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Abstract

For sentences φ of Lω1,ω, we investigate the question of absoluteness of φ having models in

uncountable cardinalities. We first observe that having a model in ℵ1 is an absolute property,

but having a model in ℵ2 is not as it may depend on the validity of the Continuum Hypothesis.

We then consider the GCH context and provide sentences for any α ∈ ω1 \ {0, 1, ω} for which

the existence of a model in ℵα is non-absolute (relative to large cardinal hypotheses). Finally,

we present a complete sentence for which model existence in ℵ3 is non-absolute.
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Throughout, we assume φ is an Lω1,ω sentence which has infinite models. By the down-
ward Löwenheim-Skolem-Theorem, φ must have a countable model, so the property
“having a countable model” is an absolute property of such sentences in the sense that
its validity does not depend on the properties of the set-theoretic universe we work in.
More precisely, if V ⊆ W are transitive models of ZFC with the same ordinals and
φ ∈ V , V |=“φ is an Lω1,ω-sentence” (with a natural set-theoretic coding of such sen-
tences), then V |=“φ has a countable model” if and only if W |=“φ has a countable
model”. The purpose of this paper is to investigate the question of how far we can
replace “countable” by higher cardinalities.
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A main tool for absoluteness considerations is Shoenfields absoluteness Theorem (Theo-
rem 25.20 in [8]). It states that any property expressed by either a Σ1

2 or a Π1
2 formula

is absolute between transitive models of ZFC with the same ordinals. As John Baldwin
observed in [2], it follows from results of [7] that the property of φ having arbitrarily
large models is absolute (it can be expressed in form of the existence of an infinite in-
discernible sequence, which by Shoenfield is absolute). Since the Hanf number of the
logic Lω1,ω equals iω1 , is follows that the existence of models in cardinalities above that
number is absolute. Therefore the context we are interested in is where φ (absolutely)
does not have a model of size iω1 .

1 The case ℵ1

For complete sentences φ (meaning that any model of φ satisfies the same Lω1,ω sen-
tences), having a model in ℵ1 is an absolute notion. We have the following characteriza-
tion (see also [2]) of φ having a model of size ℵ1 (which is a Σ1

1 property and therefore
absolute by Shoenfield’s absoluteness Theorem):

(∗) There exist two countable models M,N of φ such that M is a proper
elementary (in the fragment of φ) substructure of N .

To see that this is a characterization, note first that if φ has an uncountable model,
(∗) holds by Löwenheim-Skolem. For the converse, we use the completeness of φ which
implies that any two countable models of φ are isomorphic (by Scott’s isomorphism
Theorem, since φ must imply Scott sentences of countable models). Then, as N ∼= M ,
we can find a proper countable Lω1,ω-elementary extension of N as well and continue this
procedure ω1 many times (taking unions at limit stages). The union of this elementary
chain will then be a model of φ of size ℵ1.

If the sentence is not complete, there might be examples of φ having an uncountable
model, where (∗) fails (Gregory claimed the existence of such an example in [6]). However
having a model of size ℵ1 turns out to be absolute in general1. We have to provide a
slightly more subtle criterion to deal with possibly incomplete φ. To state it, we have
to regard the sentence φ as a set-theoretic object using standard coding of formulas of
Lω1,ω. φ can thus be regarded as a hereditarily countable set.

The following property which (again by Shoenfield) is absolute, characterizes φ having
a model of size ℵ1:

(∗∗) There is a countable transitive model U of ZFC− (ZFC without the power
set axiom) containing φ with U |= “ω1 exists, φ is hereditarily countable, and there

1This has also been observed recently by Paul Larson. His argument uses iterated generic ultrapowers.
Rami Grossberg points out, he knew of this fact already in the 1980’s but did not publish it, and that
others like Shelah, Barwise and Keisler most likely knew of it even earlier.
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is a model of φ with universe ω1”.

First, suppose φ has a model M of size ℵ1, say one with universe ω1. As both φ and
M are elements of Hω2 (the collection of sets hereditarily of size at most ℵ1), we have
Hω2 |= ZFC− + “there is a model of φ with universe ω1”. Now it suffices to take a
countable (first order) elementary substructure U ≺ Hω2 containing φ, and U will have
the properties of (∗∗).

