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KILLING THE GCH EVERYWHERE WITH A SINGLE REAL

SY-DAVID FRIEDMAN AND MOHAMMAD GOLSHANI

Abstract. Shelah–Woodin [10] investigate the possibility of violating instances of GCH through the

addition of a single real. In particular they show that it is possible to obtain a failure of CH by adding a

single real to a model of GCH, preserving cofinalities. In this article we strengthen their result by showing

that it is possible to violate GCH at all infinite cardinals by adding a single real to a model of GCH. Our

assumption is the existence of an H (κ+3)-strong cardinal; by work of Gitik and Mitchell [6] it is known

that more than an H (κ++)-strong cardinal is required.

§1. Introduction. Shelah–Woodin [10] investigate the possibility of violating in-
stances of GCH through the addition of a single real. In particular they show that
it is possible to obtain a failure of CH by adding a single real to a model of GCH,
preserving cofinalities. In this article we bring this work to its natural conclusion
by showing that it is possible to violate GCH at all infinite cardinals by adding a
single real to a model of GCH.

Theorem 1.1. Assume the consistency of anH (κ+3)-strong cardinal κ. Then there
exists a pair (W,V ) of models of ZFC such that:
(a) W and V have the same cardinals,
(b) GCH holds inW ,
(c) V =W [R] for some real R,
(d) GCH fails at all infinite cardinals in V .

To achieve the result we add a generic for a Prikry product, code it by a real
preservingH (κ+3)-strength and then finish the proof by quoting a modifed version
of a result of Merimovich [9].
We also show that assuming the existence of a proper class of measurable cardi-
nals, it is possible to force Easton’s theorem by adding a single real. More precisely:

Theorem 1.2. LetM be a model of ZFC+GCH+ there exists a proper class of
measurable cardinals. In M let F : REG −→ CARD be an Easton function, i.e., a
definable class function such that

• κ ≤ ë −→ F (κ) ≤ F (ë), and
• cf(F (κ)) > κ.
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Then there exists a pair (W,V ) of cardinal preserving extensions ofM such that
(a) W |= pGCHq,
(b) V =W [R] for some real R,
(c) V |= p∀κ ∈ REG, 2κ ≥ F (κ)q.

The reason that in (c) we do not require equality is that it might be possible that
F (κ) changes its cofinality in V to ù, and then clearly 2κ 6= F (κ) in V . To achieve
the result we define a class forcing version of the Prikry product, code its generic by
a real using Jensen’s coding and then finish the proof by applying Easton’s theorem.

§2. Proof of Theorem 1.1.

2.1. Prikry products. Assume GCH and suppose that S is a set of measurable
cardinals which is discrete, i.e., contains none of its limit points. Fix normal
measures Uα on α for α in S. Then PS denotes the Prikry product of the forcings
Pα , α ∈ S, where Pα is the Prikry forcing associated with the measure Uα . Thus

PS = {〈(sα , Aα) : α ∈ S〉 ∈
∏

α∈S

Pα : sα = ∅ for all but finitely many α ∈ S}.

For two conditions p = 〈(sα , Aα) : α ∈ S〉 and q = 〈(tα , Bα) : α ∈ S〉 in PS we
define p ≤ q (p is stronger than q) if (sα , Aα) ≤ (tα , Bα) in Pα for all α ∈ S. We
also define the auxiliary relation p ≤∗ q (p is a direct or a Prikry extension of q) if
p ≤ q and sα = tα for all α ∈ S.1

A PS-generic is uniquely determined by a sequence 〈xα : α ∈ S〉, where each
xα is an ù-sequence cofinal in α. With a slight abuse of terminology, we say that
〈xα : α ∈ S〉 is PS-generic.

Lemma 2.1 (Fuchs [4], Magidor [8]). Suppose that 〈xα : α ∈ S〉 is PS -generic
over V .
(a) V and V [〈xα : α ∈ S〉] have the same cardinals.
(b) The sequence 〈xα : α ∈ S〉 obeys the following “geometric property”: If

〈Xα : α ∈ S〉 belongs to V and Xα ∈ Uα for each α ∈ S, then
⋃

α∈S xα \ Xα is
finite.
(c) Conversely, suppose that 〈yα : α ∈ S〉 is a sequence (in any outer model of V )
satisfying the geometric property stated above. Then 〈yα : α ∈ S〉 is PS -generic
over V .
(d) Suppose α ∈ S, p ∈ PS and 〈Φã : ã < ç〉 is a sequence of statements of
the forcing language for PS where ç < α. Then there exists q ≤∗ p such that
q ↾ α = p ↾ α and for each ã < ç if r ≤ q and r decidesΦã , then (r ↾ α) ∪ (q ↾ [α, κ))
(where κ = sup(S)) decides Φã in the same way.

Theorem 2.2. Suppose thatκ isH (κ+3)-strong andS is a discrete set ofmeasurable
cardinals less than κ. Then after forcing with PS , κ remainsH (κ+3)-strong.

Proof. Suppose that j : V → M ⊇ H (κ+3), crit(j) = κ is an elementary
embedding witnessing the H (κ+3)-strength of κ. We can assume that j is derived
from an extender E = 〈Ea : a ∈ [κ+3]<ù〉. Then for each a ∈ [κ+3]<ù , Ea is a κ-
complete ultrafilter on [κ]|a| and if ja : V →Ma ∼= Ult(V,Ea) is the corresponding
elementary embedding then for all B ⊆ [κ]|a|, we have B ∈ Ea ⇔ a ∈ ja(B). We
also have an embedding ka : Ma →M such that ka ◦ ja = j.

1Thus PS is forcing equivalent to the Magidor iteration of the Prikry forcings Pα , α ∈ S.
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We show that κ remains H (κ+3)-strong in the generic extension by PS . The
proof uses ideas from [7] and [8]. Let G be PS -generic over V . Also let ä =
min(j(S) − κ) > κ.
Working in V [G ], we define for each a ∈ [κ+3]<ù1 , E∗

a as follows: Let î = o.t(a),
and let ȧ be a PS-name for a such that

‖−pȧ ⊆ κ+3 and o.t(ȧ) = îq

For p ∈ PS define p‖−pḂ ∈ Ė∗
a q iff

(1) p‖−pḂ ⊆ [κ]îq,
(2) there exists q ≤∗ j(p) in j(PS) such that q ↾ ä = j(p) ↾ ä = p, and

q‖−Mpȧ ∈ j(Ḃ)q.
Let E∗

a = Ė
∗
a [G ]. It is easily seen that the above definition is well-defined.

Lemma 2.3. (a) E∗
a is a κ-complete non-principal ultrafilter on [κ]

î ,
(b) If a ∈ V is finite, then E∗

a extends Ea ,

Proof. (a) We just prove that E∗
a is κ-complete. Suppose that p ∈ PS and

p‖−p[κ]î =
⋃

{Ḃã : ã < ç}q where ç < κ. Then j(p)‖−
M

p[j(κ)]î =
⋃

{j(Ḃã) :
ã < ç}q.
Working inM consider ä, j(p) and the sequence (Φã : ã < ç) of sentences where

for each ã < ç,Φã is “ȧ ∈ j(Ḃã)” It then follows from Lemma 2.1.(d) that there is
q ≤∗ j(p) in j(PS) such that for each ã < ç

• q ↾ ä = j(p) ↾ ä = p,
• if r ≤ q and r decides Φã , then (r ↾ ä) ∪ (q ↾ [ä, j(κ)) decides Φã in the same
way.

Now q‖−Mpȧ ∈ [j(κ)]î =
⋃

{j(Ḃã) : ã < ç}q and hence we can find r ≤ q and
ã < ç such that r‖−pΦãq. Let t = (r ↾ ä)∪(q ↾ [ä, j(κ)). It is now easy to show that

t ↾ ä ≤ p and t ↾ ä‖−pḂã ∈ Ė∗
a q. This completes the proof of the κ-completeness

of E∗
a .
(b) Suppose a ∈ V is finite. Let B ∈ Ea and p ∈ PS . We show that
p‖−pB ∈ Ė∗

a q. Let q = j(p). Then q has the required properties in the defi-
nition above which gives the result. ⊣

In V [G ], for each a ∈ [κ+3]<ù1 let j∗a : V [G ] → M∗
a ≃ Ult(V [G ], E∗

a ) be the
corresponding elementary embedding. Also for a ⊆ b let ka,b : M

∗
a → M∗

b be the
natural induced elementary embedding. Let

〈M∗, 〈k∗a : a ∈ [κ+3]<ù1〉〉 = dirlim〈〈M∗
a : a ∈ [κ+3]<ù1〉, 〈k∗a,b : a ⊆ b〉〉.

