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Abstract

There have been numerous results showing that a measurable car-
dinal k can carry exactly o normal measures in a model of GCH,
where « is a cardinal at most k. Starting with just one measurable
cardinal, we have [9] (for « = 1), [10] (for « = T, the maximum
possible) and [1] (for a = k™, after collapsing x**). In addition, un-
der stronger large cardinal hypotheses, one can handle the remaining
cases: [12] (starting with a measurable cardinal of Mitchell order «),
[2] (as in [12], but where k is the least measurable cardinal and « is
less than k, starting with a measurable of high Mitchell order) and
[11] (as in [12], but where k is the least measurable cardinal, starting
with an assumption weaker than a measurable cardinal of Mitchell
order 2). In this article we treat all cases by a uniform argument,
starting with only one measurable cardinal and applying a cofinality-
preserving forcing. The proof uses x-Sacks forcing and the “tuning
fork” technique of [8]. In addition, we explore the possibilities for the
number of normal measures on a cardinal at which the GCH fails.

Theorem 1 Assume GCH. Suppose that k is measurable and let o be a
cardinal at most k™. Then in a cofinality-preserving forcing extension, k
carries exactly o normal measures.

*The first author wishes to thank the Austrian Science Fund (FWF) for its generous
support through Project Number P 19375-N18.



Proof. By [6], we may first force V' to be of the form L[U][R] for some real
R, where U is a normal measure on . Using GCH in the ground model, this
forcing is cofinality-preserving. So we assume that V' is of this form, and as
the real R will play no role in the proof, we further assume that V' is simply
L[U] for some normal measure U, which by [9] is unique.

The case a = 0 is easy, as adding one k-Cohen set kills the measurability
of k. We focus now on the case a = 2, which brings out the main ideas of
the proof.

Let j : V. — M be the ultrapower embedding given by the normal measure
U; thus every element of M is of the form j(f)(x) for some function f
with domain k. Our plan is to define an iteration P (with specially-chosen
support) of length x4+ 1, with the two properties below. Let G be P-generic.
For any elementary embedding k : V[G] — N, the measure Uy, derived from
k is defined by: A € Uy iff A C k and k € k(A).

1. In V[G] there are exactly two G* C j(P) which are j(P)-generic over M
and which contain j[G] as a subset.

2. Suppose that U* is any normal measure on « in V[G]. Then U* is the nor-
mal measure derived from an embedding j* : V|G| — M* where j* extends

J-
Now notice the following:

Lemma 2 Suppose that j§ : V|G] — Mg and ji : V|G] — M are elemen-
tary embeddings extending j. Then the following are equivalent:

(i) ji equals j.

(i3) J5(G) equals j;(G).

(iii) The normal measure U derived from ji equals the normal measure Uy
derived from ji.

Proof. First note that M} equals M[j*(G)] as j extends j. It follows that
JF is just an ultrapower embedding (given by the normal measure U} derived
from j¥), as every element of M{[j;(G)] is of the form j(f) (k)% @ = j*(f*)(k)
where f*: x — V[G] is defined by f*(a) = f(a)®. Therefore (iii) implies
(i). Also j is uniquely determined by j*(G), as j/(c%) = j(0)% (@ for each



P-name o, hence (ii) implies (i). The implications (i) implies (ii) and (i)
implies (iii) are trivial. O (Lemma 2)

The theorem now follows: Property 1 and the lemma imply that there are
exactly two normal measures on x in V[G] which are derived from elementary
embeddings j* : V|G| — M* extending j. Property 2 implies that any normal
measure on  in V[G] is indeed of this form. So there are exactly two normal
measures on « in V[G].

We turn now to a description of the iteration P. Our notation for iter-
ations is as follows: P(«a) denotes stage « of the iteration, P(< «) denotes
the iteration below a and for a < # we decompose P(< [3) naturally as
P(< a) x P(a) * P(a, ). We must specify each P(«) and also the support
to be used to define P(< «) for limit a.

First we specify each P(«). Our iteration has length x + 1, so P(«) is
defined only for @ < k. We take P(«a) to be trivial unless « is inaccessible,
in which case P(«) is a two-step iteration Sacks(a) * Code(a). The first
factor, Sacks(«) is a-Sacks forcing, whose conditions are perfect a-trees,
i.e., subsets T of 2<% which are closed under initial segments, closed under
increasing sequences of length < v and with the property that for some closed
unbounded C' C «, both s * 0 and s % 1 belong to T" whenever s € T has
length in C (see [8]). To define Code(«), we take advantage of the following
lemma. Recall that we have assumed that V equals L[U] where U is the
(unique) normal measure on x and that j denotes the embedding j : V- — M
resulting from the ultrapower via U.