Conversely, assuming (∗∗) holds for some countable U , we can take an elementary ex-
tension U ′ of U where all (in the sense of U) hereditarily countable sets are unchanged
and all (in U) uncountable ones become sets of size ℵ1 (using Corollary A of Theorem
36 in [10]). In particular this is true for the ω1 of U ′ on which we know a model M of
φ lives (note that U ′ |= (M |= φ) implies that M |= φ in the real universe; to see this,
use that M contains the fragment of φ and satisfaction for formulas in this fragment is
absolute between M and the real universe”). So we get a model of φ of size ℵ1.

There is another absolute criteria characterizing φ having an uncountable model, but it
requires going beyond the logic Lω1,ω. Let us consider the extension Lω1,ω(Q) of Lω1,ω

obtained by adding an extra quantifier Q with the semantics “there exist uncountably
many”. As is shown in [3], Lω1,ω(Q) admits a completeness theorem which actually has
a very natural (absolute) deduction calculus. Now the statement

(∗ ∗ ∗) There is a proof of ¬Qx(x = x) starting from φ

characterizes φ having only countable models. Thus the negation of (∗∗∗) is an (absolute)
property characterizing φ having an uncountable model. Note that this argument shows
that model existence in ℵ1 is absolute even for Lω1,ω(Q) sentences.

2 Going beyond ℵ1

It is not generally true that the existence of a model of size ℵ2 is an absolute property.

A very simple way to see this is to take any sentence φ that has models exactly up to
size continuum. We easily find even complete sentences with this property. Then clearly,
φ has a model of size ℵ2 if and only if the continuum hypothesis fails.

More generally, such a sentence has a model of size ℵα if and only if 2ℵ0 ≥ ℵα. So for
any α > 1, the existence of a model of size ℵα is non-absolute.

There are many examples of complete Lω1,ω-sentences in the literature having models
exactly up to size continuum, but they are mostly more complicated than necessary
for our purposes, because their authors have been interested in additional properties.
Therefore we provide here a very simple such example:
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Let the language L consist of countably many binary relation symbols En (n < ω), and
let σ ∈ Lω1,ω be the conjunction of

• All En are equivalence relations such that E0 has two classes and each En-class is
the union of exactly two En+1-classes.

• ∀x, y((
∧
n<ω

En(x, y))→ x = y)

It is an easy back-and-forth argument to show that any two countable models of σ are
isomorphic, so σ is complete. Every model represents a set of branches through a full
binary tree, so there cannot be models greater than the continuum. On the other hand,
the Cantor space 2ω together with the relations “En(x, y) if and only if x and y coincide
on the n+ 1 first components” is a model of σ of size continuum.

3 Going beyond ℵ1 under the assumption of GCH

As we have seen, playing with the cardinal exponential function provides trivial exam-
ples for the non-absoluteness of the existence of models of cardinality greater than ℵ1. A
next natural question is if this is the only non-absoluteness phenomenon there is. That
is, under the additional assumption of GCH, does the existence of models in cardinal-
ities greater than ℵ1 become an absolute notion? We will provide different incomplete
sentences and later on even a complete one that show the answer is negative.

3.1 A reminder about two-cardinal properties

As we will see later, there is an interesting connection between classical first-order two-
cardinal properties and model existence for Lω1,ω-sentences. We recall the following
definition:

Definition 1. Let T be a first-order theory in a signature containing a unary predicate
P . Given two infinite cardinals κ, λ, we say that T admits (κ, λ) if there is a model of
T of size κ such that PM = {a ∈M |M |= P (a)} has cardinality λ.

As is already exposed in Chang-Keisler’s classical textbook [4] in chapter 7.2, admitting
certain pairs (κ, λ) is a non-absolute property for certain theories. There, examples are
given where admitting (κ+, κ) is equivalent to the existence of a special κ+-Aronszajn
tree or where admitting (κ++, κ) is equivalent to the existence of a κ+ Kurepa tree (or
equivalently a κ+ Kurepa family).
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3.2 Some set theory

We now recall the two classical concepts of Kurepa families and special Aronszajn trees.
The first-order examples in [4] showing non-absoluteness of the existence of certain
two-cardinal models and our later exposed examples of Lω1,ω-sentences showing non-
absoluteness of model existence in certain cardinalities code those objects in their mod-
els. The coding is such that the existence of a certain two-cardinal model or the existence
of a model in a certain cardinality is equivalent to the existence of such an object (which
is independent from ZFC+GCH as we will see in the following).

