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Abstract. Starting from large cardinals we construct a pair (V1, V2) of models of ZFC

with the same cardinals and cofinalities such that GCH holds in V1 and fails everywhere

in V2.

1. Introduction

Easton’s classical result showed that over any model of GCH, one can force any reasonable

pattern of the power function λ 7→ 2λ on the regular cardinals λ, preserving cardinals and

cofinalities. Subsequently, much work has been done on the singular cardinal problem,

whose aim is to characterise the patterns of the power function on all cardinals, including

the singular ones. Typically in this work, large cardinals are used to obtain patterns of

power function behaviour at singular cardinals after applying subtle forcings which change

cofinalities or even collapse cardinals. This leads one to ask: Is it possible to obtain a failure

of GCH everyhwere by forcing over a model of GCH without changing cofinalities? If so,

can one have a fixed finite gap in the resulting model, meaning that 2λ = λ+n for some

finite n > 1 for all λ?

In this paper we prove the following theorem.

Theorem 1.1. Assume GCH+there exists a (κ + 4)−strong cardinal κ. Then there is a

pair (V1, V2) of models of ZFC such that:

(a) V1 and V2 have the same cardinals and cofinalities,

(b) GCH holds in V1,

(c) V2 |= “∀λ, 2λ = λ+3”.

Remark 1.2. In fact it suffices to have a Mitchell increasing sequence of extenders of length

κ+, each of them (κ + 3)−strong. Thus the exact strength that we need for fixed gap of 3

is a measurable cardinal κ with o(κ) = κ+3 + κ+. It is also easy to extend our result to
1



2 SY D. FRIEDMAN AND M. GOLSHANI

an arbitrary finite gap n instead of 3. Then what we need is a measurable cardinal κ with

o(κ) = κ+n + κ+. We focus on the case n = 3 as it is typical of all cases n ≥ 3 (the case

n = 2 is easier).

The rest of this paper is devoted to the proof of this theorem. The proof is based on the

extender-based Radin forcing developed by C. Merimovich in the papers [3], [4]. We try to

make the proof self-contained, thus we start with some preliminaries and facts from these

papers.

The first author would like to thank the FWF (Austrian Science Fund) for its support

through Project P23316-N13. And both authors would like to thank Professor Carmi Mer-

imovich for his reading of the manuscript and for his helpful suggestions.

2. Extender Sequences

Suppose j : V ∗ → M∗ ⊇ V ∗
λ , crit(j) = κ. Define an extender sequence (with projections)

E(0) = 〈〈Eα(0) : α ∈ A〉, 〈πβ,α : β, α ∈ A, β ≥j α〉〉

on κ by:

• A = [κ, λ),

• ∀α ∈ A, Eα(0) is the κ−complete ultrafilter on κ defined by

X ∈ Eα(0) ⇔ α ∈ j(X)

We write Eα(0) as Uα.

• ∀α, β ∈ A

β ≥j α ⇔ β ≥ α and for some f ∈κκ, j(f)(β) = α

• β ≥j α ⇒ πβ,α : κ → κ is such that j(πβ,α)(β) = α

Let’s recall the main properties of this sequence (see [2])

(1) 〈λ,≤j〉 is a κ+−directed partial order,

(2) ∀α, κ ≤j α,

(3) Uκ is a normal measure on κ,

(4) ∀α, Uα is a P−point ultrafilter over κ, i.e for any f : κ → κ there is X ∈ Uα such

that ∀ν < κ, |X ∩ f−1′′(ν)| < κ,

(5) π−1′′

β,α (X) ∈ Uβ ⇔ X ∈ Uα,
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(6) ∀α, πα,α = id,

(7) ∀γ ≥j β ≥j α there is X ∈ Uγ such that ∀ν ∈ X, πγ,α(ν) = πβ,α(πγ,β(ν)),

(8) ∀γ ≥j α, β where α 6= β there is X ∈ Uγ such that ∀ν ∈ X, πγ,α(ν) 6= πγ,β(ν),

(9) ∀β ≥j α, ∀ν < κ, πβ,κ(ν) = πα,κ(πβ,α(ν)),

(10) ∀α, β,∀ν < κ, πα,κ(ν) = πβ,κ(ν); we denote the latter by ν0.

Now suppose that we have defined the sequence 〈E(τ ′) : τ ′ < τ〉. If 〈E(τ ′) : τ ′ < τ〉 /∈ M∗

we stop the construction and set

∀α ∈ A, Ēα = 〈α, E(0), ..., E(τ ′), ... : τ ′ < τ〉

and call Ēα an extender sequence of length τ (l(Ēα) = τ).

If 〈E(τ ′) : τ ′ < τ〉 ∈ M∗ then we define an extender sequence (with projections)

E(τ) = 〈〈E〈α,E(τ ′):τ ′<τ〉(τ) : α ∈ A〉, 〈π〈β,E(τ ′):τ ′<τ〉,〈α,E(τ ′):τ ′<τ〉 : β, α ∈ A, β ≥j α〉〉

on Vκ by:

• X ∈ E〈α,E(τ ′):τ ′<τ〉(τ) ⇔ 〈α, E(τ ′) : τ ′ < τ〉 ∈ j(X),

• for β ≥j α in A, π〈β,E(τ ′):τ ′<τ〉,〈α,E(τ ′):τ ′<τ〉(〈ν, d〉) = 〈πβ,α(ν), d〉

Note that E〈α,E(τ ′):τ ′<τ〉(τ) concentrates on pairs of the form 〈ν, d〉 where ν < κ and d is

an extender sequence. This makes the above definition well-defined.

We let the construction run until it stops due to the extender sequence not being in M∗.

Definition 2.1. (1) µ̄ is an extender sequence if there are j : V ∗ → M∗ and ν̄ such

that ν̄ is an extender sequence derived from j as above (i.e ν̄ = Ēα for some α) and

µ̄ = ν̄ � τ for some τ ≤ l(ν̄),

(2) κ(µ̄) is the ordinal of the beginning of the sequence (i.e κ(Ēα) = α),

(3) κ0(µ̄) = (κ(µ̄))0 (i.e κ0(Ēα) = κ)),

(4) The sequence 〈µ̄1, ..., µ̄n〉 of extender sequences is 0−increasing if κ0(µ̄1) < ... <

κ0(µ̄n),

(5) The extender sequence µ̄ is permitted to a 0−increasing sequence 〈µ̄1, ..., µ̄n〉 of ex-

tender sequences if κ0(µ̄n) < κ0(µ̄),

(6) X ∈ Ēα ⇔ ∀ξ < l(Ēα), X ∈ Eα(ξ),
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(7) Ē = 〈Ēα : α ∈ A〉 is an extender sequence system if there is j : V ∗ → M∗ such that

each Ēα is derived from j as above and ∀α, β ∈ A, l(Ēα) = l(Ēβ). Call this common

length, the length of Ē, l(Ē),

(8) For an extender sequence µ̄, we use Ē(µ̄) for the extender sequence system containing

µ̄ (i.e Ē(Ēα) = Ē),

(9) dom(Ē) = A,

(10) Ēβ ≥Ē Ēα ⇔ β ≥j α.