Lemma 3 There exists a sequence X* = (XF | i < k) of pairwise disjoint
stationary subsets of k™ N Cof(k) such that X" belongs to M.

Proof. V = L[U] satisfies Jensen’s .+ Principle on cofinality x: There
is a sequence (Sz | B < kT) such that Sz C [ for each § < k™ and for
any X C kT, the set of § < k% of cofinality x such that Sz = X N is
stationary (see [5]). In fact, using Jensen’s hierarchy for L[U] (described in
[13]), which has better condensation properties than the usual L[U]-hierarchy,
the sequence S = (S3 | 3 < k%) can be chosen to be definable over H(x')
with parameter k. As V and M (the ultrapower of V by the measure U)
have the same H(x'), it follows that S belongs to M. For i < xt let X* be
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the set of § < kT of cofinality x such that Sz = {i}. Then (XF | i < k™)
also belongs to M. O (Lemma 3)

Fix X* as in Lemma 3. Then as X* belongs to M, we may also fix a
function f : K — V such that for each inaccessible a < k, f(a) is an a*t-
sequence of disjoint stationary subsets of at N Cof(a) and j(f)(k) = X*.
Write f(a) as X = (X | i < o).

Recall that we wish to define Code(a), where P(«) = Sacks(a)*Code(a).
Let S(«) denote the a-Sacks generic added at the first stage of this two-step
iteration. We view S(«) as a subset of a. A condition in Code(«) is a closed,
bounded subset ¢ of a™. For conditions ¢, d in Code(«), we say that d extends
¢, written d < ¢, iff:

1. d end-extends c (i.e., d contains ¢ and all elements of d\ ¢ are greater than
max(c)).

2. For i < o If i belongs to S(«) then d \ c is disjoint from X7, ,;; if 7 does
not belong to S(«) then d\ ¢ is disjoint from X7, ;.

3. For ¢ < max(c): If i belongs to ¢ then d \ ¢ is disjoint from X, ,; if i does
not belong to ¢ then d \ ¢ is disjoint from X, ;4.

Now we define the desired iteration P of length x + 1:

P(0) is trivial.

P(a) is trivial unless o < k is inaccessible, in which case P(a) = Sacks(a) *
Code(a).

P(< )) is the nonstationary support limit of the P(< a), v < A, for limit
ordinals A. Le., p belongs to P(< \) iff p belongs to the inverse limit of the
P(< a), o < A, and if A is inaccessible then the set of oz < A such that p(«)
is nontrivial is a nonstationary subset of \.

The following fact will be used repeatedly in what follows.

Lemma 4 Suppose that A\ < k is inaccessible and {a; | i < A) is the in-
creasing enumeration of a closed unbounded subset of X. Also suppose that
Po > p1 > -+ is a A-sequence of conditions in P(< \) where p;y1 agrees with
pi up to and including o; for each i < A, and p, is the greatest lower bound
of the p;, i < 7y, for limit v < A. Then there is a condition p in P(< \)
which extends each p;.



Proof. Let p(i) be pa,(i) for each i < A. We need only verify that the p
defined in this way is indeed a condition, as then it will clearly extend each
p;. If i < Ais a limit and «; belongs to the support of p, then «; belongs to
the support of p; for some j < i; it follows that the support of p restricted
to the oy, ¢ limit, is the diagonal union of the supports of the p;, © < A, and
is therefore nonstationary. O

Lemma 5 P preserves cofinalities.

Proof. Suppose that « is an infinite regular cardinal; we show that any ordinal
of cofinality greater than o in V" also has cofinality greater than « in V'[G] for
P-generic G. As P decomposes as P(< «a) * Sacks(a) * Code(a) * P(a, k+ 1)
where Sacks(a) obeys a-fusion (see [§]) and P(a,x + 1) is < at-closed, it
suffices to prove the result for P(< «) and for Code(a). We first consider
P(< «). Suppose that f is a P(< a)-name for a function from a into Ord.
Let (o | i < ) enumerate the limit cardinals less than « in increasing order.
If p is a condition in P(< «), then by Lemma 4 we may successively extend
p to conditions p;, ¢ < a, so that p; 1 agrees with p; up to stage «; and forces
that there are at most a; possibilities for f(i), taking greatest lower bounds
at limit stages. This is because P(< ;") has a dense subset of size a; and
P(af,a) is < a;f f-closed. The resulting condition p, forces that there are
at most «; possibilities for f () for each i < «, and therefore forces that f
cannot be cofinal in an ordinal of V-cofinality greater than «.

