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Abstract

There have been numerous results showing that a measurable car-
dinal κ can carry exactly α normal measures in a model of GCH,
where α is a cardinal at most κ

++. Starting with just one measurable
cardinal, we have [9] (for α = 1), [10] (for α = κ

++, the maximum
possible) and [1] (for α = κ

+, after collapsing κ
++). In addition, un-

der stronger large cardinal hypotheses, one can handle the remaining
cases: [12] (starting with a measurable cardinal of Mitchell order α),
[2] (as in [12], but where κ is the least measurable cardinal and α is
less than κ, starting with a measurable of high Mitchell order) and
[11] (as in [12], but where κ is the least measurable cardinal, starting
with an assumption weaker than a measurable cardinal of Mitchell
order 2). In this article we treat all cases by a uniform argument,
starting with only one measurable cardinal and applying a cofinality-
preserving forcing. The proof uses κ-Sacks forcing and the “tuning
fork” technique of [8]. In addition, we explore the possibilities for the
number of normal measures on a cardinal at which the GCH fails.

Theorem 1 Assume GCH. Suppose that κ is measurable and let α be a
cardinal at most κ++. Then in a cofinality-preserving forcing extension, κ

carries exactly α normal measures.

∗The first author wishes to thank the Austrian Science Fund (FWF) for its generous
support through Project Number P 19375-N18.
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Proof. By [6], we may first force V to be of the form L[U ][R] for some real
R, where U is a normal measure on κ. Using GCH in the ground model, this
forcing is cofinality-preserving. So we assume that V is of this form, and as
the real R will play no role in the proof, we further assume that V is simply
L[U ] for some normal measure U , which by [9] is unique.

The case α = 0 is easy, as adding one κ-Cohen set kills the measurability
of κ. We focus now on the case α = 2, which brings out the main ideas of
the proof.

Let j : V → M be the ultrapower embedding given by the normal measure
U ; thus every element of M is of the form j(f)(κ) for some function f

with domain κ. Our plan is to define an iteration P (with specially-chosen
support) of length κ+1, with the two properties below. Let G be P -generic.
For any elementary embedding k : V [G] → N , the measure Uk derived from
k is defined by: A ∈ Uk iff A ⊆ κ and κ ∈ k(A).

1. In V [G] there are exactly two G∗ ⊆ j(P ) which are j(P )-generic over M

and which contain j[G] as a subset.
2. Suppose that U∗ is any normal measure on κ in V [G]. Then U∗ is the nor-
mal measure derived from an embedding j∗ : V [G] → M∗ where j∗ extends
j.

Now notice the following:

Lemma 2 Suppose that j∗0 : V [G] → M∗
0 and j∗1 : V [G] → M∗

1 are elemen-
tary embeddings extending j. Then the following are equivalent:
(i) j∗0 equals j∗1 .
(ii) j∗0(G) equals j∗1(G).
(iii) The normal measure U∗

0 derived from j∗0 equals the normal measure U∗
1

derived from j∗1 .

Proof. First note that M∗
i equals M [j∗i (G)] as j∗i extends j. It follows that

j∗i is just an ultrapower embedding (given by the normal measure U∗
i derived

from j∗i ), as every element of M [j∗i (G)] is of the form j(f)(κ)j∗
i
(G) = j∗i (f

∗)(κ)
where f ∗ : κ → V [G] is defined by f ∗(α) = f(α)G. Therefore (iii) implies
(i). Also j∗i is uniquely determined by j∗i (G), as j∗i (σ

G) = j(σ)j∗
i
(G) for each

2



P -name σ, hence (ii) implies (i). The implications (i) implies (ii) and (i)
implies (iii) are trivial. 2 (Lemma 2)

The theorem now follows: Property 1 and the lemma imply that there are
exactly two normal measures on κ in V [G] which are derived from elementary
embeddings j∗ : V [G] → M∗ extending j. Property 2 implies that any normal
measure on κ in V [G] is indeed of this form. So there are exactly two normal
measures on κ in V [G].

We turn now to a description of the iteration P . Our notation for iter-
ations is as follows: P (α) denotes stage α of the iteration, P (< α) denotes
the iteration below α and for α < β we decompose P (< β) naturally as
P (< α) ∗ P (α) ∗ P (α, β). We must specify each P (α) and also the support
to be used to define P (< α) for limit α.

First we specify each P (α). Our iteration has length κ + 1, so P (α) is
defined only for α ≤ κ. We take P (α) to be trivial unless α is inaccessible,
in which case P (α) is a two-step iteration Sacks(α) ∗ Code(α). The first
factor, Sacks(α) is α-Sacks forcing, whose conditions are perfect α-trees,
i.e., subsets T of 2<α which are closed under initial segments, closed under
increasing sequences of length < α and with the property that for some closed
unbounded C ⊆ α, both s ∗ 0 and s ∗ 1 belong to T whenever s ∈ T has
length in C (see [8]). To define Code(α), we take advantage of the following
lemma. Recall that we have assumed that V equals L[U ] where U is the
(unique) normal measure on κ and that j denotes the embedding j : V → M

resulting from the ultrapower via U .

