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ISOMORPHISM RELATIONS ON COMPUTABLE STRUCTURES

EKATERINA B. FOKINA, SY-DAVID FRIEDMAN, VALENTINA HARIZANOV,
JULIA F. KNIGHT, CHARLES MCCOY, AND ANTONIO MONTALBÁN

Abstract. We study the complexity of the isomorphism relation on classes of computable structures.

We use the notion of FF-reducibility introduced in [9] to show completeness of the isomorphism relation

on many familiar classes in the context of all Σ11 equivalence relations on hyperarithmetical subsets of ù.

§1. Introduction. We develop the theory for computable structures analogous to
the theory of isomorphism relations introduced by H. Friedman–Stanley in [13].
Our languages are computable, and our structures have universes contained in ù.
In measuring complexity, we identify structures with their atomic diagrams. In
particular, a structure is computable if its atomic diagram is computable.
In descriptive set theory, the study of Borel equivalence relations under Borel
reducibility has developed into a rich area. The notion of Borel reducibility allows
one to compare the complexity of equivalence relations on Polish spaces, for details
see, for example, [15, 19, 21]. In particular, natural equivalence relations such
as isomorphism and bi-embeddability on classes of countable structures have been
widely studied, e.g., [13, 14, 18, 25]. An effective version of this studywas introduced
in [4] and [24]. The complexity of the isomorphism relation on various classes of
countable structures was measured using the idea of effective transformations. In
the recent work [11] the general theory of effectively Borel (i.e., ∆11) equivalence
relations on effectively presented Polish spaces was developed via the notion of
effective Borel reducibility. The resulting structure turned out to be much more
complex than in the classical case.
In computable model theory, equivalence relations have also been a subject of
study, e.g., [3, 7, 23], etc. In these papers, equivalence relations of rather low
complexity were studied (computable, in the Ershov hierarchy, Σ01,Π

0
1). In [9] Σ

1
1

equivalence relations on computable structures were investigated. The notion of
hyperarithmetical and computable reducibility of Σ11 equivalence relations onù was
used to estimate the complexity of natural equivalence relations on hyperarithmeti-
cal classes of computable structures within the class of Σ11 equivalence relations on
hyperarithmetical subsets of ù as a whole.
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In this paper we continue the study of the theory of Σ11 equivalence relations
on computable structures. Our work here shows that this theory behaves very
differently from the theory initiated in H. Friedman–Stanley [13] for isomorphism
relations and further developed for arbitrary Borel equivalence relations on Polish
spaces [15, 19, 21]. In particular we show that isomorphism of computable graphs
is complete with respect to the chosen effective reducibility in the context of all Σ11
equivalence relations on ù. This is false in the context of countable structures and
Borel reducibility [22]: there are examples of Borel equivalence relations that are
not Borel-reducible to isomorphism of graphs. We also show that the isomorphism
relation on computable torsion abelian groups is complete among Σ11 equivalence
relations on ù, while in the classical case it is known to be incomplete among
isomorphism relations on classes of countable structures [13]. The same holds
for isomorphism of computable torsion-free abelian groups, which in the case of
countable structures is not known to be complete for isomorphism relations.

§2. Background.

2.1. Trees. Here we give some definitions useful for describing computable trees.
Our trees are isomorphic to subtrees of ù<ù . For the language, we take a single
unary function symbol, interpreted as the predecessor function. We write ∅ for the
top node (our trees growdown), andwe think of ∅ as its own predecessor. Thus, our
trees are defined on ù with their structure given by the predecessor function, but we
often consider them as subtrees of ù<ù and treat their elements as finite sequences.

Definition 1. Let S,T ⊆ ù<ù be trees. Define the tree S ∗ T in the following
way. We think of the elements of S ∗T as ordered pairs (ó, ô), where ó ∈ S, ô ∈ T .
At level 0 of S ∗T , we have (∅, ∅). For an element (ó, ô) at level k of S ∗T , ó and ô
are at level k of S and T , respectively. The successors of (ó, ô) are the pairs (ó ′, ô′),
where ó ′ is a successor of ó in S, and ô′ is a successor of ô in T .

