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Abstract. We show that for a measurable cardinal κ, the restriction of the
ideal of nonstationary subsets of κ to any given set of measure 0 can be made
∆1 definable with parameters from H(κ+), preserving the measurability of κ.
We also show that starting with one measurable cardinal, one can force NSω1

to be both precipitous and ∆1-definable with parameters from H(ω2).

1. Introduction

In this article we consider the definability of the ideal NSκ of nonstationary
subsets of an uncountable regular cardinal κ. It is easy to see that NSκ is Σ1

definable with parameter κ. In Gödel’s L, NSκ is not ∆1 definable with parameters
fromH(κ+) (see [3]), but surprisingly, in the case κ = ℵ1, NSω1

can be ∆1 definable
(with parameters from H(ω2)), as was shown in [10]. (Note that by reflection, a
subset of H(κ+) is ∆1 definable with parameters from H(κ+) iff it is ∆1 definable
over H(κ+) with parameters from H(κ+).) For larger κ, the entire NSκ can be
∆1 definable with parameters from H(κ+) for successor κ (see [4]) and for all
uncountable regular κ it is possible for the restriction of NSκ to a stationary set to
be ∆1 definable with parameters from H(κ+) (see [6]). In this paper we consider
the ∆1 definability of restrictions of NSκ to a stationary set in the large cardinal
context.

A first observation is the following: If κ is measurable or even just weak compact,
then the full NSκ cannot be ∆1 with parameters from H(κ+). This is proved in
Proposition 2.1 below.

We next show that if U is a normal measure on κ and the stationary set A
is of measure zero (i.e. does not belong to U) then it is possible to force NSκ

restricted to A to be ∆1, preserving the stationarity of A and the measurability of
κ (witnessed by a normal measure extending U).

Finally, we show that starting with one measurable cardinal, one can force NSω1

to be both ∆1 definable and precipitous.
Our notation is rather standard (cf [8]). The reader is assumed to be familiar

with large cardinal and forcing arguments. In particular, the lifting argument via
master conditions appears frequently in the proof. [1] contains the basic definitions
and arguments used in this article.

The authors wish to thank the Austrian Science Fund (FWF) for its support for
this research through Project P 23316 N13.

2. ∆1-Definability of restrictions of the nonstationary ideal at a

measurable cardinal

Proposition 2.1. Suppose that κ is weak compact. Then NSκ is not ∆1 definable.

Proof. It suffices to show that if ϕ(A) is any Σ1 formula with free variable A
denoting a subset of κ then:

ϕ(A) iff X = {α < κ | ϕ(A ∩ α)} contains a club.
1
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Given this, we see that the ∆1 definability of NSκ would entail the ∆1 definability
of any Σ1 definable collection of subsets of κ, which is impossible by diagonalisation.

Now we prove the above equivalence. First suppose that ϕ(A) holds. Let (Mi |
i < κ) be a continuous κ-chain of elementary submodels of H(κ+) of size less than
κ which are transitive below κ and contain the parameter A. Le κi denote Mi ∩ κ.
Then the κi’s form a club C in κ. For each i < κ, ϕ(A∩κi) is true in the transitive
collapse ofMi and therefore by persistence is true in V . This shows that X contains
a club. So far we have only used the regularity of κ.

Now suppose that ϕ(A) fails and therefore fails in H(κ+). For any club C there
is some α in C such that ϕ(A ∩ α) fails in H(α+), using Π1

1 reflection for the weak
compact cardinal κ (note that Π1

1 over H(κ) is equivalent to Π1 over H(κ+)). This
shows that X does not contain a club, finishing the proof. �

So for a measurable cardinal, which is also weak compact, the best we can hope
for is the ∆1 definability of the restriction of NSκ to a costationary set.

Theorem 2.1. Assume that GCH holds and κ is a measurable cardinal. Suppose
U is a normal measure on κ and T is a stationary subset of κ of measure 0. Then
in a cofinality-preserving forcing extension:

(1) κ remains a measurable cardinal (witnessed by a normal measure extending
U).

(2) T remains stationary of measure 0.
(3) NSκ ↾ T = {S | S ∈ NSκ and S ⊆ T } is ∆1-definable with parameters

from H(κ+).

Proof. Let j : V → M be the ultrapower embedding given by U . Fix a function
f : κ + 1 → P (κ) such that f(κ) = T , j(f)(κ) = T and f(η) is a stationary
subset of η whenever η < κ is regular. (Note that f(η) = T ∩ η for measure
one many η < κ.) Fix a bijection k : κ+ → κ+ × κ+ ∈ M such that ∀α < κ+

(k(α))0 ≤ α and let fk with domain κ + 1 witness that fk(κ) = k, j(fk)(κ) = k
and fk(η) : η+ → η+ × η+ is a bijection such that ∀α < η+ (fk(η)(α))0 ≤ α for

all regular η < κ. Fix a sequence ~f = 〈fβ | β ∈ [κ, κ+)〉 ∈ M of functions where
fβ : κ→ β is a bijection. Define the canonical functions gβ : γ 7→ ot fβ [γ] for γ < κ.

Fix a sequence ~C = 〈Cβ | β ∈ [κ, κ+)〉 of club subsets of κ in M such that for all

γ1 < γ2 ∈ Cβ , gβ(γ1) < gβ(γ2). Let f~f
and f ~C

be such that f~f
(κ) = ~f , f ~C

(κ) = ~C,

j({f~f
, f ~C

})(κ) = {~f, ~C} and for all regular η < κ, f~f
(η) and f ~C

(η) satisfy the

properties of ~f and ~C with κ replaced by η. We write f~f
(η) = (fη

β | β ∈ [η, η+))

and f ~C
(η) = (Cη

β | β ∈ [η, η+)).

The forcing P is defined as a length κ+1 reverse Easton iteration 〈Pη, Ṗ
η | η ≤ κ〉

such that Ṗη is trivial unless η is inaccessible.

Fixing any inaccessible cardinal η ≤ κ, we define Ṗη = ˙〈Pη
β ,Q

η
β | β < η+〉 as a

length η+ iteration with supports of size less than η. Ṗη is very similar to the
forcing P defined in the proof of Theorem 49(4) of [3]. However, we slightly change
the definition to fit our context.

In V Pη , Ṗη is designed to force that NSη ↾ f(η) is ∆1-definable over H(η+). It
is sufficient to force that there is an S ⊃ f(η) such that NSη ↾ S is ∆1 over H(η+).
In order to carry out the coding procedure, we also require that S is fat (i.e., its
intersection with any club contains closed subsets of any size < η) and η \ S is not
reflecting to any α ∈ S (i.e., S ∩ α is nonstationary in α for regular α in S). This
can be achieved by forcing with
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P
η
0 = {p ∈ 2<η | For all β ∈ f(η) ∩ dom(p), p(β) = 1 and {γ < β | p(γ) = 0} is not

stationary in β},

ordered by end-extension. Pη
0 is (< η)-strategically closed. We will prove a general

form of this fact in Claim 2.1. If G is P
η
0 generic over V Pη , then S = (

⋃

G)−1(1)
satisfies the desired properties in the generic extension.

Let Qη
1 be Add(η, 1)V

Pη∗P
η
0 . Pη

0 ∗Q
η
1 is (< η)-distributive. Moreover, it preserves

all stationary subsets of η. Let G be Q
η
1 generic over V Pη∗P

η
0 . Define a sequence

〈Sβ | β ∈ [η, η+)〉 of subsets of η as follows: γ ∈ Sβ iff (
⋃

G)(gβ(γ)) = 1∧γ ∈ Cβ\S.
For all
β ∈ [η, η+), Sβ is a stationary subset of η \ S. Also notice that modulo the

nonstationary ideal, Sβ does not depend on the choices of the fη
β ’s and Cη

β ’s. For

all β ∈ [η, η+), denote (η \ Sβ) by Aβ .
For β ∈ [2, η+), we define Q

η
β by induction. From now on we work in V Pη . For

a fat subset T of η, let Sh(T ) be the forcing poset for shooting a club through
T . Assume that P

η
β has been defined. We define Q

η
β as follows: Let β̄ and γ be

such that β = 2 + η ∗ β̄ + γ where γ < η (and ∗ denotes ordinal multiplication).
Recall that kη = fk(η) : η+ → η+ × η+ is a bijection such that for all β < η+,

kη(β) = 〈β1, β2〉 is a pair of ordinals such that β1 ≤ β. Let Ṫβ̄ be the β̄2-nd P
η

β̄1
-nice

name for a subset of η. Since β̄1 ≤ β, we can view Ṫβ̄ as a P
η
β name. If β ≥ ω, let

β̃ = η + β, otherwise let β̃ = η + (β − 2). Now in V Pη∗P
η
β we set

Q
η
β =

{

Sh(Aβ̃) if Ṫβ̄ 6∈ NSη ↾ S ∧ ∃λ((γ = 2 ∗ λ ∧ λ ∈ Ṫβ̄) ∨ (γ = 2 ∗ λ+ 1 ∧ λ 6∈ Ṫβ̄))

trivial otherwise.

Claim 2.1. For all β ∈ [η, η+):

(1) In V Pη , Pη
β is η+-c.c and (< η)-distributive.

(2) In V Pη∗P
η
0 , for any A ⊆ η, both of the statements “A ∈ NSη ↾ S” and

“A 6∈ NSη ↾ S” are preserved in V Pη∗P
η
β . In particular, f(η) is stationary

in V Pη∗P
η

β .
(3) If q ∈ P

η
β and either γ ≥ β or q forces that Q̇η

γ is trivial, then q forces that

Sγ̃ is stationary in V Pη∗P
η
β .

Proof. (1) We will use the “flat condition” argument and prove this by induction.
A P

η
β condition p is flat if

• ∀λ ∈ spt(p), p ↾ λ decides “Ṫλ̄ ∈ NSη ↾ S”.
• there is a unique γ < η and a sequence 〈pi | i ∈ spt(p)〉 ∈ V Pη such that:
∀λ ∈ spt(p) \ 2 (p ↾ λ 
 p(λ) = pλ ∧max(pλ) = γ + 1),
p(0) = p0, p(1) = p1, dom(p(0)) = dom(p(1)) = γ + 1 and p(0)(γ) = 0.

