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Abstract

This paper introduces the Cobham Recursive Set Functions (CRSF)
as a version of polynomial time computable functions on general sets,
based on a limited (bounded) form of ∈-recursion. This is inspired
by Cobham’s classic definition of polynomial time functions based on
limited recursion on notation. We introduce a new set composition
function, and a new smash function for sets which allows polynomial
increases in the ranks and in the cardinalities of transitive closures. We
bootstrap CRSF, prove closure under (unbounded) replacement, and
prove that any CRSF function is embeddable into a smash term. When
restricted to natural encodings of binary strings as hereditarily finite
sets, the CRSF functions define precisely the polynomial time com-
putable functions on binary strings. Prior work of Beckmann, Buss and
Friedman and of Arai introduced set functions based on safe-normal
recursion in the sense of Bellantoni-Cook. We prove an equivalence be-
tween our class CRSF and a variant of Arai’s predicatively computable
set functions.

1 Introduction

This paper presents a definition of “Cobham Recursive Set Functions” which
is designed to be a version of polynomial time computability based on com-
putation on sets. This represents an alternate (or, a competing) approach
to the recent work of Beckmann, Buss and S. Friedman [2], who defined
the Safe Recursive Set Functions (SRSF), and to the work of Arai [1], who
introduced the Predicatively Computable Set Functions (PCSF). SRSF and
PCSF were based on Bellantoni-Cook style safe-normal recursion, but using
∈-recursion for computation on sets in place of recursion on strings. Both
[2] and [1] were motivated by the desire to find analogues of polynomial
time native to sets. For hereditarily finite sets, the class SRSF turned out
to correspond to functions computable by Turing machines which use alter-
nating exponential time with polynomially many alternations. For infinite
sets, SRSF corresponds to definability at a polynomial level in the rela-
tivized L-hierarchy. For infinite binary strings of length ω, it corresponds to
computation by infinite polynomial time Turing machines, which use time
less than ωn for some n > 0. The class PCSF, on the other hand, does
correspond to polynomial time functions when restricted to appropriate en-
codings of strings by hereditarily finite sets. No characterization of PCSF
for non-hereditarily finite sets is known.

In this paper, we give a different approach to polynomial time com-
putability on sets, using an analogue of Cobham limited recursion on no-
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tation, inspired by one of the original definitions of polynomial time com-
putable functions [7]. The class P (sometimes denoted FP) of polynomial
time computable functions on binary strings can be defined as the smallest
class of functions that (a) contains as initial functions the constant empty
string ǫ, the two successor functions s 7→ s0 and s 7→ s1 and the projec-
tion functions, and (b) is closed under composition and limited recursion
on notation. If g, h0 and h1 are functions, and p is a polynomial, then the
following function f is said to be defined by limited recursion on notation:

f(~a, ǫ) = g(~a)

f(~a, s0) = h0(~a, f(~a, s), s) (1)

f(~a, s1) = h1(~a, f(~a, s), s)

provided that

|f(a1, . . . , an, s)| ≤ p(|a1|, . . . , |an|, |s|) (2)

always holds. Here ~a and s are (vectors of) binary strings; and |a| denotes
the length of the binary string a.

A slightly different version of limited recursion uses the smash (#) func-
tion instead (c.f., [10] and [6]). For this, the smash function is defined as
a#b = 0|a|·|b| so that |a#b| is the product of the lengths of the binary strings
a and b. The smash function can be included in the small set of initial
functions, and then the bound (2) can be replaced by the condition that

|f(~a, s)| ≤ |k(~a, s)| (3)

where k is a function already known to be in P. In this version, f is said to
be defined by limited recursion on notation from g, h0, h1 and k.

Section 3 defines the Cobham Recursion Set Functions (CRSF) via an
analogue of the definition of polynomial time functions with limited re-
cursion. CRSF uses ∈-recursion instead of recursion on notation. In ∈-
recursion, the value of f(x), for x a set, is defined in terms of the set of
values f(y) for all y ∈ x. This means that the recursive computation of f(x)
requires computing f(y) for all y in the transitive closure, tc(x), of x. The
depth of the recursion is bounded by the rank, rank(x), of x. Of course, the
cardinality of the transitive closure of x, |tc(x)|, can be substantially larger
than the cardinality of the rank of x. The computational complexity of f(x)
is thus bounded by both the rank of x and by |tc(x)|; however, the bounds
act in different ways. The intuition is that |tc(x)| polynomially bounds the
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overall work performed to compute f(x), while rank(x) polynomially bounds
the depth of the recursion in the computation of f(x).

The definition of CRSF requires a set-theoretic analogue of the binary
string # function. For this, Section 2 introduces a new set composition
function, denoted ⊙, and a new set smash function, denoted #. The bi-
nary string function # allows defining functions of polynomial growth rate.
The set smash function # is used to bound the sizes of sets introduced
by ∈-recursion. The set function #, which can be viewed as a structured
crossproduct, thus plays a similar role to the binary string # function. How-
ever, the set smash function has to do double duty by providing polynomial
bounds on both the ranks of sets and the cardinalities of the transitive clo-
sures of sets. Namely, if z = x#y, then (a) the rank of z is polynomially
bounded by the ranks of x and y and (b) |tc(z)| is polynomially bounded
by |tc(x)| and |tc(y)|. The set function smash does more than just bound
the ranks and cardinalities; it also bounds the internal structure of sets. For
this reason, the bounding condition (3) needs to be replaced by a more com-
plicated condition called 4-embeddability. Section 2 defines “τ 4-embeds
x into y”, denoted τ : x 4 y, in a way that faithfully captures the notion
that x is structurally “no more complex” than y. For technical reasons, the
function τ is a one-to-many mapping. The condition “τ : f(~a, s) 4 k(~a, s)”
is then the analogue of (3) which works for Cobham recursion on sets.

The outline of the paper is as follows. Section 2 defines the set com-
position and smash functions; these are defined first using ∈-recursion and
then in terms of Mostowski graphs. Section 3.1 defines various operations
on set functions, and the class CRSF of Cobham Recursive Set Functions.
Section 3.2 does simple bootstrapping of CRSF, and shows the crossproduct
and rank functions are in CRSF. Section 3.3 gives a normal form for CRSF
functions by showing that a restricted class of “#-terms” can be used as
the 4-bounds. As a corollary, it is shown that the growth rate of CRSF
functions can be polynomially bounded. Sections 3.4 and 3.5 show that
CRSF is closed under (unbounded) replacement and under course-of-values
recursion. Section 3.6 proves that CRSF is closed under an impredicative
version of Cobham recursion, which has a relaxed embedding condition.