3. Finding generic filters

Start with GCH and construct an extender sequence system Ē = 〈Ēα : α ∈ dom Ē〉

where dom Ē = [κ, κ+3) and l(Ē) = κ+ such that jĒ : V ∗ → M∗
Ē
⊇ V ∗

κ+3. We may suppose

that Ē is derived from an elementary embedding j : V ∗ → M∗. Consider the following

elementary embeddings ∀τ ′ < τ < l(Ē)

jτ :V ∗ → M∗
τ ' Ult(V ∗, E(τ)),

kτ (jτ (f)(Ēα�τ)) = j(f)(Ēα�τ),

iτ ′,τ (jτ ′(f)(Ēα�τ ′)) = jτ (f)(Ēα�τ ′),

〈M∗
Ē , iτ,Ē〉 = lim dir〈〈M∗

τ | τ < l(Ē)〉, 〈iτ ′,τ | τ ′ ≤ τ < l(Ē)〉〉.

We restrict l(Ē) by demanding ∀τ < l(Ē) Ē�τ ∈ M∗
τ .

Thus we get the following commutative diagram.

V ∗ M∗

M∗
Ē

M∗
τ ′ M∗

τ = Ult(V ∗, E(τ))

-j

@
@

@
@

@
@

@@R

jτ′

H
HHH

HHH
HHH

HHH
HHj

jτ

-jĒ

6
kĒ

���
���

���
���

����*
kτ′

-
iτ′,Ē-
iτ′,τ

��
����*

iτ,Ē�
�

�
�

�
�

���

kτ

Note that

• the critical point of elementary embeddings originating in V ∗ is κ,

• the critical point of elementary embeddings originating in other models is κ+4 as

computed in that model.
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Thus we get

crit iτ ′,τ = crit kτ ′ = crit iτ ′,Ē = (κ+4)M∗
τ′

,

crit kτ = crit(iτ,Ē) = (κ+4)M∗
τ
,

crit kĒ = (κ+4)M∗
Ē
.

Each of these models catches V M∗

κ+3 = V ∗
κ+3 hence compute κ+3 to be the same ordinal in all

models. The larger τ is the more resemblence there is between M∗
τ and M∗, and hence with

V ∗ towards V ∗
κ+4. This can be observed by noting that

κ+4
M∗

τ
′

< jτ ′ (κ) < κ+4
M∗

τ
< jτ (κ) < κ+4

MĒ∗ ≤ κ+4
M∗ ≤ κ+4.

We also factor through the normal ultrafilter to get the following commutative diagram

V ∗ M∗
Ē

N∗ ' Ult(V ∗, U) M∗
τ

-jĒ

Q
Q

Q
Q

QQs

jτ

?

iU

-
iU,τ

�
�

�
�

��3

iU,Ē

6
iτ,Ē

U = Eκ(0),

iU :V ∗ → N∗ ' Ult(V ∗, U),

iU,τ (iU (f)(κ)) = jτ (f)(κ),

iU,Ē(iU (f)(κ)) = jĒ(f)(κ).

N∗ catches V ∗ only up to V ∗
κ+1 and we have

κ+ < crit iU,τ = crit iU,Ē = κ++
N∗ < iU (κ) < κ++.

Definition 3.1. Let

(1) RCol
U = Col(κ+6, iU (κ))N∗ ,

(2) RAdd,1
U = Add(κ+, κ+4)N∗ ,

(3) RAdd,2
U = Add(κ++, κ+5)N∗ ,

(4) RAdd,3
U = Add(κ+3, κ+6)N∗ ,

(5) RAdd,4
U = (Add(κ+4, iU (κ)+)×Add(κ+5, iU (κ)++)×Add(κ+6, iU (κ)+3))N∗ ,

(6) RAdd
U = RAdd,1

U × RAdd,2
U × RAdd,3

U × RAdd,4
U ,

(7) RU = RAdd
U × RCol

U .

Definition 3.2. Let
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(1) RCol
τ = Col(κ+6, jτ (κ))M∗

τ
,

(2) RAdd,1
τ = Add(κ+, κ+4)M∗

τ
,

(3) RAdd,2
τ = Add(κ++, κ+5)M∗

τ
,

(4) RAdd,3
τ = Add(κ+3, κ+6)M∗

τ
,

(5) RAdd,4
τ = (Add(κ+4, jτ (κ)+)×Add(κ+5, jτ (κ)++)×Add(κ+6, jτ (κ)+3))M∗

τ
,

(6) RAdd
τ = RAdd,1

τ × RAdd,2
τ × RAdd,3

τ × RAdd,4
τ ,

(7) Rτ = RAdd
τ × RCol

τ .

Definition 3.3. Let

(1) RCol
Ē

= Col(κ+6, jĒ(κ))M∗
Ē
,

(2) RAdd,1
Ē

= Add(κ+, κ+4)M∗
Ē
,

(3) RAdd,2
Ē

= Add(κ++, κ+5)M∗
Ē
,

(4) RAdd,3
Ē

= Add(κ+3, κ+6)M∗
Ē
,

(5) RAdd,4
Ē

= (Add(κ+4, jĒ(κ)+)×Add(κ+5, jĒ(κ)++)×Add(κ+6, jĒ(κ)+3))M∗
Ē
,

(6) RAdd
Ē

= RAdd,1
Ē

× RAdd,2
Ē

× RAdd,3
Ē

× RAdd,4
Ē

,

(7) RĒ = RAdd
Ē

× RCol
Ē

.

Also define the forcing notion P as follows

P = P1 × P2 × P3 = Add(κ+, κ+4)×Add(κ++, κ+5)×Add(κ+3, κ+6).

and let G = G1 × G2 × G3 be P−generic over V ∗. It is clear that V ∗[G] is a cofinality-

preserving generic extension of V ∗ and that GCH holds in V ∗[G] below and at κ.

Remark 3.4. . We require that G2×G3 contains some special element, that we will specify

later.

Lemma 3.5. (a) GU = 〈i′′UG1〉 × 〈i′′UG2〉 × 〈i′′UG3〉 is PU = iU (P)−generic over N∗,

(b) Gτ = 〈j′′

τ G1〉 × 〈j′′

τ G2〉 × 〈j′′

τ G3〉 is Pτ = jτ (P)−generic over M∗
τ ,

(c) GĒ = 〈
⋃

τ<l(Ē) i
′′

τ,Ē
Gτ 〉 is PĒ = jĒ(P)−generic over M∗

Ē
,.

Proof. (a) Suppose D ∈ N∗ is dense open in PU . Let D = iU (f)(κ) for some function f ∈ V

on κ. Then

D∗ = {α < κ : f(α) is dense open in P} ∈ U.
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Since P is κ+−closed,
⋂

α∈D∗ f(α) is dense open in P. Let p ∈ G ∩
⋂

α∈D∗ f(α). Then

iU (p) ∈ GU ∩D.

(b) Suppose D ∈ M∗
τ is dense open in Pτ . Let D = jτ (f)(Ēα � τ) for some function f ∈ V

on Vκ. Then

D∗ = {ν̄ ∈ Vκ : f(ν̄) is dense open in P} ∈ Eα(τ).

Since P is κ+−closed,
⋂

ν̄∈D∗ f(ν̄) is dense open in P. Let p ∈ G ∩
⋂

ν̄∈D∗ f(ν̄). Then

jτ (p) ∈ Gτ ∩D.