For a flat condition p, we denote the unique ordinal γ witnessing flatness by γp, the
“height” of p. We will show by induction on β that for all ξ ∈ η, Dξ = {p ∈ P

η
β |

p is flat∧ γp > ξ} is dense. First assume that β is a limit ordinal with cofinality λ.
By the induction hypothesis, the flat conditions with arbitrary height are dense in
P
η
δ for all δ < β. Fix a condition q ∈ P

η
β and a sufficiently large regular cardinal θ.

If λ = η, then spt(q) is bounded in β and it is easy to find the required stronger
flat condition. Now assume λ < η and 〈βi | i < λ〉 is a sequence with supremum β.

Fix a sequence ~M = 〈Mi | i < λ〉 such that the following conditions hold:

(a) ~M is a continuous elementary chain of submodels of H(θ).
(b) For all i < λ, |Mi| < η, βi ∈Mi+1 and Mi ∩ η is transitive.
(c) {q,Pη

β} ⊆ M0 . In particular, all the parameters which appear in the

definition of Pη
β are in M0.
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(d) For all i < λ, M
<|Mi|
i ∈Mi+1.

Let ηi = Mi ∩ η. Then C = {ηi | i < λ} is a club in ηλ =
⋃

i<λ ηi. We construct a
sequence of conditions ~q = 〈qi | i < λ〉 such that the following conditions hold:

(a) q0 < q.
(b) For all i1 < i2 < λ, qi1 > qi2 and qi1 ∈Mi1+1.
(c) For each i < λ, qi+1 ↾ βi is flat and γqi+1↾βi

> ηi. In particular, dom(qi+1(0)) ⊃
ηi, qi+1(0) 
 dom(qi+1(1)) ⊃ ηi and qi+1(0) decides the value of qi+1(1) ↾
ηi. Denote this value by Ai(1). Moreover, for all δ ∈ spt(qi+1) ∩ [2, βi),

qi+1 ↾ δ decides “Ṫδ̄ ∈ NSη ↾ S” and the value of qi+1(δ) ∩ ηi. Denote this
value by Ai(δ).

(d) For all δ ∈ spt(qi+1) \ 2, qi+1 ↾ δ 
 max(qi+1(δ)) > ηi.
(e) qi+1(0)(ηi) = 1.

We leave the details of the construction of ~q to the reader (or see [3]). We define
the limit condition qλ as follows:

qλ(δ) =















⋃

qi(δ) ∪ {〈ηλ, 1〉} if δ = 0
⋃

Ai(1) ∪ {〈ηλ, 1〉} if δ = 1
⋃

βi>δ Ai(δ) ∪ {ηλ} if δ ∈
⋃

i<λ spt(qi) \ 2
∅ otherwise.

Since qλ(0) 
 ηλ ∈ S, it is routine to check that qλ is a flat condition stronger than
q. Moreover, γqλ = ηλ.

Now we turn to the case where β = ǫ + 1 is a successor ordinal. Let q be a
P
η
β-condition. We construct a sequence of conditions 〈qn | n < ω〉 such that q0 < q,

qn ↾ ǫ is flat, qn ↾ ǫ 
 sup qn(ǫ) > γqn and qn+1 ↾ ǫ decides qn(ǫ) ∩ γqn . Define
a supremum condition qω as in the last paragraph. It follows that qω is a flat
condition stronger than q.

To prove that P
η
β is (< η)-distributive, it suffices to show that the suborder

P̄
η
β which consists of all flat conditions is η-strategically closed. Consider the game

Gβ(P̄
η
β). A winning strategy of player II can be defined as follows. At even successor

stage α < η, player II chooses a condition pα which is stronger than all previous
plays such that pα(0)(height(pα)) = 1. At limit stage α, player II chooses qα as
the limit condition defined as follows:

qα(δ) =







⋃

qi(δ) ∪ {〈γα, 1〉} if δ = 0 or 1
⋃

qi(δ) ∪ {γα} if δ ∈
⋃

i<α spt(qi) \ 2
∅ otherwise.

It is routine to verify that qα is a condition stronger than all qi’s.
The proof of η+-c.c for an iteration of shooting club forcings is well-known (see

[1] for a proof using flat conditions and a ∆-system argument).

(2) Clearly if A ∈ NSη ↾ S, then Pη ∗ P
η
β 
 A ∈ NSη ↾ S. Note that Q̇η

β is either

trivial or the poset Sh(Aβ̃). It is known that iterating such forcings preserves the
stationarity of all stationary subsets of S provided S satisfies that for all α ∈ S,
α \ S is nonstationary in α. (See [8] or the proof of (3)).

(3) First assume γ < β. Fix a name Ċ for a club subset of η and any condition

q′ stronger than q. We need to find a condition qω < q′ such that qω 
 Ċ ∩ Sγ̃

is not empty. Fix a sufficiently large regular θ, fix M ≺ H(θ) such that |M | < η,
M ∩ η ∈ η \ S and {q′, γ,Pη

β} ⊆ M . Choose 〈ηn | n < ω〉 cofinal in ηω = M ∩ η.

Construct a sequence of conditions 〈qn | n < ω〉 such that

(a) q0 < q′ and for each n < ω, qn ↾ 2 
 qn ↾ [2, β) is flat ∧ γqn↾[2,β) > ηn.
(b) For each n < ω, dom qn(0) ⊃ ηn.
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(c) For each n < ω, there is an An ∈ V Pη such that qn(0) 
 qn(1) = An and
dom(An) ⊃ ηn.

We omit the details of this construction. Let B =
⋃

n<ω spt(pn). Note that the

sequences f~f
(η) and f ~C

(η) are in M . It follows that for all δ1 < δ2 ∈ [η, η+) ∩M ,

gδ1(ηω) < gδ2(ηω). Let ǫ be an ordinal greater than all gδ(ηω)’s for δ ∈ B. Let
h : [ηω , ǫ) → 2 be a function such that h(gδ(ηω)) = 1 ↔ δ ∈ B ∨ δ = γ. The
limit condition qω is defined as follows: qω(0) =

⋃

n<ω qn(0) ∪ {〈η, 0〉}, qω(1) =
⋃

n<ω An ∪ h, and qω(δ) =
⋃

n<ω qn(δ) ∪ {ηω} for δ ∈ B \ 2. It is routine to verify

that qω is a condition which forces that ηω ∈ Sγ̃ ∩ Ċ.
Finally suppose γ ≥ β. The above argument still works. Instead of using

γ ∈
⋃

n<ω spt(pn), we use the fact that γ is not in the domain of the iteration. �

We present the promised ∆1 definition of NSη ↾ S in the following Claim:

Claim 2.2. The following statements are true in V Pη∗Ṗ
η

:

(1) GCH holds and η remains inaccessible.
(2) NSη ↾ S is ∆1 over H(η+). Therefore NSη ↾ f(η) is also ∆1 over H(η+).

Proof. (1) This follows from Claim 2.1 (1) and the fact that the cardinality of the
set of flat conditions in Pη is η+.

(2) We need only supply a Π1 definition. It is sufficient to check that the following
statement is true: A 6∈ NSη ↾ S if and only if
(∗): there are β < η+, 〈{fγ , Cγ , Dγ , Bγ} | γ < η〉 ∈ H(η+) such that for all γ < η

• 0 < β can be divided by η.
• fγ is a bijection from η to β + γ.
• Cγ is a club subset of η such that whenever γ1 < γ2 ∈ C, gβ+γ(γ1) <
gβ+γ(γ2) ∈ η (where gβ+γ(δ) = ot fγ [δ]).

• δ ∈ Bγ ↔
⋃

G(gβ+γ(δ)) = 1 ∧ δ ∈ Cγ \ S
• For all γ < η, Dγ is a club subset of η.
• (γ ∈ A→ D2∗γ ∩B2∗γ = ∅) ∧ (γ 6∈ A→ D2∗γ+1 ∩B2∗γ+1 = ∅).

Suppose that A 6∈ NSη ↾ S. By the η+-c.c, there exists δ < η+ such that A ∈

V Pη∗P
η

δ . By Claim 2.1(2), in V Pη∗P
η

δ we have A 6∈ NSη ↾ S. In Pη let Ȧ be a P
η
δ

name of A. By a bookkeeping argument and the definition of Pη, there is an interval
[η ∗ β̄, η ∗ (β̄ + 1)) such that Tβ̄ = Ȧ. Denote η ∗ β̄ by β. It follows that Q̇η

δ is not
trivial if δ ∈ [β, β + η) and ∃γ(γ ∈ A ∧ β + 2 ∗ γ = δ) ∨ (γ 6∈ A ∧ β + 2 ∗ γ + 1 = δ).

In V Pη∗P
η
β+η , let 〈Dγ | γ < η〉 be a sequence of clubs such that Dγ ∩ Sβ+γ is

empty whenever Q̇
η
β+γ is not trivial. Let 〈{fγ , Cγ , Bγ} | γ < η〉 be such that

{fγ , Cγ , Bγ} = {f~f
(η)(β + γ), f ~C

(η)(β + γ), Sβ+γ}} for all γ < η. It is now routine

to check that β and the sequence 〈{fγ , Cγ , Dγ , Bγ} | γ < η〉 witness (∗).
For the converse, supposeA ∈ NSη ↾ S. Assume there are β and 〈{fγ , Cγ , Dγ , Bγ} |

γ < η〉 witnessing (∗). Let β̄ be such that η ∗ β̄ = β. It follows from the discussion
following the definition of the Sγ sequence that, Bγ = Sβ+γ modulo a nonstationary

set. By (∗), there is a nonstationary Sβ+γ . This implies that Q̇
η
β+γ is not trivial

and hence Tβ̄ 6∈ NSη ↾ S in V Pη∗P
η
β . However, using Claim 2.1 (3), Tβ̄ is forced to

be equal to A in V Pη∗Q̇η . This is impossible as by Claim 2.1 (2), Tβ̄ ∈ NSη ↾ S in

V Pη∗Q̇η . �

The following is a summary of the properties of P. Note that for every α < κ,
we can decompose Pκ as Pα and P[α,κ) such that P[α,κ) is a Pα-name of an iteration
of length κ− α.