Section 4 takes up the question of how CRSF functions correspond to
polynomial time computability on binary strings. Following [11, 2, 1], we
choose a natural method of encoding binary strings as hereditarily finite
sets. We then prove that, relative to these encodings, the CRSF functions
are precisely the usual polynomial time computable functions. As men-
tioned earlier, similar results were obtained by Arai for the PCSF functions.
Sazonov [11] also defined a class of polynomial time set functions. Sazonov’s
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polynomial time functions are the same as CRSF functions when operating
on hereditarily finite sets suitably encoding binary strings, but are rather
different for inputs which are general sets. In particular, Sazonov’s functions
when taking general hereditarily finite sets as inputs can be characterized
as functions which operate in polynomial time on the (finite) Mostowski
graphs of the inputs. In contrast, our CRSF functions have recursion depth
bounded by a polynomial of the rank of its inputs. As a result, CRSF is a
more restricted computational model of polynomial computation for general
hereditarily finite sets. We feel it is natural and desirable that the compu-
tational power of CRSF depends on the ranks and the hereditary structure
of its inputs.

Section 5 discusses a relationship between CRSF and PCSF. Instead
of using the class PCSF identified by Arai, we work with a (conjecturally)
larger class of functions which we call PCSF+. Theorems 35 and 36 and
Corollary 37 state that CRSF and PCSF+ have equivalent power over all
sets (taking inputs as normal inputs in the case of PCSF+).

The present paper is part of a cycle of three papers in preparation about
CRSF functions. Another paper [3] discusses circuit computation models
for set functions based on an alternative formulation of CRSF. A third
paper [4] discusses set theoretic axioms and proof theory for CRSF.

Throughout the paper, we work in theory ZFC of Zermelo-Fraenkel set
theory with choice. The axiom of choice is used only when we discuss car-
dinalities, and is not needed for anything else.

2 The set smash and lex smash functions

This section defines the “smash” function # for sets. We define a set com-
position operation ⊙ and then the set smash function. We then present
intuitive conceptual definitions of these functions in terms of the Mostowski
graphs of sets.

Definition 1. The set composition function is the function a⊙b defined by
∈-recursion as

∅⊙b = b

a⊙b = {x⊙b : x ∈ a}, for a 6= ∅.

We use rank(a) and tc(a) to denote the rank and the transitive closure
of a. We write tc+(a) for tc(a) ∪ {a}, and rank+(a) for rank(a) + 1. As
usual, |a| denotes the cardinality of a.
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Lemma 2. The set composition function ⊙ satisfies the following:

1. a⊙∅ = a.

2. rank(a⊙b) = rank(b) + rank(a).

3. If a 6= a′, then a⊙b 6= a′⊙b.

4. tc(a⊙b) = tc(b) ∪ {a′⊙b : a′ ∈ tc(a)}.

5. |tc(a⊙b)| = |tc(a)|+ |tc(b)|.

6. ⊙ is associative: a⊙(b⊙c) = (a⊙b)⊙c..

Proof. Parts 1., 2., 4., and 6. are easily proved by ∈-induction on a. Part 3.
is proved using extensionality and induction on the ranks of a and a′. Part 5.
is an immediate consequence of parts 3. and 4. and the observation that
b ∈ tc+(a′⊙b), so the right hand side of part 4. is a disjoint union.

Definition 3. The set smash function is the function a#b defined by ∈-
recursion on a as

a#b = b⊙{x#b : x ∈ a}. (4)

Lemma 4. The set smash function # satisfies the following:

1. ∅#b = b

2. a#∅ = a

3. rank(a#b)+1 = (rank(b)+1)(rank(a)+1). Equivalently, rank+(a#b) =
rank+(b) · rank+(a).

4. |tc(a#b)| + 1 = (|tc(a)| + 1)(|tc(b)| + 1). Equivalently, |tc+(a#b)| =
|tc+(a)| · |tc+(b)|.

5. # is associative.

Proof. Part 1. is immediate from the definitions. Parts 2. and 3. are readily
proved by ∈-induction on a. We postpone the proof of part 4. until after
discussing the Mostowski graph next. For part 5. we can first prove the
following kind of distributive law by ∈-induction on a:

(a⊙b)#c = (a#c)⊙{y#c : y ∈ b}.

Using this one easily proves a#(b#c) = (a#b)#c by ∈-induction on a.

Observe that we do not have a general distributive law of the form

(a⊙b)#c = (a#c)⊙(b#c),
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as rank((1⊙1)#1) = 5 but rank((1#1)⊙(1#1)) = 6.
An intuitive understanding of the ⊙ and # functions can be obtained

by considering the Mostowski graph of a set.

Definition 5. Let A be a set. The Mostowski graph of A is the directed
graph with vertex set V = tc+(A), and edge relation E defined by 〈v1, v2〉 ∈ E
iff v1 ∈ v2. More generally, any directed graph isomorphic to the Mostowski
graph of A is called a Mostowski graph of A.

The Mostowski graph of A is well-founded (i.e., any subset of V has an
E-minimal element) and is extensional (i.e., any distinct v1, v2 in V have
different sets of E-predecessors). Furthermore, a Mostowski graph must be
“pointed”: (V,E) is pointed provided there is a v ∈ V such that for all v′ ∈ V ,
v′E∗v holds, where E∗ is the reflexive, transitive closure of E. This v is the
unique sink node of (V,E); in fact, v corresponds to the vertex A. Con-
versely, it is an elementary fact that any well-founded, extensional, pointed,
directed graph is a Mostowski graph for a unique set.

As usual, the integers are coded as von Neumann integers, so 0 = ∅,
1 = {0}, 2 = {0, 1}, etc. The Mostowski graphs of A = 2 and B = {1, 2}
are shown in Figure 1.

We now define ⊙ and # in terms of Mostowski graphs. First, note
that extensionality and wellfoundedness imply that a Mostowski graph has
a unique source node, and that pointedness and wellfoundedness imply that
it has a unique sink node. Let GA = (VA, EA) and GB = (VB , EB) be
Mostowski graphs for the sets A and B. Then, assuming VA ∩ VB = ∅, the
Mostowski graph (V,E) for A⊙B can be obtained by identifying the sink
vertex of GB and the source vertex of GA. In other words, the sink node of B
is replaced by a copy of GA; equivalently, the source node of A is replaced
by a copy of GB . (See Figure 1.)

More formally, a Mostowski graph for A⊙B can be defined letting the
nodes be V := {〈1, a〉 : a ∈ tc+(A)} ∪ {〈0, b〉 : b ∈ tc(B)}, and letting the
edges be the following:

• 〈〈0, b′〉, 〈0, b〉〉 for all b′ ∈ b ∈ tc(B),

• 〈〈0, b〉, 〈1, ∅〉〉 for all b ∈ B, and

• 〈〈1, a′〉, 〈1, a〉〉 for all a′ ∈ a ∈ tc+(A).