Also let j∗ : V [G ]→M∗ be the induced embedding.

Lemma 2.4. M∗ is well-founded

Proof. Suppose not. Then there is a sequence (mi : i < ù) of elements of M∗

such that

· · · ∈∗ m2 ∈
∗ m1 ∈

∗ m0

where ∈∗=∈M∗ . For each i < ù choose ai and fi such that mi = k∗ai ([fi ]E∗
ai
). Let

a =
⋃

{ai : i < ù}. Then a ∈ [κ+3]<ù1 and for some gi , mi = k∗a ([gi ]E∗
a
). It then

follows from the elementarity of k∗a that

· · · ∈ [g2]E∗
a
∈ [g1]E∗

a
∈ [g0]E∗

a
.
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This is in contradiction with Lemma 2.3 which impliesM∗
a is well-founded. Thus

M∗ is well-founded and the lemma follows. ⊣

If now we restrict ourself to E∗
a for finite a, then the smaller direct limit embeds

into the full direct limit and is therefore well-founded. From now on, letM∗ denote
the smaller direct limit; accordingly each E∗

a is now given by the usual extender
definition and j∗ is the ultrapower embedding.
Note that j∗ : V [G ] → M∗ is an elementary embedding with critical point κ.
We show that it is an H (κ+3)-strong embedding. For this it suffices to show that
H (κ+3)V [G ] ⊆ M∗. But since H (κ+3)V [G ] = H (κ+3)[G ], it suffices to show that
H (κ+3) ⊆M∗ and G ∈M∗.
For this purpose we introduce some special functions in V . Let F : κ → κ be
defined by F (α) = α+3. Then j(F )(κ) = κ+3. Now for each a ∈ [κ+3]<ù with
κ ∈ a and |a| = n define the functionGa : [κ]n → κ by G(α1, . . . , αn) = α

+3
i where

κ is the i-th element of a. It is clear that j(Ga)(a) = j(F )(κ) = κ
+3. Also let

r : κ → H (κ) be defined by r(α) = H (α).
Suppose f: [κ]n → H (κ)V [G ] is in V [G ] and a is a finite subset of κ+3 contain-
ing κ. We say the pair (f, a) has the property (∗) iff

{ã : f(ã) ∈ r ◦Ga(ã)} ∈ E∗
a .
2

We have the following easy lemma.

Lemma 2.5. (a) If j∗(f)(a) = j∗(g)(b) where κ is an element of both a and b,
then (f, a) has the property (∗) iff (g, b) has the property (∗),
(b) If (f, a) has the property (∗) and j∗(g)(b) ∈ j∗(f)(a) for some b containing κ,
then (g, b) has the property (∗).

Lemma 2.6. If (f, a) has the property (∗), then there is a function h : [κ]m → H (κ)
in V and a finite set b ⊆ κ+3 such that j∗(f)(a) = j∗(h)(b).

Proof. Let B = {ã : f(ã) ∈ r ◦ Ga(ã)}. Since (f, a) has the property (∗),
B ∈ E∗

a . Let Ḃ be a name for B and let p‖−pḂ ∈ Ė∗
a q. This means that there is

some q ≤∗ j(p) such that q ↾ ä = j(p) ↾ ä = p and q‖−Mpa ∈ j(Ḃ)q. Hence we

have q‖−Mpj(ḟ)(a) ∈ j(r ◦Ga)(a) = H (κ+3)q.
For each c ∈ H (κ+3) let Φc be the sentence “j(ḟ)(a) = c”. By applying
Lemma 2.1.(d) we can find r ≤∗ q such that for every c ∈ H (κ+3)

• r ↾ ä = q ↾ ä = p,
• if s ≤ r and s decides Φc then (s ↾ ä)∪ (r ↾ [ä, j(κ))) decides Φc in the same
way.

Now r‖−Mpj(ḟ)(a) ∈ j(r ◦ Ga)(a) = H (κ+3)q, hence there are s ≤ r and
c ∈ H (κ+3) such that s‖−pΦcq. Let t = (s ↾ ä) ∪ (r ↾ [ä, j(κ))). By above,

t‖−MpΦcq.
Since c ∈ H (κ+3), there is a function h : [κ]m → H (κ) and a finite b ⊆ κ+3 such

that c = j(h)(b). Thus t‖−Mpj(ḟ)(a) = j(h)(b)q and the result follows. ⊣

Define the sets X and X ∗ as follows

X = {j(f)(a) : (f, a) is in V and has the property (∗)},

X ∗ = ∗{j∗(f)(a) : (f, a) is in V [G ] and has the property (∗)}.

2It can be shown that (f, a) has property (∗) iff [f]E∗
a
represents an element ofH (κ+3) inM∗

a .
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It follows from Lemma 2.5 that X and X ∗ are transitive.

Lemma 2.7. If (f, a) has the property (∗) and f ∈ V , then j∗(f)(a) = j(f)(a).

Proof. Define Φ: X → X ∗ by Φ(j(f)(a)) = j∗(f)(a). Then:
(1) Φ is well-defined: To see this suppose that j(f)(a) = j(g)(b). We may
further suppose thata = b. It then follows that j(f)(a) = ka([f]Ea ) = ka([g]Ea ) =
j(g)(b), and hence B = {x : f(x) = g(x)} ∈ Ea . By Lemma 2.3(b), B ∈ E∗

a and
hence j∗(f)(a) = k∗a ([f]E∗

a
) = k∗a ([g]E∗

a
) = j∗(g)(b).

(2) Φ preserves the ∈ relation: As in (1).
Thus Φ is an isomorphism, and since both of X and X ∗ are transitive, it must be
the identity. The lemma follows. ⊣

Lemma 2.8. H (κ+3) ⊆M∗.

Proof. We haveH (κ+3) ⊆ X ⊆ X ∗ ⊆M∗. 2

Lemma 2.9. G ∈M∗

Proof. First note that PS ∈ H (κ+3) ⊆ M∗. Define f: κ → H (κ)V [G ] by
f(α) = Gα , where Gα = G ∩ H (α) is PS ∩ H (α)-generic over V . Show that
G = j∗(f)(κ), and hence G ∈ M∗. By maximality of G it suffices to show that
G ⊆ j∗(f)(κ).
Let p ∈ G . Choose h : [κ]n → H (κ) in V and a finite set a ⊆ κ+3 containing κ
such thatp = j(h)(a). ThenbyLemma2.7p = j∗(h)(a). Definefa(α1, . . . , αn) =
f(αi), where κ is the i-th element of a. Then j∗(fa)(a) = j∗(f)(κ). Now we have
to prove that j∗(h)(a) ∈ j∗(fa)(a).
Let ḟa be a PS -name for fa such that ‖−PS

pḟa(α1, . . . , αn) = Ġαi q. Then

‖−j(PS)pj(ḟa)(a) = Ġq and hence ‖−j(PS)pj(h)(a) ∈ j(ḟa)(a)q. The lemma
follows. ⊣

2.2. Coding. Friedman [3] presents a method for creating reals which are class-
generic (but not set-generic) over a sufficiently L-like model, preserving Woodin
cardinals. A similar method can be used to preserve strong cardinals. However the
general problem of coding a predicate into a real while preserving large cardinal
properties is open; we show here that this is possible if the predicate is a sequence
which is generic for a discrete Prikry product.

Theorem 2.10. Suppose thatK is the canonical inner model for anH (κ+3)-strong
cardinal κ. Suppose that S is the discrete set consisting of those measurable cardinals
less thanκ inK which are not limits ofmeasurable cardinals inK . Also let (xα : α ∈ S)
be PS -generic over K for the measures (Uα : α ∈ S), where Uα is the unique normal
measure on α in K . Then there is a cofinality-preserving set-forcing P for adding a
real R over K [(xα : α ∈ S)] such that K [(xα : α ∈ S)][R] = K [R] and κ remains
H (κ+3)-strong in K [R].