Definition 2. Let T be a subtree of ù<ù . We define the tree rank of x ∈ T ,
denoted by tr(x), by induction:

(1) tr(x) = 0 if x has no successor;
(2) For α > 0, tr(x) = α if α is the least ordinal greater than tr(y) for all
successors y of x;

(3) tr(x) =∞ if x does not have ordinal tree rank.

The tree rank of the tree T is defined to be the rank of the top node ∅.

Note that all computable trees have rank ∞ or rank some computable ordinal.
Moreover, for any node x ∈ T , tr(x) =∞ iff x extends to an infinite path through
T [27].

Remark. The tree rank of the tree S ∗ T is the minimum of the tree ranks of S
and T . In particular, S ∗T has an infinite path iff both S and T have infinite paths.
More generally, for ó ∈ S and ô ∈ T , where ó and ô lie at the same level in their
respective trees, tr((ó, ô)) = min(tr(ó), tr(ô)).

Definition 3 (rank-saturated tree). A computable subtree T of ù<ù is rank-
saturated provided that for all x in T :

(1) If tr(x) is an ordinal α, then for all â < α, x has infinitely many successors
z such that tr(z) = â ;
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(2) If tr(x) = ∞, then for all computable â , x has infinitely many successors z
such that tr(z) = â and x has infinitely many successors z with tr(z) =∞.

Lemma 1. There is a computable rank-saturated tree T∞ such that rk(T∞) =∞.

Proof. In [17] Harrison proved the existence of a computable linear orderingH
of typeùCK1 (1+ç). We let T

∞ be the set of finite sequences ((a0, k0), . . . , (an, kn)),
where a0 > · · · > an inH and k0, . . . , kn ∈ ù. It is easy to see that if ai corresponds
to an ordinal α in H , then tr((a0, k0), . . . , (ai , ki )) = α, and if ai lies in the non-
well-ordered part ofH , then tr((a0, k0), . . . , (ai , ki )) =∞. ⊣

Proposition 1. If T is a computable tree, then T ∗ T∞ is a computable rank-
saturated tree of the same tree rank as T .

Proof. The top node in T ∗T∞ clearly has the proper rank, by Remark 2.1. For
x ∈ T ∗ T∞ of rank α and â < α, we show that x has infinitely many successors
of rank â . Say x = (ó, ô). By Remark 2.1, tr(ô) ≥ α and because T∞ is rank-
saturated, ô has infinitely many successors ô′ of rank â . Also, tr(ó) ≥ α, so ó has a
successor ó ′ of rank at least â . Then for all such pairs (ó ′, ô′), tr(ó ′, ô′) = â . ⊣

Remark. Computable rank-saturated trees are a special case of computable rank-
homogeneous trees, defined in [5].

Proposition 2. (1) For every computableα, ifT α andT α1 are computable rank-
saturated trees of tree rank α, then T α ∼= T α1 .

(2) If T∞

1 is a computable rank-saturated tree of tree rank∞, then T
∞ ∼= T∞

1 .

Proof. By induction on α. ⊣

Wewill fix the notationT α for the computable rank-saturated tree of rank α, and
we recall that T∞ is a computable rank-saturated tree with infinite paths.

2.2. Σ11 sets and relations. We assume the reader is familiar with basic concepts of
recursion theory. However, here we list some definitions and facts that will be useful
for the future proofs. Detailed information can be found, for example, in [1, 27].

Definition 4. (1) A relation S(x) is Σ11 if there is an arithmetical relation
R(x, u), on tuples of numbers, such that x ∈ S iff (∃f ∈ ùù) (∀s)R(x,f ↾

s)—we identify f ↾ s with its code.
(2) A relation S(x) is Π11 if there is an arithmetical relationR(x, u), on tuples of
numbers, such that x ∈ S iff (∀f ∈ ùù) (∃s)R(x,f ↾ s).

(3) A relation S(x) is ∆11 if it is both Σ
1
1 and Π

1
1.

By the Kleene–Suslin Theorem, a relation is ∆11 iff it is hyperarithmetical.
If S(x) is a k-place relation, we may consider the set S′ of codes for k-tuples
belonging to S. It is clear that S is Σ11 iff S

′ is Σ11. The next result gives familiar
conditions equivalent to being Σ11 [1, 27]. We identify finite sequences with their
codes.