Note that the nodes 〈0, b〉 correspond to the sets b, and the nodes 〈1, a〉
correspond to the sets a⊙B.
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The Mostowski graph of A#B is obtained by replacing every vertex
of GA with a copy of the graph GB . This is pictured in Figure 1. Formally,
we can define a Mostowski graph G = (V,E) for A#B by letting the graph
have vertex set V = {〈a, b〉 : a ∈ tc+(A), b ∈ tc+(B)}, and letting the edge
set E contain:

• 〈〈a, b′〉, 〈a, b〉〉 for b′ ∈ b ∈ tc+(B) and

• 〈〈a′, B〉, 〈a, ∅〉 for a′ ∈ a ∈ tc+(A).

The intent is that 〈a, b〉 corresponds to the set

σA,B(a, b) := b⊙{a′#B : a′ ∈ a}. (5)

It is easy to check, by a double ∈-recursion, that the nodes 〈a, b〉 ofG actually
correspond to these sets: For b 6= ∅, the members of σA,B(a, b) are the sets
σA,B(a, b

′) for b′ ∈ b. From (4) and (5), σA,B(a,B) = a#B. Therefore,

σA,B(a, ∅) = {a′#B : a′ ∈ a} = {σA,B(a
′, B) : a′ ∈ a}.

From these facts, it follows readily that G is extentional and is a correct
Mostowski graph of a#b. Part 4. of Lemma 4 follows immediately.

Clearly, (5) defines a bijection between tc+(A)× tc+(B) and tc+(A#B).
This lets # serve as a replacement for the crossproduct functions. The
analogous projection functions π1,A,B and π2,A,B are defined so that, for
u = σA,B(a, b) with a ∈ tc+(A) and b ∈ tc+(B), we have π1,A,B(u) = a and
π2,A,B(u) = b.

As a side remark, the functions σA,B , π1,A,B and π2,A,B do not depend
on A at all. However, in our applications, the set A is always known, and it
seems less confusing to include A in the subscript than to omit it.

For purposes of illustration, we conclude this section by mentioning a
variant of the set smash function, called the “lex smash”. Like the set smash,
lex smash uses the crossproduct A × B as the vertex set of its Mostowski
graph; it is the set whose Mostowski graph is the lexicographic product of
the Mostowski graphs of A and B.

Definition 6. The lex smash function maps a pair of sets a and b to the
set a#lexb which is the set with Mostowski graph (V,E) defined by V =
tc+(a)× tc+(b), and

E(〈a1, b1〉, 〈a2, b2〉) ⇔ a1 ∈ a2 ∨ (a1 = a2 ∧ b1 ∈ b2). (6)
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∅

1

2

(a) A

∅

1

2

{1, 2}

(b) B

(d) A#B(c) A⊙B

Figure 1: The Mostowski graphs for (a) A = 2, (b) B = {1, 2}, (c) A⊙B,
and (d) A#B.

The lex smash a#lexb has structure similar to a#b but with more edges
in its Mostowski graph. We expect that using #lex instead of # would give
us the same class of functions CRSF, but we prefer # because it has a simple
recursive definition.

Theorem 7. If (6) holds, so 〈a1, b1〉 precedes 〈a2, b2〉, then σA,B(a1, b1) ∈
tc(σ(a2, b2)).

The proof of Theorem 7 is obvious from the Mostowski graph represen-
tation of A#B.

3 Cobham recursive set functions

This section defines the Cobham recursive set functions (CRSF) and proves
a variety of closure properties.

3.1 Definition of CRSF

CRSF will be defined as an algebra of functions which take sets as inputs and
produce sets as outputs. The following are the initial functions for CRSF.
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(Projection) For 1 ≤ j ≤ n,

πn
j (a1, . . . , an) = aj

(Pair)
pair(a, b) = {a, b}

(Null)
null( ) = ∅

(Union)

union(a) =
⋃

a

(Conditional∈)

cond∈(a, b, c, d) =

{

a if c ∈ d
b otherwise.

CRSF also enjoys a variety of closure properties. Some of these hold by
definition, and others will be derived.

(Separation) If g is an n-ary function, n ≥ 1, then (Separation) gives
the n-ary function f :

f(~a, c) = {b ∈ c : g(~a, b) 6= ∅}.

(Composition) If g is an n-ary function and ~h is a vector of n many m-ary
functions, then (Composition) gives the m-ary function f :

f(~a) = g(~h(~a)).

(Replacement) If g is an (n+1)-ary function with n ≥ 1, then (Replace-
ment) gives the n-ary function f :

f(~a, c) = {g(~a, b, c) : b ∈ c}.

(Bounded Replacement) If g is an (n+1)-ary function with n ≥ 1 and
h is an n-ary function, then (Bounded Replacement) gives the n-ary
function f :

f(~a, c) = {g(~a, b, c) : b ∈ c} ∩ h(~a, c).

(Cobham Recursion⊆) If n ≥ 1, g is an (n+1)-ary function and h is an
n-ary function, then (Cobham Recursion⊆) gives the n-ary function f :

f(~a, c) = g(~a, c, {f(~a, b) : b ∈ c}) ∩ h(~a, c).
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Note that the function h serves as a size bound for the values of f .
This size bound is rather crude however, since it requires f(x, ~y) to be a
subset of h(x, ~y). Definition 9 gives a more general notion of size bound by
requiring only that (the transitive closure of) f(x, ~y) be “embedded” into
(the transitive closure of) h(x, ~y). We first define a simplified notion of
“single-valued” embedding.

Definition 8. A set A is single-valued 4-embeddable in a set B if the
following holds: There is an injective function τ : tc(A) → tc(B) such that
for all x ∈ y ∈ tc(A), we have τ(x) ∈ tc(τ(y)). We call τ a single-valued
embedding of A into B.

The idea for embeddings is that tc(A) and tc(B) are identified with
the Mostowski graphs of A and B. The relation “τ(x) ∈ tc(τ(y))” means
that τ(x) precedes τ(y) in the sense that there is a non-trivial path in the
Mostowski graph from τ(x) to τ(y). The function τ shows that a copy of A
is contained inside B, so A is structurally “no more complex” than B.

The actual definition of embedding uses multi-valued embeddings; namely
τ(x) will be a subset of tc(B), and in effect, is mapping x to each member
of τ(x). Let P(· · · ) denote the power set.

Definition 9. A set A is 4-embeddable in a set B, denoted A 4 B, if the
following holds: There is a function τ : tc(A) → P(tc(B)) such that for
all x, τ(x) 6= ∅ and for all x 6= y, τ(x) ∩ τ(y) = ∅, and such that for all
x ∈ y in tc(A) and every u ∈ τ(y), there is some v ∈ τ(x) ∩ tc(u). We call
τ an embedding of A into B. The condition τ(x) ∩ τ(y) = ∅ for x 6= y is
called the injectivity condition.