To prove the result for Code(a), it suffices to show that Code(«) is < at-
distributive (i.e., the intersection of a-many open dense sets is dense). Notice
that Code(a) is < a-closed (i.e., descending [-sequences of conditions have
lower bounds for # < «) and when extending conditions, there is nothing to
prohibit adding elements of X§. So, given a sequence (D; | i < a) of open
dense sets and a condition ¢, we extend ctoc=cy > ¢ > ---in a+ 1 steps,
so that ¢;;1 meets D; for each 7 < «, ¢, is the greatest lower bound of the
¢i, © < A, for limit A < a and the supremum of the max(¢;)’s is an element
of X§. This is easily done, using the fact that X§ is a stationary subset of
a™ N Cof(ar). O (Lemma 5)

A similar proof yields the following.

Lemma 6 If G is P-generic, then any function f* : k — k in V[G] is
dominated by a function f .k — Kk in V.



Proof. P decomposes as P(< k)*Sacks(k) * Code(r) where Sacks(r) satisfies
the desired domination property (see [8]) and Code(k) is < kT-distributive
Thus it suffices to prove the result for P(< k). But the previous proof shows
that if f is a P(< k)-name for a function from & to x and p is a condition in
P(< k), then some ¢ < p forces that f(i) is less than some ; < &, for each
i < k; thus g forces f to be dominated by g where g(i) = x;. O (Lemma 6)

By yet another, similar argument we have:

Lemma 7 For inaccessible a < k, P(< «) % Sacks(«) preserves the station-
arity of subsets of a™ .

Proof. 1t suffices to show that P(< «) preserves the stationarity of subsets of
o and that Sacks(a)%(<®) has this property in V[G(< a)] for P(< «a)-generic
G(< a).

For the first statement, suppose that X is a stationary subset of o™ and
p € P(< a) forces C to be a closed unbounded subset of a*; we must find
q < p which forces that some element of X belongs to C. If X N Cof(a)
is stationary for some & less than «, then this is easy, as P(< «) factors
as P(< a') x P(a',«), where the first factor has size less than « and the
second factor is forced to be < at-closed. So assume that X N Cof(a) is
stationary. Now much as in the previous proof, we can use Lemma 4 to build
a sequence p = py > p1 > - - - of length a+ 1, taking greatest lower bounds at
limit stages, together with a continuous, increasing sequence Gy < 3y < - - - of
length o + 1, such that each p;41 forces C' to intersect the interval (Bi, Bix1)
for each i; thus ¢ = p, forces C' to contain 3,. Moreover, for some closed
unbounded D C o™, each § in D of cofinality « is of the form [, for some
such choice of the p;’s and 3;’s. By choosing 4 in D N X we obtain ¢ < p
forcing (3 to belong to C' with 3 in X, as desired.

Now suppose that X is a stationary subset of a™ in the model V[G(< «)],
where G(< a) is P(< a)-generic, and the condition T € Sacks(a)¢(<®) forces
C to be a closed unbounded subset of at. We wish to find 7% < T which
forces some ordinal in X to belong to C. If X N Cof(a) is stationary for
some & < «, then this is easy, as Sacks(a) is < a-closed. So assume that
X N Cof(a) is stationary. Now as in the previous argument, but using a-
fusion, we can build a sequence T" = Ty > T7 > --- of length o + 1, taking
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greatest lower bounds at limit stages, together with a continuous, increasing
sequence 3y < [f; < --- of length a + 1, so that each T;,; has the same
i-th splitting level as T} and forces C' to intersect the interval (3;, 8;11); thus
T* = T, forces C to contain 8,. Now the proof finishes exactly as in the
previous argument. O (Lemma 7)

It follows from Lemma 7 that the stationary sets X2, i < a™, used to

define Code(a) remain stationary after forcing with P(< «) * Sacks(«).

Lemma 8 Suppose that g is Code(a)-generic (over V|G(< «)|[S(a)]) and
let C(a) be the union of the conditions in g. Then in the generic extension
we have:

(1) Fori < a, i belongs S(a) iff X{ 5, is nonstationary and i does not belong
to S(a) iff X{'\ o1 15 nonstationary.

(2) For i < a™, i belongs to C(o) iff X$, o is nonstationary and i does not
belong to C(a) iff X§, 941 is nonstationary.

(3) There is a unique Sacks(a) x Code()-generic over V|G(< «a)].