Proposition 3 (Kleene). The following are equivalent:

(1) S is Σ11;
(2) There is a computable relation R(n, u), on pairs of numbers, such that n ∈ S
iff (∃f) (∀s)R(n,f ↾ s);

(3) There is a computable sequence of computable trees (Tn)n∈ù such that n ∈ S
iff Tn has an infinite path.
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Theorem 1 (Bounding). Let CWF denote the set of codes for computable well-
founded trees on ù and for each computable ordinal α, let CWFα denote the set of
codes for computable trees of tree rank less than α. Then if F is a hyperarithmetical
function from a hyperarithmetical subset of ù into CWF, there exists a computable α
such that the range of F is contained in CWFα .

We now give a notion of effective reducibility of Σ11 equivalence relations on
hyperarithmetical subsets ofù. The idea is the following. A relation E is effectively
reducible to a relationE ′ if there is an effective procedure which allows us to answer
any question about E-equivalence using information about E ′-equivalence. We
want to use partial computable functions as witnesses for reducibilities.

Definition 5. Let E,E ′ be Σ11 equivalence relations on hyperarithmetical subsets
X,Y ⊆ ù, respectively. The relation E is FF-reducible to E ′ iff there exists a partial
computable function f with X ⊆ dom(f), Y ⊆ f(X ) such that for all x, y ∈ X ,

x E y ⇐⇒ f(x)E ′ f(y).

We denote this fact by E ≤FF E ′.

The notion of FF-reducibility was first used in [9] where it was called “tc-
reducibility”. In the next section we will explain the relationship between FF-
reducibility and the notion of tc-reducibility introduced in [4] to compare the classes
of countable structures.

2.3. Computable characterization and classification. Here we review two equiv-
alent approaches, from [16], to the problems of computable characterization and
classification. The goal is to be able tomeasure the complexity of a set of computable
structures or an equivalence relation on a set of computable structures.
The first approach is based on the notion of computable infinitary formulas.
Roughly speaking, computable infinitary formulas are Lù1ù formulas in which the
infinite disjunctions and conjunctions are over c.e. sets. For a formal definition
see [1]. Computable infinitary formulas form a hierarchy: a computable Σ0 or Π0
formula is a finitary quantifier-free formula. For α > 0, a computable Σα formula is
a c.e. disjunction of formulas of the form ∃uø, where ø is computable Πâ for some
â < α, and a computableΠα formula is a c.e. conjunction of formulas of the form
∀uø, where ø is computable Σâ for some â < α.
Following [16], we say that a class K of structures closed under isomorphism
has a computable characterization if the set K c of its computable members consists
exactly of all computablemodels of a computable infinitary sentence. This definition
expresses the idea that the set of all computable members ofK can be nicely defined
among all other structures for the same language.
The second approach uses the notion of an index set. For a computable structure
M , an index is a number a such that ϕa = ÷D(M ), where (ϕa)a∈ù is a computable
enumeration of all unary partial computable functions. The index set forM is the
set I (M ) of all indices for computable (isomorphic) copies of M . For a class K
of structures, closed under isomorphism, the index set is the set I (K) of all indices
for computable members of K . As in [16], we say that a class K has a computable
characterization, if its index set is hyperarithmetical.
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Proposition 4 (Goncharov–Knight [16]). LetK be a class of countable structures
closed under isomorphism, and let K c be the set of computable members of K . Then
the following are equivalent:

(1) The index set I (K) of K is hyperarithmetical;
(2) There is a computable infinitary sentence ø such that K c = Mod cø, where
Mod cø is the set of all computable models of ø.

For a relation E on a class K of structures, denote by I (E,K) the set of pairs of
indices

{(m, n) | m, n ∈ I (K) andMm E M n}.

We measure the complexity of various relations on computable structures via the
complexity of the corresponding sets of pairs of indices. In what follows we will
often identifyE with I (E,K) considered as a relation on indices. Thus, it will make
sense to compare relations on classes of computable structures with relations on
subsets ofù. The most studied cases are that of isomorphism and bi-embeddability
relations, e.g., [2, 6, 9, 16].
We are interested in studying the relations on classes that are nicely defined. For
this reason we will require the index set of each class K to be hyperarithmetical.
Equivalently, K c =Mod cø for some computable infinitary ø. Let K and K

′ be two
classes of countable structures, such that K = Modø and K ′ = Modø′ for some
computable infinitaryø,ø′. Suppose the isomorphism relation onK is tc-reducible
to the isomorphism relation on K ′ in the sense of [4]. Then I (∼=, K) ≤FF I (∼=, K ′)
and the reduction is exactly the restriction to computable structures of the reduction
of K to K ′.

