The number of normal measures

Sy-David Friedman^{*} (Kurt Gödel Research Center) Menachem Magidor (Hebrew University)

November 10, 2008

Abstract

There have been numerous results showing that a measurable cardinal κ can carry exactly α normal measures in a model of GCH, where α is a cardinal at most κ^{++} . Starting with just one measurable cardinal, we have [9] (for $\alpha = 1$), [10] (for $\alpha = \kappa^{++}$, the maximum possible) and [1] (for $\alpha = \kappa^+$, after collapsing κ^{++}). In addition, under stronger large cardinal hypotheses, one can handle the remaining cases: [12] (starting with a measurable cardinal of Mitchell order α), [2] (as in [12], but where κ is the *least* measurable cardinal and α is less than κ , starting with a measurable of high Mitchell order) and [11] (as in [12], but where κ is the *least* measurable cardinal, starting with an assumption weaker than a measurable cardinal of Mitchell order 2). In this article we treat all cases by a uniform argument, starting with only one measurable cardinal and applying a cofinalitypreserving forcing. The proof uses κ -Sacks forcing and the "tuning fork" technique of [8]. In addition, we explore the possibilities for the number of normal measures on a cardinal at which the GCH fails.

Theorem 1 Assume GCH. Suppose that κ is measurable and let α be a cardinal at most κ^{++} . Then in a cofinality-preserving forcing extension, κ carries exactly α normal measures.

^{*}The first author wishes to thank the Austrian Science Fund (FWF) for its generous support through Project Number P 19375-N18.

Proof. By [6], we may first force V to be of the form L[U][R] for some real R, where U is a normal measure on κ . Using GCH in the ground model, this forcing is cofinality-preserving. So we assume that V is of this form, and as the real R will play no role in the proof, we further assume that V is simply L[U] for some normal measure U, which by [9] is unique.

The case $\alpha = 0$ is easy, as adding one κ -Cohen set kills the measurability of κ . We focus now on the case $\alpha = 2$, which brings out the main ideas of the proof.

Let $j: V \to M$ be the ultrapower embedding given by the normal measure U; thus every element of M is of the form $j(f)(\kappa)$ for some function f with domain κ . Our plan is to define an iteration P (with specially-chosen support) of length $\kappa + 1$, with the two properties below. Let G be P-generic. For any elementary embedding $k: V[G] \to N$, the measure U_k derived from k is defined by: $A \in U_k$ iff $A \subseteq \kappa$ and $\kappa \in k(A)$.

1. In V[G] there are exactly two $G^* \subseteq j(P)$ which are j(P)-generic over M and which contain j[G] as a subset.

2. Suppose that U^* is any normal measure on κ in V[G]. Then U^* is the normal measure derived from an embedding $j^* : V[G] \to M^*$ where j^* extends j.

Now notice the following:

Lemma 2 Suppose that $j_0^* : V[G] \to M_0^*$ and $j_1^* : V[G] \to M_1^*$ are elementary embeddings extending j. Then the following are equivalent: (i) j_0^* equals j_1^* . (ii) $j_0^*(G)$ equals $j_1^*(G)$. (iii) The normal measure U_0^* derived from j_0^* equals the normal measure U_1^* derived from j_1^* .

Proof. First note that M_i^* equals $M[j_i^*(G)]$ as j_i^* extends j. It follows that j_i^* is just an ultrapower embedding (given by the normal measure U_i^* derived from j_i^*), as every element of $M[j_i^*(G)]$ is of the form $j(f)(\kappa)^{j_i^*(G)} = j_i^*(f^*)(\kappa)$ where $f^* : \kappa \to V[G]$ is defined by $f^*(\alpha) = f(\alpha)^G$. Therefore (iii) implies (i). Also j_i^* is uniquely determined by $j_i^*(G)$, as $j_i^*(\sigma^G) = j(\sigma)^{j_i^*(G)}$ for each

P-name σ , hence (ii) implies (i). The implications (i) implies (ii) and (i) implies (iii) are trivial. \Box (Lemma 2)

The theorem now follows: Property 1 and the lemma imply that there are exactly two normal measures on κ in V[G] which are derived from elementary embeddings $j^* : V[G] \to M^*$ extending j. Property 2 implies that any normal measure on κ in V[G] is indeed of this form. So there are exactly two normal measures on κ in V[G].

We turn now to a description of the iteration P. Our notation for iterations is as follows: $P(\alpha)$ denotes stage α of the iteration, $P(<\alpha)$ denotes the iteration below α and for $\alpha < \beta$ we decompose $P(<\beta)$ naturally as $P(<\alpha) * P(\alpha) * P(\alpha, \beta)$. We must specify each $P(\alpha)$ and also the support to be used to define $P(<\alpha)$ for limit α .

First we specify each $P(\alpha)$. Our iteration has length $\kappa + 1$, so $P(\alpha)$ is defined only for $\alpha \leq \kappa$. We take $P(\alpha)$ to be trivial unless α is inaccessible, in which case $P(\alpha)$ is a two-step iteration $\operatorname{Sacks}(\alpha) * \operatorname{Code}(\alpha)$. The first factor, $\operatorname{Sacks}(\alpha)$ is α -Sacks forcing, whose conditions are perfect α -trees, i.e., subsets T of $2^{<\alpha}$ which are closed under initial segments, closed under increasing sequences of length $< \alpha$ and with the property that for some closed unbounded $C \subseteq \alpha$, both s * 0 and s * 1 belong to T whenever $s \in T$ has length in C (see [8]). To define $\operatorname{Code}(\alpha)$, we take advantage of the following lemma. Recall that we have assumed that V equals L[U] where U is the (unique) normal measure on κ and that j denotes the embedding $j : V \to M$ resulting from the ultrapower via U.

Lemma 3 There exists a sequence $\vec{X}^{\kappa} = \langle X_i^{\kappa} | i < \kappa^+ \rangle$ of pairwise disjoint stationary subsets of $\kappa^+ \cap Cof(\kappa)$ such that \vec{X}^{κ} belongs to M.