Fact 2.1. (1) P preserves cofinalities and hence cardinalities. Moreover, P 


GCH.



6 SY-DAVID FRIEDMAN AND LIUZHEN WU

(2) If η < κ is Mahlo, then Pη is η-c.c and Pη 
 P[η+1,κ) has an η
+-strategically

closed dense subset, namely the set of conditions all of whose coordinates
are forced to be flat.

(3) P 
 NSκ ↾ T is ∆1 definable over H(κ+).

In the remaining part of the proof, we show how to lift the embedding j, which
implies that κ is measurable in the generic extension. Let H ∗Gκ be a P = Pκ ∗ Pκ

generic filter over V . We construct a lifting of j to V [H ∗ Gκ] in V [H ∗ Gκ].
Firstly, we deal with Pκ, for which H is the corresponding generic filter. Since
H(κ+)V = H(κ+)M , j(P)κ+1 = Pκ+1. Hence H ∗ Gκ is j(P)κ+1 generic over M .
Next, we need to construct a j(P)[κ+1,j(κ))-generic filter overM [H∗Gκ] in V [H∗Gκ].
It follows from Fact 2.1 (2) and the elementarity of j that j(P)[κ+1,j(κ)) is j(κ)-c.c,

of cardinality j(κ) and has a (κ+)M -strategically closed dense subset in M [H ∗Gκ].
Thus in M [H ∗ Gκ] the size of the set of all maximal antichains of j(P)[κ+1,j(κ))

is j(κ). Since GCH holds in V [H ∗ Gκ], V [H ∗ Gκ] |= j(P)[κ+1,j(κ)) has a κ+-

strategically closed dense subset and κ+ many maximal antichains in M [H ∗Gκ].
This means that we can construct the desired j(P)[κ+1,j(κ))-generic filter h over
M [H ∗Gκ] in V [H ∗Gκ]. Hence we can lift j to j′ : V [H ] →M [H ∗Gκ+1 ∗ h].

We construct the final lifting using “partial master conditions”, a technique
first introduced by Magidor (see [1]). We need to construct a j′(Pκ) generic over
M [H ∗Gκ ∗h]. By elementarity, in M [H ∗Gκ ∗h], j′(Pκ) is a j(κ+)-length iteration
of cardinality j(κ+) with the j(κ+)-c.c. Hence j′(Pκ) has j(κ+) many antichains in
M [H ∗Gκ ∗h]. Since GCH holds in V [H ∗Gκ+1], there are only κ

+ such antichains
in V [H ∗ Gκ+1]. Moreover, V [H ∗ Gκ+1] |= j′(Pκ) has a κ+-strategically closed
dense subset. Thus in V [H ∗Gκ+1], it is possible to construct a j′(Pκ)-generic filter
gκ overM [H ∗Gκ+1∗h]. However, in order to lift j′, we need to ensure j′[Gκ] ⊆ gκ.

For all α < κ+, Gκ ↾ α is Pκ
α generic over V [H ]. Let pα : j(α) → V [H ∗Gκ] be

defined as follows:

pα(δ) =















⋃

q∈Gκ↾α q(δ) ∪ {〈κ, 1〉} if δ = 0.
⋃

q∈Gκ↾α q(δ)/G
κ
0 if δ = 1.

⋃

q∈Gκ↾α q(γ)/G
κ
γ ∪ {κ} if there is a γ < α such that j(γ) = δ.

∅ otherwise.

It is routine to check that pα is a j′-Pκ
α master condition, namely all conditions in

j′[Gκ ↾ α] are extended by pα. By carefully selecting conditions, we can ensure that
all pα’s are in gα. The general idea of this selection process can be found in [1].
However, as we only assume that j(Pκ) has a κ+-strategically closed dense subset,
we present the construction here.

Let 〈Aα | α < κ+〉 enumerate all the maximal antichains of j(Pκ) in M [H ∗
Gκ+1 ∗h] and let 〈βα | α < κ+〉 be an increasing sequence of ordinals of cofinality κ
cofinal in κ+ such that Aα ∩ j(Pκ

βα
) is maximal in j(Pκ

βα
). We construct a sequence

of conditions 〈qα | α < κ+〉 in j(Pκ) such that

(1) qα ∈ j(Pκ
βα

).

(2) qα < pβα
.

(3) qα extends some condition in Aα.

The key fact we need here is that there is a uniform winning strategy for player II
in all Gκ+(j(Pκ))/pκ. To be precise, we have

Claim 2.3. There is a winning strategy τ of II in Gκ+(j(Pκ)/pκ) such that for all
β < κ+, τ ↾ j(Pκ

β) is a winning strategy for Gκ+(j(Pκ
β)/pβ).

The proof of this claim is implicit in the proof of Claim 2.1, as the strategy used
there does not depend on the value of β and works for any Pκ

β . As a corollary, if for

some β, all the previous moves are in j(Pκ
β), then τ returns a move of II in j(Pκ

β).
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Now we construct 〈qα | α < κ+〉 as a legal play where II uses the strategy τ . At
any stage, after τ chooses q′α for II, since q′α < pα, I can choose qα < q′α such that
(1)-(3) hold. Being a legal play, the construction never terminates at any stage
α < κ+. Let gκ be the filter generated by the qα’s. It follows that j′[Gκ] ⊆ gκ.
Hence we can lift j′ to j′′ : V [H ∗ Gκ] → M [H ∗ Gκ ∗ h ∗ gκ] in V [H ∗ Gκ], as
desired. �

Remark 2.1. (1) By examining the proof of Theorem 2.1, it is clear that it
can be generalized to all large cardinals defined as a critical point of an
elementary embedding (e.g. strong cardinal, supercompact, huge). In fact,
the proof will be simpler since the use of partial master conditions can be
avoided. In addition, measurability can be replaced by weak compactness
provided some Π1

1 sentence (with a subset of κ as parameter) is true at κ
but fails to reflect to any ordinal in T .

(2) In our final model, for all inaccessible η < κ, NSη ↾ f(η) is ∆1 definable
over H(η+).

3. Precipitousness and the ∆1-definability of NSω1

In this section, we prove that assuming the existence of one measurable cardinal,
it is consistent that NSω1

is both ∆1 definable and precipitous.
We begin by recalling the definition of canary tree forcing.

Definition 3.1 ([10]). T is a canary tree if |T | = 2ω , T has no uncountable branch,
and in any extension of the universe in which no new reals are added and in which
some stationary subset of ω1 is destroyed, T has an uncountable branch.

Equivalently, T is a canary tree if |T | = 2ω, T has no uncountable branch, and
for all stationary, costationary sets S, there is an order-preserving function from
Sh(S), the tree of closed subsets of S ordered by end-extension, to T . As shown
in [9], if CH holds the existence of canary tree is equivalent to the ∆1-definability
of NSω1

. In [10], assuming GCH, Mekler and Shelah construct a forcing Pω2
that

preserves cardinals and GCH and forces the existence of a canary tree. However,
there is a flaw in their proof which was repaired by Hyttinen and Rautila [6]. We
now describe the poset Pω2

, with a milder repair in the sense that the forcing is
closer to Mekler-Shelah’s original version.

Let Q0 be the set of functions f such that dom(f) is a countable subset of
Lim(ω1) and ∀δ ∈ dom(f)(f(δ) ∈ δδ), ordered by reverse inclusion. Under CH, Q0

is equivalent to Add(ω1, 1), the forcing that adds a single ω1-Cohen subset of ω1.
From a Q0-generic G0, define a subtree T (G0) of ω

<ω1

1 by t ∈ T (G0) iff for all limit
δ ≤ dom(t), t ↾ δ 6= (∪G0)(δ). In V [G0], T (G0) has cardinality 2ω and no cofinal
branch. For a fixed stationary, costationary set S, we say t ∈ T (G0) is an S-node if
for every limit ordinal δ ≤ dom(t) not in S, t ↾ δ 6∈ δδ. The partial order P(S,G0)
which adds an order-preserving function from Sh(S) to T (G0) is defined as follows:
A condition p in P(S,G0) is a pair (g,X) such that the following conditions hold:

(c1) g is a countable order-preserving partial mapping from Sh(S) to the S-
nodes of T (G0).

(c2) X is a countable subset of ω<ω1

1 such that each element of X is of successor
length.

(c3) ∀c ∈ dom(g)∀t ∈ X(t 6⊆ g(c)).
(c4) ∀〈ci | i ∈ ω〉 ∈ dom(g)ω(〈ci | i ∈ ω〉 is increasing →

⋃

i∈ω g(ci) ∈ T (G0)).
(c5) dom(g) is closed under initial segments with respect to Sh(S).
(c6) ∀〈ci | i ∈ ω〉 ∈ dom(g)ω(〈ci | i ∈ ω〉 is increasing ∧ supi∈ω(max(ci)) ∈ S →

supi∈ω dom(g(ci)) ∈ S).
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For any condition p, denote the corresponding g and X by gp and Xp. Let o(p) =
sup{dom(t) | t ∈ ran(gp) or t ∈ Xp}. Then we say a condition q extends p if
gp ⊆ gq, Xp ⊆ Xq and for all c ∈ dom(gq) \ cl(dom(gp)), dom(gq(c)) > o(p), where
cl(dom(gp)) = {u ∈ Sh(S) | ∀α < sup(u)∃β > α(u ↾ β ∈ dom(gp)}), i.e cl(dom(gp))
is the closure of dom(gq) under the order of Sh(S). The following claim replaces
the Claim 3.11 of [6]).

Claim 3.1. Suppose S is a stationary, costationary subset of ω1 in V1, where V1
is generic over V [G0] without adding reals. If G is P(S,G0)-generic over V1, then
⋃

G is an order-preserving function from Sh(S) to T (G0).