As we shall see, A 4 B is a more general way to capture the intuition
that A is structurally “no more complex” than B. A single-valued embed-
ding τ can easily be converted into a (multi-valued) embedding, namely via
x 7→ {τ(x)}. The multi-valued embedding x 7→ {x} is called the identity
embedding.

The next proposition gives bounds on the rank of A and the cardinality
of tc(A). The proof is simple and left to the reader.

Proposition 10. Suppose A 4 B. Then rank(A) ≤ rank(B) and |tc(A)| ≤
|tc(B)|.

An example of an embedding is given by Theorem 7. Here, the map
that sends (the set corresponding to) 〈x, y〉 to σA,B(x, y) is a single-valued
4-embedding of A#lexB into A#B.
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(Cobham Recursion4) If n ≥ 1, g is an (n+1)-ary function, h is an n-
ary function and τ is an (n+1)-ary function, then (Cobham Recursion4)
gives the n-ary function f :

f(~a, c) = g(~a, c, {f(~a, b) : b ∈ c}),

provided that, for all ~a, c, we have τ(x,~a, c) : f(~a, c) 4 h(~a, c).
The last condition means that the function x 7→ τ(x,~a, c) is an embed-

ding f(~a, c) 4 h(~a, c). Later, in Section 3.6, we will use a more general,
impredicative notion of embedding which allows f(~a, c) to also be an input
to τ .

There is also an embedded version of replacement:

(Embedded Replacement) If n ≥ 1, g is an (n+1)-ary function, h is
an n-ary function, and τ is an (n+1)-ary function, then (Embedded Re-
placement) gives the n-ary function f :

f(~a, c) = {g(~a, b, c) : b ∈ c}

provided that, for all ~a, c, we have τ(x,~a, c) : f(~a, c) 4 h(~a, c).

Cobham recursion can also be defined using a course-of-values (“CofV”)
recursion. If f(~a, c) is a function, let f↾c(~a,−) denote the set of ordered
pairs 〈c′, f(~a, c′)〉 such that c′ ∈ c. As usual, an ordered pair 〈x, y〉 is equal
to {{x}, {x, y}}.

(Cobham RecursionCofV
4 ) If n ≥ 1, g is an (n+1)-ary function, h is an n-

ary function and τ is an (n+1)-ary function, then (Cobham RecursionCofV
4 )

gives the n-ary function f :

f(~a, c) = g(~a, c, f↾tc(c)(~a,−)), (7)

provided that, for all ~a, c, we have τ(x,~a, c) : f(~a, c) 4 h(~a, c).

Definition 11. Recall that integers are represented by the von Neumann in-
tegers. The characteristic function χR of a relation R is defined by χR(~a) = 1
if R(~a) and χR(~a) = 0 if ¬R(~a).

We now give the formal definition of CRSF.
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Definition 12. The Cobham Recursive Set Functions, CRSF, are the func-
tions that are obtained by starting with the initial functions (Projection),
(Pair), (Null), (Union), (Conditional∈), and the set smash function #,
and taking the closure under (Composition), and (Cobham Recursion4).
A relation R(~a) is in CRSF iff its characteristic function χR(~a) is in CRSF.

The next theorem shows that CRSF is also closed under (Bounded Re-
placement) and (Embedded Replacement), as well as ∆0-separation.
It follows that CRSF contains all the rudimentary relations [8]. Later on,
Theorems 23 and 29 will show closure under (Replacement) and (Cob-
ham RecursionCofV

4 ). Theorem 30 will prove closure under impredicative
versions of Cobham recursion.

3.2 Simple closure properties for CRSF

Theorem 13 establishes some basic properties of CRSF. After that, the
crossproduct and rank functions are shown to be in CRSF; however, the
proof for crossproduct will be finished only after CRSF is shown to be closed
under (Replacement).

It is useful to note that parts 1.-11. of Theorem 13 do not require the
use of smash, and part 1. does not use recursion. Furthermore, its proof
requires only single-valued embeddings. (Subsequent to Theorem 13 we will
need almost exclusively to consider multi-valued embeddings.)

Theorem 13. The following hold for CRSF.

1. CRSF contains the functions a 7→ {a} and

cond=(a, b, c, d) =

{

a if c = d
b otherwise.

2. CRSF is closed under (Embedded Replacement).

3. CRSF is closed under (Separation).

4. CRSF contains the binary functions a \ b and a ∩ b.

5. CRSF is closed under (Cobham Recursion⊆).

6. CRSF is closed under (Bounded Replacement).

7. The CRSF relations are closed under Boolean operations.

8. The CRSF relations are closed under bounded (∆0) quantification.

9. The function a 7→
⋂

a is in CRSF.
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10. The function a 7→ tc(a) is in CRSF.

11. The function a, b 7→ 〈a, b〉 := {{a}, {a, b}} is in CRSF. In addition,
CRSF contains projection functions satisfying π1(〈a, b〉) = a and π2(〈a, b〉) = b,
and contains the relation ispair(x) that tests whether x is an ordered
pair 〈a, b〉.

12. The binary functions ⊙ and ⊙−1 are in CRSF, where

a⊙−1b =

{

z such that a = z⊙b
∅ if no such z exists.

13. The three functions a, b, a′, b′ 7→ σa,b(a
′, b′) and a, b, x 7→ π1,a,b(x) and

a, b, x 7→ π2,a,b(x) are in CRSF.

Proof. 1. As usual, {a} = {a, a}. Then cond= can be defined as cond∈(a, b, c, {d}).
2. To define f from g, h and τ as in (Embedded Replacement), first

define k by

k(~a, b, c) =







g(~a, b, c) if b ∈ c
{k(~a, b, c) : b ∈ c} if b = c
∅ otherwise

with the aid of cond= and cond∈, and using (Cobham Recursion4) with
the bounding function h′(~a, b, c) = h(~a, c) and the embedding function τ ′(x,~a, b, c) =
τ(x,~a, c). Then f(~a, c) = k(~a, c, c).

3. To define f from g as in (Separation), first define k(~a, b, c), again
with the aid of cond= and cond∈, as

k(~a, b, c) =

{

{b} if b ∈ c and g(~a, b) 6= 0
∅ otherwise.

Then define f(~a, c) =
⋃

{k(~a, b, c) : b ∈ c} by (Embedded Replacement)
using the bounding function h(~a, b, c) = c, and the single-valued embedding
function τ(x,~a, b, c) = x.

4. The set difference function can be defined using (Separation) by

a \ b = {x ∈ a : cond∈(∅, 1, x, b) 6= ∅}.