§3. Isomorphism is complete among Σ11 equivalence relations. If I (K) is hyper-
arithmetical and E is the isomorphism or bi-embeddability relation, then the cor-
responding equivalence relation I (E,K) on indices is a Σ11 set. In this section we
prove completeness of the isomorphism relation on various familiar classes of struc-
tures in the context of all Σ11 equivalence relations on hyperarithmetical subsets of
ù under FF-reducibility. These results show the difference of our theory from the
classical theory of Borel equivalence relations since, by [22], some Borel equivalence
relations cannot be reduced to isomorphism relations.

Definition 6. A relationE on a hyperarithmetical subset ofù is an FF-complete
Σ11 equivalence relation if E is Σ

1
1 and every Σ

1
1 equivalence relation E

′ on a hyper-
arithmetical subset of ù is FF-reducible to E.

Note that if E is an equivalence relation on a hyperarithmetical class K c of
computable structures, then it is complete if and only if for every Σ11 relation E

′,
there exists a computable sequence of computable structures (M n)n∈ù fromK c such
that for all m, n ∈ ù,

m E ′ n ⇐⇒ Mm E M n.

3.1. Trees and graphs.

Theorem 2. The isomorphism relation on computable trees is an FF-complete Σ11
equivalence relation.
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Proof. LetE be aΣ11 equivalence relation onù. Toprove thatE isFF-reducible to
the isomorphism relation on computable trees, we will build a computable sequence
of computable trees (Tn)n∈ù such that for every m, n ∈ ù,

mE n ⇐⇒ Tm ∼= Tn .

By Proposition 3, since E is Σ11, there exists a uniformly computable sequence of
trees (Tm,n)m,n∈ù such that ¬mE n if and only if Tm,n is well founded. Then we say
that ¬mE n is witnessed by stage α if and only if Tm,n has tree-rank less than α.
The strategy to build (Tn)n∈ù is the following. First, uniformly in m, n, we will
build a computable tree T ∗

m,n with the following properties:

(1) m E n ⇒ T ∗

m,n
∼= T∞, where T∞ is the rank-saturated tree with an infinite

path;
(2) ¬mE n ⇒ T ∗

m,n
∼= T α , where T α is the rank-saturated tree of tree rank α, for

a computable ordinal α such that for allm′ ∈ [m]E and n′ ∈ [n]E the relation
¬m′ E n′ is witnessed by stage α. This α will be the least ordinal such that
for allm′ ∈ [m]E , n′ ∈ [n]E and all finite sequences m′ = a0, a1, . . . , as = n′,
α ≥ min{tr(Tai ,ai+1) : i ≤ s − 1}+1, where (Tm,n)m,n∈ù is the sequence fixed
for E in the previous paragraph.

We start from the computable sequence of computable trees (Tm,n)m,n∈ù men-
tioned above: Tm,n is well founded if and only if ¬m E n. For every m, n ∈ ù,
we construct (effectively and uniformly) a new tree T ′

m,n in the following way. Let
ó0, ó1, . . . be an enumeration of all finite sequences of natural numbers. Suppose
ós = (a0, . . . , als ). Then under the s

th node on level 1 (i.e., under the element of the
form (s), s ∈ ù) of T ′

m,n we put the tree Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n, identifying
the top node of Ps with s . Then

tr(T ′

m,n) = sup{tr(Ps ) + 1 | s ∈ ù}.