Lemma 3 There exists a sequence ~Xκ = 〈Xκ
i | i < κ+〉 of pairwise disjoint

stationary subsets of κ+ ∩ Cof(κ) such that ~Xκ belongs to M .

Proof. V = L[U ] satisfies Jensen’s ♦κ+ Principle on cofinality κ: There
is a sequence 〈Sβ | β < κ+〉 such that Sβ ⊆ β for each β < κ+ and for
any X ⊆ κ+, the set of β < κ+ of cofinality κ such that Sβ = X ∩ β is
stationary (see [5]). In fact, using Jensen’s hierarchy for L[U ] (described in
[13]), which has better condensation properties than the usual L[U ]-hierarchy,

the sequence ~S = 〈Sβ | β < κ+〉 can be chosen to be definable over H(κ+)
with parameter κ. As V and M (the ultrapower of V by the measure U)

have the same H(κ+), it follows that ~S belongs to M . For i < κ+ let Xκ
i be
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the set of β < κ+ of cofinality κ such that Sβ = {i}. Then 〈Xκ
i | i < κ+〉

also belongs to M . 2 (Lemma 3)

Fix ~Xκ as in Lemma 3. Then as ~Xκ belongs to M , we may also fix a
function f : κ → V such that for each inaccessible α < κ, f(α) is an α+-

sequence of disjoint stationary subsets of α+ ∩ Cof(α) and j(f)(κ) = ~Xκ.

Write f(α) as ~Xα = 〈Xα
i | i < α+〉.

Recall that we wish to define Code(α), where P (α) = Sacks(α)∗Code(α).
Let S(α) denote the α-Sacks generic added at the first stage of this two-step
iteration. We view S(α) as a subset of α. A condition in Code(α) is a closed,
bounded subset c of α+. For conditions c, d in Code(α), we say that d extends
c, written d ≤ c, iff:

1. d end-extends c (i.e., d contains c and all elements of d\ c are greater than
max(c)).
2. For i < α: If i belongs to S(α) then d \ c is disjoint from Xα

1+2i; if i does
not belong to S(α) then d \ c is disjoint from Xα

1+2i+1.
3. For i ≤ max(c): If i belongs to c then d \ c is disjoint from Xα

α+2i; if i does
not belong to c then d \ c is disjoint from Xα

α+2i+1.

Now we define the desired iteration P of length κ + 1:

P (0) is trivial.
P (α) is trivial unless α ≤ κ is inaccessible, in which case P (α) = Sacks(α) ∗
Code(α).
P (< λ) is the nonstationary support limit of the P (< α), α < λ, for limit
ordinals λ. I.e., p belongs to P (< λ) iff p belongs to the inverse limit of the
P (< α), α < λ, and if λ is inaccessible then the set of α < λ such that p(α)
is nontrivial is a nonstationary subset of λ.

The following fact will be used repeatedly in what follows.

Lemma 4 Suppose that λ ≤ κ is inaccessible and 〈αi | i < λ〉 is the in-
creasing enumeration of a closed unbounded subset of λ. Also suppose that
p0 ≥ p1 ≥ · · · is a λ-sequence of conditions in P (< λ) where pi+1 agrees with
pi up to and including αi for each i < λ, and pγ is the greatest lower bound
of the pi, i < γ, for limit γ < λ. Then there is a condition p in P (< λ)
which extends each pi.

4



Proof. Let p(i) be pαi
(i) for each i < λ. We need only verify that the p

defined in this way is indeed a condition, as then it will clearly extend each
pi. If i < λ is a limit and αi belongs to the support of p, then αi belongs to
the support of pj for some j < i; it follows that the support of p restricted
to the αi, i limit, is the diagonal union of the supports of the pi, i < λ, and
is therefore nonstationary. 2

Lemma 5 P preserves cofinalities.

Proof. Suppose that α is an infinite regular cardinal; we show that any ordinal
of cofinality greater than α in V also has cofinality greater than α in V [G] for
P -generic G. As P decomposes as P (< α) ∗Sacks(α) ∗Code(α) ∗P (α, κ+1)
where Sacks(α) obeys α-fusion (see [8]) and P (α, κ + 1) is < α+-closed, it
suffices to prove the result for P (< α) and for Code(α). We first consider
P (< α). Suppose that ḟ is a P (< α)-name for a function from α into Ord.
Let 〈αi | i < α〉 enumerate the limit cardinals less than α in increasing order.
If p is a condition in P (< α), then by Lemma 4 we may successively extend
p to conditions pi, i ≤ α, so that pi+1 agrees with pi up to stage αi and forces
that there are at most α+

i possibilities for ḟ(i), taking greatest lower bounds
at limit stages. This is because P (< α+

i ) has a dense subset of size α+
i and

P (α+
i , α) is < α++

i -closed. The resulting condition pα forces that there are
at most α+

i possibilities for ḟ(i) for each i < α, and therefore forces that ḟ

cannot be cofinal in an ordinal of V -cofinality greater than α.