Proof. V = L[U] satisfies Jensen's \Diamond_{κ^+} Principle on cofinality κ : There is a sequence $\langle S_\beta \mid \beta < \kappa^+ \rangle$ such that $S_\beta \subseteq \beta$ for each $\beta < \kappa^+$ and for any $X \subseteq \kappa^+$, the set of $\beta < \kappa^+$ of cofinality κ such that $S_\beta = X \cap \beta$ is stationary (see [5]). In fact, using Jensen's hierarchy for L[U] (described in [13]), which has better condensation properties than the usual L[U]-hierarchy, the sequence $\vec{S} = \langle S_\beta \mid \beta < \kappa^+ \rangle$ can be chosen to be definable over $H(\kappa^+)$ with parameter κ . As V and M (the ultrapower of V by the measure U) have the same $H(\kappa^+)$, it follows that \vec{S} belongs to M. For $i < \kappa^+$ let X_i^{κ} be the set of $\beta < \kappa^+$ of cofinality κ such that $S_\beta = \{i\}$. Then $\langle X_i^{\kappa} \mid i < \kappa^+ \rangle$ also belongs to M. \Box (Lemma 3)

Fix \vec{X}^{κ} as in Lemma 3. Then as \vec{X}^{κ} belongs to M, we may also fix a function $f : \kappa \to V$ such that for each inaccessible $\alpha < \kappa$, $f(\alpha)$ is an α^+ -sequence of disjoint stationary subsets of $\alpha^+ \cap \operatorname{Cof}(\alpha)$ and $j(f)(\kappa) = \vec{X}^{\kappa}$. Write $f(\alpha)$ as $\vec{X}^{\alpha} = \langle X_i^{\alpha} | i < \alpha^+ \rangle$.

Recall that we wish to define $\operatorname{Code}(\alpha)$, where $P(\alpha) = \operatorname{Sacks}(\alpha) * \operatorname{Code}(\alpha)$. Let $S(\alpha)$ denote the α -Sacks generic added at the first stage of this two-step iteration. We view $S(\alpha)$ as a subset of α . A condition in $\operatorname{Code}(\alpha)$ is a closed, bounded subset c of α^+ . For conditions c, d in $\operatorname{Code}(\alpha)$, we say that d extends c, written $d \leq c$, iff:

1. d end-extends c (i.e., d contains c and all elements of $d \setminus c$ are greater than $\max(c)$).

2. For $i < \alpha$: If *i* belongs to $S(\alpha)$ then $d \setminus c$ is disjoint from X_{1+2i}^{α} ; if *i* does not belong to $S(\alpha)$ then $d \setminus c$ is disjoint from X_{1+2i+1}^{α} .

3. For $i \leq \max(c)$: If *i* belongs to *c* then $d \setminus c$ is disjoint from $X^{\alpha}_{\alpha+2i}$; if *i* does not belong to *c* then $d \setminus c$ is disjoint from $X^{\alpha}_{\alpha+2i+1}$.

Now we define the desired iteration P of length $\kappa + 1$:

P(0) is trivial.

 $P(\alpha)$ is trivial unless $\alpha \leq \kappa$ is inaccessible, in which case $P(\alpha) = \text{Sacks}(\alpha) * \text{Code}(\alpha)$.

 $P(<\lambda)$ is the nonstationary support limit of the $P(<\alpha)$, $\alpha < \lambda$, for limit ordinals λ . I.e., p belongs to $P(<\lambda)$ iff p belongs to the inverse limit of the $P(<\alpha)$, $\alpha < \lambda$, and if λ is inaccessible then the set of $\alpha < \lambda$ such that $p(\alpha)$ is nontrivial is a nonstationary subset of λ .

The following fact will be used repeatedly in what follows.

Lemma 4 Suppose that $\lambda \leq \kappa$ is inaccessible and $\langle \alpha_i \mid i < \lambda \rangle$ is the increasing enumeration of a closed unbounded subset of λ . Also suppose that $p_0 \geq p_1 \geq \cdots$ is a λ -sequence of conditions in $P(<\lambda)$ where p_{i+1} agrees with p_i up to and including α_i for each $i < \lambda$, and p_{γ} is the greatest lower bound of the p_i , $i < \gamma$, for limit $\gamma < \lambda$. Then there is a condition p in $P(<\lambda)$ which extends each p_i .

Proof. Let p(i) be $p_{\alpha_i}(i)$ for each $i < \lambda$. We need only verify that the p defined in this way is indeed a condition, as then it will clearly extend each p_i . If $i < \lambda$ is a limit and α_i belongs to the support of p, then α_i belongs to the support of p_j for some j < i; it follows that the support of p restricted to the α_i , i limit, is the diagonal union of the supports of the p_i , $i < \lambda$, and is therefore nonstationary. \Box

Lemma 5 P preserves cofinalities.

Proof. Suppose that α is an infinite regular cardinal; we show that any ordinal of cofinality greater than α in V also has cofinality greater than α in V[G] for P-generic G. As P decomposes as $P(<\alpha) * \operatorname{Sacks}(\alpha) * \operatorname{Code}(\alpha) * P(\alpha, \kappa + 1)$ where $\operatorname{Sacks}(\alpha)$ obeys α -fusion (see [8]) and $P(\alpha, \kappa + 1)$ is $< \alpha^+$ -closed, it suffices to prove the result for $P(<\alpha)$ and for $\operatorname{Code}(\alpha)$. We first consider $P(<\alpha)$. Suppose that \dot{f} is a $P(<\alpha)$ -name for a function from α into Ord. Let $\langle \alpha_i \mid i < \alpha \rangle$ enumerate the limit cardinals less than α in increasing order. If p is a condition in $P(<\alpha)$, then by Lemma 4 we may successively extend p to conditions $p_i, i \leq \alpha$, so that p_{i+1} agrees with p_i up to stage α_i and forces that there are at most α_i^+ possibilities for $\dot{f}(i)$, taking greatest lower bounds at limit stages. This is because $P(<\alpha_i^+)$ has a dense subset of size α_i^+ and $P(\alpha_i^+, \alpha)$ is $< \alpha_i^{++}$ -closed. The resulting condition p_α forces that there are at most α_i^+ possibilities for $\dot{f}(i)$ for each $i < \alpha$, and therefore forces that \dot{f} cannot be cofinal in an ordinal of V-cofinality greater than α .