IfmEn, thenTm,n has an infinite path, i.e., tr(Tm,n) =∞. Thus, tr(T ′

m,n) =∞. If
¬mE n, then for every ó = (a0, . . . , al ), tr(Tm,a0 ∗Ta0,a1 ∗ · · ·∗Tal ,n) is a computable
ordinal. Indeed, fixm, n ∈ ù such that¬mEn. For every finite sequence ós consider
the corresponding tree Ps = Tm,a0 ∗ Ta0 ,a1 ∗ · · · ∗ Tals ,n. Consider the function F
from the set of finite sequences into CWF such that F (s) is the code of Ps . The
function F is hyperarithmetical, its domain is computable. By Bounding, there
is a computable bound on the range of F . Therefore, T ′

m,n has rank α for some
computable α. Note that for allm′ ∈ [m]E and n′ ∈ [n]E , we get the same bound α.
Indeed, let m′ E m, n′ E n and let â be the computable bound on the ranks of
trees constructed using finite sequences starting with m′ and ending with n′. Let
Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n be as above. Then tr(Tm′ ,m ∗ Ps ∗ Tn,n′) = tr(Ps ),
thus α ≤ â . Similarly, one can show that â ≤ α.
Let T ∗

m,n = T
′

m,n ∗ T
∞. As shown in Proposition 1, the tree T ∗

m,n is a computable
rank-saturated tree, tr(T ∗

m,n) = tr(T
′

m,n), and the construction is uniform.
Now we build the desired sequence (Tn)n∈ù . Take the tree T consisting exactly
of the sequences (m,m, . . . , m) of length i ≤ m, for m ∈ ù. Now fix n and for
every m, attach T ∗

m,n to the m-th leaf of T . The resulting tree is Tn. The sequence
(Tn)n∈ù witnesses the reducibility: m E n iff Tm ∼= Tn. Indeed, suppose m E n.
Then
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(1) for everyk ∈ [m]E = [n]E , tr(T ′

k,m) = tr(T
′

k,n) =∞, thusT ∗

k,m
∼= T ∗

k,n
∼= T∞;

(2) for every k /∈ [m]E , tr(T ′

k,m) = tr(T
′

k,n) = α, thus T
∗

k,m
∼= T ∗

k,n
∼= T α .

Therefore, Tm ∼= Tn.
Suppose now that ¬m E n. Then T ∗

m,m
∼= T∞, while T ∗

m,n
∼= T α for some

computable α. Thus Tm ≇ Tn. ⊣

Corollary 1. The isomorphism relation on computable graphs is an FF-complete
Σ11 equivalence relation.

3.2. Torsion-free abelian groups. Torsion-free abelian groups are subgroups ofQ-
vector spaces. Hjorth [18] gave a transformation from trees to torsion-free abelian
groups, which enabled him to show that the isomorphism relation on these groups
is not Borel. Downey and Montalbán [8] built on Hjorth’s ideas to show that the
isomorphism problem on these groups is complete among Σ11 sets. In this paper
we use the transformation from [18] and [8] to show that the isomorphism relation
on computable torsion-free abelian groups is, in fact, complete as a Σ11 equivalence
relation. First we describe the transformation.
We consider the elements of ù<ù as a basis for a Q-vector space V ∗. Let T be a
subtree of ù<ù , and let V be the subspace of V ∗ with basis T . Let Tn be the set of
elements at level n of T . If u is at level n > 0, let u− be the predecessor of u. Let
(pn)n∈ù be a computable list of distinct primes. We let G(T ) be the subgroup of V
generated by the vector space elements of the following forms:

(1) v
(p2n)k

, where v ∈ Tn , and k ∈ ù,

(2) v+v′

(p2n+1)k
, where v ∈ Tn , v′ is a successor of v, and k ∈ ù.

Theorem 3. The isomorphism relation on computable torsion-free abelian groups
is FF-complete among Σ11 equivalence relations.

Proof. It follows from [12] that if we restrict the class of trees to only rank-
saturated trees, then the transformation from the class of trees into torsion-free
abelian groups described above is 1 − 1 on isomorphism types. Thus, given a Σ11
equivalence relation E for every n ∈ ù, we first construct the sequence of rank-
saturated trees (T ∗

m,n)m∈ù as in Theorem 2. We want to pass effectively from the
sequence to a group Gn such that Gn ∼= Gn′ iff for all m, T ∗

m,n
∼= T ∗

m,n′ .
For m ∈ ù, let (pm,k)k∈ù be uniformly computable lists of primes such that for
distinctm, the lists are disjoint. For eachm, we apply the transformation described
above, taking Tm,n to a torsion-free abelian group Gm,n, using the list of primes
(pm,k)k∈ù . The resulting sequence (Gm,n)n∈ù will satisfy the property:

T ∗

m,n
∼= T ∗

m′ ,n′ ⇐⇒ Gm,n ∼= Gm′ ,n′ .