(c) Suppose D ∈ M∗
Ē

is dense open in PĒ . Let τ < l(Ē) and Dτ ∈ M∗
τ be such that

D = iτ,Ē(Dτ ). By elementarity Dτ is dense open in Pτ . Let p ∈ Gτ ∩ Dτ . Then iτ,Ē(p) ∈

GĒ ∩D. �

The following lemma is now trivial.

Lemma 3.6. The generic filters above are such that

(a) i
′′

U [G] ⊆ GU ,

(b) j
′′

τ [G] ⊆ Gτ ,

(c) j
′′

Ē
[G] ⊆ GĒ ,

(d) i
′′

U,τ ′ [GU ] ⊆ Gτ ,

(e) i
′′

τ ′ ,τ
[Gτ ′ ] ⊆ Gτ ,

(f) i
′′

τ,Ē
[Gτ ] ⊆ GĒ .

It then follows that we have the following lifting diagram.

V = V ∗[G] MĒ = M∗
Ē [GĒ ]

N = N∗[GU ] Mτ ′ = M∗
τ ′ [Gτ ′ ] Mτ = M∗

τ [Gτ ]

-jĒ

?

iU

HH
HHH

HHj
jτ′

-
jτ

-
iU,τ′

�
���

���*iτ′,Ē

-
iτ′,τ

6
iτ,Ē

Lemma 3.7. In V ∗[G] there are IU , Iτ and IĒ such that

(a) IU is RU−generic over N∗[GU ],

(b) Iτ is Rτ−generic over M∗
τ [Gτ ],

(c) IĒ is RĒ−generic over M∗
Ē

[GĒ ],

(d) The generics are so that we have the following lifting diagram
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MĒ [IĒ ]

N [IU ] Mτ ′ [Iτ ′ ] Mτ [Iτ ]-
i∗
U,τ′

�
�

�
�3

i∗
τ′,Ē

-
i∗
τ′,τ

6
i∗
τ,Ē

Proof. We will prove the lemma in a sequence of claims.

Claim 3.8. IAdd,1
Ē

= G1 ∩ RAdd,1
Ē

is RAdd,1
Ē

−generic over M∗
Ē

.

Proof. Suppose A is a maximal antichain of RAdd,1
Ē

in M∗
Ē

. Let X =
⋃
{dom(p) : p ∈ A}. As

|A| ≤ κ+, we have |X| ≤ κ+, and of course A is a maximal antichain of Add(κ+, X)M∗
Ē
. For

simlpicity let us assume |X| = κ+. Now we have Add(κ+, X)M∗
Ē

= Add(κ+, X) and hence

A is a maximal antichain of Add(κ+, X). It then follows that A is a maximal antichain of

Add(κ+, κ+4). Let p ∈ G1 ∩A. Then p ∈ IAdd,1
Ē

∩A. �

Claim 3.9. IAdd,2
Ē

= G2 ∩ RAdd,2
Ē

is RAdd,2
Ē

−generic over M∗
Ē

.

Proof. Suppose A is a maximal antichain of RAdd,2
Ē

in M∗
Ē

. Let X =
⋃
{dom(p) : p ∈ A}. As

|A| ≤ κ++, we have |X| ≤ κ++, and of course A is a maximal antichain of Add(κ++, X)M∗
Ē
.

For simlpicity let us assume |X| = κ++. Now we have Add(κ++, X)M∗
Ē

= Add(κ++, X)

and hence A is a maximal antichain of Add(κ++, X). It then follows that A is a maximal

antichain of Add(κ++, κ+5). Let p ∈ G2 ∩A. Then p ∈ IAdd,2
Ē

∩A. �

Claim 3.10. IAdd,3

Ē
= G3 ∩ RAdd,3

Ē
is RAdd,3

Ē
−generic over M∗

Ē
.

Proof. Suppose A is a maximal antichain of RAdd,3

Ē
in M∗

Ē
. Let X =

⋃
{dom(p) : p ∈ A}. As

|A| ≤ κ+3, we have |X| ≤ κ+3, and of course A is a maximal antichain of Add(κ+3, X)M∗
Ē
.

For simlpicity let us assume |X| = κ+3. Now we have Add(κ+3, X)M∗
Ē

= Add(κ+3, X) and

hence A is a maximal antichain of Add(κ+3, X). It then follows that A is a maximal antichain

of Add(κ+3, κ+6). Let p ∈ G3 ∩A. Then p ∈ IAdd,3
Ē

∩A. �

It follows from the above claims that

Claim 3.11. IAdd,1
Ē

× IAdd,2
Ē

× IAdd,3
Ē

is RAdd,1
Ē

× RAdd,2
Ē

× RAdd,3
Ē

−generic over M∗
Ē

.

Claim 3.12. IAdd,1
U = 〈i−1′′

U,Ē
(IAdd,1

Ē
)〉 is RAdd,1

U −generic over N∗.
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Proof. Let A be a maximal antichain of RAdd,1
U in N∗. Then iU,Ē(A) is a maximal antichain

of RAdd,1

Ē
in M∗

Ē
. Since |A| ≤ κ+, and crit(iU,Ē) = κ++

N∗ > κ+, we have iU,Ē(A) = i
′′

U,Ē
(A).

Then IAdd,1
Ē

∩ i
′′

U,Ē
(A) 6= ∅, which implies IAdd,1

U ∩A 6= ∅. �

Now consider the forcing notion RAdd,2
U × RAdd,3

U × RAdd,4
U × RCol

U . Working in M∗
Ē

, this

forcing notion is κ+−closed and there are only κ+−many maximal antichains of it which are

in N∗. Thus we can define a descending sequence 〈〈p〈α,Add,2〉, p〈α,Add,3〉, p〈α,Add,4〉, p〈α,Col〉〉 :

α < κ+〉 of conditions such that IAdd,2
U × IAdd,3

U × IAdd,4
U × ICol

U = {p ∈ RAdd,2
U × RAdd,3

U ×

RAdd,4
U ×RCol

U : ∃α < κ+, 〈p〈α,Add,2〉, p〈α,Add,3〉, p〈α,Add,4〉, p〈α,Col〉〉 ≤ p} is RAdd,2
U ×RAdd,3

U ×

RAdd,4
U × RCol

U -generic over N∗. Also note that this generic filter is in M∗
Ē

.

We may also note that {iU,Ē(p〈α,Add,2〉, p〈α,Add,3〉) : α < κ+} ⊆ RAdd,2
Ē

×RAdd,3
Ē

, and since

this forcing is κ++−closed, there is 〈p〈Add,2〉, p〈Add,3〉〉 ∈ RAdd,2
Ē

× RAdd,3
Ē

such that ∀α <

κ+, 〈p〈Add,2〉, p〈Add,3〉〉 ≤ iU,Ē(p〈α,Add,2〉, p〈α,Add,3〉). We may suppose that 〈p〈Add,2〉, p〈Add,3〉〉 ∈

G2 ×G3 (see Remark 3.4).

Let IU = IAdd,1
U × IAdd,2

U × IAdd,3
U × IAdd,4

U × ICol
U . It follows from the above results that

IU is RU−generic over N∗.