Proof. (1) By the definition of extension for C'(«), it follows immediately
that for ¢ < o, X{,,; is nonstationary if i belongs to S(a) and X7,
is nonstationary if ¢ does not belong to S(«). We must show that in the
former case, X, ,,,, remains stationary (the latter case is treated similarly).
Suppose that C' is a name for a CUB subset of at and ¢ is a condition. As in
the proof of < at-distributivity for Code(«), there are CUB-many § < a™
with the property that we can build an a-sequence ¢ = ¢y > ¢; > --- with
¢iy1 forcing some ordinal greater than max(c;) into C' and with 3 equal to the
supremum of the max(c;)’s. As X{,,;, is stationary (in the ground model)
we can choose such a 3 in X7, |, which proves that the latter set is indeed
stationary in the generic extension.

(2) Just like (1).

(3) Using (1) and (2), another Sacks(a) * Code(a)-generic would give rise
to an inner model of V[G(< «)][S(a)][C(«)] in which some stationary set of
VIG(< a)][S(a)][C(a)] is not stationary, a contradiction. O (Lemma 8)

Our aim is to show that if G is P-generic over V then there are exactly two
normal measures on x in V[G].

Lemma 9 In V[G] there are precisely two G* C j(P) which are j(P)-generic
over M and which contain j|G| as a subset.
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Proof. Write G*(j(k)) as S*(j(r)) * C*(j(k)). By the results of [8] (see
Lemmas 4 and 6 of that paper), given a choice for G*(< j(k)), there are
exactly two possibilities for S*(j(k)), each of which is generic. And given
a choice for G*(< j(k)) * S*(j(k)), there is exactly one generic choice for
C*(j(k)), as the forcing Code(k) is < kT-distributive and therefore the image
(under the extension to V[G(< k)*S(k)] of j) of the generic C(r) for Code(k)
specified by G(k) generates a generic C*(j(k)). So it suffices to show that
there is exactly one generic choice for G*(< j(k)).

Let P* denote j(P), and for any p € P*(< j(k)), let p(< k) denote
p | k+1and p(> k) denote p [ (k,j(x)). Note that for any dense D* C P*(<
j(k)) in M, there is a condition p € G(< k) such that j(p) = p reduces D*
into P*(< k) = P*(< k) * P*(k), in the sense that {¢ € P*(< k) | qUp(> k)
meets D*} is dense in P*(< k) below p(< k): D* is of the form j(f)(x) where
f:x—Vand f(i) is dense on P(< k) for each ¢ < . For each inaccessible
i < Kk, any condition in P(< k) can be extended strictly above ¢ to reduce
f(7) into P(< i), as the forcing P(< i) has a dense subset of size i** and
the forcing P(> i) is itT"-closed. It follows that the set of p € P(< k) such
that p reduces f(i) into P(< i) for each inaccessible i < k is dense, as using
Lemma 4 we can successively extend a given p € P(< k) in k steps, taking
greatest lower bounds at limit stages and only extending strictly above 7 at
each stage i to reduce f(i) into P(< 7). Thus as G(< k) is P(< k)-generic,
there is a condition p € G(< k) which reduces each f(i), ¢ inaccessible and
less than x, into P(< 4). It follows that p = j(p) reduces D* into P*(< k),
as desired.

In particular, G*(< j(k)) is uniquely determined by G*(< k), as it must
contain each j(p), p € G(< k) and these conditions, together with G*(< k),
decide which conditions belong to G*(< j(k)). So it only remains to show
that there is only one generic choice for G*(< k). Clearly there is only one
choice for G*(< k), as this must equal G(< k). And there is only one choice
for G*(k) by Lemma 8(3). O (Lemma 9)

To complete the proof of Theorem 1 in the case a = 2 we show:

Lemma 10 Suppose that U* is any normal measure on x in V[G]. Then U*
is the normal measure derived from an embedding j* : V|G| — M* where j*
extends j.



Proof. Suppose that U* is a normal measure on x in V[G|. Let k* : V[G] —
N* be the ultrapower of V[G] via U*. Then N* is of the form N[H*] where
k=k*1V:V — N and H* is k(P)-generic over N, k|G| C H*.

Now by [9], the embedding k£ : V' — N is obtained by iterating the
measure U. We claim that in fact, & equals j, which proves the lemma.
Otherwise, j(x) is less than k() and therefore can be written as k*(f*)(k)
for some function f* : k — k in V[G|. By Lemma 6, choose f : K — k in
V' which dominates f*. Thus k*(f*)(k) < k*(f)(x) = k(f)(k) and therefore
k(f)(k) is greater than j(k). But we can write write k as k' o j, where k' is
obtained by iterating the measure j(U) at j(x) and therefore has critical point
j(9). As J(f)() < j(s), it follows that k(f)(k) = K((f)(x)) = 3(f)(x), a
contradiction. O (Lemma 10)

We now consider the cases a > 2. Let us say that a subtree T of k<" is
suitable iff it is closed under initial segments and under unions of length less
than k.