To prove the result for $\operatorname{Code}(\alpha)$, it suffices to show that $\operatorname{Code}(\alpha)$ is $< \alpha^+$ distributive (i.e., the intersection of α -many open dense sets is dense). Notice that $\operatorname{Code}(\alpha)$ is $< \alpha$ -closed (i.e., descending β -sequences of conditions have lower bounds for $\beta < \alpha$) and when extending conditions, there is nothing to prohibit adding elements of X_0^{α} . So, given a sequence $\langle D_i \mid i < \alpha \rangle$ of open dense sets and a condition c, we extend c to $c = c_0 \ge c_1 \ge \cdots$ in $\alpha + 1$ steps, so that c_{i+1} meets D_i for each $i < \alpha$, c_{λ} is the greatest lower bound of the $c_i, i < \lambda$, for limit $\lambda < \alpha$ and the supremum of the $\max(c_i)$'s is an element of X_0^{α} . This is easily done, using the fact that X_0^{α} is a stationary subset of $\alpha^+ \cap \operatorname{Cof}(\alpha)$. \Box (Lemma 5)

A similar proof yields the following.

Lemma 6 If G is P-generic, then any function $f^* : \kappa \to \kappa$ in V[G] is dominated by a function $f : \kappa \to \kappa$ in V.

Proof. P decomposes as $P(<\kappa) * \operatorname{Sacks}(\kappa) * \operatorname{Code}(\kappa)$ where $\operatorname{Sacks}(\kappa)$ satisfies the desired domination property (see [8]) and $\operatorname{Code}(\kappa)$ is $< \kappa^+$ -distributive Thus it suffices to prove the result for $P(<\kappa)$. But the previous proof shows that if \dot{f} is a $P(<\kappa)$ -name for a function from κ to κ and p is a condition in $P(<\kappa)$, then some $q \leq p$ forces that $\dot{f}(i)$ is less than some $\kappa_i < \kappa$, for each $i < \kappa$; thus q forces \dot{f} to be dominated by g where $g(i) = \kappa_i$. \Box (Lemma 6)

By yet another, similar argument we have:

Lemma 7 For inaccessible $\alpha \leq \kappa$, $P(<\alpha) * Sacks(\alpha)$ preserves the stationarity of subsets of α^+ .

Proof. It suffices to show that $P(<\alpha)$ preserves the stationarity of subsets of α^+ and that $\operatorname{Sacks}(\alpha)^{G(<\alpha)}$ has this property in $V[G(<\alpha)]$ for $P(<\alpha)$ -generic $G(<\alpha)$.

For the first statement, suppose that X is a stationary subset of α^+ and $p \in P(\langle \alpha \rangle)$ forces \dot{C} to be a closed unbounded subset of α^+ ; we must find $q \leq p$ which forces that some element of X belongs to \dot{C} . If $X \cap \operatorname{Cof}(\bar{\alpha})$ is stationary for some $\bar{\alpha}$ less than α , then this is easy, as $P(\langle \alpha \rangle)$ factors as $P(\langle \bar{\alpha}^+) * P(\bar{\alpha}^+, \alpha)$, where the first factor has size less than α and the second factor is forced to be $\langle \bar{\alpha}^+$ -closed. So assume that $X \cap \operatorname{Cof}(\alpha)$ is stationary. Now much as in the previous proof, we can use Lemma 4 to build a sequence $p = p_0 \geq p_1 \geq \cdots$ of length $\alpha + 1$, taking greatest lower bounds at limit stages, together with a continuous, increasing sequence $\beta_0 < \beta_1 < \cdots$ of length $\alpha + 1$, such that each p_{i+1} forces \dot{C} to intersect the interval (β_i, β_{i+1}) for each i; thus $q = p_{\alpha}$ forces \dot{C} to contain β_{α} . Moreover, for some closed unbounded $D \subseteq \alpha^+$, each β in D of cofinality α is of the form β_{α} for some such choice of the p_i 's and β_i 's. By choosing β in $D \cap X$ we obtain $q \leq p$ forcing β to belong to \dot{C} with β in X, as desired.

Now suppose that X is a stationary subset of α^+ in the model $V[G(<\alpha)]$, where $G(<\alpha)$ is $P(<\alpha)$ -generic, and the condition $T \in \operatorname{Sacks}(\alpha)^{G(<\alpha)}$ forces \dot{C} to be a closed unbounded subset of α^+ . We wish to find $T^* \leq T$ which forces some ordinal in X to belong to \dot{C} . If $X \cap \operatorname{Cof}(\bar{\alpha})$ is stationary for some $\bar{\alpha} < \alpha$, then this is easy, as $\operatorname{Sacks}(\alpha)$ is $< \alpha$ -closed. So assume that $X \cap \operatorname{Cof}(\alpha)$ is stationary. Now as in the previous argument, but using α fusion, we can build a sequence $T = T_0 \geq T_1 \geq \cdots$ of length $\alpha + 1$, taking greatest lower bounds at limit stages, together with a continuous, increasing sequence $\beta_0 < \beta_1 < \cdots$ of length $\alpha + 1$, so that each T_{i+1} has the same *i*-th splitting level as T_i and forces \dot{C} to intersect the interval (β_i, β_{i+1}) ; thus $T^* = T_{\alpha}$ forces \dot{C} to contain β_{α} . Now the proof finishes exactly as in the previous argument. \Box (Lemma 7)

It follows from Lemma 7 that the stationary sets X_i^{α} , $i < \alpha^+$, used to define $\operatorname{Code}(\alpha)$ remain stationary after forcing with $P(<\alpha) * \operatorname{Sacks}(\alpha)$.

Lemma 8 Suppose that g is $Code(\alpha)$ -generic (over $V[G(<\alpha)][S(\alpha)]$) and let $C(\alpha)$ be the union of the conditions in g. Then in the generic extension we have:

(1) For $i < \alpha$, *i* belongs $S(\alpha)$ iff X_{1+2i}^{α} is nonstationary and *i* does not belong to $S(\alpha)$ iff X_{1+2i+1}^{α} is nonstationary.

(2) For $i < \alpha^+$, *i* belongs to $C(\alpha)$ iff $X^{\alpha}_{\alpha+2i}$ is nonstationary and *i* does not belong to $C(\alpha)$ iff $X^{\alpha}_{\alpha+2i+1}$ is nonstationary.

(3) There is a unique $Sacks(\alpha) * Code(\alpha)$ -generic over $V[G(<\alpha)]$.