Claim 3.13. (a) IAdd,1
τ = 〈i−1′′

τ,Ē
(IAdd,1

Ē
)〉 is RAdd,1

τ −generic over M∗
τ ,

(b) IAdd,2
τ = 〈i−1′′

τ,Ē
(IAdd,2

Ē
)〉 is RAdd,2

τ −generic over M∗
τ ,

(c) IAdd,3
τ = 〈i−1′′

τ,Ē
(IAdd,3

Ē
)〉 is RAdd,3

τ −generic over M∗
τ .

Proof. (a) Let A be a maximal antichain of RAdd,1
τ in M∗

τ . Then iτ,Ē(A) is a maximal

antichain of RAdd,1
Ē

in M∗
Ē

. Since |A| ≤ κ+, and crit(iτ,Ē) = κ+4
M∗

τ
> κ+, we have iτ,Ē(A) =

i
′′

τ,Ē
(A). Then IAdd,1

Ē
∩ i

′′

τ,Ē
(A) 6= ∅, which implies IAdd,1

τ ∩A 6= ∅.

(b) Let A be a maximal antichain of RAdd,2
τ in M∗

τ . Then iτ,Ē(A) is a maximal antichain

of RAdd,2
Ē

in M∗
Ē

. Since |A| ≤ κ++, and crit(iτ,Ē) = κ+4
M∗

τ
> κ++, we have iτ,Ē(A) = i

′′

τ,Ē
(A).

Then IAdd,2
Ē

∩ i
′′

τ,Ē
(A) 6= ∅, which implies IAdd,2

τ ∩A 6= ∅.

(c) Let A be a maximal antichain of RAdd,3
τ in M∗

τ . Then iτ,Ē(A) is a maximal antichain

of RAdd,3
Ē

in M∗
Ē

. Since |A| ≤ κ+3, and crit(iτ,Ē) = κ+4
M∗

τ
> κ+3, we have iτ,Ē(A) = i

′′

τ,Ē
(A).

Then IAdd,3
Ē

∩ i
′′

τ,Ē
(A) 6= ∅, which implies IAdd,1

τ ∩A 6= ∅. �



10 SY D. FRIEDMAN AND M. GOLSHANI

As U ∈ M∗
Ē

and ∀τ < l(Ē) E(τ) ∈ M∗
Ē

we have the following diagram

M∗
Ē

N∗Ē M∗Ē
τ

?

iĒ
U

@
@

@
@R

jĒ
τ

-
iĒ
U,τ

U = Eκ(0),

iĒU :M∗
Ē → N∗Ē ' Ult(M∗

Ē , U),

jĒ
τ :M∗

Ē → M∗Ē
τ ' Ult(M∗

Ē , E(τ)),

iĒU,τ (iĒU (f)(κ)) = jĒ
τ (f)(κ).

Recall that we have IAdd,4
U × ICol

U ∈ M∗
Ē

which is RAdd,4
U × RCol

U -generic over N∗Ē .

Claim 3.14. There is IAdd,4
τ × ICol

τ ∈ M∗
Ē

which is RAdd,4
τ × RCol

τ −generic over M∗
τ .

Proof. We follow the idea from [3]. For this set

(1) RĒ,Col
τ = Col(κ+6, jĒ

τ (κ))M∗Ē
τ

,

(2) RĒ,Add,4
τ = (Add(κ+4, jĒ

τ (κ)+)×Add(κ+5, jĒ
τ (κ)++)×Add(κ+6, jĒ

τ (κ)+3))M∗Ē
τ

,

RĒ,Add,4
τ ×RĒ,Col

τ and RAdd,4
τ ×RCol

τ are coded in V
M∗

τ

jτ (κ)+3, V
M∗Ē

τ

jĒ
τ (κ)+3

respectively. V
M∗

τ

jτ (κ)+3,

V
M∗Ē

τ

jĒ
τ (κ)+3

are determined by V V ∗

κ+3, V
M∗

Ē
κ+3 (and E(τ), of course). As E(τ) ∈ M∗

Ē
and V V ∗

κ+3 =

V
M∗

Ē
κ+3 we get that RĒ,Add,4

τ × RĒ,Col
τ = RAdd,4

τ × RCol
τ .

By the same reasoning, each antichain of RAdd,4
τ ×RCol

τ appearing in M∗
τ is also an anti-

chain of RĒ,Add,4
τ × RĒ,Col

τ appearing in M∗Ē
τ . Hence, if IAdd,4

τ × ICol
τ ∈ M∗

Ē
is RĒ,Add,4

τ ×

RĒ,Col
τ −generic filter over M∗Ē

τ then it is also RAdd,4
τ × RCol

τ −generic over M∗
τ .

Let IAdd,4
τ × ICol

τ = 〈iĒ′′

U,τ (IAdd,4
U × ICol

U )〉. We show that it is as required. So let D ∈ M∗Ē
τ

be dense open in RĒ,Add,4
τ ×RĒ,Col

τ . Then D = jĒ
τ (f)(Ēα � τ) for some function f ∈ M∗

Ē
on

Vκ. It then follows that in M∗
Ē

D∗ = {ν̄ ∈ Vκ : f(ν̄) is dense open in RAdd,4
Ē

× RCol
Ē
} ∈ Eα(τ).

It is easily seen that

B = {µ : |{ν̄ ∈ D∗ : κ0(ν̄) = µ}| ≤ µ+3} ∈ Eκ(0).

Thus for each µ ∈ B we can find f∗(µ) such that for all ν̄ ∈ D∗ with κ0(ν̄) = µ we have

f∗(µ) ⊆ f(ν̄) is dense open (in M∗
Ē

). Hence

N∗Ē |= “iĒU (f∗)(κ) is dense open ”.

and
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M∗Ē
τ |= “jĒ

τ (f∗)(κ) ⊆ jĒ
τ (f)(Ēα � τ)”.

So there is g ∈ M∗
Ē

such that iĒU (g)(κ) ∈ (IAdd,4
U × ICol

U ) ∩ iĒU (f∗)(κ). It then follows that

jĒ
τ (g)(κ) ∈ iĒ

′′

U,τ (IAdd,4
U × ICol

U ) ∩ jĒ
τ (f∗)(κ). This means that (IAdd,4

τ × ICol
τ ) ∩ jĒ

τ (f)(Ēα �

τ) 6= ∅. The result follows.

�

Now let Iτ = IAdd,1
τ × IAdd,2

τ × IAdd,3
τ × IAdd,4

τ × ICol
τ . It follows that Iτ is Rτ−generic

over M∗
τ .

Claim 3.15. IAdd,4
Ē

× ICol
Ē

= 〈
⋃

τ<l(Ē) i
′′

τ,Ē
(IAdd,4

τ × ICol
τ )〉 is RAdd,4

Ē
× RCol

Ē
−generic over

M∗
Ē

.

Proof. Let D be a dense open subset of RAdd,4
Ē

× RCol
Ē

in M∗
Ē

. Let τ < l(Ē) and Dτ ∈ M∗
τ

be such that D = iτ,Ē(Dτ ). By elementarity Dτ is dense open in RAdd,4
τ ×RCol

τ . Let 〈p, q〉 ∈

(IAdd,4
τ × ICol

τ ) ∩Dτ . Then 〈iτ,Ē(p), iτ,Ē(q)〉 ∈ (IAdd,4
Ē

× ICol
Ē

) ∩D. �

Let IĒ = IAdd,1
Ē

× IAdd,2
Ē

× IAdd,3
Ē

× IAdd,4
Ē

× ICol
Ē

. It follows that IĒ is RĒ−generic over

M∗
Ē

.