If a is greater than 2 but still less than x, then instead of using binary-
splitting k-trees, use fully a-splitting k-trees, i.e., suitable subtrees T' of a<"
with the property that for some closed unbounded C' C k, s % ¢ belongs to
T whenever s € T has length in C' and i is less than « . Then everything
works in the same way, except there are now exactly a-many choices for G*,
depending on the value at x for the generic chosen by G*(j(k)) for a-splitting
Jj(k)-Sacks forcing.

If « equals k then we use suitable subtrees T of k<% such that for some
closed unbounded C' C &k, s * 1 belongs to T" whenever the length of s € T
belongs to C' and i is less than the length of s. Now there are exactly x-
many possible values at x for the (new kind of) j(x)-Sacks generic chosen by

G*(j(x))-

If o is k™ then we use suitable subtrees T' of k=% with the property that
for some closed unbounded C' C &, s * i belongs to 7" whenever |s| = the
length of s belongs to C' and i is less than [s|*. Then there are exactly -
many choices for the j(x)-Sacks product generic chosen by G*(j(x)). Finally,
if o equals k™" then none of the above arguments are needed, as the result
was already established in [10] (also see Lemma 6 of [4], which shows that
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one can simply add a single a-Cohen set to each inaccessible a < k with
Easton support to obtain the desired result).

When GCH fails

We now consider the possible number of normal measures on a cardinal
r when GCH fails. Over a model of GCH, we can obviously force 2" to be
any cardinal of cofinality greater than k™% without adding normal measures;
so the interesting questions concern the values of 2° and 25" . We shall focus
on obtaining 4 normal measures on x for cardinals § < 2%, as for larger
one does not need the methods of this paper, but only the simpler methods
of [10].

Regarding a failure of the GCH at s, we have the following.

Theorem 11 Suppose that V' = L[U| where U is a normal measure on K,
(3 is a cardinal at most k' and v is a cardinal of cofinality greater than k™.
Then in a cofinality-preserving generic extension there are exactly 5 normal
measures on r and 25 = ~.

Proof. First perform the cofinality-preserving iteration P above to obtain
a model where there are exactly 4 normal measures on x and GCH holds.
Then force with Add(x™, ), the forcing that adds y-many x"-Cohen sets via
a k-support product. As in Lemma 10, if G is generic for P « Add(x™, ),
then any measure ultrapower embedding k* : V[G] — N* is a lifting of j,
the ultrapower of V' by U. And as in Lemma 9, using the fact that the
forcing Add(x™,7) is < kT-closed (< k*-distributivity is enough) there are
exactly (8 such liftings, giving rise to exactly S-many normal measures on k.
O (Theorem 11)

Regarding a failure of the GCH at x we begin with the following result.

Theorem 12 Assume the consistency of a Pyk-hypermeasurable, i.e., a car-
dinal K for which there is an elementary embedding j : V — M with critical
point k and V. o contained in M. Then it is consistent that for some k,
2% = k1 and there is a unique normal measure on k.
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Proof. We may assume that V' is a “minimal extender model with a Pk~
hypermeasurable”, i.e., V.= K = L[F] where F is a coherent sequence of
extenders and only the last extender F' on the E-sequence witnesses that
its critical point k is Pak-hypermeasurable (see [13]). Moreover, V satisfies
GCH and in any generic extension V[G] of V, each k : K — K* is obtained
by normally iterating the extenders on the E-sequence. Let s denote the
critical point of F' and let 5 : V' — M denote the ultrapower of V via F.
Thus V4o, or equivalently H(x™), belongs to M.

We again describe an iteration P of length x + 1 which is nontrivial only
at inaccessible o < k.

In [8] the product with supports of size o of @ "-many copies of Sacks(«)
was used at each inaccessible stage a < k to preserve the measurability of x
and force 2 = k*+. This forcing however creates many new normal measures
on « and therefore we modify it as follows. Let Sacks™(a)) denote the forcing
with x-perfect a-trees, i.e., subtrees T' of 2<% which are closed under initial
segments, closed under increasing sequences of length less than o and with
the property that for some closed unbounded C' C «, all nodes of T of
length a singular element of C' are splitting nodes of T'. Then like Sacks(«),
Sacks™(a) is < a-closed and satisfies a-fusion. Its advantage for the present
proof is that whereas use of Sacks(«) gives rise to at least two possible liftings
Jj* : V]G] — M[G*] of j, corresponding to the two different values at & of
the generic specified by G*(j(k)) for Sacks(j(k)), use of Sacks™(a) imposes a
unique value at & for the generic specified by G*(j(k)) for Sacks*(j(x)), and
therefore helps to guarantee a unique lifting. We will however still need a
version of the Code(«) forcing to guarantee a unique choice for G*(k).