Proof. (1) By the definition of extension for $C(\alpha)$, it follows immediately that for $i < \alpha$, X_{1+2i}^{α} is nonstationary if *i* belongs to $S(\alpha)$ and X_{1+2i+1}^{α} is nonstationary if *i* does not belong to $S(\alpha)$. We must show that in the former case, X_{1+2i+1}^{α} remains stationary (the latter case is treated similarly). Suppose that \dot{C} is a name for a CUB subset of α^+ and *c* is a condition. As in the proof of $< \alpha^+$ -distributivity for Code (α) , there are CUB-many $\beta < \alpha^+$ with the property that we can build an α -sequence $c = c_0 \ge c_1 \ge \cdots$ with c_{i+1} forcing some ordinal greater than $\max(c_i)$ into \dot{C} and with β equal to the supremum of the $\max(c_i)$'s. As X_{1+2i+1}^{α} is stationary (in the ground model) we can choose such a β in X_{1+2i+1}^{α} , which proves that the latter set is indeed stationary in the generic extension.

(2) Just like (1).

(3) Using (1) and (2), another $\operatorname{Sacks}(\alpha) * \operatorname{Code}(\alpha)$ -generic would give rise to an inner model of $V[G(<\alpha)][S(\alpha)][C(\alpha)]$ in which some stationary set of $V[G(<\alpha)][S(\alpha)][C(\alpha)]$ is not stationary, a contradiction. \Box (Lemma 8)

Our aim is to show that if G is P-generic over V then there are exactly two normal measures on κ in V[G].

Lemma 9 In V[G] there are precisely two $G^* \subseteq j(P)$ which are j(P)-generic over M and which contain j[G] as a subset.

Proof. Write $G^*(j(\kappa))$ as $S^*(j(\kappa)) * C^*(j(\kappa))$. By the results of [8] (see Lemmas 4 and 6 of that paper), given a choice for $G^*(\langle j(\kappa) \rangle)$, there are exactly two possibilities for $S^*(j(\kappa))$, each of which is generic. And given a choice for $G^*(\langle j(\kappa) \rangle * S^*(j(\kappa)))$, there is exactly one generic choice for $C^*(j(\kappa))$, as the forcing Code(κ) is $\langle \kappa^+$ -distributive and therefore the image (under the extension to $V[G(\langle \kappa \rangle * S(\kappa)]]$ of j) of the generic $C(\kappa)$ for Code(κ) specified by $G(\kappa)$ generates a generic $C^*(j(\kappa))$. So it suffices to show that there is exactly one generic choice for $G^*(\langle j(\kappa) \rangle)$.

Let P^* denote j(P), and for any $p \in P^*(\langle j(\kappa) \rangle)$, let $p(\leq \kappa)$ denote $p \upharpoonright \kappa + 1$ and $p(>\kappa)$ denote $p \upharpoonright (\kappa, j(\kappa))$. Note that for any dense $D^* \subseteq P^*(<$ $j(\kappa)$ in M, there is a condition $\bar{p} \in G(<\kappa)$ such that $j(\bar{p}) = p$ reduces D^* into $P^*(\leq \kappa) = P^*(<\kappa) * P^*(\kappa)$, in the sense that $\{q \in P^*(\leq \kappa) \mid q \cup p(>\kappa)\}$ meets D^* is dense in $P^*(\leq \kappa)$ below $p(\leq \kappa)$: D^* is of the form $j(f)(\kappa)$ where $f: \kappa \to V$ and f(i) is dense on $P(<\kappa)$ for each $i < \kappa$. For each inaccessible $i < \kappa$, any condition in $P(<\kappa)$ can be extended strictly above i to reduce f(i) into $P(\leq i)$, as the forcing $P(\leq i)$ has a dense subset of size i^{++} and the forcing P(>i) is i^{+++} -closed. It follows that the set of $\bar{p} \in P(<\kappa)$ such that \bar{p} reduces f(i) into $P(\leq i)$ for each inaccessible $i < \kappa$ is dense, as using Lemma 4 we can successively extend a given $p \in P(<\kappa)$ in κ steps, taking greatest lower bounds at limit stages and only extending strictly above i at each stage i to reduce f(i) into $P(\leq i)$. Thus as $G(<\kappa)$ is $P(<\kappa)$ -generic, there is a condition $\bar{p} \in G(<\kappa)$ which reduces each f(i), *i* inaccessible and less than κ , into $P(\leq i)$. It follows that $p = j(\bar{p})$ reduces D^* into $P^*(\leq \kappa)$, as desired.

In particular, $G^*(\langle j(\kappa) \rangle)$ is uniquely determined by $G^*(\leq \kappa)$, as it must contain each $j(\bar{p}), \bar{p} \in G(\langle \kappa \rangle)$ and these conditions, together with $G^*(\leq \kappa)$, decide which conditions belong to $G^*(\langle j(\kappa) \rangle)$. So it only remains to show that there is only one generic choice for $G^*(\leq \kappa)$. Clearly there is only one choice for $G^*(\langle \kappa \rangle)$, as this must equal $G(\langle \kappa \rangle)$. And there is only one choice for $G^*(\kappa)$ by Lemma 8(3). \Box (Lemma 9)

To complete the proof of Theorem 1 in the case $\alpha = 2$ we show:

Lemma 10 Suppose that U^* is any normal measure on κ in V[G]. Then U^* is the normal measure derived from an embedding $j^* : V[G] \to M^*$ where j^* extends j.

Proof. Suppose that U^* is a normal measure on κ in V[G]. Let $k^* : V[G] \to N^*$ be the ultrapower of V[G] via U^* . Then N^* is of the form $N[H^*]$ where $k = k^* \upharpoonright V : V \to N$ and H^* is k(P)-generic over N, $k[G] \subseteq H^*$.

Now by [9], the embedding $k : V \to N$ is obtained by iterating the measure U. We claim that in fact, k equals j, which proves the lemma. Otherwise, $j(\kappa)$ is less than $k(\kappa)$ and therefore can be written as $k^*(f^*)(\kappa)$ for some function $f^* : \kappa \to \kappa$ in V[G]. By Lemma 6, choose $f : \kappa \to \kappa$ in V which dominates f^* . Thus $k^*(f^*)(\kappa) < k^*(f)(\kappa) = k(f)(\kappa)$ and therefore $k(f)(\kappa)$ is greater than $j(\kappa)$. But we can write write k as $k' \circ j$, where k' is obtained by iterating the measure j(U) at $j(\kappa)$ and therefore has critical point $j(\kappa)$. As $j(f)(\kappa) < j(\kappa)$, it follows that $k(f)(\kappa) = k'(j(f)(\kappa)) = j(f)(\kappa)$, a contradiction. \Box (Lemma 10)

We now consider the cases $\alpha > 2$. Let us say that a subtree T of $\kappa^{<\kappa}$ is *suitable* iff it is closed under initial segments and under unions of length less than κ .