Proof. We will follow the proof of Jensen’s coding theorem from [2], section 4.2,
making use of Lemma 2.1 to argue that the relevant Σ1 Skolem hulls taken with
respect to certain initial segments of K are also Σ1 elementary when the Prikry
product generic is adjoined. We must impose some minor changes to the notion of
“string s” and to the coding structures A s , Ã s , but for the most part the argument
remains the same. The preservation ofH (κ+3)-strength is based on ideas from [3].
We work in L[E][(xα : α ∈ S)] where K = L[E] is a fine-structural inner model
built from the sequence E of (partial) extenders. Abbreviate (xα : α ∈ S) as ~x and
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for any â let ~x(≤ â) denote (xα : α ∈ S, α ≤ â). We may also assume that for α
in S, the min of xα is greater than the supremum of S ∩α, using the discreteness of
the set S. Let A denote the union of the xα , α ∈ S.
Card denotes the class of infinite cardinals. For α in Card we define the ordinals
ì<ç ,ìç by induction on ç ∈ [α,α+). Anordinalì is aZF− ordinal iffLì[E, ~x(≤ α)]
is a model of ZF minus Power Set. Define: ì<ç = ∪{ìî : î < ç} ∪ α, ìç = the
least limit of ZF− ordinals ì such that ì is greater than ì<ç and, setting A ç =
Lì[E, ~x(≤ α)] we have thatA ç |= α is the largest cardinal.
Sα , the set of strings at α consists of all s : [α, |s |) → 2, α ≤ |s | < α+, such that

|s | is a multiple of α and s belongs to A |s|. We write s ≤ t when t extends s and
s < t when t properly extends s . For s ∈ Sα we write A s for A |s| and ìs for ì|s|.
For later use (see “Limit Precoding”) we also define ì̃s < ìs to be the least ZF−

ordinal ì greater than ì<|s| such that the structure Lì[E, ~x(≤ α)] contains s and

satisfies that α is the largest cardinal. The resulting structure Ã s = Lì̃s [E, x(≤ α)]

is a proper initial segment ofA s and, like A s , each element of Ã s is Σ1 definable in
Ã s from parameters in α ∪ {~x(≤ α), s}. (We say that Ã s , A s are Σ1 projectible to
α with parameters ~x(≤ α), s .)
To set up the coding we need the functions fs , defined as follows: For α an
uncountable cardinal, s in Sα and i < α let H s (i) denote the Σ1 Skolem hull
of i ∪ {~x(≤ α), s} in A s . Then fs(i) is the ordertype of H s (i) ∩Ord. For α a
successor cardinal we define the coding set bs to be the range of fs ↾ Bs where
Bs consists of the successor elements of {i < α : i is a limit of j such that j =
H s (j) ∩ α}.
We describe a cofinality-preserving forcing which codesK [~x] intoK [X ] for some
X ⊆ ù1, preserving the H (κ

+3)-strength of κ. Then a simple c.c.c forcing can be
used to code X into the desired real R.
We need a partition of the ordinals into four pieces: Let B, C , D, F denote the
classes of ordinals which are congruent to 0, 1, 2, 3 mod 4, respectively (The letters
A and E are already used for other purposes). For any ordinal α, αB denotes the
α-th element of B and for any set Y of ordinals, Y B denotes the set of αB for α in
Y (similarly for C,D, F ).
The successor coding: Suppose α ∈ Card and s ∈ Sα+ . A condition in Rs is a
pair (t, t∗) where t ∈ Sα , t

∗ ⊆ {bs↾ç : ç ∈ [α+, |s |)} ∪ |t|, card(t∗) ≤ α. Extension
is defined by: (t0, t∗0 ) ≤ (t1, t

∗
1 ) iff t0 extends t1, t

∗
0 contains t

∗
1 and:

(1) If |t1| ≤ ãB < |t0| and ã ∈ bs↾ç ∈ t∗1 then t0(ã
B) = 0 or s(ç).

(2) If |t1| ≤ ãC < |t0| and ã = 〈ã0, ã1〉 with ã0 ∈ A ∩ t∗1 then t0(ã
C ) = 0 (where

〈·, ·〉 is Gödel pairing of ordinals).
AnRs -generic overA s adds (and is uniquely determined by) a functionT:α+→2
such that s(ç) = 0 iff T (ãB ) = 0 for sufficiently large ã ∈ Bs↾ç and such that for
ã0 < α

+, ã0 ∈ A iff T (〈ã0, ã1〉C ) = 0 for sufficiently large ã1 < α+.
The limit precoding. Suppose that α is an infinite cardinal and s belongs to Sα .
We say that X ⊆ α precodes s if X is the Σ1 theory of Ã s with parameters from
α ∪ {~x(≤ α), s}, viewed as a subset of α.
The limit coding. Suppose that α is an uncountable limit cardinal, s ∈ Sα and p
is a sequence ((pâ , p

∗
â) : â ∈ Card ∩ α) where pâ ∈ Sâ for each â ∈ Card ∩ α. We

will define what it means for p to “code s”. First define the sequence (sã : ã ≤ ã0)
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of elements of Sα as follows: Let s0 = ∅. For limit ã ≤ ã0, sã is the union of the
sä , ä < ã. Now suppose that sã is defined and for successor cardinals â less than
α let f

sã
p (â) be the least ä ≥ fsã (â) such that pâ(ä

D) = 1, if such a ä exists. If

f
sã
p (â) is undefined for cofinally many successor cardinals â < α then set ã0 = ã.
Otherwise define X ⊆ α by: ä ∈ X iff pâ((f

sã
p (â) + 1 + ä)D) = 1 for sufficiently

large successor cardinals â < α. If Even(X ) = {ä : 2ä ∈ X} precodes an element t
of Sα extending sã such thatA t contains X and the function f

sã
p , then set sã+1 = t.

Otherwise let sã+1 be sã ∗ X F (i.e., the concatenation of sã with X F viewed as a

sequence of length α), provided sã ∗ X
F belongs to Sα and f

sã
p belongs to A sã∗X

F

;
if not, then again set ã0 = ã. Now p exactly codes s if s equals one of the sã , ã ≤ ã0
and p codes s is an initial segment of some sã , ã ≤ ã0.
Finally we define the desired forcing. Let Card′ denote the class of uncountable
limit cardinals. Also fix an extender ultrapower embedding j : V = K [~x]→ M =
K∗[~x∗] witnessing that κ is H (κ+3)-strong in K [~x]. I.e., j has critical point κ,
H (κ+3) of V is contained inM and every element ofM is of the form j(f)(α) for
some f: κ → V in V and α < κ+3.
The conditions. A condition in P is a sequence p = ((pα , p

∗
α) : α ∈ Card,

α ≤ α(p)) where α(p) ≤ κ+3 in Card and:
(1) pα(p) belongs to Sα(p) and p

∗
α(p)
= ∅.

(2) For α ∈ Card ∩ α(p), (pα , p∗α) belongs to R
pα+ .

(3) For α ∈ Card′, α ≤ α(p), p ↾ α belongs to A pα and exactly codes pα.
(4) For α ∈ Card′, α ≤ α(p), if α is inaccessible inA pα then there exists a closed
unbounded subset C of α, C ∈ A pα , such that for â ∈ C , p∗â = p

∗
â+ = p

∗
â++ =

pâ+ = pâ++ = ∅.
Conditions are ordered by: p ≤ q iff:
(a) α(p) ≥ α(q).
(b) p(α) ≤ q(α) in Rpα+ for α ∈ Card ∩ α(p) ∩ (α(q) + 1).
(c) pα(p) extends qα(q) if α(p) = α(q).
(d) If α(q) ≥ κ++, |qκ++ | ≤ ã < |pκ++ |, î < |j(q)κ+3 | is of the form j(f)(i) for
some i < |qκ++ | and function f with domain κ, j(q)κ+3(î) = 0 and ã belongs to
bj(q)κ+3↾î (as defined in K∗[~x∗], the ultrapower of K [~x] by j) then pκ++(ãB ) = 0.
Clause (d) is to ensure that Gκ++ , the subset of κ+3 added by the generic G ,
codes the union of the j(p)κ+3 for p in G , a fact needed for the preservation of
H (κ+3)-strength (see below).
This completes the definition of P. The verification of cofinality and GCH
preservation for P is as in [2], section 4.2, following the proofs of the Lemmas 4.3–
4.6 found there. Here we only point out the added points to be made, taking into
account that we are coding ~x over K = L[E] and not over L. For this verification,
requirement (4) above can be weakened to only require that p∗â = ∅ for â ∈ C ; the

stronger form of (4) above is needed for the preservation of H (κ+3)-strength.
A general fact that is needed throughout the proof is the following.