Let Gn = ⊕mGm,n .
Using the fact that the sequences of primes are disjoint, we can see thatGn ∼= Gn′
iff for all m, Gm,n ∼= Gm,n′ . The reason is that Gm,n is the subgroup of Gn generated
by the set of elements divisible by all the powers of some prime in the list (pm,k)k∈ù
(for more details see [8] or [12]). ⊣

3.3. Abelian p-groups. Let p be a prime number. A p-group is a group such that
each element has some power of p for its order. Countable abelian p-groups are
classified up to isomorphism in terms of Ulm invariants (see [20] for details).
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In this section we use the transformation from trees into abelian p-groups to get
completeness of the isomorphism relation for this class. Note that in the classical
theory of Borel equivalence relations the analogous result is false (see [13] and a
proof for Turing computable embeddings in [12]).

Theorem 4. The isomorphism relation on abelian p-groups is an FF-complete Σ11
equivalence relation.

Proof. By Theorem 2, for any Σ11 equivalence relation E on ù, we have a uni-
formly computable sequence of trees (Tn)n∈ù such that m E n iff Tm ∼= Tn . Each
tree Tn is the result of combining a family of treesT

∗

m,n . EachT
∗

m,n is rank-saturated,
so it is really determined by its tree rank. We may modify our trees, if necessary, so
that the tree rank, if it exists, is a limit ordinal.
LetT = (Tm)m∈ù be a sequence of rank-saturated trees. We need a transforma-
tion taking such sequencesT to abelian p-groupsG(T ), such thatG(T ) ∼= G(T ′)
iff the sequences of ranks for the trees in T and T ′ match. We replace Tm by a
tree Tm

∗
such that each single successor in Tm becomes a chain of pm successors in

Tm
∗
. Then tr(Tm

∗
) = pm tr(Tm). We form a single tree with infinitely many nodes at

level 1, with a copy ofT 0
∗
below the first, a copy ofT 1

∗
below the second, etc. Denote

the resulting tree by T . Let G be the abelian p-group generated by the elements of
T in a standard way [20]: the top node is the identity, and if x′ is a successor of x,
then px′ = x.
Rogers [28] described how to calculate (non-effectively, of course) the Ulm se-
quence for G from the tree ranks of elements in the corresponding tree T . We
describe her scheme briefly. For each node of successor rank, apart from the top
node, we choose a successor witnessing the rank. Now, for each α, uG(α) is the
number of nodes of rank α that are not chosen as witnesses. In computing uG(α),
we count all x at level 1 such that tr(x) = α. Suppose x is an element at level n > 1,
where tr(x) = α. Let y be the predecessor of x. If tr(y) > α + 1, then x cannot
witness the rank of y, so we count x. If tr(y) = α + 1, then x may be the chosen
successor of y witnessing the rank. We count x just in case it is not chosen.
Using Rogers’ scheme, we can see that our group G has the following features.
For all computable α, the Ulm invariant uα(G) is either ∞ or 0. For limit α,
uα(G) = 0. If α = ùâ + pm, then uα(G) =∞ iff tr(Tm) ≥ ùâ . ⊣

Corollary 2. The isomorphism relation on torsion abelian groups is an FF-
complete Σ11 equivalence relation.

Suppose K and K ′ are classes of countable structures, with universe a subset
ofù, closed under isomorphism. We writeK ≤tc K