If α is greater than 2 but still less than κ , then instead of using binarysplitting κ -trees, use fully α -splitting κ -trees, i.e., suitable subtrees T of $\alpha^{<\kappa}$ with the property that for some closed unbounded $C \subseteq \kappa$, s * i belongs to T whenever $s \in T$ has length in C and i is less than α . Then everything works in the same way, except there are now exactly α -many choices for G^* , depending on the value at κ for the generic chosen by $G^*(j(\kappa))$ for α -splitting $j(\kappa)$ -Sacks forcing.

If α equals κ then we use suitable subtrees T of $\kappa^{<\kappa}$ such that for some closed unbounded $C \subseteq \kappa$, s * i belongs to T whenever the length of $s \in T$ belongs to C and i is less than the length of s. Now there are exactly κ -many possible values at κ for the (new kind of) $j(\kappa)$ -Sacks generic chosen by $G^*(j(\kappa))$.

If α is κ^+ then we use suitable subtrees T of $\kappa^{<\kappa}$ with the property that for some closed unbounded $C \subseteq \kappa$, s * i belongs to T whenever |s| = the length of s belongs to C and i is less than $|s|^+$. Then there are exactly κ^+ many choices for the $j(\kappa)$ -Sacks product generic chosen by $G^*(j(\kappa))$. Finally, if α equals κ^{++} then none of the above arguments are needed, as the result was already established in [10] (also see Lemma 6 of [4], which shows that one can simply add a single α -Cohen set to each inaccessible $\alpha \leq \kappa$ with Easton support to obtain the desired result).

When GCH fails

We now consider the possible number of normal measures on a cardinal κ when GCH fails. Over a model of GCH, we can obviously force $2^{\kappa^{++}}$ to be any cardinal of cofinality greater than κ^{++} without adding normal measures; so the interesting questions concern the values of 2^{κ} and $2^{\kappa^{+}}$. We shall focus on obtaining β normal measures on κ for cardinals $\beta \leq 2^{\kappa}$, as for larger β one does not need the methods of this paper, but only the simpler methods of [10].

Regarding a failure of the GCH at κ^+ , we have the following.

Theorem 11 Suppose that V = L[U] where U is a normal measure on κ , β is a cardinal at most κ^+ and γ is a cardinal of cofinality greater than κ^+ . Then in a cofinality-preserving generic extension there are exactly β normal measures on κ and $2^{\kappa^+} = \gamma$.

Proof. First perform the cofinality-preserving iteration P above to obtain a model where there are exactly β normal measures on κ and GCH holds. Then force with $\operatorname{Add}(\kappa^+, \gamma)$, the forcing that adds γ -many κ^+ -Cohen sets via a κ -support product. As in Lemma 10, if G is generic for $P * \operatorname{Add}(\kappa^+, \gamma)$, then any measure ultrapower embedding $k^* : V[G] \to N^*$ is a lifting of j, the ultrapower of V by U. And as in Lemma 9, using the fact that the forcing $\operatorname{Add}(\kappa^+, \gamma)$ is $< \kappa^+$ -closed ($< \kappa^+$ -distributivity is enough) there are exactly β such liftings, giving rise to exactly β -many normal measures on κ . \Box (Theorem 11)

Regarding a failure of the GCH at κ we begin with the following result.

Theorem 12 Assume the consistency of a $P_2\kappa$ -hypermeasurable, i.e., a cardinal κ for which there is an elementary embedding $j: V \to M$ with critical point κ and $V_{\kappa+2}$ contained in M. Then it is consistent that for some κ , $2^{\kappa} = \kappa^{++}$ and there is a unique normal measure on κ . Proof. We may assume that V is a "minimal extender model with a $P_{2\kappa}$ -hypermeasurable", i.e., V = K = L[E] where E is a coherent sequence of extenders and only the last extender F on the E-sequence witnesses that its critical point κ is $P_{2\kappa}$ -hypermeasurable (see [13]). Moreover, V satisfies GCH and in any generic extension V[G] of V, each $k : K \to K^*$ is obtained by normally iterating the extenders on the E-sequence. Let κ denote the critical point of F and let $j : V \to M$ denote the ultrapower of V via F. Thus $V_{\kappa+2}$, or equivalently $H(\kappa^{++})$, belongs to M.

We again describe an iteration P of length $\kappa + 1$ which is nontrivial only at inaccessible $\alpha \leq \kappa$.

In [8] the product with supports of size α of α^{++} -many copies of Sacks(α) was used at each inaccessible stage $\alpha \leq \kappa$ to preserve the measurability of κ and force $2^{\kappa} = \kappa^{++}$. This forcing however creates many new normal measures on κ and therefore we modify it as follows. Let Sacks^{*}(α) denote the forcing with *-perfect α -trees, i.e., subtrees T of $2^{<\alpha}$ which are closed under initial segments, closed under increasing sequences of length less than α and with the property that for some closed unbounded $C \subseteq \alpha$, all nodes of T of length a singular element of C are splitting nodes of T. Then like Sacks(α), Sacks^{*}(α) is $< \alpha$ -closed and satisfies α -fusion. Its advantage for the present proof is that whereas use of Sacks(α) gives rise to at least two possible liftings $j^*: V[G] \to M[G^*]$ of j, corresponding to the two different values at κ of the generic specified by $G^*(j(\kappa))$ for Sacks $(j(\kappa))$, use of Sacks^{*}(α) imposes a unique value at κ for the generic specified by $G^*(j(\kappa))$ for Sacks^{*}($j(\kappa)$), and therefore helps to guarantee a unique lifting. We will however still need a version of the Code(α) forcing to guarantee a unique choice for $G^*(\kappa)$.

Thus for inaccessible $\alpha \leq \kappa$ we take $P(\alpha)$ to be Sacks^{*} (α, α^{++}) *Code (α) , where Sacks^{*} (α, α^{++}) is the product of α^{++} -many copies of Sacks^{*} (α) with support of size α , and Code (α) , defined below, is the natural analogue of the Code (α) forcing used in the proof of Theorem 1. The forcing Sacks^{*} (α, α^{++}) is $< \alpha$ -closed, obeys α -fusion, is α^{++} -cc and therefore preserves cofinalities (the proof is exactly as for Sacks (α, α^{++})). A generic for it corresponds to a sequence $\langle S(i) | i < \alpha^{++} \rangle$, where each $S(i) \subseteq \alpha$ is Sacks^{*} (α) -generic over $V[G(<\alpha)]$.