Proof. By our assumption T (G0)
V1 = T (G0). It suffices to prove that for every

t ∈ Sh(S), the set

Dt = {p ∈ P(S,G0) | t ∈ dom(gp)}

is dense in P(S,G0). So let p ∈ P(S,G0) be such that t 6∈ dom(gp). Let B = {u ∈
dom(gp) | t <Sh(S) u}, where t <Sh(S) u means that t is stronger than u in the
Sh(S)-order, i.e., u is a proper initial segment of t. It is also convenient to view t
as a subset of S instead of a partial function from ω1 to 2.

Let b =
⋃

B, b′ =
⋃

u∈B gp(u). If b ∈ B, then obviously b′ ∈ T (G0). If b 6∈ B,
then by (c4), b′ ∈ T (G0). As t ∈ Sh(S) and t <Sh(S) b, we have δ = ∪b ∈ S. By
(c6), δ′ = dom(b′) ∈ S. Since δ′ ∈ S and gp(u) is an S-node for every u ∈ B, b′ is
also an S-node. Denote S ∩ (t \ (b ∪ {δ})) by St.

We are going to construct an S-node c ∈ T (G0) such that c extends b′ with
ot((dom(c)\o(p))∩S) = ot(St), c does not extend any element of Xp and dom(c)−
1 ∈ S. c can be constructed as follows: Let η be the ot(St)-th element of S\o(p). Fix
a γ > max{η, supx∈Xp

(max{dom(x), sup(ran(x))})}. We then define c extending

b′ by setting dom(c) = η + 1 and c(β) = γ for any β ∈ dom(c) \ dom(b′). It is
an S-node as b′ is an S-node and for all β ∈ dom(c) \ dom(b′), c ↾ β 6∈ ββ . To
see c 6∈ T (G0),it follows again that for all limit β ∈ dom(c) \ dom(b′), c ↾ β 6∈ ββ .
Finally as b′ does not extend any element of Xp, if c extends some x ∈ Xp then
dom(x) > dom(b′). But then for any β > dom(b′) in dom(c), c(β) is not in ran(x).
Contradiction.

Let the mapping g′p be defined for every u >Sh(S) t, u /∈ B by setting

g′p(b ∪ {δ}) = c ↾ dom(b′) + 1

and

g′p(u) = the unique v ⊆ c such that dom(v) is the γu-th element of (dom(c)\o(p))∩S,

for u <Sh(S) b ∪ {δ} where γu = ot(S ∩ (u \ (b ∪ {δ}))). It follows from the fact
that c is an S-node that g′p(u) is an S-node for every u ≥Sh(S) t, u /∈ B. Define
q = (gq, Xp) by setting gq = gp ∪ g′p and Xq = Xp. It is routine to check that
q is a condition with t ∈ dom(g′p) ⊆ dom(q). It is also clear that t witnesses
q < p, as dom(gq(u)) = dom(g′p(u)) > o(p) for any u ∈ dom(gq) \ cl(dom(gp)) =
dom(g′p) \ {b ∪ {δ}}. �

We will also need the fact that P(S,G0) does not add new countable sets of
ordinals. This can be viewed as a warm-up for a later, more sophisticated argument
involving an iteration of forcings of this form.

Claim 3.2. Suppose S is a stationary, costationary subset of ω1 in V1, where V1 is
generic over V [G0] without adding reals. Then P(S,G0) is < ω1-distributive in V1.

Proof. Work in V1. Fix any condition q′ and sequence 〈Dn | n < ω〉 of dense
open sets. We need to find q < q′ in the intersection of all Dn. Let θ be a large
regular cardinal. Let M be a countable elementary submodel of H(θ) containing
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all relevant parameters. Let δ = ω1 ∩M . Let t = r(δ) for some condition r in G0

with dom(r) > δ. Let 〈En | n < ω〉 be an enumeration of the dense open subsets
in M .

Case 1) There is a successor ξ < δ such that t ↾ ξ 6∈ M . Choose a descending
sequence of conditions 〈qn | n < ω〉 such that q0 = q′ and qn+1 ∈ En ∩M . Define
q by setting gq =

⋃

gqn and Xq =
⋃

Xqn . gq is clearly a function from Sh(S) to
T (G0). We verify that q is a condition. We only check (c4) and (c6) as the other
requirements trivially hold.

Claim 3.3. For any increasing 〈ci | i ∈ ω〉 ∈ dom(gq)
ω, either all ci belong to

dom(gqn) for some fixed qn, or supi<ω max(ci) = δ.

Proof. We first assume that there is a fixed condition qn such that ci ∈ cl(dom(gqn))
for all i < ω. Choose any ci; as ci+1 ∈ cl(dom(gqn)) and ci+1 is strictly stronger
than ci, there is a β > max ci such that ci+1 ↾ β ∈ dom(gqn). But then by (c5), ci
is weaker then ci+1 ↾ β ∈ dom(gqn) and must be in dom(gqn). It follows that all ci
are in dom(gqn).

Now we turn to the case that for all qn, there is a ci not in cl(dom(gqn)). Note
that by Claim 3.1, for any ǫ < δ the set Dǫ = {p ∈ P(S,G0) | o(p) > ǫ} is a dense
open set in M . Now for any ǫ < δ let qn, qm be such that qm < qn, o(qn) > ǫ, ciǫ ∈
dom(gqm) and ci 6∈ cl(dom(gqn)). It follows from the definition of compatibility that
dom(gqm(ci)) > o(qn) > ǫ. Thus δ ≥ supi<ω dom(gq(ci)) ≥ supi<ω max(ci) = δ.
This proves Claim 3.3. �

For (c4), we must show that for all increasing 〈ci | i ∈ ω〉 ∈ dom(g)ω ,
⋃

i∈ω gq(ci) ∈
T (G0). If there is a qn such that all ci are in dom gpn

then there is nothing to prove.
Otherwise, supi<ω dom(gq(ci)) = supi<ω max(ci) = δ. However, as t ↾ ξ is not in
M , gq(ci) cannot extend t ↾ ξ. Thus

⋃

i∈ω gq(ci) cannot extend t ↾ ξ and is not
equal to t. As all the initial segments of

⋃

i∈ω gq(ci) is in T (G0) and
⋃

i∈ω gq(ci) 6= t,
⋃

i∈ω gq(ci) ∈ T (G0).
For (c6), fix again an increasing 〈ci | i ∈ ω〉 ∈ dom(g)ω . If there is a qn

such that all ci are in dom gqn then again there is nothing to prove. Otherwise,
supi<ω dom(gq(ci)) = supi<ω max(ci) = δ. And thus supi<ω dom(gq(ci)) is in S iff
supi<ω max(ci) is in S.

It follows that q < q′ is a condition in the intersection of all En and thus in the
intersection of all Dn.

Case 2) For all ξ < δ, t ↾ ξ ∈ M . Let ξ < δ be such that ξ > o(q′). Define q′′

by setting gq′′ = gq′ and Xq′′ = Xq′ ∪ {t ↾ ξ}. It is routine to check that q′′ is a
condition in M . Choose 〈qn | n < ω〉 as in Case 1) but with the new requirement
that q1 < q′′. Define q by gq =

⋃

gqn and Xq =
⋃

Xqn ; we verify that q is a
condition. Again we need to check (c4) and (c6). We omit the proof of (c6) as it is
the same as in Case 1). Note that Claim 3.3 remains true.

For (c4), we must show that for all increasing 〈ci | i ∈ ω〉 ∈ dom(g)ω ,
⋃

i∈ω gq(ci) ∈
T (G0). If there is a qn such that all ci are in dom gqn then there is nothing to prove.
Otherwise, supi<ω dom(gq(ci)) = supi<ω max(ci) = δ. Let ci, qn be such that
ci ∈ dom(gqn) with n > 1 and dom(gqn(ci)) > ξ. By our construction, t ↾ ξ ∈ Xqn .
Hence, gqn(ci) cannot extend ξ. As dom(gqn(ci)) > ξ, gqn(ci) ↾ ξ 6= t ↾ ξ. Thus
⋃

i∈ω gq(ci) 6= t and must be in T (G0). �

The standard canary tree forcing is a length ω2, countable support iteration.
At stage 0, we use Q0 to add the tree T (G0). At each step β > 0, we choose a
stationary, costationary set S in V Pβ via a bookkeeping function and then force
with P(S,G0). The forcing has a countably-closed dense subset and tails of the
iteration are proper. In the final model, T (G0) will be the desired canary tree.
In our case, we will use a variant of the standard canary tree forcing and use the
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elementary embedding witnessing measurability to control the construction. Our
treatment of precipitousness is close to the original paper [7] (or see [8]) and does
not follow more recent expositions such as in section 17.2 of [1].

Theorem 3.1. Con(ZFC + there is a measurable cardinal) ↔
Con(ZFC+NSω1

is both∆1-definable with parameters from H(ω2) and precipitous).

Proof. The direction from right to left is well-known (see [7]). For the other direc-
tion, we start from a model of ZFC +GCH + κ is measurable, and then construct
a forcing extension which satisfies our requirement. The iteration we use is similar
to the iteration in [10].

Let j : V → M witness the measurability of κ and let U be the corresponding
normal measure. We first force with P = Col(ω,< κ) and let G be P-generic over

V . Let Q = Col(ω, [κ,< j(κ))). Then j(P) ∼= P × Q. κ becomes ω
V [G]
1 in V [G]

and whenever Ḡ is Q-generic over V [G], j can be lifted to jG : V [G] → M [G ∗ Ḡ]
(= M [G × Ḡ]). In V [G ∗ Ḡ], M [G ∗ Ḡ]ω ⊆ M [G ∗ Ḡ]. In V [G], IG is the derived
precipitous ideal defined by: A ∈ IG if 
Q κ 6∈ jG(A). Note it is equivalent to say

A ∈ IG if there is a P-name Ȧ for A and some p ∈ G such that p 
j(P) κ 6∈ j(Ȧ).
In V [G], we will define a length ω2 countable support iteration Pω2

. During
the construction we will also verify some properties of intermediate stages of the
iteration which are needed for later parts of the construction. In particular, we will
show that each Pα is < ω1-distributive and has a size ω1 dense subset using the
“flat condition” argument. Throughout the proof, we always work in V [G] unless
otherwise specified. We view κ and κ+ as ordinals and freely adopt the convention
that κ = ω1 and κ+ = ω2 (in V [G]).