Definition 2. Let κ be any infinite cardinal. A κ+ Kurepa family is a family F of
subsets of some set A with |A| = κ+, such that |F| > κ+ and for any subset B ⊂ A with
|B| = κ, |{X ∩B|X ∈ F}| ≤ κ.

Let KHκ+ be the statement that there exists a κ+ Kurepa family.

It is folklore that the existence of Kurepa families in different ℵα (α < ω1) is independent
from one another. We will now describe the formal arguments for the cases we need
(essentially the same arguments would work more generally for “switching on and off”
independently the existence of Kurepa families in different ℵα). In the constructible
universe, KHκ+ is true for all cardinals κ (this follows from the fact that ♦+ holds at
successor cardinals in L, see [9]). On the other hand we have:

Theorem 3. The consistency of “ZFC+there are uncountably many inaccessible cardi-
nals” implies the consistency of “ZFC+GCH+∀α < ω1¬KHℵα+1”

Proof. This is a slight generalisation of Silver’s argument that if κ is inaccessible then af-
ter forcing with Coll(ω1, < κ), the forcing to convert κ into ℵ2 with countable conditions,
KHℵ1 fails (see [8]).

Assume GCH, let κ0 be ℵ1 and define (κβ)0<β<ω1 inductively: set κβ+1 the least inac-
cessible cardinal greater than κβ and for β < ω1 a limit ordinal set κβ = sup{κγ |γ < β}.
Let P be the fully supported product of the forcings Coll(κβ, < κβ+1) for β < ω1. Then
in the extension, κβ equals ℵβ+1. We claim that KHκβ fails for each β < ω1.

Indeed, the forcing P can be factored as P (< β) × P (≥ β) where P (< β) refers only
to the collapses Coll(κγ , < κγ+1) for γ < β and P (≥ β) refers only to the the collapses
Coll(κγ , < κγ+1) for γ ≥ β. Similarly, V [G] factors as V [G(< β)][G(≥ β)]. In the model
V [G(< β)], κβ+1 is still inaccessible, so we can apply Silver’s argument to conclude that
KHκβ fails in V [G(< β)][G(≥ β)] = V [G], using the closure of the forcing P (≥ β) under
sequences of length less than κβ.

Definition 4. A tree is a partially ordered set (T,<) such that for any element t ∈ T ,
the set {x|x < t} is well ordered by <. The rank rk(t) of t is the order type of {x|x < t}.
For any ordinal α, let Tα = {t ∈ T |rk(t) = α}.
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For any cardinal κ, a κ+-tree is a tree T such that Tκ+ = ∅ and for all α < κ+,
0 < |Tα| < κ+. T is normal, if

• |T0| = 1

• every element has at least two immediate successors

• for any t ∈ T and α with rk(t) < α < κ+, there is some t′ > t with rk(t′) = α.

A normal κ+-tree T is a special κ+-Aronszajn tree, if there is some set A of size κ and
a function f : T → A such that for all t, t′ ∈ T , t < t′ implies f(t) 6= f(t′).

It is a consequence of GCH that special κ-Aronszajn trees exist for all successor cardinals
κ that are not successors of singular cardinals. Moreover, in the constructible universe,
special Aronszajn trees exist even in successors of limit cardinals (this is a consequence
of �κ, see [9]).

On the other hand, the consistency of “ZFC+∃κ(κ supercompact)” implies the consis-
tency of “ZFC+GCH+there are no special ℵα-Aronszajn trees for all countable limit
successors α”:

We start with a model of GCH with a supercompact cardinal κ and force with Coll(ω1, <
κ). As is argued in [5], this forcing preserves a stationary reflection property sufficient
to ensure that Weak Square fails at ℵλ for λ a limit ordinal of countable cofinality. By
a result of Jensen in [9], Weak Square at a cardinal κ is equivalent to the existence of a
special Aronszajn tree on κ+.