Lemma 2.11 (Condensation). Suppose that α is an uncountable cardinal, s ∈ Sα ,
i < α and as before let H s(i) denote the Σ1 Skolem hull of i ∪ {~x(≤ α), s} in A s .
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(a) If α is a successor cardinal then for sufficiently large i < α, if i is a limit point
of {j < α : j = H s (j) ∩ α} then the transitive collapse ofH s(i) is of the form K̄ [~̄x]
where K̄ is an initial segment of K .
(b) If α is a limit cardinal then for sufficiently large cardinals i < α the transitive
collapse ofH s (i) is of the form K̄ [~̄x] where K̄ is an initial segment of K .
The same holds with A s replaced by any of its initial segments which contain s and
have height equal to a ZF− ordinal.

Proof. Recall that s belongs to A s = Lì|s| [E, ~x(≤ α)]. Now x(≤ α) is generic
over K for the product PS(≤α) of Prikry forcings at â ≤ α in S. If α is in the
closure of S then the intersection of PS(≤α) with Lì[E] is a class forcing in Lì[E]

whenever ì is a ZF− ordinal of size α such that α is the largest cardinal in Lì[E].
Nevertheless, all definable antichains in this forcing are sets. An examination of the
proof of Lemma 2.1 in [4] reveals that any sequence which satisfies the geometric
property of that lemma with respect to Lì[E] for the forcing PS(≤α) ∩ Lì[E] is in
fact generic for this forcing over Lì[E]. It follows that x(≤ α), which satisfies the
geometric property with respect to the entire L[E], is generic over Lì[E] for this
forcing. From this we infer the Σ1 definability of the forcing relation for ∆0 formulas
for the forcing PS(≤α)∩Lìs [E] and therefore that for i ≤ α,H

s
0 (i) = the Σ1 Skolem

hull of i∪{ṡ} inA s0 (= Lì|s| [E]) is equal to the intersection withA
s
0 ofH

s (i) = the

Σ1 Skolem hull of i ∪ {s} in A s (where ṡ is a name for s ∈ A s). In particular,
setting i equal to α, we see thatA s0 is Σ1-projectible to α with parameter ṡ .
If i satisfies the requirements stated in (a) or (b) above, then the Σ1 projectum of
the transitive collapse of H s0 (i) is equal to i and if i is sufficiently large, then this
transitive collapse is also sound. It follows that K̄ = the transitive collapse ofH s0 (i)
is an initial segment of K for such i . The last statement of the lemma follows by
the same argument, as any initial segment of A s which contains s is Σ1 projectible
to α with parameter s . ⊣

Using Condensation as above, the proofs of Lemmas 4.3–4.6 from [2], section 4.2
can be carried out in the present setting:
In Lemma 4.3, one must take the αi ’s to enumerate the first α sufficiently large
elements of {â < α+ : â is a limit of â̄ such that â̄ = α+ ∩ Σ1 Skolem hull of
(â̄ ∪ {x}) in A } which are sufficiently large so that Condensation (a) guarantees

that the transitive collapse of the associated Σ1 hull is of the form K̄ [~̄x] with K̄
an initial segment of K . This facilitates the proof of the Claim in the proof of
Lemma 4.3
In Lemma 4.4 one applies Condensation (b) to ensure that the Σ1 Skolem hull
Hâ , when â = α ∩ Hâ , transitively collapses to a structure built from an initial
segment of K for sufficiently large cardinals â < α; this is needed to argue that the
resulting sâ is a string at â . The rest of the proof remains unchanged.
The proof of Lemma 4.5 (a) in the case of â inaccessible also uses Condensa-
tion (b) in the proof of the Claim, to verify that the pëã are strings (in Sã). Also note

that Jensen’s subtle use of the assumption that 0# does not exist (referred to in the
Note) has no counterpart here, as our structures A s0 = Lìs [E], s ∈ Sα collapse |s |
to α without the use of s as an additional predicate (indeed, s is just a parameter
in Lìs [E, ~x(≤ α)]). The proofs of Lemma 4.5 in the case of singular â as well as
Lemma 4.6 can be carried out as before.
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We are left with the verification thatκ remainsH (κ+3)-strong after forcingwithP.
Recall that j : V = K [~x] → M = K∗[~x∗] is the extender ultrapower embedding
witnessing that κ is H (κ+3)-strong. Let G be P-generic over V ; in V [G ] we must
produce a GM which is j(P)-generic over M and which contains j(p) for each p
in G .
If (Di : i < κ) are dense subsets of P and p belongs to P then p has an extension q
which “reduces eachDi below i+3”, i.e., any extension r of q can be further extended
to meetDi without changing r(â) for â ≥ i+3. (This is a variant of ∆-distributivity,
see page 30 of [2].) From this it follows that if we take the upward closure of j[G ],
we obtain a compatible set of conditions which reduces each dense subset of j(P)
in M below κ+3, using the ultrapower representation of M . Moreover, thanks
to requirement (4) in the definition of P, j[G ] contains no nontrivial information
between κ and κ+3 (except forGκ, the subset of κ+ added byG), and therefore j[G ]
is compatible withG ∩H (κ+3). Moreover, thanks to condition (d) in the definition
of extension of conditions, Gκ++ will code the union of the j(p)κ+3 , p ∈ G , and
this coding is generic (using the fact that the j(p)κ+3 belong to A

∅; see Lemma 4.8
of [2]). So we can take GM to be generated by the joins of conditions in j[G ] with
those in G ∩H (κ+3) to obtain the desired j(P)-generic overM . ⊣

2.3. Killing the GCH everywhere by a cardinal preserving forcing. In [9] the fol-
lowing is proved.

Theorem 2.12 (Merimovich [9]). Suppose that GCH holds and κ is H (κ+4)-
strong. Then there exists a generic extension of the universe in which κ remains
inaccessible and ∀ë ≤ κ, 2ë = ë+3.

Unfortunately in the Merimovich model a lot of cardinals are collapsed below κ.
We show that a simple modification of his proof can give us the the total failure of
the GCH below κ without collapsing any cardinals.

Theorem 2.13. Suppose thatGCHholds andκ isH (κ+3)-strong. Then there exists
a cardinal preserving generic extension of the universe in which κ remains inaccessible
and ∀ë ≤ κ, 2ë > ë+.

Remark 2.14. In fact it suffices to have aMitchell increasing sequence of extenders
of length κ+, each of them (κ + 2)-strong. Thus the exact strength that we need is a
measurable cardinal κ with o(κ) = κ++ + κ+.

The idea behind the proof is simple. We consider Merimovich’s proof of Theo-
rem 2.12 and replace the collapsing functions introduced in his proof by suitable
Cohen forcings for adding many new sets. We also need to replace the Cohen
forcings used in the proof of Theorem 2.12 by new ones because of our weaker
assumption. As a result we will get a model in which we have 2ë = ë++ for a club
of cardinals ë below κ. As requested by the referee, we now provide the details.
Extender Sequences

Suppose j : V ∗ → M∗ ⊇ V ∗
ë , crit(j) = κ. Define an extender sequence (with

projections)

E(0) = 〈〈Eα(0) : α ∈ A〉, 〈ðâ,α : â, α ∈ A, â ≥j α〉〉

on κ by:

• A = [κ, ë),
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• ∀α ∈ A, Eα(0) is the κ-complete ultrafilter on κ defined by

X ∈ Eα(0)⇔ α ∈ j(X )

We write Eα(0) as Uα .
• ∀α, â ∈ A

â ≥j α ⇔ â ≥ α and for some f ∈ κκ, j(f)(â) = α

• â ≥j α ⇒ ðâ,α : κ → κ is such that j(ðâ,α)(â) = α

For the basic properties E(0) we refer to [5] where it is called “nice system” there.
Now suppose that we have defined the sequence 〈E(ô′) : ô′<ô〉. If 〈E(ô′) : ô′<ô〉
/∈M∗ we stop the construction and set

∀α ∈ A, Ēα = 〈α,E(0), . . . , E(ô′), . . . : ô′ < ô〉

and call Ēα an extender sequence of length ô (l(Ēα) = ô).
If 〈E(ô′) : ô′ < ô〉 ∈M∗ then we define an extender sequence (with projections)

E(ô)=〈〈E〈α,E(ô′) : ô′<ô〉(ô) : α∈A〉, 〈ð〈â,E(ô′) : ô′<ô〉,〈α,E(ô′) : ô′<ô〉 : â, α∈A, â≥j α〉〉

on Vκ by:

• X ∈ E〈α,E(ô′) : ô′<ô〉(ô)⇔ 〈α,E(ô′) : ô′ < ô〉 ∈ j(X ),

• for â ≥j α in A, ð〈â,E(ô′) : ô′<ô〉,〈α,E(ô′) : ô′<ô〉(〈í, d 〉) = 〈ðâ,α(í), d 〉

Note that E〈α,E(ô′) : ô′<ô〉(ô) concentrates on pairs of the form 〈í, d 〉 where í < κ
and d is an extender sequence. This makes the above definition well-defined.
We let the construction run until it stops due to the extender sequence not being
inM∗.