To prove the result for Code(α), it suffices to show that Code(α) is < α+-
distributive (i.e., the intersection of α-many open dense sets is dense). Notice
that Code(α) is < α-closed (i.e., descending β-sequences of conditions have
lower bounds for β < α) and when extending conditions, there is nothing to
prohibit adding elements of Xα

0 . So, given a sequence 〈Di | i < α〉 of open
dense sets and a condition c, we extend c to c = c0 ≥ c1 ≥ · · · in α + 1 steps,
so that ci+1 meets Di for each i < α, cλ is the greatest lower bound of the
ci, i < λ, for limit λ < α and the supremum of the max(ci)’s is an element
of Xα

0 . This is easily done, using the fact that Xα
0 is a stationary subset of

α+ ∩ Cof(α). 2 (Lemma 5)

A similar proof yields the following.

Lemma 6 If G is P -generic, then any function f ∗ : κ → κ in V [G] is
dominated by a function f : κ → κ in V .
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Proof. P decomposes as P (< κ)∗Sacks(κ)∗Code(κ) where Sacks(κ) satisfies
the desired domination property (see [8]) and Code(κ) is < κ+-distributive
Thus it suffices to prove the result for P (< κ). But the previous proof shows
that if ḟ is a P (< κ)-name for a function from κ to κ and p is a condition in
P (< κ), then some q ≤ p forces that ḟ(i) is less than some κi < κ, for each
i < κ; thus q forces ḟ to be dominated by g where g(i) = κi. 2 (Lemma 6)

By yet another, similar argument we have:

Lemma 7 For inaccessible α ≤ κ, P (< α) ∗ Sacks(α) preserves the station-
arity of subsets of α+.

Proof. It suffices to show that P (< α) preserves the stationarity of subsets of
α+ and that Sacks(α)G(<α) has this property in V [G(< α)] for P (< α)-generic
G(< α).

For the first statement, suppose that X is a stationary subset of α+ and
p ∈ P (< α) forces Ċ to be a closed unbounded subset of α+; we must find
q ≤ p which forces that some element of X belongs to Ċ. If X ∩ Cof(ᾱ)
is stationary for some ᾱ less than α, then this is easy, as P (< α) factors
as P (< ᾱ+) ∗ P (ᾱ+, α), where the first factor has size less than α and the
second factor is forced to be < ᾱ+-closed. So assume that X ∩ Cof(α) is
stationary. Now much as in the previous proof, we can use Lemma 4 to build
a sequence p = p0 ≥ p1 ≥ · · · of length α+1, taking greatest lower bounds at
limit stages, together with a continuous, increasing sequence β0 < β1 < · · · of
length α + 1, such that each pi+1 forces Ċ to intersect the interval (βi, βi+1)
for each i; thus q = pα forces Ċ to contain βα. Moreover, for some closed
unbounded D ⊆ α+, each β in D of cofinality α is of the form βα for some
such choice of the pi’s and βi’s. By choosing β in D ∩ X we obtain q ≤ p

forcing β to belong to Ċ with β in X, as desired.

Now suppose that X is a stationary subset of α+ in the model V [G(< α)],
where G(< α) is P (< α)-generic, and the condition T ∈ Sacks(α)G(<α) forces
Ċ to be a closed unbounded subset of α+. We wish to find T ∗ ≤ T which
forces some ordinal in X to belong to Ċ. If X ∩ Cof(ᾱ) is stationary for
some ᾱ < α, then this is easy, as Sacks(α) is < α-closed. So assume that
X ∩ Cof(α) is stationary. Now as in the previous argument, but using α-
fusion, we can build a sequence T = T0 ≥ T1 ≥ · · · of length α + 1, taking
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greatest lower bounds at limit stages, together with a continuous, increasing
sequence β0 < β1 < · · · of length α + 1, so that each Ti+1 has the same
i-th splitting level as Ti and forces Ċ to intersect the interval (βi, βi+1); thus
T ∗ = Tα forces Ċ to contain βα. Now the proof finishes exactly as in the
previous argument. 2 (Lemma 7)

It follows from Lemma 7 that the stationary sets Xα
i , i < α+, used to

define Code(α) remain stationary after forcing with P (< α) ∗ Sacks(α).

Lemma 8 Suppose that g is Code(α)-generic (over V [G(< α)][S(α)]) and
let C(α) be the union of the conditions in g. Then in the generic extension
we have:
(1) For i < α, i belongs S(α) iff Xα

1+2i is nonstationary and i does not belong
to S(α) iff Xα

1+2i+1 is nonstationary.
(2) For i < α+, i belongs to C(α) iff Xα

α+2i is nonstationary and i does not
belong to C(α) iff Xα

α+2i+1 is nonstationary.
(3) There is a unique Sacks(α) ∗ Code(α)-generic over V [G(< α)].

Proof. (1) By the definition of extension for C(α), it follows immediately
that for i < α, Xα

1+2i is nonstationary if i belongs to S(α) and Xα
1+2i+1

is nonstationary if i does not belong to S(α). We must show that in the
former case, Xα

1+2i+1 remains stationary (the latter case is treated similarly).