To summarize, so far we have shown the following

• IU is RU−generic over N∗,

• Iτ is Rτ−generic over M∗
τ ,

• IĒ is RĒ−generic over M∗
Ē

.

Before continuing we recall Easton’s lemma.

Lemma 3.16. (Easton’s Lemma). Let λ be regular uncountable, and suppose that P satisfies

the λ− c.c. and Q is λ−closed. Then

(a) ‖−P×Q“λ is a regular uncountable cardinal”,

(b) ‖−Q“P satisfies the λ− c.c.”,

(c) ‖−P“Q is λ−distributive”.

Claim 3.17. IU is RU−generic over N∗[GU ].

Proof. First note that in N∗ the forcing notions RU and PU are iU (κ)+−c.c and iU (κ)+−closed

respectively. Now let A be a maximal antichain of RU in N∗[G]. By Easton’s Lemma



12 SY D. FRIEDMAN AND M. GOLSHANI

|A| ≤ iU (κ), hence again by Easton’s Lemma A ∈ N∗. It follows that IU ∩ A 6= ∅, as IU is

RU−generic over N∗. The result follows. �

By similar arguments

Claim 3.18. Iτ is Rτ−generic over M∗
τ [Gτ ].

Claim 3.19. IĒ is RĒ−generic over M∗
Ē

[GĒ ].

It remains to prove part (d) of lemma 3.7. Before going into details let’s recall a simple

observation.

Claim 3.20. (a) V N∗Ē

iĒ
U (κ)+3

= V N∗

iU (κ)+3,

(b) iĒU,τ �V N∗Ē

iĒ
U (κ)+3

= iU,τ �V N∗

iU (κ)+3,

(c) iĒτ ′,τ �V N∗Ē

iĒ
U (κ)+3

= iτ ′,τ �V N∗

iU (κ)+3.

Claim 3.21. i
′′

U,τ ′ (IU ) ⊆ Iτ ′ .

Proof. We have

(1) i
′′

U,τ ′ (IAdd,1
U ) ⊆ IAdd,1

τ ′ : This is because i
′′

U,τ ′ (IAdd,1
U ) = i

′′

U,τ ′ (〈i−1′′

U,Ē
(IAdd,1

Ē
)〉) ⊆

〈i−1′′

τ ′ ,Ē
(IAdd,1

Ē
)〉 = IAdd,1

τ ′ ,

(2) i
′′

U,τ ′ (IAdd,2
U ) ⊆ IAdd,2

τ ′ : It suffices to show that ∀α < κ+, iU,τ ′ (p〈α,Add,2〉) ∈ IAdd,2

τ ′ .

But we have p〈Add,2〉 ∈ IAdd,2
Ē

and ∀α < κ+, p〈Add,2〉 ≤ iU,Ē(p〈α,Add,2〉). It then

follows that ∀α < κ+, iU,τ ′ (p〈α,Add,2〉) = i−1
τ ′ ,Ē

(iU,Ē(p〈α,Add,2〉)) ≥ i−1
τ ′ ,Ē

(p〈Add,2〉).

But now note that by our definition i−1
τ ′ ,Ē

(p〈Add,2〉) ∈ IAdd,2

τ ′ . It then follows that

iU,τ ′ (p〈α,Add,2〉) ∈ IAdd,2

τ ′ ,

(3) i
′′

U,τ ′ (IAdd,3
U ) ⊆ IAdd,3

τ ′ : By the same argument as in (2) using the fact that p〈Add,3〉 ∈

IAdd,3
Ē

,

(4) i
′′

U,τ ′ (IAdd,4
U × ICol

U ) ⊆ IAdd,4

τ ′ × ICol
τ ′ : Trivial by the definition of IAdd,4

τ ′ × ICol
τ ′ and

the previous Claim.

The result follows. �

Claim 3.22. i
′′

τ ′ ,τ
(Iτ ′ ) ⊆ Iτ .

Proof. We have
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(1) i
′′

τ ′ ,τ
(IAdd,1

τ ′ ) ⊆ IAdd,1
τ : Because i

′′

τ ′ ,τ
(IAdd,1

τ ′ ) = i
′′

τ ′ ,τ
(〈i−1′′

τ ′ ,Ē
(IAdd,1

Ē
)〉) ⊆ 〈i−1′′

τ,Ē
(IAdd,1

Ē
)〉 =

IAdd,1
τ ,

(2) i
′′

τ ′ ,τ
(IAdd,2

τ ′ ) ⊆ IAdd,2
τ : By the same argument as in (1),

(3) i
′′

τ ′ ,τ
(IAdd,3

τ ′ ) ⊆ IAdd,3
τ : By the same argument as in (1),

(4) i
′′

τ ′ ,τ
(IAdd,4

τ ′ ×ICol
τ ′ ) ⊆ IAdd,4

τ ×ICol
τ : Because i

′′

τ ′ ,τ
(IAdd,4

τ ′ ×ICol
τ ′ ) = i

′′

τ ′ ,τ
(〈iĒ′′

U,τ ′ (IAdd,4
U ×

ICol
U )〉) ⊆ 〈iĒ′′

U,τ (IAdd,4
U × ICol

U )〉 = IAdd,4
τ × ICol

τ .

The result follows.

�

Claim 3.23. i
′′

τ,Ē
(Iτ ) ⊆ IĒ .

Proof. We have

(1) i
′′

τ,Ē
(IAdd,1

τ ) ⊆ IAdd,1
Ē

: Trivial as i
′′

τ,Ē
(IAdd,1

τ ) = i
′′

τ,Ē
(〈i−1′′

τ,Ē
(IAdd,1

τ )〉) ⊆ IAdd,1
Ē

,

(2) i
′′

τ,Ē
(IAdd,2

τ ) ⊆ IAdd,2
Ē

: As in (1),

(3) i
′′

τ,Ē
(IAdd,3

τ ) ⊆ IAdd,3
Ē

: As in (1),

(4) i
′′

τ,Ē
(IAdd,4

τ × ICol
τ ) ⊆ IAdd,4

Ē
× ICol

Ē
: Trivial by the definition of IAdd,4

Ē
× ICol

Ē
.

The result follows.

�

This completes the proof of lemma 3.7. �

We iterate jĒ and consider the following diagram

V MĒ M2
Ē M3

Ē

N Mτ1 N2 M2
τ2 N3 M3

τ3

-
jĒ=j0,1

Ē

@
@

@@R

jτ1

?

iU

-
j1,2
Ē

@
@

@@R

j2
τ2

?

i2U

-
j2,3
Ē

@
@

@@R

j3
τ3

?

i3U

p p p p p p p p p p-

-
iU,τ1

-
iU,Ē

�
�

���

iτ1,Ē

-
i2U,τ2

-
i2
U,Ē

�
�

���

i2
τ2,Ē

-
i3U,τ3

-
i3
U,Ē

�
�

���

i3
τ3,Ē

where

j0
Ē = id,

jn
Ē = j0,n

Ē
,

jm,n
Ē

= jn−1,n
Ē

◦ · · · ◦ jm+1,m+2
Ē

◦ jm,m+1
Ē

.