Definition 2.15. (1) ì̄ is an extender sequence if there are j : V ∗ →M∗ and í̄
such that í̄ is an extender sequence derived from j as above (i.e., í̄ = Ēα for
some α) and ì̄ = í̄ ↾ ô for some ô ≤ l(í̄),

(2) κ(ì̄) is the ordinal of the beginning of the sequence (i.e., κ(Ēα) = α),
(3) κ0(ì̄) = (κ(ì̄))0 (i.e., κ0(Ēα) = κ)),
(4) The sequence 〈ì̄1, . . . , ì̄n〉 of extender sequences is 0-increasing if κ0(ì̄1) <

· · · < κ0(ì̄n),
(5) The extender sequence ì̄ is permitted to a 0-increasing sequence 〈ì̄1, . . . , ì̄n〉
of extender sequences if κ0(ì̄n) < κ0(ì̄),

(6) X ∈ Ēα ⇔ ∀î < l(Ēα), X ∈ Eα(î),
(7) Ē = 〈Ēα : α ∈ A〉 is an extender sequence system if there is j : V ∗ → M∗

such that each Ēα is derived from j as above and ∀α, â ∈ A, l(Ēα) = l(Ēâ ).

Call this common length, the length of Ē , l(Ē),
(8) For an extender sequence ì̄, we use Ē(ì̄) for the extender sequence system
containing ì̄ (i.e., Ē(Ēα) = Ē),

(9) dom(Ē) = A,
(10) Ēâ ≥Ē Ēα ⇔ â ≥j α.

Finding generic filters

Start with GCH and construct an extender sequence system Ē = 〈Ēα : α ∈
dom Ē〉 where dom Ē = [κ, κ++) and l(Ē) = κ+ such that jĒ : V

∗ →M∗
Ē
⊇ V ∗

κ++ .
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We may suppose that Ē is derived from an elementary embedding j : V ∗ → M∗.
Consider the following elementary embeddings ∀ô′ < ô < l(Ē)

jô : V
∗ →M∗

ô ≃ Ult(V ∗, E(ô)),

kô(jô(f)(Ēα↾ô)) = j(f)(Ēα↾ô),

iô′,ô(jô′(f)(Ēα↾ô
′)) = jô(f)(Ēα↾ô

′),

〈M∗
Ē
, iô,Ē〉 = lim dir〈〈M

∗
ô | ô < l(Ē)〉, 〈iô′ ,ô | ô

′ ≤ ô < l(Ē)〉〉.

We restrict l(Ē) by demanding ∀ô < l(Ē) Ē↾ô ∈M∗
ô .

Thus we get the following commutative diagram.

V ∗ M∗

M∗
Ē

M∗
ô′ M∗

ô = Ult(V
∗, E(ô))

-j

@
@

@
@

@
@

@@R

jô′

HHHHHHHHHHHHHHHj

jô

-jĒ

6
kĒ

����������������*
kô′

-iô′ ,Ē-
iô′ ,ô

������*

iô,Ē�
�

�
�

�
�

���

kô

Note that

• the critical point of elementary embeddings originating in V ∗ is κ,
• the critical point of elementary embeddings originating in other models is
κ+3 as computed in that model.

Thus we get

crit iô′,ô = crit kô′ = crit iô′,Ē = (κ
+3)M∗

ô′
,

crit kô = crit(iô,Ē) = (κ
+3)M∗

ô
,

crit kĒ = (κ
+3)M∗

Ē
.

Each of these models catches VM
∗

κ+2 = V
∗
κ+2 hence compute κ

++ to be the same
ordinal in all models. The larger ô is the more resemblence there is between M∗

ô

andM∗, and hence with V ∗ towards V ∗
κ+3. This can be observed by noting that

κ+3M∗

ô
′
< jô′ (κ) < κ

+3
M∗
ô
< jô(κ) < κ

+3
MĒ∗

≤ κ+3M∗ ≤ κ+3.

We also factor through the normal ultrafilter to get the following commutative
diagram

V ∗ M∗
Ē

N∗ ≃ Ult(V ∗, U ) M∗
ô

-jĒ

Q
Q

Q
Q

QQs

jô

?

iU

-
iU,ô

�
�

�
�

��3

iU,Ē

6
iô,Ē

U = Eκ(0),

iU : V
∗ → N∗ ≃ Ult(V ∗, U ),

iU,ô(iU (f)(κ)) = jô(f)(κ),

iU,Ē(iU (f)(κ)) = jĒ(f)(κ).

N∗ catches V ∗ only up to V ∗
κ+1 and we have

κ+ < crit iU,ô = crit iU,Ē = κ
++
N∗ < iU (κ) < κ

++.
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Let 〈Pí ,Qí
∼
: í ≤ κ〉 be the reverse Easton iteration such that for any í ≤ κ:

• If í is accessible then ‖−ípQí
∼
is the trivial forcingq,

• If í is inaccessible then

‖−ípQí
∼
= Add

∼
(í+, í+3)×Add

∼
(í++, í+4)×Add

∼
(í+3, í+5).

Then we can obtain the following lifting diagram for some suitable Pκ ∗Qκ
∼
-generic

filter G<κ ∗H :

V = V ∗[G<κ][H ] MĒ =M
∗
Ē
[G Ē ][H Ē ]

N = N∗[GU ][HU ] Mô′ =M
∗
ô′ [G

ô′ ][H ô
′

] Mô =M
∗
ô [G

ô][H ô ]

-jĒ

?

iU

HHHHHHHHHj
jô′

-
jô

-
iU,ô′

��������*iô′ ,Ē

-
iô′ ,ô

6
iô,Ē

Set

RU = (Add(κ
+4, iU (κ

++)))N∗[G<κ ],

Rô = (Add(κ
+4, iô(κ

++)))M∗
ô [Gô ],

RĒ = (Add(κ
+4, iĒ(κ

++)))M∗
Ē
[GĒ ]

Lemma 2.16. In V there are IU , Iô and IĒ such that:
(a) IU is RU -generic over N ,
(b) Iô is Rô-generic overMô ,
(c) IĒ is RĒ -generic overMĒ ,
(d) The generics are so that we have the following lifting diagram

MĒ [IĒ ]

N [IU ] Mô′ [Iô′ ] Mô[Iô]-
i∗
U,ô′

�
�

��3
i∗
ô′ ,Ē

-
i∗
ô′ ,ô

6
i∗
ô,Ē

Let i2U be the iterate of iU . We choose a function, R(−,−), such that

RU = i
2
U (R)(κ, iU (κ)).

The following lemma gives us everything that we need about the model N [IU ].

Lemma 2.17. (a) N [IU ] andN have the same cardinals,
(b) The power function in N [IU ] differs from the power function of N at the

following point: 2κ
+4

= iU (κ)++.

Also The following lifting says everything which we can possibly say about the
modelsMô[Iô] andMĒ [IĒ ].

MĒ [IĒ ]

N [IU ] Mô′ [Iô′ ] Mô[Iô]-
i∗
U,ô′

�
�

��3
i∗
ô′ ,Ē

-
i∗
ô′ ,ô

6
i∗
ô,Ē
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The forcing notion PĒ we define later, due to Merimovich, adds a club to κ. For
each í1, í2 successive points in the club the cardinal structure and power function
in the range [í+1 , í

++
2 ] of the generic extension is the same as the cardinal structure

and power function in the range [κ+, jĒ (κ)
++] ofMĒ [IĒ ].