Let Q0 be the first iterant of canary tree forcing. Let G0 be Q0 generic over
V [G]. As Q0 is of size ω1, Q0 can be completely embedded into B(Q), the Boolean
completion of Q. 1 Let Ḡ be Q-generic over V [G]. For each t ∈ κκ ∩ V [G ∗ Ḡ], we
define mt

0 = (
⋃

G0) ∪ 〈κ, t〉. It is clear that the mt
0 are jG(Q0) conditions.

Since for any p ∈ G0, m
t
0 extends j(p) = p, all mt

0 are jG-Q0 master conditions.
Hence, jG can be lifted to j1 : V [G∗G0] →M [G∗Ḡ∗Ḡ0], where Ḡ0 is j(Q0) generic
over M [G ∗ Ḡ] extending mt

0. Nevertheless, we will also consider the general lifting
without mentioning the master condition. Let I1 be the ideal defined by: A ∈ I1 if
there are p ∈ G, q ∈ G0 and P ∗Q0-name Ȧ for A such that

p ∗ q 
j(P∗Q0) For any Ḡ which is Q-generic over M [G], and any

Ḡ0 containing G0 which is j(Q0) generic overM [G ∗ Ḡ], κ 6∈ j(Ȧ).

Here note that G0 ⊆ Ḡ0 implies that we can lift the embedding jG to j1. Basically,
a set A is in the ideal if there is a condition p ∗ q in G ∗G0 which forces that j(Ȧ)
has measure 0 in any available lifting of j1 defined in V [G ∗ Ḡ ∗ Ḡ0].

2 Apparently,

the definition is independent of the choice of the name Ȧ and condition p ∗ q. A
standard argument shows that I1 is normal.

By induction on α < κ+, we define the following objects:

• A countable support iterated forcing 〈Pα,Qα | α < κ+〉 ;
• A sequence 〈Iα | α < κ+〉 such that each Iα is a proper normal ideal in
V [G ∗Gα].

• For appropriate G, Ḡ and Gα, the “preconditions” mt
α for any t which

is forced to be in V [G]Q ∩ κκ. (mt
α is only a “precondition” as it is not

guaranteed to be a condition in jG(Pα).)

1This can be done in M [G] using the absorption of Boolean algebras into the Levy Collapse.
(See section 14 of [1])

2The definition of this ideal is the key difference between [7] and [1].
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To complete the inductive definition of the Pα,Qα we need to know that each Pα

has a dense subset of size ω1. The “preconditions” m
t
α are needed for this purpose.

We now give the definition of the forcing Pα and the ideals Iα.
For α ∈ [1, κ+), we define Qα as follows: Assume that Iα, Pα have been defined

and that Pα is < ω1-distributive and has a size ω1 dense subset Fα. Let Gα

be Pα-generic over V [G]. Let Xα be a Pα-name for a subset of κ selected via
bookkeeping. If in V [G ∗Gα], Xα is forced to be in Iα, then let Qα be Sh(κ \Xα).
If the complement of Xα is forced to be in Iα, then let Qα be the trivial forcing.
Otherwise, let Qα be P(Xα, G0). We will show later that Pα+1 has a dense subset

Fα+1 of size ω
V [G]
1 . Hence we can completely embed Fα+1 into B(Q). Let Gα+1 be

Pα ∗ Qα generic over V [G] extending Gα. We can then assume Gα+1 ∩ Fα+1 is in
M [G ∗ Ḡ]. We define Iα+1 as before, i.e. A ∈ Iα+1 if there are p ∈ G, q ∈ Gα and

P ∗ Pα-name Ȧ for A such that

p ∗ q 
j(P∗Pα) For any Ḡ which is Q-generic over M [G] and any Ḡα ⊇ j[Gα]

which is j(Pα)-generic over M [G ∗ Ḡ], κ 6∈ j(Ȧ),

and let jα+1 : V [G ∗ Gα] → M [G ∗ Ḡ ∗ Ḡα] denote the associated lifting (which
depends on the choices of Ḡ, Ḡα).

For α limit, Pα is defined following the rules of countable support iteration. We
will show that Pα has a size ω1 dense subset and specify one such dense subset Fα

later. As in the successor case, we assume Gα ∩ Fα ∈ M [G ∗ Ḡ]. jα and Iα are
defined as before.

The above finishes the definition of all Pα and Iα, assuming that it can be verified
inductively that each Pα has a size ω1 dense subset. To prove this, we will use the
flat condition argument.

Definition 3.2. We say q is a flat condition of Pα if there is a unique γq < ω1

and sequence 〈Aq
i | i ∈ spt(q)〉 in V [G] such that ∀i ∈ spt(q) \ 1,

• if Qi = Sh(κ\Xi), then A
q
i = Aq

i0 is a closed set of ordinals with a maximal
element γq and q ↾ i 
 q(i) = Aq

i .
• if Qi = P(Xi, G0), then Aq

i = (Aq
i0, A

q
i1). Aq

i0 is a countable order pre-
serving partial mapping from Sh(Xi) to T (G0) such that if c ∈ dom(Aq

i0)
and ran(c) < γq then there is a c′ ∈ dom(Aq

i0) such that c′ end-extends
c and ran(c′) = γq. Aq

i1 is a countable subset of ω<ω1

1 . q ↾ i 
 q(i)0 =
Aq

i0 ∧ q(i)1 = Aq
i1.

• Otherwise, Aq
i is the empty set and q(i) is the trivial condition.

For any Pα, we let Fα be the set of flat conditions in Pα. It is clear that

|Fα| = ω
V [G]
1 .

To establish the density of Fα in Pα we introduce the “preconditions”mt
α, where

t ∈ (κκ)V [G∗Ḡ] and α < ω2. We are particularly interested in the situation when
Fα ∩ Gα ∈ V [G ∗ Ḡ] and only give the definition in this case.3 For all β < α such
that Qβ = P(Xβ , G0), let g

α0
β =

⋃

q∈Fα∩Gα
Aq

β0 and gα1β =
⋃

q∈Fα∩Gα
Aq

β1. For all

β < α such that Qβ = Sh(κ \ Xβ), let g
α0
β =

⋃

q∈Fα∩Gα
Aq

β0. We define mt
α as

follows. Recall that the mt
0 were already defined as (

⋃

G0) ∪ {〈κ, t〉}, a condition
in jG(Q0).

mt
α(δ) =















mt
0 if δ = 0.

〈gα0γ , gα1γ 〉 if j(γ) = δ ∧Qγ = P(Xγ , G0).
gα0γ ∪ {κ} if j(γ) = δ ∧Qγ = Sh(κ \Xγ).
1 otherwise.

3Note that this situation is possible as we can embed Pα into B(Q).
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Since Fα ∩ Gα ∈ V [G ∗ Ḡ], it follows that all gαβ ’s are in M [G ∗ Ḡ]. The following
lemma completes the definition of Pω2

.

Lemma 3.1. The following hold for α < ω2:

(1) Fα is dense.
(2) Pα is < ω1-distributive.
(3) For any t ∈ κκ ∩ V [G ∗ Ḡ] such that ∃ξ < κ(t ↾ ξ 6∈ V [G]), mt

α is a jG-Gα

master condition.

Proof. We prove (1)-(3) simultaneously by induction on α. For α = 0, as we noted
before, Pα is isomorphic to Add(ω1, 1) and satisfies (1)-(3). Next suppose α is a
limit.

(1)α Fix any condition q′ ∈ Pα, we need to find a q < q′ such that q ∈ Fα. Let Ḡ
and Gα be such that Ḡ is Q generic over V [G] and Gα ∈ V [G ∗ Ḡ] be a Pα-generic
over V [G] with q ∈ Gα. Now for all β < α, let Gβ be the derived Pβ generic filter.
Fix a t ∈ κκ ∩V [G ∗ Ḡ] such that ∃ξ < κ(t ↾ ξ 6∈ V [G]). As Gβ ∩Fβ is in M [G ∗ Ḡ],
mt

β can be defined. By the induction hypothesis, mt
β is a jG-Pβ master condition

and mt
β+1(β) ∈M [G ∗ Ḡ]. Let m′

α be defined by

m′
α(δ) =







mt
0 if δ = 0.

mt
δ+1(δ) if j(γ) = δ.

1 otherwise.

Since spt(m′
α) ⊆ j[α], it follows that m′

α is a jG(Pα)-condition. It is also clear that
m′

α is a flat condition for jG(Pα). For any β < α, as m′
α ↾ j(β) = mt

β is a master

condition, m′
α ↾ j(β) < j(q) ↾ j(β). Hence in M [G ∗ Ḡ], m′

α < j(q′). Then by
elementarity of jG, there is a flat condition q < q′ in Pα. Thus Fα is dense in Pα.

(2)α Fix a condition q′ ∈ Pα and a sequence of dense open subsets ~D = 〈Dn | n <
ω〉 of Pα. We need to show there is q ∈ Fα in the intersection of all Dn’s extending
q′. Let Ḡ and Gα be such that Ḡ is Q generic over V [G] and Gα ∈ V [G ∗ Ḡ] be a
Pα-generic over V [G] with q ∈ Gα. Now for all n < ω, it follows that Gα ∩Dn 6= ∅.
Define m′

α as in the proof of (1)α. By the same argument as in the proof of (1)α,
m′

α < j(p) for any p ∈ Gα. Hence in M [G ∗ Ḡ], m′
α < j(q) is a condition in j(Pα)

which is in all jG(Dn). Then by elementarity of jG, there is a flat condition q < q′

in which is in Dn.
(3)α By (1)α, Fα is dense. It also clear that Fβ = Fα ↾ Pβ for all β < α. Now

by induction on β < α, we can check mt
β = mt

α ↾ j(β) using the definition of mt
α

and. Hence mt
α = m′

α is a master condition.
Now we turn to the case α = β + 1.
(2)β+1 Qβ either has size ω1 or is trivial. Also note that by Claim 3.2 and the

< ω1-distributivity of the club-shooting forcing, Qβ is < ω1-distributive. It then
follows that Pα is < ω1-distributive.