Let R(−,−) = RAdd(−,−)×RCol(−,−) be a function such that
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i2U (RAdd)(κ, iU (κ)) = RAdd
U ,

i2U (RCol)(κ, iU (κ)) = RCol
U ,

where i2U is the iterate of iU . Then we will have

i2U (R)(κ, iU (κ)) = RU .

The following is trivial.

Lemma 3.24. (a) j2
Ē

(RAdd)(κ, jĒ(κ)) = RAdd
Ē

,

(b) j2
Ē

(RCol)(κ, jĒ(κ)) = RCol
Ē

,

(c) j2
Ē

(R)(κ, jĒ(κ)) = RĒ .

Cardinal structure in N∗[IU ]. The following lemma gives us everything that we need

about the model N∗[IU ].

Lemma 3.25. (a) In N∗[IU ] there are no cardinals in [κ+7, iU (κ)] and all other N∗−cardinals

are preserved,

(b) The power function differs from the power function of N∗ at the following points:

2κ+
= κ+4, 2κ++

= κ+5, 2κ+3
= κ+6, 2κ+4

= iU (κ)+, 2κ+5
= iU (κ)++, 2κ+6

= iU (κ)+3.

Cardinal structure in M∗
τ [Iτ ] and M∗

Ē
[IĒ ]. The following lifting says everything which

we can possibly say.

M∗
Ē [IĒ ]

N∗[IU ] M∗
τ ′ [Iτ ′ ] M∗

τ [Iτ ]-
i∗
U,τ′

�
�

�
�3

i∗
τ′,Ē

-
i∗
τ′,τ

6
i∗
τ,Ē

The forcing notion PĒ ,due to Merimovich, which we define later, adds a club to κ. For each

ν1, ν2 successive points in the club the cardinal structure and power function in the range

[ν+
1 , ν+3

2 ] of the generic extension is the same as the cardinal structure and power function

in the range [κ+, jĒ(κ)+3] of M∗
Ē

[IĒ ].

Cardinal structure in N∗[ICol
U ]. The following lemma gives us anything that we need

about the model N∗[ICol
U ].

Lemma 3.26. (a) In N∗[ICol
U ] there are no cardinals in [κ+7, iU (κ)] and all other N∗−cardinals

are preserved,
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(b) GCH holds in N∗[ICol
U ].

Cardinal structure in M∗
τ [ICol

τ ] and M∗
Ē

[ICol
Ē

]. The following lifting says everything

which we can possibly say.

M∗
Ē [ICol

Ē ]

N∗[ICol
U ] M∗

τ ′ [ICol
τ ′ ] M∗

τ [ICol
τ ]-

i∗
U,τ′

�
�

�
��3

i∗
τ′,Ē

-
i∗
τ′,τ

6
i∗
τ,Ē

The forcing notion RĒκ
which we define later, adds a club to κ. For each ν1, ν2 successive

points in the club the cardinal structure and power function in the range [ν+
1 , ν+3

2 ] of the

generic extension is the same as the cardinal structure and power function in the range

[κ+, jĒ(κ)+3] of M∗
Ē

[ICol
Ē

].

4. Redefining extender Sequences

We define a new extender sequence system F̄ = 〈F̄α : α ∈ dom(F̄ )〉 by:

• dom(F̄ ) = dom(Ē),

• l(F̄ ) = l(Ē)

• ≤F̄ =≤Ē ,

• F (0) = E(0),

• I(τ) = Iτ ,

• ∀0 < τ < l(F̄ ), F (τ) = 〈〈Fα(τ) : α ∈ dom(F̄ )〉, 〈πβ,α : β, α ∈ dom(F̄ ), β ≥F̄ α〉〉 is

such that

X ∈ Fα(τ) ⇔ 〈α, F (0), I(0), ..., F (τ
′
), I(τ

′
), ... : τ

′
< τ〉 ∈ jĒ(X),

and

πβ,α(〈ξ, d〉) = 〈πβ,α(ξ), d〉,

• ∀α ∈ dom(F̄ ), F̄α = 〈α, F (τ), I(τ) : τ < l(F̄ )〉.

Also let I(F̄ ) be the filter generated by
⋃

τ<l(F̄ ) i
′′

τ,Ē
I(τ). Then I(F̄ ) is RĒ−generic over

MĒ . Let us write I(F̄ ) = IAdd(F̄ )× ICol(F̄ ) corresponding to RĒ = RAdd
Ē

× RCol
Ē

.

From now on we work with this new definition of extender sequence system and use Ē to

denote it.
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Definition 4.1. (1) T ∈ Ēα ⇔ ∀ξ < l(Ēα), T ∈ Eα(ξ),

(2) T\ν̄ = T\V ∗
κ0(ν̄),

(3) T � ν̄ = T ∩ V ∗
κ0(ν̄).

We now define two forcing notions PĒ and RĒκ
.

5. Definition of the forcing notion PĒ

This forcing notion is essentially the forcing notion of [4]. We give it in detail for com-

pleteness and later use. First we define a forcing notion P∗
Ē

.

Definition 5.1. A condition p in P∗
Ē

is of the form

p = {〈γ̄, pγ̄〉 : γ̄ ∈ s} ∪ {〈Ēα, T, f, F 〉}

where

(1) s ∈ [Ē]≤κ,min Ē = Ēκ ∈ s,

(2) pĒκ ∈ V ∗
κ0(Ē)

is an extender sequence such that κ(pĒκ) is inaccessible ( we allow

pĒκ = ∅). Write p0 for pĒκ .

(3) ∀γ̄ ∈ s\{min(s)}, pγ̄ ∈ [V ∗
κ0(Ē)

]<ω is a 0-increasing sequence of extender sequences

and max κ(pγ̄) is inaccessible,

(4) ∀γ̄ ∈ s, κ(p0) ≤ max κ(pγ̄),

(5) ∀γ̄ ∈ s, Ēα ≥ γ̄,

(6) T ∈ Ēα,

(7) ∀ν̄ ∈ T, | {γ̄ ∈ s : ν̄ is permitted to pγ̄} |≤ κ0(ν̄),

(8) ∀β̄, γ̄ ∈ s,∀ν̄ ∈ T, if β̄ 6= γ̄ and ν̄ is permitted to pβ̄ , pγ̄ , then πĒα,β̄(ν̄) 6= πĒα,γ̄(ν̄),

(9) f is a function such that

(9.1) dom(f) = {ν̄ ∈ T : l(ν̄) = 0},

(9.2) f(ν1) ∈ R(κ(p0), ν0
1). If p0 = ∅, then f(ν1) = ∅,

(10) F is a function such that

(10.1) dom(F ) = {〈ν̄1, ν̄2〉 ∈ T 2 : l(ν̄1) = l(ν̄2) = ∅},

(10.2) F (ν1, ν2) ∈ R(ν0
1 , ν0

2),

(10.3) j2
Ē

(α, jĒ(α)) ∈ I(Ē).