Intersection is defined by a ∩ b = ((a ∪ b) \ (a \ b)) \ (b \ a).
5. The fact that (Cobham Recursion⊆) can be simulated by (Cob-

ham Recursion4) is immediate from the facts that binary intersection (∩)
is in CRSF and that a ⊆ b implies a 4 b using the identity function as a
single-valued embedding.
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6. Suppose f is defined from g and h as in (Bounded Replacement).
Then define

g′(~a, b, c) =

{

g(~a, b, c) if g(~a, b, c) ∈ h(~a, c)
h(~a, c) otherwise.

Define f ′(~a, c) = {g′(~a, b, c) : b ∈ c} by (Embedded Replacement) using
the bounding function h′(~a, c) = {h(~a, c)} = 1⊙h(~a, c) and the single-valued
embedding function τ(x,~a, b, c) = x. Finally, f(~a, c) = f ′(~a, c)\{h(~a, c)}, so
f ∈ CRSF.

7. Define the function f¬ and f∨ by

f¬(a) = 1 \ a and f∨(a, b) = a ∪ b.

These functions implement negation and disjunction, and therefore, by com-
position, the CRSF relations are closed under Boolean operations.

8. To show closure under ∆0 quantification, it now suffices to prove that
if R is a CRSF relation, then so is S(~a, c) ⇔ ∃b∈cR(~a, c). For this, define

χS(~a, c) =
⋃

{χR(~a, b) : b ∈ c}.

This is a valid use of (Bounded Replacement) and (Union) since χS(a,~c) ⊆ 1.
9.

⋂

a can be defined as {x ∈
⋃

a : ∀y∈a (x ∈ y)}.
10. The transitive closure tc(a) can be defined using (CobhamRecursion4)

as
tc(a) = a ∪

⋃

{tc(x) : x ∈ a}

with the bounding function h(a) = a since tc(a) 4 a using the identity
function as the single-valued embedding.

11. The ordered pair function 〈a, b〉 is in CRSF as it is defined with three
uses of pair. To define the projection functions note that, for all a, b,

{a, b} =
⋃

〈a, b〉,

a =
⋃

{z ∈ {a, b} : {z} ∈ 〈a, b〉},

b =

{

a if 〈a, b〉 = 〈a, a〉
⋃

({a, b} \ {a}) otherwise.

These facts immediately allow π1 and π2 to be expressed as CRSF functions.
Finally,

ispair(z) = cond=(1, ∅, z, 〈π1(z), π2(z)〉).
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12. The function a⊙b is defined as in Definition 1 by (Cobham Recursion4)
by letting

a⊙b =

{

b if a = ∅
{a′⊙b : a′ ∈ a} otherwise.

For the bounding function, let h(a, b) = a#b.1 The single-valued embedding
function τ can be defined as

τ(x, a, b) =

{

x if x ∈ tc+(b)
x#b otherwise.

To define ⊙−1, observe that there is a z such that a = z⊙b exactly when

b ∈ tc+(a) ∧ (∀c ∈ tc+(a))(c ∈ tc+(b) ∨ (∀d ∈ c)(b ∈ tc+(d))). (8)

So ⊙−1 is defined by (Cobham Recursion4) as

a⊙−1b =

{

{a′⊙−1b : a′ ∈ a} if a 6= b and (8) holds
∅ otherwise.

For the single-valued embedding, let h(a, b) = a⊙b and τ(x, a, b) = x⊙b.
13. The function a, b 7→ {a′#b : a′ ∈ a} is defined by (Bounded

Replacement), since a′#b ∈ tc(a#b) for a′ ∈ a. Therefore, (5) gives a
CRSF definition of σa,b(a

′, b′).
The function π1,a,b can be defined using (Separation) and (Union) as2

π1,a,b(u) =
⋃

{a′ ∈ tc+(a) : ∃b′ ∈ tc+(b) s.t. u = σa,b(a
′, b′)}.

Note that the union is taken over a set of size at most one. The function
π2,a,b is defined similarly.

The next theorem states that crossproduct is a CRSF function; for this,
# is needed. This is not surprising as # is itself a kind of crossproduct;
however, the proof is somewhat difficult and will be completed in Section 3.4.

Theorem 14. The crossproduct function a× b is in CRSF.

The proof of Theorem 14 defines crossproduct as

a× b =
⋃

{{a′} × b : a′ ∈ a},

1It is overkill to use the # function to bound the ⊙ function. The alternative would
be to include ⊙ in the base functions in the definition of CRSF.

2Here we take advantage of the fact that a is available, but with a little more work it
is possible to define π1,a,b(u) without using a.
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where
{z} × b := {〈z, b′〉 : b′ ∈ b},

and uses two applications of (Replacement) and (Union). However, the
closure of CRSF under (Replacement) will not be proved until Theo-
rem 23. We thus postpone completing the proof of Theorem 14 pending the
proof of Theorem 23.

We now prove that the rank function is in CRSF. The proof uses (Cob-
ham Recursion4), but establishing the embedding condition is unexpect-
edly difficult and uses a multi-valued embedding. We do not know any way
to use a single-valued embedding instead.

Theorem 15. The function a 7→ rank(a) is in CRSF.

Proof. Since rank(a) =
⋃

rank+(a), it suffices to show rank+ is in CRSF.
The latter can be defined using (Cobham Recursion4) since

rank+(a) = Succ(
⋃

{rank+(x) : x ∈ a}), (9)

where Succ(S) = S ∪ {S}. For the bounding function, take h(a) = {a}. We
define the (multi-valued) embedding τ by letting τ(α) equal the members of
tc+(a) of rank α. This τ is defined with the aid of a function RksLE(a, b) (for
“ranks less than or equal to”) which is equal to the set of a′ ∈ tc+(a) which
have rank ≤ rank(b). RksLE is defined using (Cobham Recursion⊆) and
(Separation) by

RksLE(a, b) =
{

a′ ∈ tc+(a) : a′ ⊆
⋃

{RksLE(a, b′) : b′ ∈ b}
}

.

We have rank(a) ≤ rank(b) iff a ∈ RksLE(a, b). Then τ is defined using
(Separation) as

τ(x, a) = {a′ ∈ tc+(a) : x ∈ RksLE(x, a′) ∧ a′ ∈ RksLE(a′, x)}.

3.3 #-terms as bounding functions

The section states and proves a crucial technical result which states that
CRSF functions can be embedded into sets constructed from terms, called
“#-terms”, involving ⊙ and #. Corollary 22 shows that this immediately
implies polynomial bounds on the growth rates of CRSF functions. This is
also the key tool needed in Section 3.4 for the proof that CRSF is closed
under (Replacement).
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Definition 16. A #-term is a term built up from variables, the constant
symbol 1, and the function symbols ⊙ and #.

Any #-term t(a1, . . . , ak) represents a CRSF function. The next theorem
shows that CRSF functions have bounded growth rate in the sense that their
values are embeddable in a #-term.

Theorem 17. Let f(a1, . . . , ak) be in CRSF. Then there is a #-term t(a1, . . . , ak)
and a CRSF function τ(x, a1, . . . , ak) such that τ : f(a1, . . . , ak) 4 t(a1, . . . , ak).