3.3 Connecting first-order two-cardinal properties with Lω1,ω-model ex-
istence

We will describe how a first-order theory T can be turned into an Lω1,ω-sentence σ in
such a way that T admitting certain (κ, λ) is equivalent to the existence of a model of σ
of size κ.

We start with an ad-hoc definition of an Lω1,ω-sentence σα0 characterizing ℵα (for α <
ω1), which means that it (absolutely) has a model of size ℵα, but no bigger model.

Let Lα0 = {Qβ, an, <, F}β≤α; n<ω, where the Qβ are unary predicates, the an are constant
symbols, < is a binary and F a ternary relation symbol.

Let σα0 ∈ (Lα0 )ω1,ω be the conjunction of the following sentences:

• The universe is the union of all Qβ

• Q0 = {an|n < ω} where all an designate distinct elements.

• For any β < α, Qβ+1 is disjoint from any Qγ for all γ ≤ β.
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• For any limit ordinal β ≤ α, Qβ =
⋃
γ<β

Qγ

• < linearly orders Qβ+1 for every β < α and x < y implies that for some β < α,
both x and y belong to Qβ+1.

• F (a, b, c) implies that for some β < α, a ∈ Qβ+1, b < a and c ∈ Qβ.

• For every β < α and every a ∈ Qβ+1, F (a, ·, ·) defines a total injective function
from {x|x < a} into Qβ.

Note that for β a limit ordinal or zero, Qβ is not ordered by < and if α = 0, both < and
F are empty relations.

Clearly, if M |= σα0 , then in M the ordering of Qβ+1 must be |Qβ|-like (i.e. any proper
initial segment has cardinality at most |Qβ|). This implies that |Qβ+1| is at most |Qβ|+
and since Q0 is countable by definition, we see inductively that the cardinality of each
Qβ is bounded by ℵβ (and there exist models with |Qβ| = ℵβ for all β ≤ α).

Now suppose we have a first-order theory T in a language containing a unary predicate
P . For β < α < ω1, we define the Lω1,ω-sentence σα,βT as the conjunction of

• T
• σα0
• P = Qβ

Proposition 5. Let β < ω1 and 0 < n < ω. T admits (ℵβ+n,ℵβ) if and only if σβ+n,β
T

has a model of cardinality ℵβ+n.

Proof. If M |= σβ+n,β
T has cardinality ℵβ+n, we must have |Qβ| = ℵβ in that model (here

we use that n is finite!). Now the reduct of M to the language of T is a model of size
ℵβ+n where P has size ℵβ.

Conversely, given a model of T of size ℵβ+n where P has size ℵβ, it is easy to expand

this model to be a model of σβ+n,β
T .

Note that this Proposition becomes false if n is allowed to be infinite.

3.4 Examples of incomplete sentences: successor cardinals

We quote Chang-Keisler’s results 7.2.11 and 7.2.13 from [4] (adapting the notation
slightly):

• There is a sentence φ1 in a finite language L such that for all infinite cardinals λ,
φ1 admits (λ+, λ) if and only if there exists a special λ+-Aronszajn tree.
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• There is a sentence φ2 in a suitable language such that for all infinite cardinals λ,
φ2 admits (λ++, λ) if and only if a λ+ Kurepa family exists.

From the preceding section we get thus infinitary sentences σα+1,α
φ1

and σα+2,α
φ2

such that

• σα+1,α
φ1

has a model of cardinality ℵα+1 if and only if a special ℵα+1-Aronszajn tree
exists.

• σα+2,α
φ2

has a model of cardinality ℵα+2 if and only if a ℵα+1 Kurepa family exists.

Now recalling the set-theoretic facts from section 3.2, we get the following results:

Theorem 6. Let α < ω1. Assuming the existence of uncountably many inaccessible car-
dinals, model-existence in ℵα+2 is a non-absolute notion modulo ZGC+GCH for Lω1,ω-
sentences.

Theorem 7. Let α < ω1 be the successor of a limit ordinal. Assuming the existence
of a supercompact cardinal, model-existence in ℵα+1 is a non-absolute notion modulo
ZGC+GCH for Lω1,ω-sentences.

At this point, we have covered all cases of successor cardinals ℵα for 1 < α < ℵω1 .