′ if there is a Turing computable
operator Φ = ϕe taking the atomic diagram of each A ∈ K to the atomic diagram
of some B ∈ K ′, such that Φ is 1 − 1 on isomorphism types. This notion was
introduced in [4]. If I (K) and I (K ′) are hyperarithmetical, and K ≤tc K ′, then
I (∼=, K) ≤FF I (∼=, K ′). If Φ is the computable operator reducing the isomorphism
relation on structures inK to that on structures inK ′, then for computableA ∈ K ,
we can effectively compute an index for Φ(A ) from an index for A .
H. Friedman and Stanley [13] introduced the study of Borel reductions≤B of iso-
morphism relations on classes of structures with universe ù. They showed that the
class of undirected graphs, the class of fields of any fixed characteristic, the class of 2-
step nilpotent groups, and the class of linear orderings all lie “on top” in this setting.
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In [4], it was observed that the Borel transformations are all effective. Moreover, the
transformations work perfectly well for structures with universe an arbitrary subset
ofù. Therefore, these classes are also “on top” under the relation≤tc in [4]. We have
shown that for the class K of trees, the relation I (E,K) (the set of pairs of indices
for computable members ofK that are isomorphic) lies “on top” under the relation
≤FF on Σ

1
1 equivalence relations on ù. From this, we immediately get the following.

Theorem 5. For each of the following classes K , I (E,K) is an FF-complete Σ11
equivalence relation:

• undirected graphs,
• fields of characteristic 0, or p,
• 2-step nilpotent groups,
• linear orderings.

§4. Open problems. In [9] equivalence relations were compared not only via FF-
reducibility but also via hyperarithmetical reducibility (h-reducibility):

Definition 7. Let E,E ′ be Σ11 equivalence relations on hyperarithmetical sub-
sets X,Y ⊆ ù, respectively. The relation E is h-reducible to E ′ iff there exists a
hyperarithmetical function f such that for all x, y ∈ X ,

x E y ⇐⇒ f(x)E ′ f(y).

By [14] the following theorem is true for the bi-embeddability relation on com-
putable structures. Here we mean the standard model-theoretic notion of embed-
dings on structures.

Theorem 6. For every Σ11 equivalence relation E on ù there exists a hyperarith-
metical class K of structures, which is closed under isomorphism and such that E is
h-equivalent to the bi-embeddability relation on computable structures fromK .

Remark 3.4 of [14] provides the result for Σ11 preorders on the reals, but the result
for preorders on ù follows almost immediately.
In [10] it was proved that the general structure of Σ11 equivalence relations on
hyperarithmetical subsets of ù (under FF- or h-reducibility) is rich. The above
theorem states that the structure of bi-embeddability relations on hyperarithmetical
classes of computable structures is as complex as the whole structure of Σ11 equiv-
alence relations under h-reducibility. It would be interesting to get the following
refinement of Theorem 6:

Question 1. If E is a Σ11 equivalence relation on ù, does there exist a hyper-
arithmetical class K of structures, closed under isomorphism and such that E is
FF-equivalent to the bi-embeddability relation on computable structures from K?

Let K be a class of structures closed under isomorphism such that the index set
I (K) is hyperarithmetical. Consider the following statements:

(1) I (∼=, K) is properly Σ11;
(2) I (∼=, K) is m-complete Σ11;
(3) I (∼=, K) is Σ11 complete under FF-reducibility;
(4) I (∼=, K ↾ highSR) is not hyperarithmetical withinK ↾ highSR, where highSR is
the class of structures of high (i.e., noncomputable) Scott rank;

(5) K has infinitelymany non-isomorphic computable structures of high Scott rank.
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The following implications are true: (1)⇐ (2)⇐ (3)⇒ (4)⇒ (5).

Question 2. Which of these arrows are reversible?

One of the approaches to give a negative answer to the question “(1) ⇒ (3)?”
would be to positively answer the following:

Question 3. Is there a hyperarithmetical class of structures with a unique (up to
isomorphism) computable structure of high Scott rank?

If the answer to this question is positive, we see immediately that (1) does not
imply (5). Since (3) implies (5), we also conclude that (1) does not imply (3).

Remark. It is known that up to bi-embeddability this is true in the following
sense. In the class of computable linear orderings, the equivalence class of linear
orderings bi-embeddable with the rationals is Σ11-complete, but every computable
scattered linear ordering (i.e., not bi-embeddable with the rationals) has a hy-
perarithmetical equivalence class. For more information on the bi-embeddability
relation in the class of countable linear orderings see [26].

This question may be also considered as a weaker version of the question from
[16] where the authors asked about the existence of a computable structure with
high Scott rank and a hyperarithmetical index set.

Question 4. Are there isomorphism relations on hyperarithmetical classes of
computable structures which are not hyperarithmetical and not FF-complete?
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