As in Lemma 3, we may use the good condensation properties of the

L[E]-hierarchy (see [13]) to obtain a $\diamondsuit_{\kappa^{++}}$ -sequence $\vec{S} = \langle S_{\beta} \mid \beta < \kappa^{++} \rangle$ on cofinality κ^{+} which is definable over $H(\kappa^{++})$ from the parameter κ , and therefore belongs to M. Moreover \vec{S} is of the form $j(f)(\kappa)$ where f has domain κ . Now for $i < \kappa^{++}$ let X_{i}^{κ} be the set of $\beta < \kappa^{++}$ of cofinality κ^{+} such that $S_{\beta} = \{i\}$. Then the sequence $\langle X_{i}^{\kappa} \mid i < \kappa^{++} \rangle$ of disjoint stationary sets is of the form $j(g)(\kappa)$ where g has domain κ and $g(\alpha) = \langle X_{i}^{\alpha} \mid i < \alpha^{++} \rangle$ is a sequence of disjoint stationary subsets of $\alpha^{++} \cap \operatorname{Cof}(\alpha^{+})$ for each inaccessible $\alpha < \kappa$. For inaccessible $\alpha \leq \kappa$ we use $\langle X_{i}^{\alpha} \mid i < \alpha^{++} \rangle$ to define $\operatorname{Code}(\alpha)$.

Let $S(\alpha, \alpha^{++}) = \langle S(i) | i < \alpha^{++} \rangle$ denote the generic added by the forcing Sacks^{*}(α, α^{++}). A condition in Code(α) is a closed, bounded subset c of α^{++} . For conditions c, d in Code(α) we say that d extends c, written $d \leq c$, iff:

1. d end-extends c.

2. For $i, j < \alpha^{++}$, if j belongs to S(i) then $d \setminus c$ is disjoint from $X^{\alpha}_{1+4\langle i,j \rangle}$; if j does not belong to S(i) then $d \setminus c$ is disjoint from $X^{\alpha}_{1+4\langle i,j \rangle+1}$.

3. For $i < \max(c)$, if *i* belongs to *c* then $d \setminus c$ is disjoint from X_{1+4i+2}^{α} ; if *i* does not belong to *c* then $d \setminus c$ is disjoint from X_{1+4i+3}^{α} .

In the previous definition, $\langle \cdot, \cdot \rangle$ denotes the Gödel pairing function on the ordinals. This completes the definition of $P(\alpha) = \operatorname{Sacks}^*(\alpha, \alpha^{++}) * \operatorname{Code}(\alpha)$ for inaccessible $\alpha \leq \kappa$. The iteration P is the length $\kappa + 1$ iteration of the $P(\alpha)$'s with nonstationary support. In analogy to the previous proof, we have the following lemmas:

Lemma 13 P preserves cofinalities.

Proof. As in the proof of Lemma 5, we show that for each infinite regular α , if an ordinal has cofinality greater than α then it still does after forcing with P. As P factors as $P(<\alpha) * \operatorname{Sacks}^*(\alpha, \alpha^{++}) * \operatorname{Code}(\alpha) * P(\alpha, \kappa + 1)$ where $\operatorname{Code}(\alpha) * P(\alpha, \kappa + 1)$ is $< \alpha^+$ -closed and $\operatorname{Sacks}^*(\alpha, \alpha^{++})$ obeys α -fusion, it suffices to prove the result for $P(<\alpha)$. This is done exactly as in the proof of Lemma 5. \Box (Lemma 13)

Lemma 14 If G is P-generic, then for any function $f^* : \kappa \to Ord$ in V[G]there is a function $g : \kappa \to [Ord]^{<\kappa}$ in V such that for each $\alpha < \kappa$, $f^*(\alpha)$ is an element of $g(\alpha)$ and $g(\alpha)$ has cardinality α^{++} . *Proof.* Factor P as $P(<\kappa) * \operatorname{Sacks}^*(\kappa, \kappa^{++}) * \operatorname{Code}(\kappa)$ and correspondingly write V[G] as $V[G(<\kappa)][S(\kappa,\kappa^{++})][C(\kappa)]$. As $\operatorname{Code}(\kappa)$ is $<\kappa^+$ -distributive, the given function f^* in fact belongs to $V[G(<\kappa)][S(\kappa,\kappa^{++})]$. Recall that Sacks^{*}(κ, κ^{++}) obeys κ -fusion. This implies that if f is a name for a function from κ into the ordinals and p is a condition in Sacks^{*}(κ, κ^{++}), then there is q < p forcing that for each $\alpha < \kappa$, $\dot{f}(\alpha)$ takes one of at most card $((2^{\alpha})^{\alpha}) =$ α^+ -many values (corresponding to choices of nodes on the α -th splitting level of at most α -many trees). Thus there is a function g as in the statement of the lemma which belongs to $V[G(<\kappa)]$. And the argument given in the proof of Lemma 5 shows that if p belongs to $P(<\alpha)$ and \dot{g} is a name for a function from κ into the [Ord]^{< κ} then there is $q \leq p$ and a closed unbounded subset C of κ such that for α in C, q forces $\dot{q}(\alpha)$ to take one of at most α^{++} -many values (corresponding to choices for conditions in $P(\langle \alpha \rangle * P(\alpha))$). We may further extend q at nonstationary-many places to force such a bound on the number of possible values for $\dot{q}(\alpha)$ for all $\alpha < \kappa$. Then putting these two approximation results together we obtain the lemma. \Box (Lemma 14)

Lemma 15 For inaccessible $\alpha \leq \kappa$, $P(<\alpha) * Sacks^*(\alpha, \alpha^{++})$ preserves the stationarity of subsets of α^{++} .

Proof. This is clear, because $P(<\alpha)$ has a dense subset of size α^+ and Sacks^{*} (α, α^{++}) is (forced by $P(<\alpha)$ to be) α^{++} -cc. \Box (Lemma 15)

Lemma 16 Suppose that g is $Code(\alpha)$ -generic (over $V[G(<\alpha)][S(\alpha, \alpha^{++})]$, where $S(\alpha, \alpha^{++}) = \langle S(i) \mid i < \alpha^{++} \rangle$) and let $C(\alpha)$ be the union of the conditions in g. Then in the generic extension we have: (1) For $i, j < \alpha^{++}$, j belongs S(i) iff $X^{\alpha}_{1+4\langle i,j \rangle}$ is nonstationary and j does not belong to S(i) iff $X^{\alpha}_{1+4\langle i,j \rangle+1}$ is nonstationary. (2) For $i < \alpha^{++}$, i belongs to $C(\alpha)$ iff X^{α}_{1+4i+2} is nonstationary and i does not belong to $C(\alpha)$ iff X^{α}_{1+4i+3} is nonstationary. (3) There is a unique $Sacks^*(\alpha, \alpha^{++}) * Code(\alpha)$ -generic over $V[G(<\alpha)]$.

