[G_{\kappa}*g]}$ is sufficiently distributive over $V[G_{\kappa}*g]$, the forcing $\operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa}*g]}$ never is, in fact it collapses κ^{++} :

Observation 2.3 Let γ be an ordinal $\langle j(\kappa) \rangle$ which has V-cofinality κ^+ , and its cofinality in M is $> \kappa^+$. Then the forcing $\operatorname{Add}(\kappa^{++}, \gamma)^{M[G_{\kappa}*g]}$ collapses κ^{++} to κ^+ if forced over $V[G_{\kappa}*g]$.

Proof. Notice that every *M*-regular cardinal in the interval $(\kappa^{++}, j(\kappa)]$ has *V*-cofinality κ^+ (this uses GCH in *V*, and the extender representation of *M*), and so setting $\gamma = (\kappa^{+4})^M$ achieves the desired claim. Fix *X* to be a cofinal subset of γ of order type κ^+ . Now, for each $\zeta \in \kappa^{++}$ and every $p \in \text{Add}(\kappa^{++}, \gamma)^{M[G_{\kappa}*g]}$, one can find $q \leq p$ and $\xi \in X$ such that q at the coordinate ξ codes ζ in the sense that it contains ζ -many 1's followed by 0. Hence it is dense that every $\zeta \in \kappa^{++}$ is coded at some element $\xi \in X$. \Box

Thus we have no choice but to try to use g' to obtain the desired generic filter h. A priori, this strategy may work because $\operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa}*g]}$ is small in $V[G_{\kappa}*g*g']$: it has size κ^{++} here. The following Lemma suggests that perhaps $\operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa}*g]}$ can be "stretched" to $\operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa}*g]}$.

Lemma 2.4 Let $j: V \to M$ be a κ^{++} -correct extender ultrapower embedding. Let $\gamma = (\kappa^{+4})^M$. Then:

- (i) There exists in V a bijection $\pi : \gamma \to \kappa^{++}$ which is locally M-correct in the sense that whenever $X \subseteq \gamma$ is in M and has in M size $\leq \kappa^{++}$, the restriction $\pi \upharpoonright X$ is also in M.
- (ii) And more generally, if \mathbb{R} is a forcing notion in M and \mathbb{R} has κ^{+3} -cc in M, then the bijection π in (i) is $M^{\mathbb{R}}$ -locally correct.

Proof. Ad (i). List all $f : \kappa \to \kappa$ in V as $\langle f_i | i < \kappa^+ \rangle$. For $\beta < \kappa^+$ let S_β denote the set of all $j(f_i)(\alpha)$, where $i < \beta$ and $\alpha < \kappa^{++}$, such that $j(f_i)(\alpha) < \gamma$:

$$S_{\beta} = \{ j(f_i)(\alpha) \mid i < \beta, \alpha < \kappa^{++}, j(f_i)(\alpha) < \gamma \}.$$

Then each S_{β} belongs to M, the S_{β} 's form an increasing chain under inclusion, and the union $\bigcup \{S_{\beta} \mid \beta < \kappa^+\}$ is equal to γ . Moreover, if $X \in M$ is a subset of γ of size $\leq \kappa^{++}$ in M, then X is contained in some S_{β} . The sequence of S_{β} 's can be used to construct a bijection $\pi' : \gamma \to \kappa^+ \times \kappa^{++}$ with the property that $\pi' \upharpoonright X$ is in M for any X as above. If f is a bijection in M between $\kappa^+ \times \kappa^{++}$ and κ^{++} , then the composition $\pi = \pi' \circ f$ is the desired bijection.

Ad (ii). Let F be \mathbb{R} -generic over M. If X is a subset of γ in M[F] which has size $\leq \kappa^{++}$ in M[F], then by κ^{+3} -cc of \mathbb{R} there is some $X' \supseteq X$ in Mwhich has size $\leq \kappa^{++}$ in M. Then the claim follows by application of (i).

Note that the inverse function π^{-1} may not be "locally *M*-correct" in the sense of the previous Lemma. Indeed, if $\langle c_{\xi} | \xi < \kappa^+ \rangle$ is cofinal in $(\kappa^{+4})^M$, then for $X = \{c_{\xi} | \xi < \kappa^+\}$, the set $\pi[X]$ may be in *M* (for instance when κ is κ^{++} -strong), while $\pi^{-1}[\pi[X]] = X$ is certainly not in *M*.