Redefining extender Sequences

We define a new extender sequence system F̄ = 〈F̄α : α ∈ dom(F̄ )〉 by:

• dom(F̄ ) = dom(Ē),
• l(F̄ ) = l(Ē)
• ≤F̄=≤Ē ,
• F (0) = E(0),
• I (ô) = Iô ,
• ∀0<ô< l(F̄ ), F (ô)= 〈〈Fα(ô): α∈ dom(F̄ )〉, 〈ðâ,α: â, α∈ dom(F̄ ), â≥F̄ α〉〉
is such that

X ∈ Fα(ô)⇔ 〈α, F (0), I (0), . . . , F (ô
′

), I (ô
′

), . . . : ô
′

< ô〉 ∈ jĒ(X ),

and

ðâ,α(〈î, d 〉) = 〈ðâ,α(î), d 〉,

• ∀α ∈ dom(F̄ ), F̄α = 〈α, F (ô), I (ô) : ô < l(F̄ )〉.

Also let I (F̄ ) be the filter generated by
⋃

ô<l(F̄ ) i
′′

ô,Ē
I (ô). Then I (F̄ ) is RĒ -generic

overMĒ .
From now on we work with this new definition of extender sequence system and
use Ē to denote it.

Definition 2.18. (1) T ∈ Ēα ⇔ ∀î < l(Ēα), T ∈ Eα(î),
(2) T\í̄ = T\V ∗

κ0(í̄)
,

(3) T ↾ í̄ = T ∩ V ∗
κ0(í̄)
.

Definition of the forcing notion PĒ
This forcing notion is the forcing notion of [9]. We give it in detail for complete-
ness. First we define a forcing notion P∗

Ē
.

Definition 2.19. A condition p in P∗
Ē
is of the form

p = {〈ã̄ , pã̄〉 : ã̄ ∈ s} ∪ {〈Ēα , T, f, F 〉}

where

(1) s ∈ [Ē]≤κ, min Ē = Ēκ ∈ s ,

(2) pĒκ ∈ V ∗
κ0(Ē)

is an extender sequence such that κ(pĒκ ) is inaccessible (we allow

pĒκ = ∅). Write p0 for pĒκ .
(3) ∀ã̄ ∈ s\{min(s)}, pã̄ ∈ [V ∗

κ0(Ē)
]<ù is a 0-increasing sequence of extender

sequences andmaxκ(pã̄) is inaccessible,
(4) ∀ã̄ ∈ s , κ(p0) ≤ max κ(pã̄),
(5) ∀ã̄ ∈ s , Ēα ≥ ã̄,
(6) T ∈ Ēα ,
(7) ∀í̄ ∈ T , |{ã̄ ∈ s : í̄ is permitted to pã̄}| ≤ κ0(í̄),

(8) ∀â̄ , ã̄ ∈ s , ∀í̄ ∈ T , if â̄ 6= ã̄ and í̄ is permitted to pâ̄ , pã̄ , then ðĒα ,â̄(í̄) 6=

ðĒα ,ã̄(í̄),
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(9)f is a function such that
(9.1) dom(f) = {í̄ ∈ T : l(í̄) = 0},
(9.2) f(í1) ∈ R(κ(p0), í01 ). If p

0 = ∅, then f(í1) = ∅,
(10)F is a function such that
(10.1) dom(F ) = {〈í̄1, í̄2〉 ∈ T 2 : l(í̄1) = l(í̄2) = ∅},
(10.2) F (í1, í2) ∈ R(í

0
1 , í

0
2 ),

(10.3) j2
Ē
(α, jĒ(α)) ∈ I (Ē).

We write mc(p), supp(p), T p, fp and F p for Ēα , s , T , f and F respectively.

Definition 2.20. For p, q ∈ P∗
Ē
, we say p is a Prikry extension of q (p ≤∗ q or

p ≤0 q) iff

(1) supp(p) ⊇ supp(q),
(2) ∀ã̄ ∈ supp(q), pã̄ = q ã̄ ,
(3) mc(p) ≥Ē mc(q),
(4) mc(p) >Ē mc(q)⇒ mc(q) ∈ supp(p),
(5) ∀ã̄ ∈ supp(p)\ supp(q), maxκ0(pã̄) >

⋃⋃

jĒ(f
q)(κ(mc(q))),

(6) T p ≤ ð−1
′′

mc(p),mc(q)
T q ,

(7) ∀ã̄ ∈ supp(q), ∀í̄ ∈ T p, if í̄ is permitted to pã̄ , then

ðmc(p),ã̄(í̄) = ðmc(q),ã̄(ðmc(p),mc(q)(í̄)),

(8) ∀í1 ∈ dom(f
p), fp(í1) ≤ f

q ◦ ðmc(p),mc(q)(í1),
(9) ∀〈í1, í2〉 ∈ dom(F p), F p(í1, í2) ≤ F q ◦ ðmc(p),mc(q)(í1, í2).

We are now ready to define the forcing notion PĒ .

Definition 2.21. A condition p in PĒ is of the form

p = p⌢n . . .
⌢ p0

where

• p0 ∈ P∗
Ē
, κ0(p00) ≥ κ

0(ì̄1),

• p1 ∈ P∗
ì̄1
, κ0(p01) ≥ κ

0(ì̄2),
...

• pn ∈ P∗
ì̄n
.

and 〈ì̄n , . . . , ì̄1, Ē〉 is a 0-inceasing sequence of extender sequence systems, that is
κ0(ì̄n) < · · · < κ0(ì̄1) < κ0(Ē).

Definition 2.22. For p, q ∈ PĒ , we say p is a Prikry extension of q (p ≤∗ q or
p ≤0 q) iff

p = p⌢n . . .
⌢ p0

q = q⌢n . . .
⌢ q0

where

• p0, q0 ∈ P∗
Ē
, p0 ≤∗ q0,

• p1, q1 ∈ P∗
ì̄1
, p1 ≤∗ q1,

...
• pn, qn ∈ P∗

ì̄n , pn ≤
∗ qn.

Now let p ∈ PĒ and í̄ ∈ T
p. We define p〈í̄〉 a one element extension of p by í̄.
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Definition 2.23. Let p ∈ PĒ , í̄ ∈ T
p and κ0(í̄) >

⋃⋃

jĒ(f
p,Col)(κ(mc(p))),

where fp,Col is the collapsing part of fp. Then p〈í̄〉 = p
⌢
1 p0 where

(1) supp(p0) = supp(p),

(2) ∀ã̄ ∈ supp(p0), p
ã̄
0 =







































ðmc(p),ã̄(í̄) if í̄ is permitted to pã̄

and l(í̄) > 0,
ðmc(p),ã̄(í̄) if í̄ is permitted to pã̄ ,

l(í̄) = 0 and ã̄ = Ēκ,
pã̄⌢〈ðmc(p),ã̄(í̄)〉 if í̄ is permitted to pã̄ ,

l(í̄) = 0 and ã̄ 6= Ēκ,
pã̄ otherwise.

(3) mc(p0) = mc(p),
(4) T p0 = T p\í̄,
(5) ∀í1 ∈ T p0 , fp0(í1) = F p(κ(í̄), í1),
(6) F p0 = F p,
(7) if l(í̄) > 0 then
(7.1) supp(p1) = {ðmc(p),ã̄(í̄) : ã̄ ∈ supp(p) and í̄ is permitted to p

ã̄},

(7.2) p
ðmc(p),ã̄ (í̄)

1 = pã̄ ,
(7.3) mc(p1) = í̄,
(7.4) T p1 = T p ↾ í̄,
(7.5) fp1 = fp ↾ í̄,
(7.6) F p1 = F p ↾ í̄,

(8) if l(í̄) = 0 then
(8.1) suppp1 = {ðmc(p),0(í̄)},

(8.2) p
ðmc(p),0(í̄)

1 = pĒκ ,
(8.3) mc(p1) = í̄0,
(8.4) T p1 = ∅,
(8.5) fp1 = fp(κ(í̄)),
(8.6) F p1 = ∅.

We use (p〈í̄〉)0 and (p〈í̄〉)1 for p0 and p1 respectively. We also let p〈í̄1,í̄2〉 =
(p〈í̄1〉)

⌢
1 (p〈í̄1〉)0〈í̄2〉 and so on.