Proof. Just as in the proof of Lemma 8. \Box (Lemma 16)

Now we complete the proof of the Theorem 12 as follows.

Lemma 17 In V[G] there is precisely one $G^* \subseteq j(P)$ which is j(P)-generic over M and which contains j[G] as a subset.

Proof. We argue as in Lemma 9. $G^*(<\kappa)$ is unique as it must equal $G(<\kappa)$, which is indeed generic for $j(P)(<\kappa) = P(<\kappa)$. And $G^*(\kappa)$ is the unique generic for $j(P)(\kappa) = P(\kappa)$ by Lemma 16. Using nonstationary supports as in Lemma 9, it then follows that $G^*(< j(\kappa))$ is the unique generic for $P^*(< j(\kappa))$ containing $j[G(<\kappa)]$. Therefore we must only argue that there is a unique generic choice for $G^*(j(\kappa))$.

In [8], it is shown that if $j^* : V[G(<\kappa)] \to M[G^*(<j(\kappa))]$ is the canonical extension of $j: V \to M$ then the range of j^* on the Sacks (κ, κ^{++}) generic specified by $G(\kappa)$ determines a unique $\operatorname{Sacks}(j(\kappa))$ -generic $S_0^*(i)$ for $i < j(\kappa^{++})$ not in the range of j and exactly two Sacks $(j(\kappa))$ -generics $S_0^*(i), S_1^*(i)$ for i in the range of j. (More precisely, the intersection of the i-th components of the $j^*(\vec{T})$, where \vec{T} belongs to the Sacks (κ, κ^{++}) -generic specified by $G(\kappa)$, is a single Sacks $(j(\kappa))^{M[G^*(\langle j(\kappa)\rangle)]}$ -generic for $i < \kappa^{++}$ not in the range of j, and is the union of two distinct $\operatorname{Sacks}(j(\kappa))^{M[G^*(< j(\kappa))]}$ -generics for $i < \kappa^{++}$ in the range of j.) Moreover, the sequence $\langle S_0^*(i) \mid i < j(\kappa^{++}) \rangle$ is generic for Sacks $(j(\kappa), j(\kappa^{++}))^{M[G(< j(\kappa))]}$ over $M[G(< j(\kappa))]$. The argument used there applied to the present context gives the same result with Sacks replaced by Sacks^{*}, with the only difference that now the range of j^* on the Sacks^{*}(κ, κ^{++})-generic specified by $G(\kappa)$ determines a unique Sacks^{*}($j(\kappa)$)generic $S^*(i)$ for each $i < j(\kappa^{++})$, including those $i < j(\kappa^{++})$ in the range of j. The reason is that if i equals $j(\bar{i})$, then some T in the \bar{i} -th component of the Sacks^{*}(κ, κ^{++})-generic specified by $G(\kappa)$ has the property that all of its splitting nodes are of singular length, and therefore $j^*(T)$, a $j(\kappa)$ tree associated to the *i*-th component of Sacks^{*} $(j(\kappa), j(\kappa^{++}))$, has no splitting at κ . Thus we arrive at the desired conclusion: The image under j^* of the Sacks^{*}(κ, κ^{++})-generic specified by $G(\kappa)$ generates a Sacks^{*}($j(\kappa), j(\kappa^{++})$ generic over $M[G^*(\langle j(\kappa))]$, and therefore there is a unique generic choice for the Sacks^{*}($j(\kappa), j(\kappa^{++})$ -generic specified by $G^*(j(\kappa))$.

Finally, as $\operatorname{Code}(\kappa)$ is $< \kappa^+$ -distributive, the $\operatorname{Code}(j(\kappa))$ -generic specified by $G^*(j(\kappa))$ is also uniquely determined, as it is generated by the image of the $\operatorname{Code}(\kappa)$ -generic specified by $G(\kappa)$ (under the canonical extension of j to $V[G(<\kappa)][S(\kappa,\kappa^{++})]$, where $S(\kappa,\kappa^{++})$ is the $\operatorname{Sacks}^*(\kappa,\kappa^{++})$ -generic specified by $G(\kappa)$). \Box **Lemma 18** Suppose that G is P-generic and U^* is any normal measure on κ in V[G]. Then U^* is the normal measure derived from an embedding $j^*: V[G] \to M^*$ where j^* extends j.

Proof. Suppose that $k^* : V[G] \to N^*$ is the ultrapower via the normal measure $U^* \in V[G]$. Then N^* is of the form $N[G^*]$ where $k : V \to N$ is the restriction of k^* to V and G^* is k(P)-generic over N. As V = K it follows that k results from a normal iteration of K = L[E] via the extenders on its canonical extender sequence E. We claim that this iteration is in fact just the single ultrapower of K via F, the unique extender on the E-sequence which witnesses the $P_2\kappa$ -hypermeasurability of κ , and therefore k equals j.

Clearly the first extender applied in the iteration that produces k has critical point κ . Now if this extender F_0 were not the extender F witnessing the $P_2\kappa$ -hypermeasurability of κ then k factors as $k_1 \circ k_0$ where $k_0 : K \to K_0$ is the ultrapower via F_0 and $k_0(\kappa)$ is a strongly inaccessible cardinal of K_0 (and therefore of N) less than κ^{++} . As $N[G^*]$ contains all subsets of κ that belong to V[G] and $2^{\kappa} = \kappa^{++}$ in V[G], it follows that $k_0(\kappa)$ is not strongly inaccessible in $N[G^*]$. But G^* is generic over N for the forcing k(P), which preserves strong inaccessibility. This contradiction implies that F_0 is indeed equal to F.