(1)β+1 We check that Fα is dense in jG(Pα). As Pα has an ω1-size dense subset,
Pα can be completely embedded into B(Q) where Q = Col(ω, j(κ)). As in the
proof of (1)α, fix a condition q′ and we look for q < q′ in Fα. Let Ḡ and Gα

be such that Ḡ is Q generic over V [G] and Gα ∈ V [G ∗ Ḡ] be a Pα-generic over
V [G] with q ∈ Gα. We define mt

α and mt
β accordingly. By induction hypothesis,

mt
β ∈ M [G ∗G′] is a jG-Pβ master condition. Also Pβ is < ω1-distributive. Hence

D = {q ∈ Pα | ∃Bq ∈ V [G]q ↾ β 
 q(β) = Bq} is dense. Define m′
α by letting

m′
α ↾ j(β) = mt

β and

m′
α(j(β)) =















mt
0 if β = 0.

〈
⋃

q∈D∩Gα
(Bq)0,

⋃

q∈capGα
(Bq)1〉 if Qβ = P(Xβ, G0).

⋃

q∈D∩Gα
Bq ∪ {κ} if Qβ = Sh(κ \Xβ).

1 if Qβ is trivial.
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We use m̄α
β to denote m′

α(j(β)).

Claim 3.4. m′
α is a j(Pα)-condition.

Proof. We need to show m′
α ↾ j(β) = mt

β 
j(Pβ) m̄
α
β is a j(Qβ) condition. The case

for β = 0 and Qβ being trivial is clear.
If β is such that Qβ = Sh(κ \ Xβ), then jG(Qβ) = Sh(j(κ) \ jG(Xβ)). Since

mt′
α ↾ j(β) = mt

β is a master condition. Fix any Ḡβ be jG(Pβ) generic overM [G∗Ḡ]

such that mt
β ∈ Ḡβ . Work in V [G ∗ Ḡ ∗ Ḡβ ]. By the definition of Iβ , it is easy to

verify that κ 6∈ jβ(Xβ). However, jβ(Xβ) ∩ κ = Xβ. Hence m̄α
β is forced to be a

closed subset of jβ(Xβ) and thus a j(Qβ) condition.
If β is such that Qβ = P(Xβ , G0), then jG(Qβ) = P(jG(Xβ), Ḡ0). Since

⋃

Ḡ0 ↾

κ =
⋃

G0, T (Ḡ0)∩(ω
<ω1

1 )V [G∗G0] = T (G0). Moreover jβ(Xβ)∩κ = Xβ . Hence gm̄α
β

is forced to be a countable partial function from Sh(j(Xβ)) to the j(Xβ)-node of
T (Ḡ0), dom(gm̄α

β
) is closed under initial segment. Also Xm̄α

β
is a countable subset

of j(κ)j(κ). It remains to verify (c4) and (c6). Note the analogue of Claim 3.3
holds:

Claim 3.5. For all increasing sequences 〈ci | i ∈ ω〉 in dom(gm̄α
β
), either all ci are

in dom(gp) for some fixed p ∈ Gα or
⋃

i∈ω dom(gm̄α
β
(ci)) = supi<ω max(ci) = κ.

Proof. We first assume that there is a condition p ∈ H such that ci ∈ cl(dom(gp))
for all i < ω. Fix any ci, as ci+1 ∈ cl(dom(gp)) and ci+1 is strictly stronger than ci,
there is a β > max ci such that ci+1 ↾ β ∈ dom(gp). But then by (c5), ci is weaker
then ci+1 ↾ β ∈ dom(gp) and must be in dom(gp). Now all ci is in dom(gp).

Now we turn to the case that for all p, there is a ci not in cl(dom(gp)). Note
that for any ǫ < κ, the set Dǫ{p ∈ P(S,G0) | o(p) > ǫ} is a dense open set
in V [G ∗ Gβ ]. Now for any ǫ < κ, there are p0, p1 in H such that p0 < p1,
o(p1) > ǫ, ciǫ ∈ dom(gp0

) and ci 6∈ cl(dom(gp1
)). It follows from the definition of

compatibility that dom(gp0
(ci)) > o(p1) > ǫ. Thus maxi<ω(ci) is unbounded in κ.

But then κ ≥ supi<ω dom(gq(ci)) ≥ supi<ω max(ci) = κ. �

For (c4), in light of the proof of Claim 3.2, we only need to prove the following.

Claim 3.6. For all increasing sequences 〈ci | i ∈ ω〉 in dom(gm̄α
β
) such that

⋃

i∈ω dom(gm̄α
β
(ci)) = κ,

m′
β 


⋃

i∈ω

gm̄α
β
(ci) 6= t.

Proof. As there is a successor ordinal ǫ such that t ↾ ǫ is not in V [G] for any i
such that dom(gm̄α

β
)(ci) > ǫ, gm̄α

β
(ci) is in V [G] and does not extend t ↾ ǫ. Hence

⋃

i∈ω gm̄α
β
(ci) 6= t. �

The prove of (c6) is identical the the proof of Claim 3.2. Note either all ci are con-
tained in dom(gp) for a single condition p or supi<ω max(ci) = supi<ω dom(gm̄α

β
(ci)) =

κ.
This completes the verification that m′

α is a j(Pα) condition. �

In V [G ∗ Ḡ], it is clear that m′
α is a flat condition. We can check that m′

α is
stronger than the image of any conditions in Gα. Fix r ∈ Gα. The case for β = 0
and Qβ being trivial is clear. For Qβ is Sh(κ \ Xβ) or P(Xβ, G0), we work as
follows: Since mβ = m′

α ↾ j(β) is jG-Pβ master condition. mβ < jG(r ↾ β) and
forces jG(r(β)) = r(β) ∈ V [G]. It is clear that jG(r(β)) = r(β) ⊆ m′

α(j(β)) by
the definition of m′

α. Hence that m′
α(j(β)) is stronger than jG(r(β)) = r(β). In

particular, for any Pα condition q, and Gα ∋ q, we can show that m′
α < j(q). Hence

by elementarity, in V [G], there is a flat condition extending q. Thus Fα is dense.
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(3)β+1 We only need to check that m′
α = mt

α as m′
α is stronger than any jG(q)

with q ∈ Gα and thus a master condition. It suffices to check that m′
α(β) = mα(β).

The case for β = 0 and Qβ being trivial is clear. For Qβ is Sh(κ\Xβ) or P(Xβ , G0),
as Fα is dense in Pα, it is routine to check that

⋃

q∈D∩Gα
(Bq)i =

⋃

q∈Fα∩Gα
Aq

βi

for i = 0 or 1. �

This completes the definition of Pω2
. As Pω2

is the direct limit of the Pα, α < ω2,
Pω2

is < ω1-distributive and ω2-c.c. For the remainder of the proof, we will not
distinguish Pω2

from its dense subset which consists of all the flat conditions. For
any α < ω2, we will also view Gα ∩ Fα as Gα.

By the standard treatment of absorption and the ideal derived from lifting (see
section 17 of [1]), the following holds for all α1 < α2 < ω2:

Lemma 3.2. (1) Iα2
∩ V [G ∗Gα1

] = Iα1
.

(2) Iα1
is a normal precipitous ideal in V [G ∗Gα1

].

Proof. (1) It is routine to check that Iα1
⊆ Iα2

. Now for X ∈ Iα2
∩ V [G ∗ Gα1

],

assume that X 6∈ Iα1
. Let Ẋ be a Pα-name exemplifying this fact, i.e, 
Pα1

Ẋ /∈ Iα1

and 
Pα2
Ẋ ∈ Iα2

.
By the definition of the ideal Iα2

, there is a condition p∗ q2 ∈ G∗Gα2
witnessing

Ẋ ∈ Iα2
. We denote q2 ↾ α1 by q1 and q2 ↾ [α1, α2) by q(1, 2). Hence,

p 
j(P) For any Gα2
which is Pα2

-generic over M [G] and contains q2,

for any M [G ∗ Ḡ]− j(Pα2
) generic Ḡα2

which contains j[Gα2
, κ 6∈ jα2

(Ẋ)).

On the other hand, by the definition of the ideal Iα1
, for any fixed G0, Ḡ0, Gα1

and Ḡα1
such that:

• G ∗ Ḡ is j(P) generic over V .
• Gα1

is Pα1
generic over V [G], Gα1

in V [G ∗ Ḡ].
• p ∗ q1 ∈ G ∗Gα1

.

exactly one of the following holds:

a) There is no Ḡα1
which is j(Pα1

)-generic over M [G ∗ Ḡ] such that j[Gα1
] ⊆

Ḡα1
.

b) There is a j(Pα1
)-generic filter Ḡα1

over M [G ∗ Ḡ] such that j[Gα1
] ⊆ Ḡα1

and κ ∈ jα1
(Ẋ/(G ∗Gα1

)).

We can show that a) is always false via an argument identical to the proof of
Lemma 3.1(3): Whenever we choose t ∈ κκ∩V [G∗Ḡ] such that t 6∈ T (G0), then m

t
α

defined accordingly is a master condition. Thus whenevermt
α ∈ Ḡα1

, j[Gα1
] ⊆ Ḡα1

.

It follows that b) holds. Let Ḡα1
be a witness. In particular, κ ∈ jα1

(Ẋ/(G ∗
Gα1

)). Let t = r(κ) for some (or any) r ∈ Ḡ0 with κ ∈ dom(t). In what follows, we
construct a generic filter Gα2

in V [G∗ Ḡ] such that Gα2
↾ Pα1

= Gα1
and q2 ∋ Gα2

.
We will also ensure that mt

α2
is a master condition for this chosen Gα2

. The proof
is very similar to the proof of Claim 3.2.