The above definition is the key step in the definition of the forcing relation ≤.

Definition 2.24. For p, q ∈ PĒ , we say p is a 1-point extension of q (p ≤1 q) iff

p = p⌢n+1 . . .
⌢ p0

q = q⌢n . . .
⌢ q0

and there is 0 ≤ k ≤ n such that

• ∀i < k, pi , qi ∈ P∗
ì̄i
, pi ≤∗ qi ,

• ∃í̄ ∈ T qk , (pk+1)
⌢pk ≤

∗ (qk)〈í̄〉
• ∀i > k, pi+1, qi ∈ P∗

ì̄i
, pi+1 ≤∗ qi ,

where ì̄0 = Ē.

Definition 2.25. For p, q ∈ PĒ , we say p is an n-point extension of q (p ≤n q) iff
there are pn, . . . , p0 such that

p = pn ≤1 · · · ≤1 p0 = q.
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Definition 2.26. For p, q ∈ PĒ , we say p is an extension of q (p ≤ q) iff there is
some n such that p ≤n q.

Suppose that H is PĒ-generic over V . Then all of the results in [9], except the
following, work as well.
Replace Claim 10.3 with:

Claim 2.27. Assume l(Ē) > 0. Then ‖−
PĒ

p2κ = κ++q.

Replace Claim 10.4 with:

Claim 2.28. Assume l(Ē) > 0. Then ‖−
PĒ

p2κ
+

= κ+3, 2κ
++

= κ+4, 2κ
+3

= κ+5q.

Replace Claim 10.6 with the following:

Claim 2.29. Let G be PĒ -generic with p = pl ∗ · · · ∗ pk ∗ · · · ∗ p0 ∈ G and ǭ be
such that pl..k ∈ P

ǭ
and l(ǭ) = 0. Let í = κ(p0k). Then, in V [G ], all cardinals in

[í+, κ0(ǭ)++] are preserved and 2í
+

= í+3, 2í
++

= í+4, 2í
+3

= í+5, 2í
+4

= κ0(ǭ)++.

Now the proof of our main theorem goes as follows: Let p∗ ∈ P∗
Ē
such that

κ(p∗0) is inaccessible and G be PĒ-generic with p
∗ ∈ G . Set

M =
⋃

{pĒκ0 : p ∈ G},

C =
⋃

{κ(pĒκ0 ) : p ∈ G}.

Note that M is a Radin generic sequence for the extender sequence Ēκ, hence
C ⊂ κ is a club. Also the first ordinal in this club is ë = κ(p∗0). We first investigate
the range (ë, κ) in V [G ]. Note that, by 10.5 from [9], for ǭ ∈M it is enough to use

P
ǭ
in order to understand V V [G ]

κ0(ǭ)
. So let ì ∈ (ë, κ).

• ì ∈ limC : Then there is ǭ ∈ M such that l(ǭ) > 0 and κ(ǭ) = ì. By 10.7
from [9] ì remains a cardinal and by Claim 2.27, 2ì = ì++,

• ì ∈ C \ limC : Then there is ǭ ∈ M such that l(ǭ) = 0 and κ(ǭ) = ì. Let
ì2 ∈ C be the C -immediate predecessor of ì. By Claim 2.29 we have all

cardinals in [ì+2 , ì
++] are preserved and 2ì

+
2 = ì+32 , 2

ì++2 = ì+42 , 2
ì+32 = ì+52 ,

2ì
+4
2 = ì++. In particular 2ì ≥ ì++.

• ì /∈ C : Then there are ì2 and ì1 two successive points in C such that
ì ∈ (ì2, ì1). By above, if ì ∈ {ì+2 , ì

++
2 , ì

+3
2 } then 2ì = ì++, and if

ì ∈ (ì+32 , ì1) then 2
ì ≥ ì++1 > ì

+.

Wemay note that the above argument also shows that all cardinals> ë are preserved
in V [G ], and since forcing with PĒ adds no new bounded subsets to ë, hence all
cardinals are preserved in V [G ]. Finally let H be Add(ℵ0, ë++)V [G ]-generic over
V [G ]. It is then clear that in V [G ][H ] all cardinals are preserved and that the GCH
fails everywhere below (and at) κ.

2.4. Proof of Theorem 1.1. Suppose that K is the canonical inner model for a
H (κ+3)-strong cardinal κ. Let S be the discrete set of measurable cardinals below
κ in K which are not limits of measurable cardinals in K and for each α ∈ S let
Uα be the unique normal measure on α in K . Consider the forcing PS and let
(xα : α ∈ S) be PS -generic over K . By Theorem 2.2, κ remains H (κ+3)-strong in
K [(xα : α ∈ S)], thus we can apply Theorem 2.10 to find a cofinality-preserving
forcing P which adds a real R overK [(xα : α ∈ S)] such thatK [(xα : α ∈ S)][R] =
K [R] and κ remains H (κ+3)-strong in K [R]. By Theorem 2.13 there exists a
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cardinal-preserving forcing Q and a subset C ⊆ S, Q-generic over K [R] such that
in K [R][C ], κ remains inaccessible and for every ë < κ, 2ë > ë+. We now define a
new sequence (yα : α ∈ S) by

yα =

{

xα if α ∈ C,

xα − {min(xα)} otherwise.

By Lemma 3, (yα : α ∈ S) is PS -generic over K . LetW = V
K [(yα : α∈S)]
κ and V =

W [R] = V K [R][C ]κ . Then the pair (W,V ) is as required. Theorem 1.1 follows. ⊣

§3. Proof of Theorem 1.2.

3.1. A class version of thePrikry product. LetS be a class ofmeasurable cardinals
which is discrete. Fix normal measuresUα onα forα in S. We define a class version
of the Prikry product as follows.
Conditions in PS are triples p = (X p, Sp,H p) such that
(1) X p is a subset of S,
(2) Sp ∈

∏

α∈Xp [α \ sup(S ∩ α)]<ù ,
(3) H p ∈

∏

α∈Xp Uα ,
(4) supp(p) = {α : Sp(α) 6= ∅} is finite,
(5) ∀α ∈ X p, maxSp(α) < min H p(α).
Let p, q ∈ PS . Then p ≤ q (p is an extension of q) iff
(1) X p ⊇ X q ,
(2) ∀α ∈ X q , Sp(α) is an end extension of Sq(α),
(3) ∀α ∈ X q , Sp(α) \ Sq(α) ⊆ H q(α),
(4) ∀α ∈ X q ,H p(α) ⊆ H q(α).
We also define an auxiliary relation ≤∗ on PS as follows. Let p, q ∈ PS . Then
p ≤∗ q (p is a direct or Prikry extension of q) iff
(1) X p ⊇ X q ,
(2) ∀α ∈ X q , Sp(α) = Sq(α),
(3) ∀α ∈ X q ,H p(α) ⊆ H q(α).
For p ≤ q in PS we define the distance function |p − q| to be a function on
X q so that for α ∈ X q , |p − q|(α) = l(Sp(α)) − l(Sq(α)). Also let PS ↾ X =
{p ∈ PS : X p ⊆ X}. It is clear that for any X ⊆ S, PS ≃ (PS ↾ X )× (PS ↾ S \X ).

Lemma 3.1. PS is pretame: Given p ∈ PS and a definable sequence (Di : i < α) of
dense classes below p there exist q ≤ p and a sequence (di : i < α) ∈ V such that
each di ⊆ Di is predense below q.

Proof. Let p0 = p and let ä0 > α, ä0 /∈ S be such that X
po ⊆ ä0. By repeatedly

thinning the measure one sets above ä0 we can find p1 ≤ p0 and ä1 > ä0, ä1 /∈ S
such that:

(1) X p1 ⊆ ä1,
(2) p1 agrees with p0 below ä0,
(3) for any q ≤ p0, q ∈ PS ↾ ä0 and any i < α if q has an extension r meeting
Di which agrees with q below ä0, then there is such an r ∈ PS ↾ ä1 whose
measure one sets contain those of p1.