Suppose that Ċ is a name for a CUB subset of α+ and c is a condition. As in
the proof of < α+-distributivity for Code(α), there are CUB-many β < α+

with the property that we can build an α-sequence c = c0 ≥ c1 ≥ · · · with
ci+1 forcing some ordinal greater than max(ci) into Ċ and with β equal to the
supremum of the max(ci)’s. As Xα

1+2i+1 is stationary (in the ground model)
we can choose such a β in Xα

1+2i+1, which proves that the latter set is indeed
stationary in the generic extension.
(2) Just like (1).
(3) Using (1) and (2), another Sacks(α) ∗ Code(α)-generic would give rise
to an inner model of V [G(< α)][S(α)][C(α)] in which some stationary set of
V [G(< α)][S(α)][C(α)] is not stationary, a contradiction. 2 (Lemma 8)

Our aim is to show that if G is P -generic over V then there are exactly two
normal measures on κ in V [G].

Lemma 9 In V [G] there are precisely two G∗ ⊆ j(P ) which are j(P )-generic
over M and which contain j[G] as a subset.
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Proof. Write G∗(j(κ)) as S∗(j(κ)) ∗ C∗(j(κ)). By the results of [8] (see
Lemmas 4 and 6 of that paper), given a choice for G∗(< j(κ)), there are
exactly two possibilities for S∗(j(κ)), each of which is generic. And given
a choice for G∗(< j(κ)) ∗ S∗(j(κ)), there is exactly one generic choice for
C∗(j(κ)), as the forcing Code(κ) is < κ+-distributive and therefore the image
(under the extension to V [G(< κ)∗S(κ)] of j) of the generic C(κ) for Code(κ)
specified by G(κ) generates a generic C∗(j(κ)). So it suffices to show that
there is exactly one generic choice for G∗(< j(κ)).

Let P ∗ denote j(P ), and for any p ∈ P ∗(< j(κ)), let p(≤ κ) denote
p ↾ κ+1 and p(> κ) denote p ↾ (κ, j(κ)). Note that for any dense D∗ ⊆ P ∗(<
j(κ)) in M , there is a condition p̄ ∈ G(< κ) such that j(p̄) = p reduces D∗

into P ∗(≤ κ) = P ∗(< κ) ∗P ∗(κ), in the sense that {q ∈ P ∗(≤ κ) | q ∪ p(> κ)
meets D∗} is dense in P ∗(≤ κ) below p(≤ κ): D∗ is of the form j(f)(κ) where
f : κ → V and f(i) is dense on P (< κ) for each i < κ. For each inaccessible
i < κ, any condition in P (< κ) can be extended strictly above i to reduce
f(i) into P (≤ i), as the forcing P (≤ i) has a dense subset of size i++ and
the forcing P (> i) is i+++-closed. It follows that the set of p̄ ∈ P (< κ) such
that p̄ reduces f(i) into P (≤ i) for each inaccessible i < κ is dense, as using
Lemma 4 we can successively extend a given p ∈ P (< κ) in κ steps, taking
greatest lower bounds at limit stages and only extending strictly above i at
each stage i to reduce f(i) into P (≤ i). Thus as G(< κ) is P (< κ)-generic,
there is a condition p̄ ∈ G(< κ) which reduces each f(i), i inaccessible and
less than κ, into P (≤ i). It follows that p = j(p̄) reduces D∗ into P ∗(≤ κ),
as desired.

In particular, G∗(< j(κ)) is uniquely determined by G∗(≤ κ), as it must
contain each j(p̄), p̄ ∈ G(< κ) and these conditions, together with G∗(≤ κ),
decide which conditions belong to G∗(< j(κ)). So it only remains to show
that there is only one generic choice for G∗(≤ κ). Clearly there is only one
choice for G∗(< κ), as this must equal G(< κ). And there is only one choice
for G∗(κ) by Lemma 8(3). 2 (Lemma 9)

To complete the proof of Theorem 1 in the case α = 2 we show:

Lemma 10 Suppose that U∗ is any normal measure on κ in V [G]. Then U∗

is the normal measure derived from an embedding j∗ : V [G] → M∗ where j∗

extends j.
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Proof. Suppose that U∗ is a normal measure on κ in V [G]. Let k∗ : V [G] →
N∗ be the ultrapower of V [G] via U∗. Then N∗ is of the form N [H∗] where
k = k∗ ↾ V : V → N and H∗ is k(P )-generic over N , k[G] ⊆ H∗.

Now by [9], the embedding k : V → N is obtained by iterating the
measure U . We claim that in fact, k equals j, which proves the lemma.
Otherwise, j(κ) is less than k(κ) and therefore can be written as k∗(f ∗)(κ)
for some function f ∗ : κ → κ in V [G]. By Lemma 6, choose f : κ → κ in
V which dominates f ∗. Thus k∗(f ∗)(κ) < k∗(f)(κ) = k(f)(κ) and therefore
k(f)(κ) is greater than j(κ). But we can write write k as k′ ◦ j, where k′ is
obtained by iterating the measure j(U) at j(κ) and therefore has critical point
j(κ). As j(f)(κ) < j(κ), it follows that k(f)(κ) = k′(j(f)(κ)) = j(f)(κ), a
contradiction. 2 (Lemma 10)

We now consider the cases α > 2. Let us say that a subtree T of κ<κ is
suitable iff it is closed under initial segments and under unions of length less
than κ.