We know show that the previous Lemma can be used to stretch the $\operatorname{Add}(\kappa^{++}, 1)$ generic g' over $V[G_{\kappa} * g]$ to a $\operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa} * g]}$ -generic over $M[G_{\kappa} * g]$. Let $Q^* = \operatorname{Add}(\kappa^{++}, 1)^{M[G_{\kappa} * g]}$, and $\tilde{Q} = \operatorname{Add}(\kappa^{++}, \kappa^{+4})^{M[G_{\kappa} * g]}$.

Lemma 2.5 There exists in $V[G_{\kappa} * g * g']$ a \tilde{Q} -generic over $M[G_{\kappa} * g]$. Let us denote this generic as h.

Proof. Let $\pi^* : \kappa^{++} \times (\kappa^{+4})^M \to \kappa^{++}$ be a bijection obtained by composing the bijection π from Lemma 2.4 with any bijection in M between $\kappa^{++} \times$

 $(\kappa^{+4})^M$ and $(\kappa^{+4})^M$. Then π^* is locally $M[G_{\kappa} * g]$ -correct in the sense of Lemma 2.4(ii). For $p \in \tilde{Q}$, write p^* to denote the image of p under π^* : dom $(p^*) = \pi^*[\text{dom}(p)]$, and for each (ξ, ζ) in the domain of p, $p^*(\pi(\xi, \zeta)) = p(\xi, \zeta)$. By the local $M[G_{\kappa} * g]$ -correctness of π^* , each p^* is in $M[G_{\kappa} * g]$, and hence it is a condition in Q^* :

$$\{p^* \mid p \in \tilde{Q}\} \subseteq Q^*.$$

Note that the inclusion is proper because Q^* is κ^{++} -distributive over $V[G_{\kappa} * g]$, while \tilde{Q} is not (see Observation 2.3).

Let us set

$$h = \{ p \,|\, p^* \in g' \}.$$

We show that h is as required. Assume A lies in $M[G_{\kappa} * g]$ and it is a maximal antichain in \tilde{Q} , and so in particular A has size $\leq \kappa^{++}$ in $M[G_{\kappa} * g]$. Let us denote dom $(A) = \bigcup \{ \operatorname{dom}(p) \mid p \in A \}$. Let us write $A^* = \{p^* \mid p \in A\}$ and dom $(A^*) = \bigcup \{ \operatorname{dom}(p^*) \mid p^* \in A^* \}$; then A^* is an antichain in Q^* and $\pi^* \upharpoonright \operatorname{dom}(A)$ is in $M[G_{\kappa} * g]$ by the local $M[G_{\kappa} * g]$ -correctness of π^* . To show that h is as required, it suffices to show that A^* is a maximal antichain in Q^* . Let q be any condition in Q^* ; since q is in $M[G_{\kappa} * g]$, the intersection dom $(q) \cap \operatorname{dom}(A^*)$ is in $M[G_{\kappa} * g]$. Since $\pi^* \upharpoonright \operatorname{dom}(A)$ is in $M[G_{\kappa} * g]$, the set $(\pi^*)^{-1}[\operatorname{dom}(q) \cap \operatorname{dom}(A^*)]$ is also in $M[G_{\kappa} * g]$. If q' denotes the condition in \tilde{Q} with the domain $(\pi^*)^{-1}[\operatorname{dom}(q) \cap \operatorname{dom}(A^*)]$ defined by $q'(\xi, \zeta) = q(\pi^*(\xi, \zeta))$, then there exists by the maximality of A some $p \in A$ compatible with q'. It follows that $p^* \in A^*$ is compatible with q because it is compatible with q on dom $(p^*) \cap \operatorname{dom}(q)$. Thus A^* indeed maximal, and h meets A as required.