3.5 Examples of incomplete sentences: limit cardinals

We would also like to find examples of (incomplete) sentences where model existence
in ℵα is non-absolute modulo ZFC+GCH for countable limit ordinals α. With a slight
variation of our examples involving special Aronszajn trees, we can deal with limits that
are greater than ω.

Since the construction is rather straightforward, we will only give an informal description
of it.

The sentence φ2 used to prove Theorem 7 which is given explicitly in [4] involves essen-
tially a binary relation T coding a tree and a unary predicate U and has the property
that whenever M |= φ2 and |M | = |UM |+, then T has a subtree which is a special
|M |-Aronszajn-tree.

Now, fixing some α < ω1 greater than ω, we start with the sentence σα0 (see section 3.3)
and for all β < α, we add the theory φ2 relativised to

⋃
γ≤β+1

Qγ (i.e. the set
⋃

γ≤β+1

Qγ

with the induced structure in the language of φ2 is a model of φ2) with Qβ taking
the role of U . I.e. we are coding special Aronszajn trees at every level Qβ+1 where
|Qβ+1| = |Qβ|+.

The result is a sentence σα1 for which (assuming consistency of supercompact cardinals)
the existence of a model of size ℵα is non-absolute modulo ZFC+GCH. The reason is
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that if no special ℵω+1-Aronszajn tree exists, the maximum cardinality of a model of σα1
is ℵω since whenever for some γ < α, |Qγ+1| = |Qγ |+ = ℵω+1, a special ℵω+1-Aronszajn
tree will be coded in the model.

4 A complete sentence

Both the first-order examples from [4] and our Lω1,ω-examples from the preceding section
are highly incomplete (i.e. many first-order or Lω1,ω-statements are undecided) and it
seems a very non-trivial task to turn them into complete theories while conserving the
properties that matter to us.

We will now introduce a method of completing incomplete Lω1,ω-sentences that has the
benefits of providing fairly explicit axiomatizations as well as some means of constructing
models of the resulting complete sentence with certain properties. This method will then
be applied to an incomplete sentence coding ℵ2 Kurepa trees (similar to the examples
from the preceding section).

Definition 8. Let σ ∈ Lω1,ω.

• A σ-chain is a family (Mα)α<λ of models of σ such that whenever α < β < λ, we
have Mα ⊂Mβ.

• σ is preserved under chains if for any σ-chain (Mα)α<λ, M =
⋃
α<λ

Mα is a model

of σ.

As in the classical first-order case, it is still true that any Π2-sentence is preserved
under chains, i.e. any sentence of the form ∀x̄∃ȳψ(x̄, ȳ). where ψ is quantifier-free (but
possibly infinitary). We have to be a little careful with the definition of Π2 as for example
infinite disjunctions of universal formulas might not be preserved under chains. A simple
example is given by the sentence

σ =
∨

S⊂ω finite

∀x(U(x)↔
∨
i∈S

x = ai)

in the language of countably many constants ai and a unary predicate U . This sentence
expresses that U is finite.

Definition 9. Let σ ∈ Lω1,ω.

• Set Sqf(σ) = {tpqf(ā)|∃M |= σ (ā ∈ M)} (where tpqf(ā) is the quantifier-free type
of ā).

• σ is qf-small if Sqf(σ) is countable.

Note that by the downward Löwenheim-Skolem-Theorem, we can define Sqf(σ) by refer-
ring only to countable models of σ.
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Definition 10. Suppose σ is qf-small.

• For any pair p(x̄), q(x̄ȳ) ∈ Sqf(σ) define the sentence σp,q = ∀x̄(p(x̄)→ ∃ȳ q(x̄ȳ)).

• Set σ∗ = σ ∧
∧

p,q∈Sqf(σ);p⊂q
σp,q

If σ is preserved under chains, then σ∗ is as well. However, there are consistent σ for
which σ∗ is inconsistent. An example would be the sentence σ = ∀a, b, c, d(R(a, b) ∧
R(c, d)→ a = c ∧ b = d) which expresses that exactly two points are R-related.

Proposition 11. For any σ, if σ∗ is consistent, it is complete.