Claim 3.7. There is a generic filter Gα2
in V [G ∗ Ḡ] such that

(1) Gα2
↾ Pα1

= Gα1
and q2 ∈ Gα2

.
(2) mt

α2
is a master condition.

Proof. Note that we only need to constructGα2
to be generic overM= 〈H(κ+)V [G],∈

〉 as Pα2
can be viewed as an element of H(κ+)V [G] and thus all dense subsets are

in M. Moreover, as Gα1
is generic over M, we only need to construct an H which

is generic over M[Gα1
] and contains q(1,2). Work in V [G ∗ Ḡ], where M[Gα1

] is a
countable structure. The proof separates into two cases:

Case 1) For some α < κ, t ↾ α is not in M.
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(1) Enumerate all the open dense subsets in M in a sequence 〈Dn | n < ω〉.
Define a decreasing sequence of conditions 〈pn | n < ω〉 such that p0 < q(1,2) and
for each n, pn ∈ Dn. Let H be the downward closure of 〈pn | n < ω〉. Then H is a
generic filter as H meets all the dense sets.

(2) We have already shown thatmt
α2

is a condition in the proof of Lemma 3.1(3).
Case 2) For all α < κ, t ↾ α is in M.
(1) As in the proof of case 1), we want to construct 〈pn | n < ω〉 such that

p0 < q(1,2) and for each n, pn ∈ Dn. However, we will need one more requirement
for the sequence 〈pn | n < ω〉 to ensure that mt

α2
is a condition:

∀n < ω∀η ∈ spt(pn)(Qη = P(G0, Xβ) → (∃γ > o(pn(η))(t ↾ γ ∈ Xpn+1(β))).

This can be achieved as follows: Suppose pn has been defined, let γ < κ be a
successor ordinal strictly greater than o(pn(η)) such that η ∈ spt(pn) and Qη =
P(G0, Xβ). Define p′n by setting

p′n(β) =

{

pn(β) if β = 0 or β 6∈ spt(pn) or Qβ = Sh(κ \Xβ)
〈gpn(β), Xpn(β) ∪ {t ↾ γ}〉 if Qβ = P(Xβ, G0).

Clearly p′n is a condition. Let pn+1 ∈ Dn+1 extend p′n. Then pn+1 suffices. Let H
be the downward closure of 〈pn | n < ω〉. It is clear that H is a generic filter.

(2) We only need to show that mt
α2

is a condition. We follow the argument
of Lemma 3.1. By induction on α < α2, we show that mt

α = mt
α2

↾ α is a Pα

condition. For η < α1, there is nothing to prove, as mt
α1

∈ Ḡα1
.

The case when α is limit is clear by induction. When α = β + 1, it is again
routine to check when Qβ is not P(G0, Xβ). Now assume Qβ is P(G0, Xβ). We only
need to check the requirement (c4) as all other requirements can be verified using
the same argument as in the proof of Lemma 3.1(3)β+1. We remark that Claim 3.5
remains true here.

For (c4), as in Claim 3.6 we need to show the following: For all increasing
sequences 〈ci | i ∈ ω〉 in dom(gm̄α

β
) such that

⋃

i∈ω dom(gm̄α
β
(ci)) = κ,

mt
β 


⋃

i∈ω

gm̄α
β
(ci) 6= t.

By construction, there is n ∈ ω such that β ∈ spt(pn). Hence there is a successor
ordinal γ such that t ↾ γ ∈ Xpn+1(β). Let ci and n

′ > n be such that ci 6∈ dom(gpn+1
)

and ci ∈ dom(gp′
). By the definition of the forcing order, ci cannot extend t ↾ γ.

Hence
⋃

i∈ω gm̄α
β
(ci) 6= t. This completes the proof of Claim 3.7. �

Now Gα2
= Gα1

∗H is Pα2
-generic over V [G] and mt

α2
is a master condition. Let

Ḡα2
be j(Pα2

) generic overM [G∗Ḡ] such thatmt
α2

∈ Ḡα2
and Ḡα2

↾ j(Pα1
) = Ḡα1

.

It follows that κ ∈ jα2
(Ẋ/(G ∗Gα2

)) = jα1
(Ẋ/(G ∗Gα1

)) as jα2
lifts jα1

and Ẋ is

a P ∗ Pα1
-name. This contradicts the fact that κ is not in jα2

(Ẋ/(G ∗Gα2
)) by the

definition of Iα2
and the fact that p ∗ q2 is a witness to Ẋ ∈ Iα2

.
(2) We show that Iα1

is normal. Assuming otherwise, there is a function f :
κ → κ such that f is regressive on a I+α1

set S. We need to show that there is a

γ < κ such that the set Sγ = {η < κ | f(η) = γ} 6∈ Iα1
. Let Ḡ ∗ Ḡα witness that

κ ∈ jα(S),
4 thus jα(f)(κ) < κ. Say jα(f)(κ) = γr. Then Ḡ ∗ Ḡα witnesses that Sγr

is not in Iα1
. The proof for precipitousness can be viewed as a special case of the

proof of Claim 3.10 to follow and thus we omit it here. �

Let Gω2
be a Pω2

generic over V [G]. Let I =
⋃

α<ω2
Iα. As Pω2

is ω2-c.c, any

subset of ω1 appears in V [Gα] for some α < ω2. Hence by Lemma 3.2(2), I is a
normal ideal. Also it is also clear that I contain any ground model measure 0 set

4Note we have already argued for the existence of such a jα1
in the proof of 1).
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and thus is a proper ideal. It follows that I must contain NSω1
. On the other

hand, our iteration shoots clubs disjoint from any set in I. Hence, I = NSω1
.

In the next lemma, we show that T (G0) is a canary tree in V [G ∗Gω2
].

Lemma 3.3. The following are true in V [G ∗Gω2
]:

(1) T (G0) has no cofinal branch.
(2) If S 6∈ I ∪ Ī, then there is an order-preserving function from Sh(S) to

T (G0).

Proof. (1)Assume t ∈ V [G ∗Gω2
] is in ωω1

1 . We need to show t is not a branch of
T (G0). Let α < ω2 be such that t ∈ V [G ∗Gα]. Let ṫ be a Pα name of t. We prove
that there are dense-many conditions in Pα which force that ṫ is not a branch of
T (G0).

Fix a condition q ∈ G ∗ Gα. Consider the precondition mt
α. We show that mt

α

is a Pα condition by induction on β < α. The limit cases and the case β = 1 are
easy. Also the case that β +1 is such that Qβ = Sh(κ \Xβ) follows from the proof
of Claim 3.4.

Now assume that β + 1 is such that Qβ = P(Xβ, G0). By the induction hypoth-
esis, mt

α ↾ j(β) is a jG(Pβ)-condition.
Since the complement of Xβ is not in Iβ , by Claim 3.10, Xβ is costationary.

Hence in V [G ∗Gα], there is η such that t ↾ η is a function from η to η and η is in
the complement of Xβ . Hence t̄ = t ↾ (η + 1) is not an Xβ-node. This implies that
there is a condition forces p ∈ Gβ such that

p 
Pβ
˙̄t is not an Xβ-node.

By the definition of P(G0, Xβ), q 
 For all P(Xβ , G0) conditions q
′′, if c ∈ dom(gq′′)

such that dom(c) > η + 1, then gq′′(c) cannot extend t̄, as t̄ is not an Xβ-node. As
in the proof of Claim 3.4, we can check that mt

α ↾ j(β) forces that mt
α(j(β)) is a

condition. The only new feature is a different proof of Claim 3.6.

Claim 3.8. For all increasing sequence 〈ci | i ∈ ω〉 in dom(gm̄α
β
) such that

⋃

i∈ω dom(gm̄α
β
(ci)) =

κ,

mt
β 


⋃

i∈ω

gm̄α
β
(ci) 6= t.

Proof. In V [G][Gβ ], whenever dom(c) > ot(t̄), gq(c) cannot extend t̄. Hence there
is a ci such that g(ci) does not extend t̄. Now in V [G][Gα], t extends t̄. It follows
that

⋃

i∈ωm
′
α(j(β))(ci) is not equal to t. �

By induction, mt
α is a j(Pα) condition. Note that j(ṫ) is a jG(Pα)-name and

mt
α 
 j(ṫ) ↾ κ. Moreover, j(q) > mt

α 
 t = j(ṫ) ↾ κ is not a branch of T (Ḡ0). By
elementarity, in V [G], there is a condition q′ < q such that q′ 
 ṫ is not a branch
of T (G0).

(2) It follows from the assumption that there is an α < ω2 such that S is a

stationary costationary set in Pα, Xα = S and Q̇α = P(Xα, G0). Hence gαα is the
desired order-preserving function. �

The Π1 definition of I is as follows:

Claim 3.9. In V [G ∗ Gω2
], S 6∈ NSω1

iff either S contains a club or there are
X0 ⊆ S, X1 ⊆ S̄ and g0, g1 such that for i = {0, 1}, gi is an order-preserving
function from Sh(Xi) to T (G0).

Proof. If S 6∈ NSω1
, then the implication is proved in (2) of the last claim. For

the other direction, we only need to show that if there is X ⊆ ω1 and g an order-
preserving function from Sh(X) to T (G0), then X does not contain a club. But
otherwise,

⋃

{g(X ∩ β) | β ∈ Lim(X)} is a cofinal branch of T (G0). �
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Finally, we prove that NSω1
is a precipitous ideal, which completes the proof of

Theorem 3.1.

Claim 3.10. I = NSω1
is a precipitous ideal.

Proof. For any I-positive set A, we need to prove there is a well-founded generic
ultrapower which concentrates on A. Via a density argument, we need to prove for
any P ∗ Pω2

condition p ∗ q and name Ȧ such that p ∗ q 
 A 6∈ I, there is G ∗Gω2

containing p ∗ q and a P (ω1)/I generic filter D containing Ȧ/G ∗ Gω2
such that

UltDV [G ∗ Ḡ] is well-founded.
Fix such a pair p ∗ q and Ȧ. We can also assume that Ȧ is a P ∗ Pα name and q

is a Pα condition for some α < κ+. Since p ∗ q forces Ȧ 6∈ I, there exists p1 ∈ j(P)
such that p1 < p,

p1 
j(P) (∃ Pα-generic Gα over M [G] containing q)(∃ j(Pα)-condition q
∗)

q∗ 
j(Pα) j[Gα] ⊆ Ḡα ∧ κ ∈ jα(Ȧ).