We write mc(p), supp(p), T p, fp and F p for Ēα, s, T, f and F respectively.
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Definition 5.2. For p, q ∈ P∗
Ē

, we say p is a Prikry extension of q (p ≤∗ q or p ≤0 q) iff

(1) supp(p) ⊇ supp(q),

(2) ∀γ̄ ∈ supp(q), pγ̄ = qγ̄ ,

(3) mc(p) ≥Ē mc(q),

(4) mc(p) >Ē mc(q) ⇒ mc(q) ∈ supp(p),

(5) ∀γ̄ ∈ supp(p)\ supp(q),max κ0(pγ̄) >
⋃ ⋃

jĒ(fq)(κ(mc(q))),

(6) T p ≤ π−1′′

mc(p),mc(q)T
q,

(7) ∀γ̄ ∈ supp(q),∀ν̄ ∈ T p, if ν̄ is permitted to pγ̄ , then

πmc(p),γ̄(ν̄) = πmc(q),γ̄(πmc(p),mc(q)(ν̄)),

(8) ∀ν1 ∈ dom(fp), fp(ν1) ≤ fqoπmc(p),mc(q)(ν1),

(9) ∀〈ν1, ν2〉 ∈ dom(F p), F p(ν1, ν2) ≤ F qoπmc(p),mc(q)(ν1, ν2).

We are now ready to define the forcing notion PĒ .

Definition 5.3. A condition p in PĒ is of the form

p = p_
n ..._p0

where

• p0 ∈ P∗
Ē

, κ0(p0
0) ≥ κ0(µ̄1),

• p1 ∈ P∗µ̄1
, κ0(p0

1) ≥ κ0(µ̄2),
...

• pn ∈ P∗µ̄n
.

and 〈µ̄n, ..., µ̄1, Ē〉 is a 0−inceasing sequence of extender sequence systems, that is κ0(µ̄n) <

... < κ0(µ̄1) < κ0(Ē).

Definition 5.4. For p, q ∈ PĒ , we say p is a Prikry extension of q (p ≤∗ q or p ≤0 q) iff

p = p_
n ..._p0

q = q_
n ..._q0

where

• p0, q0 ∈ P∗
Ē

, p0 ≤∗ q0,

• p1, q1 ∈ P∗µ̄1
, p1 ≤∗ q1,

...
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• pn, qn ∈ P∗µ̄n
, pn ≤∗ qn.

Now let p ∈ PĒ and ν̄ ∈ T p. We define p〈ν̄〉 a one element extension of p by ν̄.

Definition 5.5. Let p ∈ PĒ , ν̄ ∈ T p and κ0(ν̄) >
⋃ ⋃

jĒ(fp,Col)(κ(mc(p))), where fp,Col is

the collapsing part of fp. Then p〈ν̄〉 = p_
1 p0 where

(1) supp(p0) = supp(p),

(2) ∀γ̄ ∈ supp(p0), pγ̄
0 =



πmc(p),γ̄(ν̄) if ν̄ is permitted to pγ̄ and l(ν̄) > 0,

πmc(p),γ̄(ν̄) if ν̄ is permitted to pγ̄ , l(ν̄) = 0 and γ̄ = Ēκ,

pγ̄_〈πmc(p),γ̄(ν̄)〉 if ν̄ is permitted to pγ̄ , l(ν̄) = 0 and γ̄ 6= Ēκ,

pγ̄ otherwise .

(3) mc(p0) = mc(p),

(4) T p0 = T p\ν̄,

(5) ∀ν1 ∈ T p0 , fp0(ν1) = F p(κ(ν̄), ν1),

(6) F p0 = F p,

(7) if l(ν̄) > 0 then

(7.1) supp(p1) = {πmc(p),γ̄(ν̄) : γ̄ ∈ supp(p) and ν̄ is permitted to pγ̄},

(7.2) p
πmc(p),γ̄(ν̄)
1 = pγ̄ ,

(7.3) mc(p1) = ν̄,

(7.4) T p1 = T p � ν̄,

(7.5) fp1 = fp � ν̄,

(7.6) F p1 = F p � ν̄,

(8) if l(ν̄) = 0 then

(8.1) supp p1 = {πmc(p),0(ν̄)},

(8.2) p
πmc(p),0(ν̄)
1 = pĒκ ,

(8.3) mc(p1) = ν̄0,

(8.4) T p1 = ∅,

(8.5) fp1 = fp(κ(ν̄)),

(8.6) F p1 = ∅.

We use (p〈ν̄〉)0 and (p〈ν̄〉)1 for p0 and p1 respectively. We also let p〈ν̄1,ν̄2〉 = (p〈ν̄1〉)
_
1 (p〈ν̄1〉)0〈ν̄2〉

and so on.
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The above definition is the key step in the definition of the forcing relation ≤ .

Definition 5.6. For p, q ∈ PĒ , we say p is a 1−point extension of q (p ≤1 q) iff

p = p_
n+1...

_p0

q = q_
n ..._q0

and there is 0 ≤ k ≤ n such that

• ∀i < k, pi, qi ∈ P∗µ̄i
, pi ≤∗ qi,

• ∃ν̄ ∈ T qk , (pk+1)_pk ≤∗ (qk)〈ν̄〉

• ∀i > k, pi+1, qi ∈ P∗µ̄i
, pi+1 ≤∗ qi,

where µ̄0 = Ē.

Definition 5.7. For p, q ∈ PĒ , we say p is an n−point extension of q (p ≤n q) iff there are

pn, ..., p0 such that

p = pn ≤1 ... ≤1 p0 = q.

Definition 5.8. For p, q ∈ PĒ , we say p is an extension of q (p ≤ q) iff there is some n

such that p ≤n q.

Suppose that H is PĒ−generic over V. For α ∈ dom(Ē) set

Cα
H = {max κ(pĒα

0 ) : p ∈ H}.

Theorem 5.9. (a) V [H] and V have the same cardinals ≥ κ,

(b) κ remains strongly inaccessible in V [H]

(c) Cα
H is unbounded in κ,

(d) Cκ
H is a club in κ,

(e) α 6= β ⇒ Cα
H 6= Cβ

H ,

(f) Let λ = min(Cκ
H), and let K be Col(ω, λ+)V [H]−generic over V [H]. Then

CARDV [H][K] ∩ κ = (lim(Cκ
H) ∪ {µ+, ..., µ+6 : µ ∈ Cκ

H}\λ++) ∪ {ω},

(g) V [H][K] |= “∀λ ≤ κ, 2λ = λ+3”.

Proof. Essentially the same as in [4]. �
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6. Definition of the forcing notion RĒκ

We now define another forcing notion RĒκ
. It is essentially the Radin forcing correspond-

ing to Ēκ with interleaving collapses (see also [3]).

Definition 6.1. A condition in RĒκ
is of the form

p = 〈〈µ̄n, sn, Sn, fn, Fn〉, ..., 〈µ̄0, s
0, S0, f0, F 0〉〉

where

(1) µ̄n, ..., µ̄0 are minimal extender sequences,

(2) µ̄0 = Ēκ,

(3) ∀i ≤ n− 1, κ(µ̄i+1) < κ0(µ̄i),

(4) ∀i ≤ n, Si ∈ µ̄i,

(5) ∀i ≤ n, si ∈ Vκ0(µ̄i) is an extender sequence such that κ(si) is inaccessible,

(6) ∀i ≤ n, f i is a function such that

(6.1) dom(f i) = {ν̄ ∈ Si : l(ν̄) = 0},

(6.2) f i(ν1) ∈ RCol(κ(si), ν0
1),

(7) ∀i ≤ n, F i is a function such that

(7.1) dom(F i) = {〈ν̄1, ν̄2〉 ∈ (Si)2 : l(ν̄1) = l(ν̄2) = 0},

(7.2) F i(〈ν1, ν2〉) ∈ RCol(ν0
1 , ν0

2),

(7.3) j2
Ē

(F i)(κ(µ̄i), jĒ(κ(µ̄i)) ∈ ICol(Ē).