For the embedding τ of Theorem 17, the inputs ai serve as parameters, or
“side variables”: it is the mapping x 7→ τ(x,~a) that satisfies the properties of
Definition 9. Before proving Theorem 17, we establish some simple lemmas
showing how #-terms act like monotone functions w.r.t. embeddings.

Lemma 18. 4 is transitive: If A 4 B and B 4 C, then A 4 C. Further-
more, if τ1 : A 4 B and τ2 : B 4 C are valid, where A, B, C, τ1 and τ2
are given by CRSF functions, then there is a CRSF function τ such that
τ : A 4 C is valid.

The hypothesis of the second half of Lemma 18 means that there are
parameters ~a so that A = A(~a), B = B(~a) and C = C(~a) are functions
of ~a, and the embeddings τi depend on the parameters and have the forms
x 7→ τi(x,~a). In this, case, the function x 7→ τ(x,~a) gives an embedding
τ : A(~a) 4 C(~a).

Proof. Let τ1 : A 4 B and τ2 : B 4 C. Thus, τ1 : tc(A) → P(tc(B)) and
τ2 : tc(B) → P(tc(C)). Define τ : tc(A) → P(tc(C)) by letting

τ(x) =
⋃

{τ2(z) : z ∈ τ1(x)}. (10)

We claim τ : A 4 C. It is clear that if x 6= y, then τ(x)∩ τ(y) = ∅. Suppose
x ∈ y ∈ tc(A) and u ∈ τ(y). We have u ∈ τ2(z) for some z ∈ τ1(y). Since τ1
is a 4-embedding, there is a w ∈ τ1(x)∩tc(z). By the definition of transitive
closure, there is a finite sequence w0=w,w1, . . . , wℓ=z such that wi ∈ wi+1

for all i. Since τ2 is also a 4-embedding, there are v0, . . . , vℓ=u such that
each vi ∈ τ2(wi) ∩ tc(vi+1). Thus v = v0 is in τ2(w) ∩ tc(u) and hence in
τ(x) ∩ tc(u).

Since τ(x) ⊆ tc(C), τ is defined by (Bounded Replacement) and
(Union), or alternately by (Separation). Thus by Theorem 13, τ is in
CRSF if A, B, C, τ1 and τ2 are.
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Lemma 19. If A 4 B and C 4 D, then A⊙C 4 B⊙D and A#C 4 B#D.
Furthermore, if τ1 : A 4 B and τ2 : C 4 D are valid, for A, B, C, D, τ1
and τ2 given by CRSF functions, then there are CRSF functions τ and τ ′

such that τ : A⊙C 4 B⊙D and τ ′ : A#C 4 B#D are valid.

Proof. Let τ1 : A 4 B and τ2 : C 4 D. Define τ : tc(A⊙C) → P(tc(B⊙D))
by setting τ(x) = τ2(x) for x ∈ tc(C), and setting τ(x⊙C) = τ1(x)⊙D for
x ∈ tc(A). More formally,

τ(x) =

{

τ2(x) if x ∈ tc(C)
{y⊙D : y ∈ τ1(x⊙

−1C)} otherwise.
(11)

Since τ(x) ⊆ tc(B⊙D), closure under (Separation) implies that if A, B,
C, D, τ1 and τ2 are given by CRSF functions, then so is τ .

We claim that τ : A⊙C 4 B⊙D. The fact that τ(x) and τ(y) are
disjoint for x 6= y follows from the properties of τ1 and τ2 and part 3. of
Lemma 2. So, suppose x ∈ y ∈ tc(A⊙C) and u ∈ τ(y). We need to prove
there is a v ∈ τ(x) ∩ tc(u). There are three cases to consider. The first case
is where x ∈ y ∈ tc(C): there must be a v ∈ τ2(x) ∩ tc(u), and this v works
for τ as well. The second case is when x = x′⊙C and y = y′⊙C for some
x′ ∈ y′ ∈ tc(A). We also have u = u′⊙D and u′ ∈ τ1(y

′); thus there is a
v′ ∈ τ1(x

′) ∩ tc(u′). Then v = v′⊙D ∈ τ(x) ∩ tc(u). The third case is where
x ∈ C and y = C. Then, τ(x) ⊆ tc(D), and τ(y) = τ1(∅)⊙D. Any u ∈ τ(y)
has the form u = u′⊙D, and since τ(x) and τ1(∅) are both non-empty, the
desired v exists. Thus τ : A⊙C 4 B⊙D.

For the second assertion, we now define τ ′ : tc(A#C) → P(tc(B#D)).
For x ∈ tc(A#C), set y = π1,A,C(x) and z = π2,A,C(x) so that y ∈ tc+(A),
z ∈ tc+(C), and x = σA,C(y, z) = z⊙{y′#C : y′ ∈ y}, and define

τ ′(x) = {σB,D(y
′, z′) : y′ ∈ τ+1 (y) and z′ ∈ τ+2 (z)}, (12)

where τ+2 is the same as τ2 except extended to map C to {D}. It is easy to
verify that if A, B, C, D, τ1 and τ2 are given by CRSF functions, then so
is τ ′.

The proof that τ ′ : A#C 4 B#D is similar in spirit to the above argu-
ment and is left for the reader.

Lemma 20. Suppose τi : Ai 4 Bi is valid for i = 1, . . . , n, where Ai, Bi

and τi are given by CRSF functions. Let t(x1, . . . , xn) be a #-term. Then
there is a CRSF function τ so that τ : t( ~A) 4 t( ~B) is valid.

Proof. This follows readily from Lemmas 18 and 19, and induction on the
complexity of t.
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Proof of Theorem 17. We use induction based on the definition of CRSF
functions. For the projection function πn

j , it is trivial; just take the bounding
term t(a1, . . . , an) = aj and let the single-valued embedding function τ be
the identity function. For cond∈, use t(a, b, c, d) = a⊙b and define a single-
valued embedding τ by letting τ(x) equal x for x ∈ tc(b) and equal x⊙b
for x ∈ tc(a) \ tc(b). For pair(a, b), let t(a, b) = 1⊙a⊙1⊙b and define a
single-valued embedding τ(x) to equal x for x ∈ tc+(b) and to equal x⊙1⊙b
for x ∈ tc+(a) \ tc+(b). For union, the identity function is a single-valued
embedding of

⋃

a into a. Of course, the set smash function a#b is single-
valued 4-embedded into itself by the identity function.