We choose G, Ḡ, Gα and Ḡα witnessing the above formula. Thus κ ∈ jα(Ȧ/G ∗
Gα). Let t = r(0)(κ) for some (or any) r ∈ Gα with dom(r(0)) > κ. Using the same
argument of the proof of Claim 3.7, we can construct Gω2

such that Gω2
↾ α = Gα

and for any β < κ+,mt
β is a master condition inM [G∗Ḡ]. One possible construction

is as follows: Work in a very large generic extension V [G ∗ Ḡ ∗ H ] making κ+ of
countable cofinality. Let 〈βn | n < ω〉 be a cofinal sequence of κ+ with β0 = α. By
inductively applying Claim 3.7, we define the sequence 〈Gβn

| n < ω〉 such that

• Gβn+1
↾ βn = Gβn

.

• mt
βn

is a master condition and mt
βn

in M [G ∗ Ḡ].

Let Gω2
=

⋃

n<ω Gβn
. Then Gω2

is Pω2
-generic over V [G ∗ Ḡ]. Note although all

Gβ are in M [G ∗ Ḡ], Gω2
is not.

In V [G ∗ Ḡ ∗H ], let P∗ be the suborder of jG(Pω2
) such that r ∈ P∗ if r ∈ Pω2

, r
extend mt

α and spt(r) ⊆ j(α) for some α < ω2. Note that P∗ ↾ j(α) = jG(Pα)/m
t
α

as all mt
α are in M [G ∗ Ḡ] ∩ jG(Pω2

). Here jG(Pα)/m
t
α = {p ∈ jG(Pα) | p < mt

α}.
Let Ḡ∗ be a P∗ generic over V [G ∗ Ḡ ∗H ]. Let Ḡω2

⊆ Pω2
be the set of conditions

which are weaker than some conditions in Ḡ∗. It is not difficult to check that Ḡω2
is

j(Pω2
) generic over V [G∗Ḡ].5 Therefore, Ḡω2

is also a j(Pω2
) generic overM [G∗Ḡ]

and jG[Gω2
] ⊆ Ḡω2

. Hence we can lift jG to jω2
: V [G ∗ Gω2

] → M [G ∗ Ḡ ∗ Ḡω2
].

Note that by definition jω2
extends all jα’s where α < ω2.

In summary, we can construct G ∗ Ḡ ∗ Ḡω2
such that the induced embedding jω2

satisfies κ ∈ jω2
(Ȧ/G ∗ Gω2

). Let Uω2
= {X ⊆ ω1 | κ ∈ jω2

(X)}. Uω2
is a normal

V [G ∗ Ḡ]-ultrafilter disjoint from Iω2
, the ideal dual to Uω2

. It is also clear that
Ult(V [G ∗ Ḡ], Uω2

) = M [G ∗ Ḡ ∗ Ḡω2
] and thus well-founded. It remains to prove

that Uω2
is P (κ)/Iω2

generic over V [G ∗Gω2
].

Assume otherwise. Returning to V , let Ṫ be a P ∗ Pω2
name of a maximal

antichain in P (ω1)/Iω2
such that there is a j(P) ∗ P∗ condition s ∗ t ∈ G ∗ Ḡ ∗Gω2

force that Ṫ ∩ ˙Uω2
= ∅, namely, for all X ∈ T (κ 6∈ jω2

(X)). View s∗t as a j(P∗Pω2
)

condition, then there is a function f : κ → V such that j(f)(κ) = 〈p, q〉. Let Ṡ
be the P ∗ Pω2

name of {α < κ | f(α) ∈ G ∗ Gω2
}. Now κ ∈ jω2

(S) implies that
s ∗ t ∈ G ∗ Ḡ ∗ Ḡω2

. Hence with any choice of Ḡ and Ḡω2
, if κ ∈ jω2

(S) , then for
every X ∈ T , κ 6∈ jω2

(X). It follows that S ∩ X ∈ Iω2
for all X ∈ A. However,

S 6∈ Iω2
since whenever s∗ t ∈ G∗ Ḡ∗ Ḡω2

, κ ∈ jω2
(S). It follows that T is maximal

in V [G ∗Gω2
] as S is a counterexample. �

This completes the proof of Theorem 3.1. �

5Note for any antichain A of jG(Pω2
), there is α such that A∩ jG(Pα) is a antichain of jG(Pα).

Moreover, any jG(Pα)/mt
α generic filter can trivially derived a jG(Pα) by taking downward closure.
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4. Saturation and ∆1-definability of NSω1

In this section, we study the consistency of “NSω1
is both saturated and ∆1-

definable”. This statement follows from the statement that NSω1
is ω1-dense. By

work of Woodin, the consistency strength of the latter is ω-many Woodin cardinals.
Hence we have:

Fact 4.1. Con(ZFC+ there are ω-many Woodin cardinals)→Con(ZFC + NSω1
is

both saturated and ∆1-definable).

It is unknown whether it is possible to reduce this upper bound to one Woodin
cardinal.6 It is also unknown how to construct a model in which NSω1

is saturated
but not ∆1 definable. The following is a partial result on the latter question.

Fact 4.2. Suppose κ is a Woodin cardinal. Then in V Col(ω1,<κ), NSω1
is presat-

urated but not ∆1 definable.

Proof. That NSω1
is presaturated in that model is explicitly proved in [2] and

a proof of even a stronger result can be found in [5]. Since Col(ω1, < κ) =
Col(ω1, [ω2, < κ))×Add(ω1, ω2), there is no canary tree in V Col(ω1,<κ). �

We say that NSω1
is lightface ∆1 definable iff it is ∆1 definable with parameter

ω1. In the remain part of this section, we present some facts regarding the lightface
∆1 definability and saturation of NSω1

Recall that following definition of iterated generic ultrapower.

Definition 4.1. Let M be a model of ZFC-Powerset Axiom. Let γ be an ordinal
less than or equal to ω1. An iteration of (M, (NSω1

)M ) of length γ consists of
models Mα (α ≤ γ), sets Gα (α ≤ γ) and a commuting family of elementary
embeddings jαβ :Mα →Mβ (α ≤ β ≤ γ) such that

(1) M0 =M ,
(2) each Gα is an Mα-generic filter for (P (ω1)/(NSω1

))Mα ,
(3) each jαα is the identity mapping,
(4) each jα(α+1) is the ultrapower embedding induced by Gα,
(5) for each limit ordinal β ≤ γ,Mβ is the direct limit of the system {Mα, jαδ;α ≤

δ < β}, and for each α < β, jαβ is the induced embedding.

We say M is iterable if every iterate of (M, (NSω1
)M ) is wellfounded.

We need the following lemma:

Lemma 4.1. Assuming that for all countable X ≺ H(ω2), the transitive collapse
of X is iterable, then NSω1

is not lightface ∆1 definable.

Proof. We argue by contradiction. Fix a Σ1-formula φ(x) such that for all station-
ary set S, H(ω2) |= φ(S, ω1) if and only if S is stationary. Now fix a stationary
co-stationary set S. Let X be such that S ∈ X and M be the transitive collapse of
X . Let SM be the image of S under collapsing map. Let 〈Mα, Gα, jαβ | α < β ≤ ω1〉
be an ω1-length iteration of M0 =M such that

(∀α ∈ ω1)j0α(S
M ) 6∈ Gα.

By elementarity,Mω1
thinks j0ω1

(SM ) is a stationary set and ψ(j0ω1
(SM )) holds.

Moreover, j0ω1
(SM ) is nonstationary. Since Mω1

is transitive such that Mω1
⊆

H(ω2), H(ω2) |= ψ(j0ω1
(SM )) by Σ1-absoluteness. Hence j0ω1

(SM ) is stationary.
Contradiction. �

6This was recently answered affirmatively by the first author and Stefan Hoffelner and will
appear in Hoffelner’s 2014 PhD thesis at the University of Vienna.
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Corollary 4.1. Assume that there is a proper class of Woodin cardinals. Then
there is no set-forcing notion P such that P 
 NSω1

is lightface ∆1 definable.

Proof. Since AD holds in L(R), it follows from the analysis of Pmax extension
that for all countable X ≺ H(ω2), the transitive collapse of X is iterable. By
Lemma 4.1, L(R)Pmax |= NSω1

is not lightface ∆1-definable. Now suppose that
P 
 ψ(x) is a lightface Π1-definition of NSω1

over 〈H(ω2),∈〉. Let φ be the sentence

∀S(S ∈ NSω1
↔ ψ(S)). Then 〈H(ω2), NSω1

∈〉V
P

|= φ. Since there are proper
class many Woodin cardinals, by Π2-maximality of Pmax (cf Theorem 4.69 of [11]),

〈H(ω2), NSω1
∈〉L(R)Pmax

|= φ. This contradicts to the fact that NSω1
is not

lightface Π1 definable in this model. �

Corollary 4.2. Assume NSω1
is saturated and P (ω1)

♯ exists then NSω1
is not

lightface ∆1 definable. In particular, MM implies NSω1
is not lightface ∆1 defin-

able.

5. Open Question

The forcings defined in [3], [6] only give the ∆1 definability of some restriction
of the nonstationary ideal whereas [4] gives the ∆1 definability of NSκ only for
successor cardinals κ. It is therefore natural to ask:

Question 5.1. Assume GCH and suppose that there is a proper class of weak
compacts. Is there a cardinal-preserving forcing which preserves weak compactness
and forces that for uncountable regular κ, NSκ is ∆1-definable over H(κ+) iff κ is
not weak compact?
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Kurt Gödel Research Center
University of Vienna
Währinger Straße 25
A-1090 Wien