If α is greater than 2 but still less than κ, then instead of using binary-
splitting κ-trees, use fully α-splitting κ-trees, i.e., suitable subtrees T of α<κ

with the property that for some closed unbounded C ⊆ κ, s ∗ i belongs to
T whenever s ∈ T has length in C and i is less than α . Then everything
works in the same way, except there are now exactly α-many choices for G∗,
depending on the value at κ for the generic chosen by G∗(j(κ)) for α-splitting
j(κ)-Sacks forcing.

If α equals κ then we use suitable subtrees T of κ<κ such that for some
closed unbounded C ⊆ κ, s ∗ i belongs to T whenever the length of s ∈ T

belongs to C and i is less than the length of s. Now there are exactly κ-
many possible values at κ for the (new kind of) j(κ)-Sacks generic chosen by
G∗(j(κ)).

If α is κ+ then we use suitable subtrees T of κ<κ with the property that
for some closed unbounded C ⊆ κ, s ∗ i belongs to T whenever |s| = the
length of s belongs to C and i is less than |s|+. Then there are exactly κ+-
many choices for the j(κ)-Sacks product generic chosen by G∗(j(κ)). Finally,
if α equals κ++ then none of the above arguments are needed, as the result
was already established in [10] (also see Lemma 6 of [4], which shows that
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one can simply add a single α-Cohen set to each inaccessible α ≤ κ with
Easton support to obtain the desired result).

When GCH fails

We now consider the possible number of normal measures on a cardinal
κ when GCH fails. Over a model of GCH, we can obviously force 2κ++

to be
any cardinal of cofinality greater than κ++ without adding normal measures;
so the interesting questions concern the values of 2κ and 2κ+

. We shall focus
on obtaining β normal measures on κ for cardinals β ≤ 2κ, as for larger β

one does not need the methods of this paper, but only the simpler methods
of [10].

Regarding a failure of the GCH at κ+, we have the following.

Theorem 11 Suppose that V = L[U ] where U is a normal measure on κ,
β is a cardinal at most κ+ and γ is a cardinal of cofinality greater than κ+.
Then in a cofinality-preserving generic extension there are exactly β normal
measures on κ and 2κ+

= γ.

Proof. First perform the cofinality-preserving iteration P above to obtain
a model where there are exactly β normal measures on κ and GCH holds.
Then force with Add(κ+, γ), the forcing that adds γ-many κ+-Cohen sets via
a κ-support product. As in Lemma 10, if G is generic for P ∗ Add(κ+, γ),
then any measure ultrapower embedding k∗ : V [G] → N∗ is a lifting of j,
the ultrapower of V by U . And as in Lemma 9, using the fact that the
forcing Add(κ+, γ) is < κ+-closed (< κ+-distributivity is enough) there are
exactly β such liftings, giving rise to exactly β-many normal measures on κ.
2 (Theorem 11)

Regarding a failure of the GCH at κ we begin with the following result.

Theorem 12 Assume the consistency of a P2κ-hypermeasurable, i.e., a car-
dinal κ for which there is an elementary embedding j : V → M with critical
point κ and Vκ+2 contained in M . Then it is consistent that for some κ,
2κ = κ++ and there is a unique normal measure on κ.
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Proof. We may assume that V is a “minimal extender model with a P2κ-
hypermeasurable”, i.e., V = K = L[E] where E is a coherent sequence of
extenders and only the last extender F on the E-sequence witnesses that
its critical point κ is P2κ-hypermeasurable (see [13]). Moreover, V satisfies
GCH and in any generic extension V [G] of V , each k : K → K∗ is obtained
by normally iterating the extenders on the E-sequence. Let κ denote the
critical point of F and let j : V → M denote the ultrapower of V via F .
Thus Vκ+2, or equivalently H(κ++), belongs to M .

We again describe an iteration P of length κ + 1 which is nontrivial only
at inaccessible α ≤ κ.

In [8] the product with supports of size α of α++-many copies of Sacks(α)
was used at each inaccessible stage α ≤ κ to preserve the measurability of κ

and force 2κ = κ++. This forcing however creates many new normal measures
on κ and therefore we modify it as follows. Let Sacks∗(α) denote the forcing
with ∗-perfect α-trees, i.e., subtrees T of 2<α which are closed under initial
segments, closed under increasing sequences of length less than α and with
the property that for some closed unbounded C ⊆ α, all nodes of T of
length a singular element of C are splitting nodes of T . Then like Sacks(α),
Sacks∗(α) is < α-closed and satisfies α-fusion. Its advantage for the present
proof is that whereas use of Sacks(α) gives rise to at least two possible liftings
j∗ : V [G] → M [G∗] of j, corresponding to the two different values at κ of
the generic specified by G∗(j(κ)) for Sacks(j(κ)), use of Sacks∗(α) imposes a
unique value at κ for the generic specified by G∗(j(κ)) for Sacks∗(j(κ)), and
therefore helps to guarantee a unique lifting. We will however still need a
version of the Code(α) forcing to guarantee a unique choice for G∗(κ).