Suppose f(~a) is defined by (Composition) from g(u1, . . . , un) and hi(~a)
for i = 1, . . . , n. By the induction hypothesis, there are #-terms s and ti
and CRSF functions τ(x, ~u) and τi(x,~a) so that τ : g(~u) 4 s(~u) and
τi : hi(~a) 4 ti(~a) for i = 1, . . . , n. In particular, τ(x,~h(~a)) : g(~h(~a)) 4 s(~h(~a)).
Lemma 20 gives a CRSF-function σ(x,~a) so that σ : s(~h(~a)) 4 s(~t(~a)). Then
Lemma 18 gives ρ(x,~a) such that ρ : f(~a) = g(~h(~a)) 4 s(~t(~a)) as desired.

Finally, if f is defined by (Cobham Recursion4), then τ : f(a,~c) 4

h(a,~c) for some CRSF functions h and τ . The induction hypothesis gives
a #-term t(a,~c) and a CRSF function τ ′ such that τ ′ : h(a,~c) 4 t(a,~c).
Lemma 18 immediately gives a CRSF function τ ′′ so that τ ′′ : f(a,~c) 4

t(a,~c).

The proof of Theorem 17 actually gives a stronger result. Examination
of its proof and the proofs of Lemmas 18 and 19 shows that the embedding
functions are created using only the closure properties of CRSF established
in Theorem 13. Indeed, they are created from the functions ⊙, #, ⊙−1,
π1,A,B, π2,A,B and functions already shown to be in CRSF using composition
and Theorem 13. Furthermore, the proof of Theorem 13 shows that the same
closure properties still apply when only #-terms are allowed as bounding
functions. This establishes:

Theorem 21. The class CRSF would be unchanged if the definition of
(Cobham Recursion4) were changed to require the bounding function
h(~a, c) to be a #-term.

Corollary 22. Let f(~a) be a CRSF function. Then there are polyno-
mials p and q so that rank(f(~a)) ≤ p(maxi{rank(ai)}) and |tc(f(~a))| ≤
q(maxi{|tc(ai)|}).

The corollary follows immediately from Lemma 4, Proposition 10, and
Theorem 17. Namely, #-terms have polynomially bounded increase in rank,
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and polynomially bounded increase in cardinality of their transitive closure,
and these bounds are preserved by embeddings.

3.4 Closure of CRSF under replacement

We can now show closure under (unbounded) replacement.

Theorem 23. CRSF is closed under (Replacement).

Proof. Suppose g(~a, b, c) is in CRSF and f(~a, c) is defined from g by (Re-
placement) as f(~a, c) = {g(~a, b, c) : b ∈ c}. We must show f is also in
CRSF. By Theorem 17, there is a #-term tg(~a, b, c) and a CRSF func-
tion τg(x,~a, b, c) such that τg : g(~a, b, c) 4 tg(~a, b, c). Since f depends on
~a and c but not b, it is inconvenient to have tg and τg depend on b. Ac-
cordingly, we let t′g(~a, c) = tg(~a, c, c). By Lemmas 18-20, there is a CRSF
function τ ′g(x,~a, b, c) so that for all ~a and c and all b ∈ tc(c), we have
τ ′g : g(~a, b, c) 4 t′g(~a, c).

A slight modification of τ ′g gives a CRSF function τ ′′g such that τ ′′g :
{g(~a, b, c)} 4 t′′g(~a, c), where t′′g(~a, c) is the #-term 1⊙t′g(~a, c)

Let t(~a, c) be the #-term c#t′g(~a, c). The intuition is that f(~a, c), which
is the set of g(~a, b, c)’s for b ∈ c, can be embedded into t(~a, c) by an embed-
ding τ that sends (the transitive closure of) each {g(~a, b, c)} into the “b-th
copy” of t′g(~a, c). Formally, we let T abbreviate t′g(~a, c), and define

τ(x,~a, c) = {z ∈ c#T : π1,c,T (z) ∈ c ∧ x ∈ tc+(g(~a, π1,c,T (z), c))

∧ π2,c,T (z) ∈ τ ′′g (x,~a, π1,c,T (z), c)}.

This is a definition by (Separation), and thus τ is a CRSF function. To
understand τ , note that τ(x,~a, c) is the set of values z = σc,T (b, u) for the
values of b and u such that b ∈ c, x ∈ tc+{g(~a, b, c)}, and u ∈ τ ′′g (x,~a, b, c).
From this, it is clear that τ : f(~a, c) 4 c#T = t(~a, c). This means that the
definition of f(~a, c) is actually a definition by (Embedded Replacement),
so f is in CRSF.

This also establishes Theorem 14 about forming crossproducts since,
as discussed earlier, it follows from the closure of CRSF under (Replace-
ment).

3.5 Course-of-values encodings

The graph of a function f is the class of tuples 〈~a, b〉 such that f(~a) = b.
When f = f(~a, c) has a distinguished input c, we will also define the “course-
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of-values function of f” to be the function f∗ such that f∗(~a, c) gives simul-
taneously all tuples 〈c′, f(~a, c′)〉 such that c′ ∈ tc+(c). The conventional
way to encode these tuples would be as a set of ordered pairs; e.g., to define
f∗(~a, c) to be the same as f↾tc+(c)(~a, c). However, we shall use an alternate
specialized encoding instead. Specifically, we define

f∗(~a, c) = {∅, 〈c, f(~a, c)〉}⊙{f∗(~a, c′) : c′ ∈ c}. (13)

The intuition is that the tuple 〈c, f(~a, c)〉 sits “on top of” all the tuples
〈c′, f(~a, c′)〉 for c′ ∈ tc(c). This will be helpful for defining 4-embeddings,
as it can give the embedding function access to the values of f(~a, c′) for
c′ ∈ tc(c).

We record some simple but useful properties of f∗(~a, c). First, we have
that f∗(~a, c) = {z, 〈c⊙z, f(~a, c)⊙z〉} where we write z for the set {f∗(~a, c′) :
c′ ∈ c}. So f∗(~a, c) has exactly two elements, of different ranks; the lower
rank element is z and the higher rank element is an ordered pair. Second,
f∗(~a, c) is not an ordered pair. If z = ∅, this is direct. Otherwise, an ordered
pair is either a singleton or has one element a subset of the other, and neither
is possible here. Third, z is not an ordered pair, since an ordered pair must
contain a singleton; and, by the above, z does not contain any ordered pairs.

We need a variety of utility CRSF functions to decode structures of the
form (13).

Definition 24. We define

MnR′(F ) =
⋃

{u ∈ F : ∀u′ ∈ F, rank(u) ≤ rank(u′)}
MxR′(F ) =

⋃

{u ∈ F : ∀u′ ∈ F, rank(u) ≥ rank(u′)}
MxR(u) = MxR′(u)⊙−1MnR′(u)
MxR1(u) = π1(MxR(u))
MxR2(u) = π2(MxR(u)).