Proof. We show ℵ0-categoricity. Let M,N |= σ∗ be countable and suppose f is a finite
partial isomorphism mapping a tuple ā ∈ M to a tuple b̄ ∈ N . Now let c ∈ M be any
point and set p = tpqf(ā) (= tpqf(b̄)) and q = tpqf(āc). Since N |= σp,q, we find a d ∈ N
with b̄d |= q, so we can extend f by mapping c to d. Now after enumerating both M and
M we can construct a total isomorphism as the union of finite partial isomorphisms by
adding every point of M to the domain and every point of N to the range eventually.

Definition 12. A sentence σ ∈ Lω1,ω has the extension property for countable models
(EPC), if for any countable M |= σ and p(x̄) ⊂ q(x̄ȳ) in Sqf(σ), whenever some ā ∈M
realizes p, there is a countable N |= σ with M ⊂ N containing some b̄ with āb̄ |= q.

Theorem 13. Suppose σ ∈ Lω1,ω is preserved under chains, is qf-small and has the
EPC. Then

1. σ∗ is consistent.

2. any countable model of σ has an extension that is a model of σ∗.

3. σ∗ is the only completion of σ with property 2 that is still preserved under chains.

Proof. Let M |= σ be countable. Enumerate all possible pairs (ā, q) where ā ∈ M and
tpqf(ā) ⊂ q ∈ Sqf(σ) as ((ān, qn))n<ω. Construct a ⊂-chain (Mn)n<ω of models of σ such
that in Mn we add a tuple b̄n with the property that ānb̄n |= qn. Let M1 =

⋃
n<ω

Mn. Do

the same procedure for M1 in place of M to get some M2. Repeat this ω many more
times and set N =

⋃
k<ω

Mk. Since σ is preserved under chains we still have N |= σ, and

we just added all necessary witnesses in the chains to satisfy all σp,q as well, so we have
constructed a model of σ∗ that contains the model M we started with.

The uniqueness of σ∗ follows from the fact that if some τ has the same properties,
including being preserved under chains, we can form a ⊂-chain (Mn)n<ω with M2n |= σ∗

and M2n+1 |= τ for all n. Then by preservation under chains, the union must be a model
of both σ∗ and τ and we conclude by completeness of both sentences.
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Now we turn to the definition of an incomplete sentence coding ℵ2 Kurepa families,
which we will then complete by the described technique.

Our language will be L = {S,L, U, V,En, <,R, F,G,H, }n<ω, where S and L are unary
predicates, all En as well as U, V,<,R are binary relations and F , G and H are ternary
relations.

Before we give the formal definition of our sentence, we describe informally what a model
of it looks like:

• (L,<) is a linear order.

• The elements of S code subsets of L via the relation R such that any two of them
coincide on an initial segment of L with a maximum element and are disjoint above
that initial segment.

• F defines a binary function mapping two elements of S to the point of L where
they become disjoint.

• For every a ∈ L, U and V define sets Ua = {x|U(a, x)}, Va = {x|V (a, x)} and all
those sets are pairwise disjoint.

• The En are such that every set Ua and Va with the restrictions of the En satisfies the
theory of binarily splitting equivalence relations, given in section 2. In particular,
all these sets have size at most 2ℵ0 = ℵ1.

• G codes bijections between every initial segment {x|x < a} and the set Ua. This
makes (L,<) ℵ2-like.

• H codes intersections of sets coded by elements of S with initial segments {x|x < a}
as elements of Va. Consequently, on each initial segment, there are at most ℵ1 many
possibilities for the sets coded by elements of S.

Let σ be the conjunction of the following statements:

(A1) Both U(x, y) or V (x, y) imply x ∈ L. Writing Ux = {y|U(x, y)} and Vx =
{y|V (x, y)}, the sets L, S, Ux, Vx (for all x ∈ L) are pairwise disjoint and their
union is everything.

(A2) All En define equivalence relations on every set Ux and Vx where on every Ux
or Vx, E0 has exactly two classes and every En-class is the union of exactly two
En+1-classes. In addition,

∧
n<ω

xEny implies x = y.

(A3) < is a linear ordering of L. For x ∈ L we write L<x = {y ∈ L|y < x} and
L≤x = L<x ∪ {x}.