Thus for inaccessible α ≤ κ we take P (α) to be Sacks∗(α, α++)∗Code(α),
where Sacks∗(α, α++) is the product of α++-many copies of Sacks∗(α) with
support of size α, and Code(α), defined below, is the natural analogue of the
Code(α) forcing used in the proof of Theorem 1. The forcing Sacks∗(α, α++)
is < α-closed, obeys α-fusion, is α++-cc and therefore preserves cofinalities
(the proof is exactly as for Sacks(α, α++)). A generic for it corresponds to
a sequence 〈S(i) | i < α++〉, where each S(i) ⊆ α is Sacks∗(α)-generic over
V [G(< α)].

As in Lemma 3, we may use the good condensation properties of the
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L[E]-hierarchy (see [13]) to obtain a ♦κ++-sequence ~S = 〈Sβ | β < κ++〉
on cofinality κ+ which is definable over H(κ++) from the parameter κ, and

therefore belongs to M . Moreover ~S is of the form j(f)(κ) where f has
domain κ. Now for i < κ++ let Xκ

i be the set of β < κ++ of cofinality κ+ such
that Sβ = {i}. Then the sequence 〈Xκ

i | i < κ++〉 of disjoint stationary sets
is of the form j(g)(κ) where g has domain κ and g(α) = 〈Xα

i | i < α++〉 is a
sequence of disjoint stationary subsets of α++∩Cof(α+) for each inaccessible
α < κ. For inaccessible α ≤ κ we use 〈Xα

i | i < α++〉 to define Code(α).

Let S(α, α++) = 〈S(i) | i < α++〉 denote the generic added by the forcing
Sacks∗(α, α++). A condition in Code(α) is a closed, bounded subset c of α++.
For conditions c, d in Code(α) we say that d extends c, written d ≤ c, iff:

1. d end-extends c.
2. For i, j < α++, if j belongs to S(i) then d \ c is disjoint from Xα

1+4〈i,j〉; if

j does not belong to S(i) then d \ c is disjoint from Xα
1+4〈i,j〉+1.

3. For i < max(c), if i belongs to c then d \ c is disjoint from Xα
1+4i+2; if i

does not belong to c then d \ c is disjoint from Xα
1+4i+3.

In the previous definition, 〈·, ·〉 denotes the Gödel pairing function on the
ordinals. This completes the definition of P (α) = Sacks∗(α, α++) ∗ Code(α)
for inaccessible α ≤ κ. The iteration P is the length κ + 1 iteration of the
P (α)’s with nonstationary support. In analogy to the previous proof, we
have the following lemmas:

Lemma 13 P preserves cofinalities.

Proof. As in the proof of Lemma 5, we show that for each infinite regular α,
if an ordinal has cofinality greater than α then it still does after forcing with
P . As P factors as P (< α) ∗ Sacks∗(α, α++) ∗ Code(α) ∗ P (α, κ + 1) where
Code(α) ∗ P (α, κ + 1) is < α+-closed and Sacks∗(α, α++) obeys α-fusion, it
suffices to prove the result for P (< α). This is done exactly as in the proof
of Lemma 5. 2 (Lemma 13)

Lemma 14 If G is P -generic, then for any function f ∗ : κ → Ord in V [G]
there is a function g : κ → [Ord]<κ in V such that for each α < κ, f ∗(α) is
an element of g(α) and g(α) has cardinality α++.

12



Proof. Factor P as P (< κ) ∗ Sacks∗(κ, κ++) ∗ Code(κ) and correspondingly
write V [G] as V [G(< κ)][S(κ, κ++)][C(κ)]. As Code(κ) is < κ+-distributive,
the given function f ∗ in fact belongs to V [G(< κ)][S(κ, κ++)]. Recall that
Sacks∗(κ, κ++) obeys κ-fusion. This implies that if ḟ is a name for a function
from κ into the ordinals and p is a condition in Sacks∗(κ, κ++), then there is
q ≤ p forcing that for each α < κ, ḟ(α) takes one of at most card ((2α)α) =
α+-many values (corresponding to choices of nodes on the α-th splitting level
of at most α-many trees). Thus there is a function g as in the statement of
the lemma which belongs to V [G(< κ)]. And the argument given in the proof
of Lemma 5 shows that if p belongs to P (< α) and ġ is a name for a function
from κ into the [Ord]<κ then there is q ≤ p and a closed unbounded subset
C of κ such that for α in C, q forces ġ(α) to take one of at most α++-many
values (corresponding to choices for conditions in P (< α) ∗ P (α)). We may
further extend q at nonstationary-many places to force such a bound on the
number of possible values for ġ(α) for all α < κ. Then putting these two
approximation results together we obtain the lemma. 2 (Lemma 14)

Lemma 15 For inaccessible α ≤ κ, P (< α) ∗ Sacks∗(α, α++) preserves the
stationarity of subsets of α++.