Based on the previous Lemma, we see that $G_{\kappa} * g * h$ is $j(\mathbb{P}^0)_{\kappa+1}$ -generic over M. The iteration $j(\mathbb{P}^0)$ in the interval $(\kappa + 1, j(\kappa))$ is κ^{+++} -distributive in $M[G_{\kappa} * g * h]$, and so all the relevant dense open sets in $M[G_{\kappa} * g * h]$ can be met in κ^+ -many steps, using the extender representation of M (see [4] for details). Let the resulting generic be denoted as \tilde{h} . Then $G_{\kappa} * g * h * \tilde{h}$ is $j(\mathbb{P}^0)$ -generic over M, and we can partially lift to

$$j': V[G_{\kappa}] \to M[G_{\kappa} * g * h * h].$$

It remains to lift j' to $\mathbb{P}^1 = \operatorname{Add}(\kappa^+, \kappa^{++}) * \operatorname{Add}(\kappa^{++}, 1)$ of $M[G_{\kappa} * g]$. By Lemma 2.2, \mathbb{P}^1 is κ^+ -distributive over $V[G_{\kappa}]$, and therefore by Fact 1.3, the filter $\tilde{\tilde{h}}$ generated by the j' image of g * g' is $M[G_{\kappa} * g * h * \tilde{h}]$ -generic over $j'(\mathbb{P}^1)$:

$$\tilde{h} = \{q \mid \exists p \in g * g', j'(p) \le q\}.$$

If we define $H = G_{\kappa} * g * h * \tilde{h} * \tilde{\tilde{h}}$, then H is as required:

$$j^*: V[G_\kappa * g * g'] \to M[H].$$

This finishes the proof of Theorem 2.1.

Remark 2.6 Note that the forcing \mathbb{P} is trivial at κ , and hence the proof of Theorem 2.1 did not need to take special care to ensure the coherence condition $j[G] \subseteq H$ (except at G_{κ} , but this is satisfied automatically). See next section where the forcing at κ is non-trivial.

3 Easton's theorem and large cardinals from the optimal hypothesis

Theorem 3.1 Assume GCH and let $j : V \to M$ be a κ^{++} -correct extender embedding with the critical point κ . Then there exists a cofinality-preserving forcing notion \mathbb{R} such that if G is \mathbb{R} -generic, the following holds:

- (i) $2^{\alpha} = \alpha^{++}$ for every regular cardinal $\alpha \leq \kappa$.
- (ii) The embedding j lifts to $j^* : V[G] \to M[j^*(G)]$, and j^* is a κ^{++} -correct extender embedding in V[G]. In particular, κ is still measurable.

Proof. Let $I(\kappa)$ denote the set of all inaccessible cardinals $< \kappa$, and $R(\kappa)$ the set of all regular cardinals $< \kappa$. Set $B = \{\alpha \in R(\kappa) \mid \exists \beta \in I(\kappa), \alpha = \beta \text{ or } \alpha = \beta^+\} \cup \{\kappa\}$, and $A = R(\kappa) \setminus B$. Then $A \cup B$ is the set of all regular cardinals $\leq \kappa$.

We define \mathbb{R} as a two-stage iteration $\mathbb{R}_A * \mathbb{R}_B$. \mathbb{R}_A will be a cofinalitypreserving forcing which will force the failure of GCH at every element in A. In $V^{\mathbb{R}_A}$, \mathbb{R}_B will be a cofinality-preserving forcing which will violate GCH at the remaining regular cardinals $\leq \kappa$, i.e. at the elements in B.

The definition of \mathbb{R}_A is a modification of \mathbb{P} , as defined in Theorem 2.1. \mathbb{R}_A is a two stage iteration $\mathbb{R}^0_A * \dot{\mathbb{R}}^1_A$, where:

- (1) \mathbb{R}^0_A is an iteration of length κ with Easton support, $\mathbb{R}^0_A = \langle (\mathbb{R}^0_A)_{\xi}, \dot{Q}_{\xi} \rangle | \xi < \kappa \rangle$, where \dot{Q}_{ξ} is a name for a trivial forcing unless ξ is a limit cardinal $< \kappa$, in which case there are two possibilities:
 - (a) If ξ is regular (and hence inaccessible), then
 - (3.4) $(\mathbb{R}^0_A)_{\xi} \Vdash ``\dot{Q}_{\xi}$ is the forcing $[\operatorname{Add}(\xi^+,\xi^{++}) * \operatorname{Add}(\xi^{++},\xi^{+4})] \times \prod_{\xi^{++} < \gamma < \xi^{+\omega}} \operatorname{Add}(\gamma,\gamma^{++}),"$

where $\operatorname{Add}(\xi^+, \xi^{++})$ is viewed as a product forcing which adds ξ^{++} many Cohen functions from ξ^+ to ξ^+ , $\operatorname{Add}(\xi^{++}, \xi^{+4})$ is viewed as adding ξ^{+4} -many Cohen subsets of ξ^{++} , and $\prod_{\xi^{++} < \gamma < \xi^{+\omega}} \operatorname{Add}(\gamma, \gamma^{++})$ is the standard Easton product, which adds γ^{++} -many Cohen subsets to each regular cardinal γ such that $\xi^{++} < \gamma < \xi^{+\omega}$ (where $\xi^{+\omega}$ is the least limit cardinal above ξ).