Thus for inaccessible o < k we take P(«) to be Sacks™ (o, ™) x Code(a),
where Sacks™(«, ™) is the product of a*T-many copies of Sacks(a) with
support of size o, and Code(«), defined below, is the natural analogue of the
Code(a) forcing used in the proof of Theorem 1. The forcing Sacks™(a, a™™)
is < a-closed, obeys a-fusion, is a™"-cc and therefore preserves cofinalities
(the proof is exactly as for Sacks(a,a™)). A generic for it corresponds to
a sequence (S(i) | i < a*T), where each S(i) C « is Sacks"(«)-generic over
VIG(< ).

As in Lemma 3, we may use the good condensation properties of the
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L[E)-hierarchy (see [13]) to obtain a {,++-sequence S = (S5 | B < wt+)
on cofinality x* which is definable over H(k*") from the parameter x, and
therefore belongs to M. Moreover S is of the form j(f)(x) where f has
domain k. Now for i < k™1 let X[ be the set of § < kTT of cofinality * such
that Sz = {i}. Then the sequence (XF | i < k*T) of disjoint stationary sets
is of the form j(g)(x) where g has domain x and g(a) = (X |i < atT) is a
sequence of disjoint stationary subsets of a™ N Cof(a™) for each inaccessible
a < k. For inaccessible o < k we use (X | 1 < a™") to define Code(a).

Let S(a,at™) = (S(i) | i < a™") denote the generic added by the forcing
Sacks® (a, o). A condition in Code(«) is a closed, bounded subset ¢ of .
For conditions ¢, d in Code(a) we say that d eztends c, written d < ¢, iff:

1. d end-extends c.

2. For i,j < a7, if j belongs to S(i) then d \ ¢ is disjoint from X g if
j does not belong to S(i) then d \ ¢ is disjoint from XP,,,; ;..

3. For ¢ < max(c), if ¢ belongs to ¢ then d \ ¢ is disjoint from X, ;. ,; if @

does not belong to c then d \ ¢ is disjoint from X{, ;. .

In the previous definition, (-,-) denotes the Godel pairing function on the
ordinals. This completes the definition of P(a) = Sacks™(a, at™) * Code(a)
for inaccessible a@ < k. The iteration P is the length s + 1 iteration of the
P(«)’s with nonstationary support. In analogy to the previous proof, we
have the following lemmas:

Lemma 13 P preserves cofinalities.

Proof. As in the proof of Lemma 5, we show that for each infinite regular «,
if an ordinal has cofinality greater than a then it still does after forcing with
P. As P factors as P(< «) * Sacks™(«, ™) * Code(a) * P(«, k + 1) where
Code(a) * P(a,k + 1) is < a-closed and Sacks™ (o, ™) obeys a-fusion, it
suffices to prove the result for P(< «). This is done exactly as in the proof
of Lemma 5. O (Lemma 13)

Lemma 14 If G is P-generic, then for any function f*: k — Ord in V|G]
there is a function g : k — [Ord|<" in V such that for each o < k, f*(a) is
an element of g(a) and g(«) has cardinality o™ .
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Proof. Factor P as P(< k) x Sacks™(k, k™) x Code(k) and correspondingly
write V]G] as V[G(< k)][S(k, kTT)][C(k)]. As Code(k) is < xT-distributive,
the given function f* in fact belongs to V[G(< k)][S(k,kTT)]. Recall that
Sacks*(k, k") obeys k-fusion. This implies that if f is a name for a function
from « into the ordinals and p is a condition in Sacks™(k, x*T), then there is
q < p forcing that for each o < &, f(a) takes one of at most card ((2)*) =
a-many values (corresponding to choices of nodes on the a-th splitting level
of at most a-many trees). Thus there is a function g as in the statement of
the lemma which belongs to V[G(< x)]. And the argument given in the proof
of Lemma 5 shows that if p belongs to P(< «) and ¢ is a name for a function
from x into the [Ord]<* then there is ¢ < p and a closed unbounded subset
C of k such that for « in C, ¢ forces g(«) to take one of at most a™-many
values (corresponding to choices for conditions in P(< «a) * P(«)). We may
further extend ¢ at nonstationary-many places to force such a bound on the
number of possible values for g(«) for all @« < k. Then putting these two
approximation results together we obtain the lemma. O (Lemma 14)

Lemma 15 For inaccessible « < k, P(< a) x Sacks*(«, a™ 1) preserves the
stationarity of subsets of o™ .