(A4) F (s, t, x) implies s, t ∈ S and x ∈ L. F defines a symmetric function from S×S to
L.

(A5) R ⊂ S×L. For s ∈ S we write Rs = {x ∈ L|R(s, x)}. For any two distinct s, t ∈ S,
Rs and Rt are identical on L≤F (s,t) and disjoint on L \ L≤F (s,t).
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(A6) G(x, y, z) implies x ∈ L, y < x and z ∈ Ux. For every x ∈ L, G(x, ·, ·) defines a
bijective function Gx : L<x → Ux by Gx(y) = z if and only if G(x, y, z).

(A7) H(x, y, z) implies x ∈ L, y ∈ S and z ∈ Vx. For every x ∈ L, H(x, ·, ·) defines a
surjective function Hx : S → Vx by Hx(y) = z if and only if H(x, y, z). Hx has the
property that Hx(s) = Hx(t) if and only if F (s, t) ≥ x.

It is easy to construct a model of σ, but σ is not a complete sentence. We verify that
it satisfies the hypotheses of Theorem 13. The axioms are all at most Π2-statements, so
we have preservation under chains. Also, since the equivalence relations En are refining
and L \ {En}n<ω is finite, Sqf(σ) is countable.

Towards showing EPC, letM |= σ be countable, ā = (a1, . . . , an) ∈M and let p(x̄), q(x̄, y) ∈
Sqf(σ) with ā |= p and p ⊂ q (note that it suffices to consider a single variable y instead
of an arbitrary tuple). We want to find some N ⊃ M and b ∈ N such that āb |= q.
There are several cases:

• Suppose S(y) ∈ q(x̄, y). We have to add a new set Ry to M respecting the require-
ments of q and the axioms of σ. The requirements can be R(y, xi), ¬R(y, xi) as well
as F (y, xj) = xi, F (y, xj) 6= xi and H(xi, y) = xj , H(xi, y) 6= xj , H(xi, y)Enxj ,
¬H(xi, y)Enxj for components xi, xj in x̄ and n < ω (G does not matter here since
it does not involve elements from S). We define the set Ry as follows: Take the
maximal element z ∈ L occurring in x̄ such that either

– q ` F (y, xi) = z for some xi in x̄ or

– q ` R(y, z) and there is some s ∈ S with M |= R(s, z).

Writing A = {a ∈ L|q ` R(y, a)}, we set Ry = A ∪ (Rxi ∩ L≤z) in the first case
and Ry = A ∪ (Rs ∩ L≤z) in the second case (choose any such s arbitrarily). If
we are in the second case and q implies F (y, s) 6= z, we add a new element w to
L which is greater than z and declare R(s, w), R(y, w), F (s, y) = w. To turn M
with the additional y (and possibly w) into a model of σ, we have to set the F - and
H-relations which can be done straightforwardly (respecting possible requirements
from q for H; we may have to add new points to sets Va for a > z). In case we
added the point w, we also have to add new sets Uw, Vw as well as a new point to
each Ua for a > w, and extend G accordingly.

• Now suppose L(y) ∈ q(x̄, y). Add a new element z to L for y in an arbitrary cut
that complies with the conditions xi < y or xi > y contained in q. Add R(xi, z)
whenever demanded by q and for any other s ∈ S add R(s, z) if and only if R(t, z)
and F (s, t) > z for some element t ∈ S. Finally, we have to add new sets Uz and
Vz as well as a new point a to each Uw with w > z and declare G(w, z, a). We may
have to add a new point to sets Vw for w > z too.

• Should Uxi(y) or Vxi(y) belong to q, it is easy to see that there must already be
some b ∈M with āb |= q.

Now we apply Theorem 13 to σ. Immediately we see that σ∗ implies:
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• The ordering on L is dense without endpoints.

• Every set Rs is dense (and thus unbounded) and co-dense in L.

• s 6= t implies Rs 6= Rt (”R is extensional”).

But we know more about the properties of σ∗. The countable model of σ∗ is extendible,
so there is an uncountable model. In addition, we have seen in the verification of EPC
that we have a lot of freedom in adding new elements to countable models of σ, and thus
to models of σ∗, so that we can conclude the existence of models of σ∗ with

• (L,<) isomorphic to a proper initial segment of η1 · ω2, where η1 is the saturated
dense linear order without endpoints of size ℵ1 (we assume GCH).