Proof. This is clear, because P (< α) has a dense subset of size α+ and
Sacks∗(α, α++) is (forced by P (< α) to be) α++-cc. 2 (Lemma 15)

Lemma 16 Suppose that g is Code(α)-generic (over V [G(< α)][S(α, α++)],
where S(α, α++) = 〈S(i) | i < α++〉) and let C(α) be the union of the
conditions in g. Then in the generic extension we have:
(1) For i, j < α++, j belongs S(i) iff Xα

1+4〈i,j〉 is nonstationary and j does

not belong to S(i) iff Xα
1+4〈i,j〉+1 is nonstationary.

(2) For i < α++, i belongs to C(α) iff Xα
1+4i+2 is nonstationary and i does

not belong to C(α) iff Xα
1+4i+3 is nonstationary.

(3) There is a unique Sacks∗(α, α++) ∗ Code(α)-generic over V [G(< α)].

Proof. Just as in the proof of Lemma 8. 2 (Lemma 16)

Now we complete the proof of the Theorem 12 as follows.

Lemma 17 In V [G] there is precisely one G∗ ⊆ j(P ) which is j(P )-generic
over M and which contains j[G] as a subset.
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Proof. We argue as in Lemma 9. G∗(< κ) is unique as it must equal G(< κ),
which is indeed generic for j(P )(< κ) = P (< κ). And G∗(κ) is the unique
generic for j(P )(κ) = P (κ) by Lemma 16. Using nonstationary supports
as in Lemma 9, it then follows that G∗(< j(κ)) is the unique generic for
P ∗(< j(κ)) containing j[G(< κ)]. Therefore we must only argue that there
is a unique generic choice for G∗(j(κ)).

In [8], it is shown that if j∗ : V [G(< κ)] → M [G∗(< j(κ))] is the canon-
ical extension of j : V → M then the range of j∗ on the Sacks(κ, κ++)-
generic specified by G(κ) determines a unique Sacks(j(κ))-generic S∗

0(i) for
i < j(κ++) not in the range of j and exactly two Sacks(j(κ))-generics
S∗

0(i), S
∗
1(i) for i in the range of j. (More precisely, the intersection of the i-th

components of the j∗(~T ), where ~T belongs to the Sacks(κ, κ++)-generic spec-
ified by G(κ), is a single Sacks(j(κ))M [G∗(<j(κ))]-generic for i < κ++ not in the
range of j, and is the union of two distinct Sacks(j(κ))M [G∗(<j(κ))]-generics
for i < κ++ in the range of j.) Moreover, the sequence 〈S∗

0(i) | i < j(κ++)〉 is
generic for Sacks(j(κ), j(κ++))M [G(<j(κ))] over M [G(< j(κ))]. The argument
used there applied to the present context gives the same result with Sacks
replaced by Sacks∗, with the only difference that now the range of j∗ on the
Sacks∗(κ, κ++)-generic specified by G(κ) determines a unique Sacks∗(j(κ))-
generic S∗(i) for each i < j(κ++), including those i < j(κ++) in the range
of j. The reason is that if i equals j(̄i), then some T in in the ī-th compo-
nent of the Sacks∗(κ, κ++)-generic specified by G(κ) has the property that
all of its splitting nodes are of singular length, and therefore j∗(T ), a j(κ)-
tree associated to the i-th component of Sacks∗(j(κ), j(κ++)), has no split-
ting at κ. Thus we arrive at the desired conclusion: The image under j∗ of
the Sacks∗(κ, κ++)-generic specified by G(κ) generates a Sacks∗(j(κ), j(κ++)-
generic over M [G∗(< j(κ))], and therefore there is a unique generic choice
for the Sacks∗(j(κ), j(κ++)-generic specified by G∗(j(κ)).

Finally, as Code(κ) is < κ+-distributive, the Code(j(κ))-generic specified
by G∗(j(κ)) is also uniquely determined, as it is generated by the image
of the Code(κ)-generic specified by G(κ) (under the canonical extension of
j to V [G(< κ)][S(κ, κ++)], where S(κ, κ++) is the Sacks∗(κ, κ++)-generic
specified by G(κ)). 2
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Lemma 18 Suppose that G is P -generic and U∗ is any normal measure
on κ in V [G]. Then U∗ is the normal measure derived from an embedding
j∗ : V [G] → M∗ where j∗ extends j.

Proof. Suppose that k∗ : V [G] → N∗ is the ultrapower via the normal
measure U∗ ∈ V [G]. Then N∗ is of the form N [G∗] where k : V → N is the
restriction of k∗ to V and G∗ is k(P )-generic over N . As V = K it follows
that k results from a normal iteration of K = L[E] via the extenders on its
canonical extender sequence E. We claim that this iteration is in fact just
the single ultrapower of K via F , the unique extender on the E-sequence
which witnesses the P2κ-hypermeasurability of κ, and therefore k equals j.