- (b) If ξ is singular, then
 - (3.5) $(\mathbb{R}^0_A)_{\xi} \Vdash ``\dot{Q}_{\xi} \text{ is the forcing } \prod_{\xi < \gamma < \xi^{+\omega}} \operatorname{Add}(\gamma, \gamma^{++}), ``$

where $\prod_{\xi^{++} < \gamma < \xi^{+\omega}} \operatorname{Add}(\gamma, \gamma^{++})$ is the standard Easton product, where γ ranges over regular cardinals.

- (2) Notice that \mathbb{R}^0_A is an element of M. \mathbb{R}^1_A is defined in M to be a \mathbb{R}^0_A -name which satisfies:
 - (3.6) $M \models "\mathbb{R}^0_A \Vdash "\dot{\mathbb{R}}^1_A$ is the forcing $\operatorname{Add}(\kappa^+, \kappa^{++}) * \operatorname{Add}(\kappa^{++}, 1), ""$

where $\operatorname{Add}(\kappa^+, \kappa^{++})$ is viewed as a product forcing which adds κ^{++} many Cohen functions from κ^+ to κ^+ , and $\operatorname{Add}(\kappa^{++}, 1)$ is viewed as adding a single Cohen subset of κ^{++} .

By standards argument, see [4], and Lemma 2.2 applied in the present context, the forcing \mathbb{R}_A is cofinality-preserving. By [4], and an easy modification of Theorem 2.1, j lifts to a κ^{++} -correct extender embedding j' in $V^{\mathbb{R}_A}$: in the proof generalizing the proof of Theorem 2.1, one just needs to take into account the product $\prod_{\kappa^{++}<\gamma<\kappa^{+\omega}} \operatorname{Add}(\gamma, \gamma^{++})$ at the stage κ of the iteration $j(\mathbb{R}^0_A)$. However, since in $M^{j(\mathbb{R}^0_A)\kappa}$, $\operatorname{Add}(\kappa^+, \kappa^{++}) * \operatorname{Add}(\kappa^{++}, \kappa^{+4})$ has κ^{+3} -cc and the product $\prod_{\kappa^{++}<\gamma<\kappa^{+\omega}} \operatorname{Add}(\gamma, \gamma^{++})$ is κ^{+3} -closed, it follows by Easton's lemma that these two forcing are mutually generic. Accordingly, an $\operatorname{Add}(\kappa^+, \kappa^{++}) * \operatorname{Add}(\kappa^{++}, \kappa^{+4})$ -generic over $M^{j(\mathbb{R}^0_A)\kappa}$ is obtained as in Theorem 2.1, while a $\prod_{\kappa^{++}<\gamma<\kappa^{+\omega}} \operatorname{Add}(\gamma, \gamma^{++})$ -generic is obtained by a standard construction using the κ^{+3} -distributivity of the forcing.

Let G_A denote a \mathbb{R}_A -generic, then the following holds in $V[G_A]$:

- (i) GCH holds in $V[G_A]$ at every inaccessible cardinal $\alpha \leq \kappa$ and at the successors of these inaccessible cardinals.
- (ii) $2^{\alpha} = \alpha^{++}$ for every regular cardinal $< \kappa$ other than in (i) in the previous line.
- (iii) There exists in $V[G_A]$ a κ^{++} -correct extender embedding $j': V[G_A] \to M[j'(G_A)]$ which is a lifting of the original j.
- In $V[G_A]$, we define \mathbb{R}_B as follows.

 \mathbb{R}_B is an iteration of length κ +1 with Easton support, $\mathbb{R}_B = \langle (\mathbb{R}_B)_{\xi}, \dot{Q}_{\xi} \rangle | \xi < \kappa + 1 \rangle$, where \dot{Q}_{ξ} is a name for a trivial forcing unless ξ is an inaccessible cardinal $\leq \kappa$, in which case there are two cases:

(a) If $\xi < \kappa$, then

(3.7) (\mathbb{R}_B) $_{\xi} \Vdash ``\dot{Q}_{\xi}$ is the forcing Sacks $(\xi, \xi^{++}) \times \mathrm{Add}(\xi^+, \xi^{+3}), "$

where $\operatorname{Sacks}(\xi^+, \xi^{++})$ is the generalized Sacks product forcing at ξ which adds ξ^{++} -many new subsets of ξ (see [7], and [5] for details), and $\operatorname{Add}(\xi^+, \xi^{++})$ is viewed as adding ξ^{+3} -many Cohen subsets of ξ^+ .