Now repeat thisù times, producing p0, p1, . . . and let q be the greatest lower bound,
obtained in a natural way, so that q ≤∗ pn for each n ∈ ù. Also for each i < α set
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di = Di ↾ äù = {r ∈ Di : X r ⊆ äù}, where äù = supn<ùän. We show that q and the
sequence (di : i < α) are as required.
Fix i <α. Suppose r≤q, r∈Di . Let n be large enough so that supp(r) ∩ äù ⊆ än.
At stage n+1 we considered r ↾ än and saw that it has an extension meetingDi and
agreeing with it below än, so it must have such an extension whose measure one sets
contain those of pn+1 and therefore those of q. This extension is compatible with r
and therefore r has an extension which meets di , as required. ⊣

It follows from [2], Theorem 2.18, and the above Lemma that the forcing relation
is definable. The proof of the following lemma uses ideas from [8].

Lemma 3.2. (PS ,≤,≤∗) has the Prikry property, i.e., for each sentence φ of the
forcing language of (PS ,≤), and any p ∈ PS there is q ≤∗ p which decides φ.

Proof. Suppose φ is a sentence of the forcing language, p ∈ PS . Let p =
(X p, Sp,H p), let φ0 denote ¬φ and φ1 denote φ.
By reflection and by strengthening p in the sense of ≤∗, we may assume that
X p = ã, where it is dense in PS ∩Vã to decide φ.
For α < ã, let Sα denote the set of Sq where q ∈ PXp∩α . For s ∈ Sα , set
Fs,α(ä1, . . . , än) = i iff there is q ≤ p such that X q = ã, Sq ↾ (X p \ {α}) = s ,
Sq(α) = Sp(α)∗ (ä1, . . . än) and q 
 φi . Set Fs,α(ä1, . . . , än) = 2 iff no such q exists.
Let H (s, α) ⊆ H p(α), H (s, α) ∈ Uα be homogeneous for Fs,α , and let H (α) =

⋂

s∈Sα
H (s, α). ThenH (α) ∈ Uα (asS is discrete) andwe can set q = (X

q , Sq ,H q),

where X q = X p, Sq = Sp andH q(α) = H (α) for α ∈ X q .
It is clear that q ≤∗ p. We show that there is a≤∗ extension of q which decides φ.
Suppose not. Let r ≤ q be such that r decides φ. Suppose for example that r 
 φ.
We may further suppose that r is so that |r − q| is minimal, and that X r = ã. We
note that |r − q| is not the 0-funtion.
Let α < ã be the maximum of supp(r), and let r0 be obtained from r by replacing
Sr(α) with Sp(α). We claim that r0 already decides φ. For let w ≤ r0, such that
w 
 ¬φ. Let n denote |Sr(α)|; We may assume that |Sw(α)| ≥ n. Let s denote
Sr0 and ä1, . . . äk denote S

w(α). Then r witnesses that Fs,α has constant value 1 on
[H (s, α)]n . Moreover, {ä1, . . . än} ∈ [H (s, α)]n . So there is r1 such that r1 
 φ,
Sr1 ↾ (X p \ {α}) = s and Sr1(α) = {ä1, . . . , än}. It is easily checked that S

r1 and
Sw ↾ ã are compatible, so r1 and w are compatible, contradicting that they decide
φ differently. Thus, r0 already decides φ, contradicting the minimality of r. ⊣

We can now easily show that PS preserves cardinals and the GCH. Also as
in the usual Prikry product a PS-generic is uniquely determined by a sequence
〈xα : α ∈ S〉 where each xα is an ù-sequence cofinal in α. As before, with a slight
abuse of terminology, we say that 〈xα : α ∈ S〉 is PS -generic. The following is an
analogue of Lemma 2.1 and its proof is essentially the same.

Lemma 3.3. (a) The sequence 〈xα : α ∈ S〉 obeys the following “geometric prop-
erty”: if 〈Xα : α ∈ S〉 is a definable class (in V ) and Xα ∈ Uα for each α ∈ S then
⋃

α∈S xα \Xα is finite.
(b) Conversely, suppose that 〈yα : α ∈ S〉 is a sequence (in any outer model of V )
satisfying the geometric property stated above. Then 〈yα : α ∈ S〉 is PS -generic
over V .
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3.2. Proof of Theorem 1.2. SupposeM is a model of ZFC+GCH+ there exists
a proper class of measurable cardinals. Let S be a discrete class of measurable
cardinals and for each α ∈ S fix a normal measure Uα over α. Consider the
forcing PS and let 〈xα : α ∈ S〉 be PS -generic overM . By Jensen’s coding theorem
(see [2]) there exists a cofinality-preserving forcing P which adds a real R over
M [〈xα : α ∈ S〉] such thatM [〈xα : α ∈ S〉][R] = L[R]. InL[R] define the function
F ∗: REG→ CARD by

F ∗(κ) =

{

F (κ) if cfF (κ) 6= ù,

F (κ)+ if cfF (κ) = ù.

Let R be the Easton forcing corresponding to F ∗ for blowing up the power of
each regular cardinal κ to F ∗(κ) and let C ⊆ S be R-genreric over L[R].
We now define a new sequence 〈yα : α ∈ S〉 by

yα =

{

xα if α ∈ C,

xα − {min(xα)} otherwise.

Using lemma 3.3, 〈yα : α ∈ S〉 is PS -generic overM . LetW =M [〈yα : α ∈ S〉],
and V =M [〈yα : α ∈ S〉, R]. Then the pair (W,V ) is as required. This completes
the proof of Theorem 1.2. ⊣

§4. A few more results. The following is proved in [1]. We give a proof for
completeness.

Lemma 4.1. Suppose that R is a real in V . Then there are two reals a and b such
that
(a) a and b are Cohen generic over V ,
(b) all of the models V,V [a], V [b] and V [a, b] have the same cardinals,
(c) R ∈ L[a, b].

Proof. Working in V , let a∗ be Add(ù, 1)-generic over V and let b∗ be
Add(ù, 1)-generic over V [a∗], where Add(ù, 1) is the Cohen forcing for adding
a new real. Note that V [a∗] and V [a∗, b∗] are cardinal preserving generic exten-
sions of V . Working in V [a∗, b∗] let 〈kN : N < ù〉 be an increasing enumeration
of {N : a∗(N) = 0} and let a = a∗ and b = {N : b∗(N) = a∗(N) = 1} ∪
{kN : R(N) = 1}. Then clearly R ∈ L[〈kN : N < ù〉, b] ⊆ L[a, b] as R =
{N : kN ∈ b}.
We show that b is Add(ù, 1)-generic over V . It suffices to prove the following

For any (p, q) ∈ Add(ù, 1) ∗Add
∼
(ù, 1) and any dense

open subsetD ∈ V of Add(ù, 1) there is (p̄, q̄) ≤ (p, q)

such that (p̄, q̄)‖−pḃ extends some element of Dq.

(∗)

Let (p, q) and D be as above. By extending one of p or q if necessary, we can
assume that lh(p) = lh(q). Let 〈kN : N < M 〉 be an increasing enumeration of
{N < lh(p) : p(N) = 0}. Let s : lh(p) → 2 be such that considered as a subset
of ù,

s = {N < lh(p) : p(N) = q(N) = 1} ∪ {kN : N < M,R(N) = 1}.
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Let t ∈ D be such that t ≤ s . Extend p, q to p̄, q̄ of length lh(t) so that for i in
the interval [lh(s), lh(t))

• p̄(i) = 1,
• q̄(i) = 1 iff i ∈ t.

Then

t = {N < lh(t) : p̄(N) = q̄(N) = 1} ∪ {kN : N < M,R(N) = 1}.

Thus (p̄, q̄)‖−pḃ extends tq and (∗) follows. This completes the proof of the
Lemma. ⊣

Using the above Lemma and Theorems 1.1 and 1.2 we can obtain the following.

Theorem 4.2. Assume the consistency of anH (κ+3)-strong cardinal κ. Then there
exist a modelW of ZFC and two reals a and b such that

(a) The modelsW,W [a] andW [b] have the same cardinals and satisfy theGCH,
(b) GCH fails at all infinite cardinals inW [a, b].

Theorem 4.3. LetM be a model of ZFC+GCH+ there exists a proper class of
measurable cardinals. In M let F : REG −→ CARD be an Easton function. Then
there exist a cardinal preserving generic extensionW ofM and two reals a and b such
that
(a) The modelsW,W [a],W [b] andW [a, b] have the same cardinals,
(b) W [a] andW [b] satisfyGCH,
(c) W [a, b] |= p∀κ ∈ REG, 2κ ≥ F (κ)q.

Acknowledgement. The authors would like to thank the referee for supplying the
correct proof of Lemma 3.2.
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