Definition 6.2. For p, q ∈ RĒκ
we say p is a Prikry extension of q (p ≤∗ q or p ≤1 q) iff p

and q are of the form

p = 〈〈µ̄n, sn, Sn, fn, Fn〉, ..., 〈µ̄0, s
0, S0, f0, F 0〉〉

q = 〈〈µ̄n, tn, Tn, gn, Gn〉, ..., 〈µ̄0, t
0, T 0, g0, G0〉〉

where ∀i ≤ n

(1) si = ti,

(2) Si ⊆ T i,

(3) f i ≤ gi,

(4) F i ≤ Gi.
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Definition 6.3. Let p = 〈〈µ̄n, sn, Sn, fn, Fn〉, ..., 〈µ̄0, s
0, S0, f0, F 0〉〉 ∈ RĒκ

, and let 〈ν̄〉 ∈

Si, κ0(ν̄) >
⋃ ⋃

jĒ(f i)(κ(µ̄i)). We define p〈ν̄〉 as follows

• if l(ν̄) > 0, then

p〈ν̄〉 = 〈〈µ̄n, sn, Sn, fn, Fn〉, ...,

〈µ̄i+1, s
i+1, Si+1, f i+1, F i+1〉,

〈ν̄, si, Si � ν̄, f i � ν̄, F i � ν̄〉,

〈µ̄i, ν̄, Si\ν̄, F i(κ(ν̄,−)), F i〉,

〈µ̄i−1, s
i−1, Si−1, f i−1, F i−1〉, ...,

〈µ̄0, s
0, S0, f0, F 0〉〉

• if l(ν̄) = 0, then

p〈ν̄〉 = 〈〈µ̄n, sn, Sn, fn, Fn〉, ...,

〈µ̄i+1, s
i+1, Si+1, f i+1, F i+1〉,

〈ν̄0, si, ∅, f i(κ(ν̄)), ∅〉,

〈µ̄i, ν̄, Si\ν̄, F i(κ(ν̄,−)), F i〉,

〈µ̄i−1, s
i−1, Si−1, f i−1, F i−1〉, ...,

〈µ̄0, s
0, S0, f0, F 0〉〉

Definition 6.4. Let p, q ∈ RĒκ
, where q = 〈〈µ̄n, sn, Sn, fn, Fn〉, ..., 〈µ̄0, s

0, S0, f0, F 0〉〉. We

say p is a 1−point extension of q (p ≤1 q) iff there are i and 〈ν̄〉 ∈ Si such that p ≤∗ q〈ν̄〉.

Definition 6.5. Let p, q ∈ RĒκ
. We say p is an n−point extension of q (p ≤n q) iff there

are pn, ..., p0 such that

p = pn ≤1 ... ≤1 p0 = q.

Definition 6.6. Let p, q ∈ RĒκ
. We say p is an extension of q (p ≤ q) iff there is n such

that p ≤n q.

Suppose G is RĒκ
−generic over V . Set

C = {κ(s0) : s0 appears in in some p ∈ G}.

Theorem 6.7. (a) V [G] and V have the same cardinals ≥ κ,

(b) κ remains strongly inaccessible in V [G],
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(c) C is a club in κ,

(d) Let λ = min(C) and let K be Col(ω, λ+)V [G]−generic over V [G]. Then

CARDV [G][K] ∩ κ = (lim(C) ∪ {µ+, ..., µ+6 : µ ∈ C}\λ++) ∪ {ω},

(e) V [G][K] |= “GCH”.

Proof. Essentially the same as in [3] and [4]. �

7. Projection of PĒ into RĒκ

We now define a projection

π : PĒ → RĒκ

as follows

Suppose p = p_
n ..._p0 where

• p0 ∈ P∗
Ē

, κ0(p0
0) ≥ κ0(µ̄1),

• p1 ∈ P∗µ̄1
, κ0(p0

1) ≥ κ0(µ̄2),
...

• pn ∈ P∗µ̄n
.

and 〈µ̄n, ..., µ̄1, Ē〉 is a 0−inceasing sequence of extender sequence systems. For each i ≤ n

set fpi = fpi,Add×fpi,Col and F pi = F pi,Add×F pi,Col which correspond to R = RAdd×RCol.

Let

π(p) = 〈〈min µ̄n, p0
n, πmc(pn),0T

pn , fpn,Col ◦ π−1
mc(pn),0, F

pn,Col ◦ π−1
mc(pn),0〉, ...,

〈Ēκ, p0
0, πmc(p0),0T

p0 , fp0,Col◦π−1
mc(p0),0

, F p0,Col◦π−1
mc(p0),0

〉〉.

Let us note that π(p) ∈ RĒκ
and π is well-defined.

Lemma 7.1. π is a projection, i.e

(a) π(1PĒ
) = 1RĒκ

,

(b) π is order preserving,

(c) if p ∈ PĒ , q ∈ RĒκ
and q ≤ π(p) then there is r ≤ p in PĒ such that π(r) ≤ q.

8. Completing the proof

Finally in this section we complete the proof of Theorem 1.1. Let H be PĒ−generic

over V and let G = 〈π′′
H〉, the filter generated by π

′′
H. Then G is RĒκ

−generic over V.
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Consider the clubs C = {κ(s0) : s0 appears in in some p ∈ G} and Cκ
H = {κ(p0

0) : p ∈ H}.

It is easily seen that C = Cκ
H . Let λ = min(C). Note that the forcing notions PĒ and RĒκ

add no new bounded subsets to λ+, hence Col(ω, λ+)V [G] = Col(ω, λ+)V [H], and hence if K

is Col(ω, λ+)V [H]−generic over V [H] then K is Col(ω, λ+)V [G]−generic over V [G]. Let

V1 = V
V [G][K]
κ

V2 = V
V [H][K]
κ

It follows that V1 and V2 are models of ZFC. We show that the pair (V1, V2) satisfies the

requirements of the theorem.

(a) V1 and V2 have the same cardinals: This is trivial, since

CARDV1 = (lim(C) ∪ {µ+, ..., µ+6 : µ ∈ C}\λ++) ∪ {ω}

= (lim(Cκ
H) ∪ {µ+, ..., µ+6 : µ ∈ Cκ

H}\λ++) ∪ {ω}.

= CARDV2 .

(b) V1 and V2 have the same cofinalities: This is again trivial, since changing the cofinal-

ities depends on the length of the extender sequence system used and not on its size.

(c) V1 |= “GCH”: by Theorem 6.7(e).

(d) V2 |= “∀λ, 2λ = λ+3’: by Theorem 5.9(g).

Theorem 1.1 follows.

Open question. Is it possible to kill GCH everywhere, preserving cofinalities, adding just

a single real? (Allowing cofinalities to change, this was accomplished in [1].)
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