(b) If $\xi = \kappa$, then

(3.8)
$$(\mathbb{R}_B)_{\xi} \Vdash ``\dot{Q}_{\xi}$$
 is the forcing $\operatorname{Sacks}(\xi, \xi^{++}) \times \operatorname{Add}(\xi^+, 1)$."

By standard results, see [4], \mathbb{R}_B is cofinality-preserving over $V[G_A]$ (here, it is important that $\operatorname{Add}(\xi^+, \xi^{+3})$ is still ξ^+ -distributive over $\operatorname{Sacks}(\xi, \xi^{++})$).

Let G_B be a \mathbb{R}_B -generic over $V[G_A]$. Using the "tuning-fork" argument in the original paper [5], together with [4], one can show that j' lifts to $V[G_A][G_B]$. Notice here that it is sufficient to add just one Cohen subset of κ^+ , cf. (3.8), in order to lift, and so GCH holds in $V[G_A][G_B]$ above κ (if so desired).

If we set
$$G = G_A * G_B$$
, then $V[G]$ is as required. \Box

We can achieve even more generality, along the lines [3] and [4]. We say that a proper-class function F from regular cardinals into cardinals is an *Easton* function, if for all regular cardinals κ, λ :

(i) $\kappa < \lambda \to F(\kappa) \le F(\lambda)$,

(ii)
$$\operatorname{cf}(F(\kappa)) > \kappa$$
.

A cardinal μ is said to be a closure point of F if $F(\nu) < \mu$ for every regular cardinal $\nu < \mu$.

We say that F is realised in some cofinality-preserving extension $V^{\mathbb{R}}$ if F is the continuum function in $V^{\mathbb{R}}$ on regular cardinals.

Corollary 3.2 Assume GCH and let κ be κ^{++} -correct cardinal. If an Easton function F satisfies:

- (i) κ is a closure point of F, $F(\kappa) = \kappa^{++}$, and
- (ii) There exists a κ^{++} -correct embedding $j : V \to M$ with the critical point κ such that $j(F)(\kappa) \ge F(\kappa)$,

then there exists a cofinality-preserving forcing \mathbb{R} such that the Easton function F is realised in $V^{\mathbb{R}}$, and j lifts to $V^{\mathbb{R}}$; in particular κ is still measurable in $V^{\mathbb{R}}$.

Proof. This is just like the relevant part of [4], with the arguments in Theorems 2.1 and 3.1 added to be able to prove this result from the optimal hypothesis of a κ^{++} -correct embedding (Lemma 2.4 must be generalized to $j(F)(\kappa^{++})$ instead to $(\kappa^{+4})^M$; this is straightforward since the cofinality of $j(F)(\kappa^{++})$ is strictly greater than κ^{++}).

References

- Uri Abraham. On forcing without the continuum hypothesis. The Journal of Symbolic Logic, 48(3):658–661, 1983.
- [2] James Cummings. Iterated forcing and elementary embeddings. In Matthew Foreman and Akihiro Kanamori, editors, *Handbook of Set The*ory, volume 2. Springer, 2010.
- [3] William B. Easton. Powers of regular cardinals. Annals of Mathematical Logic, 1:139–178, 1970.
- [4] Sy-David Friedman and Radek Honzik. Easton's theorem and large cardinals. Annals of Pure and Applied Logic, 154(3):191–208, 2008.
- [5] Sy-David Friedman and Katherine Thompson. Perfect trees and elementary embeddings. *The Journal of Symbolic Logic*, 73(3):906–918, 2008.
- [6] Moti Gitik. The negation of singular cardinal hypothesis from $o(\kappa) = \kappa^{++}$. Annals of Pure and Applied Logic, 43:209–234, 1989.
- [7] Akihiro Kanamori. Perfect-set forcing for uncountable cardinals. Annals of Mathematical Logic, 19, 1980.
- [8] William J. Mitchell. The core model for sequences of measures. I. Math. Proc. Camb. Phil. Soc., 95:229–260, 1984.