Clearly the first extender applied in the iteration that produces k has
critical point κ. Now if this extender F0 were not the extender F witnessing
the P2κ-hypermeasurability of κ then k factors as k1 ◦ k0 where k0 : K → K0

is the ultrapower via F0 and k0(κ) is a strongly inaccessible cardinal of K0

(and therefore of N) less than κ++. As N [G∗] contains all subsets of κ that
belong to V [G] and 2κ = κ++ in V [G], it follows that k0(κ) is not strongly
inaccessible in N [G∗]. But G∗ is generic over N for the forcing k(P ), which
preserves strong inaccessibility. This contradiction implies that F0 is indeed
equal to F .

Now we claim that the iteration ends in one step, i.e., no extender with
critical point greater than κ is applied in the iteration. (Recall that in a
normal iteration, critical points strictly increase over the stages of the itera-
tion.) For, suppose that k factors as h ◦ j, where h : M → N is an iteration
map with critical point λ > κ. Then λ is of the form k∗(f ∗)(κ) for some
f ∗ : κ → Ord in V [G], as k∗ : V [G] → N [G∗] is given by a measure ultra-
power. By Lemma 14 there is a function g in V with domain κ such that
f ∗(α) ∈ g(α) and g(α) has cardinality α++, for each α < κ. Thus λ is an
element of k∗(g)(κ) = k(g)(κ) = h(j(g))(κ) = h(j(g))(h(κ)) = h(j(g)(κ)),
and j(g)(κ) has M -cardinality κ++. In particular, j(g)(κ) has M -cardinality
less than the critical point of h and therefore h(j(g)(κ)) is included in the
range of h. But this is impossible, as λ belongs to h(j(g)(κ)) and λ is the
critical point of h. 2 (Lemma 18)

This completes the proof of Theorem 12.
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It is not difficult to derive other possibilities for the number of normal
measures on a cardinal where the GCH fails.

Theorem 19 Suppose that V is a minimal extender model with a P2κ-
hypermeasurable and β is a cardinal at most κ++. Then there is a cofinality-
preserving generic extension in which 2κ = κ++ and there are exactly β

normal measures on κ.

Proof. The case α = 0 is easy, and the case α = 1 is Theorem 12, whose proof
uses an iteration of the forcings Sacks∗(α, α++)∗Code(α) for inaccessible α ≤
κ. To obtain exactly β normal measures, we consider the forcing Sacksβ(α),
defined as follows: If β is less than α then a condition is a subtree T of
α<α which is suitable (i.e., closed under initial segments and under unions
of increasing sequences of length less than α) and with the property that
for some closed unbounded C ⊆ α, s ∗ i belongs to T whenever s ∈ T has
length in C and i is less than β. If β lies in the interval [α, κ) then we take
Sacksβ(α) to be the trivial forcing. If β equals κ, κ+ or κ++ then we replace
“i is less than β” with “i is less than |s|, |s|+ or |s|++”, respectively (where |s|
denotes the length of s). Now instead of iterating Sacks∗(α, α++)∗Code(α) for
inaccessible α ≤ κ, we iterate Sacks∗(α, α++) ∗ Sacksβ(α) ∗ Code(α), where
Code(α) is defined as before, but now codes not only the Sacks∗(α, α++)-
generic but also the Sacksβ(α)-generic. The rest of the proof works as before,
except now there are exactly β-many choices for the Sacksj(β)(j(κ))-generic
specified by G∗(j(κ)), one for each possible value of this generic at κ. Thus
we get exactly β normal measures on κ in the generic extension. 2 (Theorem
19)

Of course the above work concerning the number of normal measures on
κ when 2κ = κ++ generalises readily to many other values of 2κ. Here is a
sample result, whose proof involves no major new ideas.

Theorem 20 Suppose that V = L[E] is an extender model with a last ex-
tender F and let jF : V → MF be the ultrapower via F . Suppose that F has
critical point κ, f : κ → κ, f(α) is a cardinal of cofinality greater than α

for each α < κ, H(jF (f)(κ)) is included in MF (i.e., F witnesses that κ is
“f -hypermeasurable”) and F is the only extender on the E-sequence with this
property. Also suppose that β ≤ jF (f)(κ) is a cardinal of the form jF (g)(κ)
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for some g : κ → κ. Let γ denote jF (f)(κ). Then there is a cofinality-
preserving generic extension in which 2κ = γ and there are exactly β normal
measures on κ.

For example, Theorem 20 can be used to obtain a model in which 2κ is the
least weakly Mahlo cardinal greater than κ and there are exactly λ normal
measures on κ, where λ is the least weakly inaccessible greater than κ.

We end with some open questions.

Q1. Can the hypothesis of Theorem 12 be weakened to “o(κ) = κ++”?
Q2. Is it consistent that the number of normal measures on some cardinal κ

be a cardinal greater than 2κ but of cofinality at most κ+?
Q3. Do similar results hold for normal measures on Pκλ when λ is greater
than κ?
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