Proof. This is clear, because P(< «) has a dense subset of size ™ and
Sacks™ (v, a™ 1) is (forced by P(< «) to be) att-cc. O (Lemma 15)

Lemma 16 Suppose that g is Code(a)-generic (over VIG(< a)][S(a, atT)],
where S(a, ™) = (S(i) | i < atT)) and let C(«) be the union of the
conditions in g. Then in the generic extension we have:

(1) Fori,j < o™, j belongs S(i) iff X7\, is nonstationary and j does
not belong to S(i) iff X4y 18 nonstationary.

(2) For i < o, i belongs to C(a) iff X7\ 410 is nonstationary and i does
not belong to C(«a) iff X7\ 415 s nonstationary.

(3) There is a unique Sacks™(a, a™) x Code(a)-generic over V|G(< «)].

Proof. Just as in the proof of Lemma 8. O (Lemma 16)
Now we complete the proof of the Theorem 12 as follows.

Lemma 17 In V[G] there is precisely one G* C j(P) which is j(P)-generic
over M and which contains j|G| as a subset.

13



Proof. We argue as in Lemma 9. G*(< k) is unique as it must equal G(< k),
which is indeed generic for j(P)(< k) = P(< k). And G*(k) is the unique
generic for j(P)(k) = P(k) by Lemma 16. Using nonstationary supports
as in Lemma 9, it then follows that G*(< j(k)) is the unique generic for
P*(< j(k)) containing j[G(< k)]. Therefore we must only argue that there
is a unique generic choice for G*(j(k)).

In [8], it is shown that if j* : V[G(< k)] = M[G*(< j(k))] is the canon-
ical extension of j : V' — M then the range of j* on the Sacks(k, k" )-
generic specified by G(k) determines a unique Sacks(j(x))-generic Sg (i) for
i < j(k™") not in the range of j and exactly two Sacks(j(k))-generics
Sg (i), S1(1) for i in the range of j. (More precisely, the intersection of the i-th
components of the j*(T'), where T belongs to the Sacks(r, s +1)-generic spec-
ified by G(k), is a single Sacks(j (k)M (<i))]_generic for i < x*+ not in the
range of j, and is the union of two distinct Sacks(j(x))MI&" (<i))l_generics
for i < k™ in the range of j.) Moreover, the sequence (Sg(i) | i < j(k™1)) is
generic for Sacks(j(k), j(k71))MIE<IW) gver M[G(< j(k))]. The argument
used there applied to the present context gives the same result with Sacks
replaced by Sacks®, with the only difference that now the range of j* on the
Sacks®(k, kT1)-generic specified by G(k) determines a unique Sacks™(j(k))-
generic S*(i) for each i < j(k*T), including those i < j(k*") in the range
of j. The reason is that if i equals j(i), then some T in in the i-th compo-
nent of the Sacks”™(k, x™1)-generic specified by G(k) has the property that
all of its splitting nodes are of singular length, and therefore j*(7T'), a j(k)-
tree associated to the i-th component of Sacks*(j(k),j(k%")), has no split-
ting at k. Thus we arrive at the desired conclusion: The image under j* of
the Sacks™(k, kT1)-generic specified by G(k) generates a Sacks™(j(k), j(kT1)-
generic over M[G*(< j(k))], and therefore there is a unique generic choice
for the Sacks™(j(k), j(kTT)-generic specified by G*(j(k)).

Finally, as Code(k) is < kT-distributive, the Code(j(x))-generic specified
by G*(j(k)) is also uniquely determined, as it is generated by the image
of the Code(k)-generic specified by G(x) (under the canonical extension of
j to VIG(< k)][S(k,kTT)], where S(k,x"T) is the Sacks*(k, k™ T)-generic
specified by G(k)). O
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Lemma 18 Suppose that G is P-generic and U* is any normal measure
on k in V|[G]. Then U* is the normal measure derived from an embedding
Jj* : VIG] — M* where j* extends j.

Proof. Suppose that k* : V[G] — N* is the ultrapower via the normal
measure U* € V[G]. Then N* is of the form N[G*] where k : V — N is the
restriction of k* to V and G* is k(P)-generic over N. As V = K it follows
that k results from a normal iteration of K = L[E] via the extenders on its
canonical extender sequence F. We claim that this iteration is in fact just
the single ultrapower of K via F', the unique extender on the F-sequence
which witnesses the Pyx-hypermeasurability of x, and therefore k equals j.