• all (Ux, En)n<ω and (Vx, En)n<ω isomorphic to (2ω, Fn) where we define ξFnρ if and
only if ξ(k) = ρ(k) for all k ≤ n.

Now we consider the class P of all such models with the additional properties

• S is a subset of ω3 of size ℵ1 (so all models in P will have size ℵ1).

• The sets Ux and Vx (x ∈ L) equal 2ω × {(x, 0)} and 2ω × {(x, 1)} respectively and
the En defined on them are the natural ones (compare with Fn above).

We order the elements of P by the superstructure relation ⊃. Since σ∗ is preserved under
unions, the poset (P,⊃) is ω2-closed (meaning every sequence of length less than ω2 of
elements of P has a lower ⊃-bound; clearly the union of the chain of models will do).

Now we show that (P,⊃) has the ω3-cc. Take any X ⊂ P of size ℵ3. We shall find two
elements of X which have a common extension. By the pigeonhole-principle and the
delta-system-lemma, we may assume that

• the domains of the elements of X form a delta-system.

• the L-part of all elements of X is identical.

• the structure of all pairs M,N ∈ X agree on the root of the delta-system.

• the collection of sets Rs (s ∈ S) is identical for all elements of X.

Two models M,N ∈ X may only differ on their S-part. We would like to make the union
M ∪N into a model of σ. The problem is that if the models are not already identical,
there will be x ∈ SM , y ∈ SN outside the root such that Rx = Ry, so F (x, y) cannot
be defined in a way that axiom (A5) holds. The solution is to end-extend L in order to
make Rx and Ry disjoint on a final segment.

Suppose that in η1 · ω2, L is an initial segment contained in {x|x < a}. Enumerate the
elements of SM \ SN as (sα)α<µ (for some µ ≤ ℵ1). Now inductively do the following:
given α < ω1 there is a unique t ∈ SN \ SM such that Rsα = Rt. Set R(sα, a), R(t, a),
F (sα, t) = a and R(sα, aα) (but not R(t, aα)), where aα ∈ η1 · ω2 is greater than a and
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any already chosen aβ (β < α). Now we have to add sets Uaα and Vaα and extend G
and H to get a model M ′ of σ containing both M and N . Note that we do not have to
add any point to the Ux, Vx for x ∈ L which is fortunate since that would be impossible.
Finally, we observe that the proof of Theorem 13 can be adapted (using an induction of
ordertype ω1 instead of ω and intelligent enough bookkeeping) in such a way to not only
obtain an extension of M ′ which is a model of σ∗, but even one that is an element of P.

Let G be a P-generic filter over V .
⋃
G will be a model of σ of size ℵV3 . But since

the forcing is ω2-closed and has ω3-cc, all cardinals are preserved and in particular

ℵV [G]
3 = ℵV3 . I.e. we get a model of σ of size ℵ3 in a generic extension. In addition, the

forcing preserves GCH.

On the other hand, any such model codes an ℵ2 Kurepa family which means that it is
consistent with ZFC+GCH (assuming the existence of an inaccessible cardinal) that σ
has no model of size ℵ3.

5 Final observations

The question of absoluteness of model-existence (under ZFC+GCH) in ℵω remains open.
On the other hand, the technique of finding complete examples described in section 4
should be applicable more widely to obtain complete examples of non-absoluteness of
model existence (under ZFC+GCH) in cardinals greater than ℵ3. Interestingly, however,
this method seems to be problematic for finding examples for model existence in ℵ2, at
least with the approach of trying to code Kurepa families. The reason is that it seems
difficult to code an ω1-like ordering without making many elements definable over others
(or even getting infinite definable closures over finite tuples), which destroys any chance
to have EPC.

As a last remark, our use of the concept of Kurepa families has the slight flaw that
in order to find set-theoretic universes which do not contain such families, we have to
assume the existence of inaccessible cardinals. For the special Aronszajn technique, we
even have to assume the consistency of supercompact cardinals. It would be nice to find
Lω1,ω sentences for which under GCH the existence of models of certain cardinalities is
not absolute, without assuming the existence of large cardinals.
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