Now we claim that the iteration ends in one step, i.e., no extender with critical point greater than κ is applied in the iteration. (Recall that in a normal iteration, critical points strictly increase over the stages of the iteration.) For, suppose that k factors as $h \circ j$, where $h: M \to N$ is an iteration map with critical point $\lambda > \kappa$. Then λ is of the form $k^*(f^*)(\kappa)$ for some $f^*: \kappa \to \text{Ord in } V[G]$, as $k^*: V[G] \to N[G^*]$ is given by a measure ultrapower. By Lemma 14 there is a function g in V with domain κ such that $f^*(\alpha) \in g(\alpha)$ and $g(\alpha)$ has cardinality α^{++} , for each $\alpha < \kappa$. Thus λ is an element of $k^*(g)(\kappa) = k(g)(\kappa) = h(j(g))(\kappa) = h(j(g))(h(\kappa)) = h(j(g)(\kappa))$, and $j(g)(\kappa)$ has M-cardinality κ^{++} . In particular, $j(g)(\kappa)$ has M-cardinality less than the critical point of h and therefore $h(j(g)(\kappa))$ is included in the range of h. But this is impossible, as λ belongs to $h(j(g)(\kappa))$ and λ is the critical point of h. \Box (Lemma 18)

This completes the proof of Theorem 12.

It is not difficult to derive other possibilities for the number of normal measures on a cardinal where the GCH fails.

Theorem 19 Suppose that V is a minimal extender model with a $P_2\kappa$ -hypermeasurable and β is a cardinal at most κ^{++} . Then there is a cofinalitypreserving generic extension in which $2^{\kappa} = \kappa^{++}$ and there are exactly β normal measures on κ .

Proof. The case $\alpha = 0$ is easy, and the case $\alpha = 1$ is Theorem 12, whose proof uses an iteration of the forcings Sacks^{*}(α, α^{++})*Code(α) for inaccessible $\alpha <$ κ . To obtain exactly β normal measures, we consider the forcing Sacks^{β}(α), defined as follows: If β is less than α then a condition is a subtree T of $\alpha^{<\alpha}$ which is suitable (i.e., closed under initial segments and under unions of increasing sequences of length less than α) and with the property that for some closed unbounded $C \subseteq \alpha$, s * i belongs to T whenever $s \in T$ has length in C and i is less than β . If β lies in the interval $[\alpha, \kappa)$ then we take Sacks^{β}(α) to be the trivial forcing. If β equals κ , κ^+ or κ^{++} then we replace "*i* is less than β " with "*i* is less than $|s|, |s|^+$ or $|s|^{++}$ ", respectively (where |s|denotes the length of s). Now instead of iterating Sacks^{*}(α, α^{++})*Code(α) for inaccessible $\alpha < \kappa$, we iterate Sacks^{*} (α, α^{++}) * Sacks^{β} (α) * Code (α) , where $\operatorname{Code}(\alpha)$ is defined as before, but now codes not only the $\operatorname{Sacks}^*(\alpha, \alpha^{++})$ generic but also the Sacks^{β}(α)-generic. The rest of the proof works as before, except now there are exactly β -many choices for the Sacks^{$j(\beta)$} ($j(\kappa)$)-generic specified by $G^*(j(\kappa))$, one for each possible value of this generic at κ . Thus we get exactly β normal measures on κ in the generic extension. \Box (Theorem 19)

Of course the above work concerning the number of normal measures on κ when $2^{\kappa} = \kappa^{++}$ generalises readily to many other values of 2^{κ} . Here is a sample result, whose proof involves no major new ideas.

Theorem 20 Suppose that V = L[E] is an extender model with a last extender F and let $j_F : V \to M_F$ be the ultrapower via F. Suppose that F has critical point κ , $f : \kappa \to \kappa$, $f(\alpha)$ is a cardinal of cofinality greater than α for each $\alpha < \kappa$, $H(j_F(f)(\kappa))$ is included in M_F (i.e., F witnesses that κ is "f-hypermeasurable") and F is the only extender on the E-sequence with this property. Also suppose that $\beta \leq j_F(f)(\kappa)$ is a cardinal of the form $j_F(g)(\kappa)$ for some $g : \kappa \to \kappa$. Let γ denote $j_F(f)(\kappa)$. Then there is a cofinalitypreserving generic extension in which $2^{\kappa} = \gamma$ and there are exactly β normal measures on κ .

For example, Theorem 20 can be used to obtain a model in which 2^{κ} is the least weakly Mahlo cardinal greater than κ and there are exactly λ normal measures on κ , where λ is the least weakly inaccessible greater than κ .

We end with some open questions.

Q1. Can the hypothesis of Theorem 12 be weakened to " $o(\kappa) = \kappa^{++}$ "? Q2. Is it consistent that the number of normal measures on some cardinal κ be a cardinal greater than 2^{κ} but of cofinality at most κ^{+} ?

Q3. Do similar results hold for normal measures on $P_{\kappa}\lambda$ when λ is greater than κ ?

References

- Apter, A., Cummings, J. and Hamkins, J. Large cardinals with few measures, Proceedings AMS, Vol.135, No.7, 2007.
- [2] Baldwin, S. The ⊲-ordering on normal ultrafilters, Journal of Symbolic Logic, Vol.51, No.4, 1985.
- [3] Ben-Neria, O. Magidor forcing and the number of normal measures, Master's thesis, Tel Aviv university, 2008.
- [4] Cummings, J. Possible behaviours for the Mitchell ordering, Annals of Pure and Applied Logic, Vol.65, 1993.
- [5] Dodd, A. *The core model*, London Math Society Lecture Notes 61, 1982.
- [6] Friedman, S. Coding over a measurable cardinal, Journal of Symbolic Logic Vol. 54, No. 4, pp. 1145–1159, 1989.
- [7] Friedman, S. *Fine structure and class forcing*, de Gruyter, 2000.
- [8] Friedman, S. and Thompson, K. Perfect trees and elementary embeddings, Journal of Symbolic Logic, vol.73, no.3, pp. 906-918, 2008.

- [9] Kunen, K. Some applications of iterated ultrapowers in set theory, Annals of Mathematical Logic 1, 1970.
- [10] Kunen, K. and Paris, J. Boolean extensions and measurable cardinals, Annals of Mathematical Logic 2, 1970/1971, no. 4, 359–377.
- [11] Leaning, J. Disassociated indiscernibles, Ph.D. dissertation, University of Florida, 1999 (also see [3]).
- [12] Mitchell, W. Sets constructible from sequences of ultrafilters, Journal of Symbolic Logic, Vol.39, No.1, 1974.
- [13] Zeman, M. Inner models and large cardinals, de Gruyter Series in Logic and Its Applications Vol.5, 2002.