Clearly the first extender applied in the iteration that produces k has
critical point k. Now if this extender F, were not the extender F' witnessing
the Pyr-hypermeasurability of x then k factors as ki o kg where kg : K — K
is the ultrapower via Fy and ko(k) is a strongly inaccessible cardinal of K
(and therefore of N) less than k™+. As N[G*] contains all subsets of x that
belong to V]G] and 2" = k™1 in V]G], it follows that ky(k) is not strongly
inaccessible in N[G*|. But G* is generic over N for the forcing k(P), which
preserves strong inaccessibility. This contradiction implies that Fj is indeed
equal to F'.

Now we claim that the iteration ends in one step, i.e., no extender with
critical point greater than x is applied in the iteration. (Recall that in a
normal iteration, critical points strictly increase over the stages of the itera-
tion.) For, suppose that k factors as h o j, where h : M — N is an iteration
map with critical point A > k. Then A is of the form £*(f*)(x) for some
f*:k — Ord in VI[G], as k* : V[G] — N|G*| is given by a measure ultra-
power. By Lemma 14 there is a function g in V with domain s such that
f*(a) € g(a) and g(«) has cardinality o™, for each o« < k. Thus \ is an
element of k*(g)(k) = k(g)(x) = h(j(9))(x) = h(j(g))(h()) = h(j(g)(x).
and j(g)(k) has M-cardinality x**. In particular, j(g)(x) has M-cardinality
less than the critical point of h and therefore h(j(g)(x)) is included in the
range of h. But this is impossible, as A belongs to h(j(g)(k)) and A is the
critical point of h. O (Lemma 18)

This completes the proof of Theorem 12.
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It is not difficult to derive other possibilities for the number of normal
measures on a cardinal where the GCH fails.

Theorem 19 Suppose that V is a minimal extender model with a Psk-
hypermeasurable and 3 is a cardinal at most k™. Then there is a cofinality-
preserving generic extension in which 25 = k™ and there are exactly 3
normal measures on k.

Proof. The case a = 0 is easy, and the case a = 1 is Theorem 12, whose proof
uses an iteration of the forcings Sacks™ (o, ™) *Code(«) for inaccessible v <
r. To obtain exactly 3 normal measures, we consider the forcing Sacks® (o),
defined as follows: If § is less than « then a condition is a subtree T' of
a<* which is suitable (i.e., closed under initial segments and under unions
of increasing sequences of length less than «) and with the property that
for some closed unbounded C' C «, s * ¢ belongs to T" whenever s € T has
length in C' and 7 is less than . If 3 lies in the interval [a, k) then we take
Sacks” () to be the trivial forcing. If § equals &, £ or xt* then we replace
“i is less than 37 with “i is less than |s|, |s|™ or |s|T1” respectively (where |s|
denotes the length of s). Now instead of iterating Sacks™(«, a™)*Code(«) for
inaccessible a < k, we iterate Sacks*(a, att) x Sacks” () ¥ Code(a), where
Code() is defined as before, but now codes not only the Sacks*(a, a™™)-
generic but also the Sacks”’(a)-generic. The rest of the proof works as before,
except now there are exactly S-many choices for the Sacks’” (j(k))-generic
specified by G*(j(k)), one for each possible value of this generic at x. Thus
we get exactly 5 normal measures on « in the generic extension. O (Theorem
19)

Of course the above work concerning the number of normal measures on
k when 2% = k™1 generalises readily to many other values of 2%. Here is a
sample result, whose proof involves no major new ideas.

Theorem 20 Suppose that V = L[E] is an extender model with a last ex-
tender F and let jp : V — Mp be the ultrapower via F'. Suppose that F has
critical point k, [ : k — K, f(a) is a cardinal of cofinality greater than «
for each o« < k, H(jp(f)(K)) is included in Mg (i.e., F' witnesses that k is
“f-hypermeasurable”) and F is the only extender on the E-sequence with this
property. Also suppose that 3 < jr(f)(k) is a cardinal of the form jr(g)(k)
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for some g : Kk — k. Let v denote jr(f)(k). Then there is a cofinality-
preserving generic extension in which 2% =~ and there are ezxactly 3 normal
measures on kK.

For example, Theorem 20 can be used to obtain a model in which 2% is the
least weakly Mahlo cardinal greater than x and there are exactly A\ normal
measures on k, where \ is the least weakly inaccessible greater than k.

We end with some open questions.

Q1. Can the hypothesis of Theorem 12 be weakened to “o(k) = k177

Q2. Is it consistent that the number of normal measures on some cardinal x
be a cardinal greater than 2% but of cofinality at most k7

Q3. Do similar results hold for normal measures on P, A when \ is greater
than k7
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