Here “MnR” and “MxR” stand for “minimum/maximum rank”. If
u = {∅, 〈c, v〉}⊙z, then MxR′(u) = 〈c, v〉⊙z and MnR′(u) = ∅⊙z = z.
Thus MxR(u) = 〈c, v〉, MxR1(u) = c and MxR2(u) = v. In particular
this gives MnR′(f∗(~a, c)) = {f∗(~a, c′) : c′ ∈ c}, MxR1(f

∗(~a, c)) = c and
MxR2(f

∗(~a, c)) = f(~a, c). Hence

Proposition 25. If f∗ ∈ CRSF, then f ∈ CRSF.

Lemma 26. There is a CRSF function AllValues such that, for any func-
tion f and sets ~a, c we have AllValues(f∗(~a, c)) = f↾tc(c)(~a,−).
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Proof. We define an auxiliary function Stars recursively by

Stars(F ) =















∅ if F is an ordered pair
⋃

{Stars(F ′) : F ′ ∈ F} if F is not an ordered pair, but
contains an ordered pair

F ∪
⋃

{Stars(F ′) : F ′ ∈ F} otherwise.

By the earlier remarks about the structure of f∗, writing z for the set
{f∗(~a, c′) : c′ ∈ c} we have

Stars(f∗(~a, c)) = Stars({z, 〈c⊙z, f(~a, c)⊙z〉})

= Stars(z) ∪ Stars(〈c⊙z, f(~a, c)⊙z〉)

= Stars(z)

= {f∗(~a, c′) : c′ ∈ c} ∪
⋃

c′∈c

Stars(f∗(~a, c′)).

Hence Stars(f∗(~a, c)) = {f∗(~a, c′) : c′ ∈ tc(c)}. Each value Stars(F ) is
a subset of tc(F ), so this is an instance of (Cobham Recursion⊆) and
thus Stars is in CRSF. We define AllValues(F ) by (Replacement) as
{MxR(u) : u ∈ Stars(F )}.

Finally, we introduce two predicates IsCofVTopg and IsCofVSetg to help
us find our place inside the internal structure of sets f∗(~a, c). These will be
used when constructing embeddings from such sets into smash terms.

Definition 27. Let f be defined by (possibly unbounded) course-of-values
recursion from a function g so that

f(~a, c) = g(~a, c, f↾tc(c)(~a,−)).

IsCofVTopg(F,~a) expresses that F is a set of the form f∗(~a, c) for some c.
IsCofVSetg(F,~a) expresses that F is a set of such sets.

Lemma 28. If g is in CRSF, then so are IsCofVTopg and IsCofVSetg.

Proof. Combining the recursive definitions of f∗ in terms of f and of f in
terms of g, we can write down a definition of IsCofVTopg and IsCofVSetg
by simultaneous recursion. We will do this slightly indirectly. Let IsCofVg

be the function

IsCofVg(F,~a) =







∅ if IsCofVTopg(F,~a)

1 if IsCofVSetg(F,~a)
2 otherwise.
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Since this has range {0, 1, 2}, we can write the simultaneous recursion as a
definition of IsCofVg by (Cobham Recursion⊆):

IsCofVg(F,~a) =































∅ if F = {∅, 〈MxR1(F ),MxR2(F )〉}⊙MnR′(F ),
IsCofVg(MnR′(F ),~a) = 1,
MxR1(F ) = {MxR1(F

′) : F ′ ∈ MnR′(F )} and
MxR2(F ) = g(~a,MxR1(F ),AllValues(F ))

1 if {IsCofVg(F
′,~a) : F ′ ∈ F} ⊆ {∅}

2 otherwise.

This is not quite an instance of (Cobham Recursion⊆) as written, but be-
comes one if we replace the second line of the ∅ case with 1 ∈ {IsCofVg(F

′,~a) :
F ′ ∈ F}. This is equivalent, since F consists of MnR′ and an ordered pair
which cannot satisfy IsCofVSetg. Hence IsCofVg is in CRSF, so the two
predicates are as well.

Theorem 29. The CRSF functions are closed under (Cobham RecursionCofV
4 ).

Proof. Suppose CRSF functions g and τ1 and a #-term h are used to define
a function f1 by (Cobham RecursionCofV

4 )

f1(~a, c) = g(~a, c, f1↾tc(c)(~a,−)),

where τ1(x,~a, c) : f1(~a, c) 4 h(~a, c). We want to show f1 ∈ CRSF. It will be
helpful to have c available as an extra side parameter, so we define a new
function f by (Cobham RecursionCofV

4 ) as

f(~a, c, c′) =

{

g(~a, c′, f↾tc(c′)(~a, c,−)) if c′ ∈ tc+(c)

∅ otherwise.
(14)

Since f1(~a, c) = f(~a, c, c), it suffices to prove that f(~a, c, c′) is in CRSF.
Letting τ(x,~a, c, c′) = τ1(z,~a, c

′), we have τ(x,~a, c, c′) : f(~a, c, c′) 4 h(~a, c′).
We henceforth implicitly assume that c′ ∈ tc+(c).

Let f∗ be the course-of-values function for f :

f∗(~a, c, c′) = {∅, 〈c′, f(~a, c, c′)〉}⊙{f∗(~a, c, c′′) : c′′ ∈ c′}. (15)

By Proposition 25, it suffices to show f∗ is in CRSF. We will use (Cob-
ham Recursion4), by giving a recursive definition of f∗, a bounding
term h∗(~a, c) and a CRSF embedding function τ∗(x,~a, c).3

3It would be permitted to have c
′ be a parameter to τ

∗ and h
∗, but we do not need it.
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For the recursive definition of f∗, observe that

f↾tc(c′)(~a, c,−) =
⋃

c′′∈c′

f↾tc+(c′′)(~a, c,−)

=
⋃

c′′∈c′

[

{MxR(f∗(~a, c, c′′))} ∪AllValues(f∗(~a, c, c′′))
]

.

So from {f∗(~a, c, c′′) : c′′ ∈ c′} we can construct f↾tc(c′)(~a, c,−), then use g
to construct f(~a, c, c′), then use (15) to construct f∗(~a, c, c′), all in CRSF.

The main difficulty in defining the embedding τ∗ is that it has to analyze
the meaning of its input x. Here x comes from the course-of-values, but will
not in general be a course-of-values set itself, but rather will be a member
of tc(f∗(~a, c, c′)). By construction, for every such x there is c′′ ∈ tc(c′) and
y ∈ tc+({∅, 〈c′′, f(~a, c, c′′)〉}) such that

x = y⊙{f∗(~a, c, c′′′) : c′′′ ∈ c′′}. (16)

Define

TopCofVSetg(x,~a) =
⋃

{F ∈ tc+(x) : IsCofVSetg(F,~a)∧

¬(∃F ′∈tc+(x))(F ∈ tc(F ′) ∧ IsCofVSetg(F
′,~a))}.

We claim that TopCofVSetg(x,~a) = {f∗(~a, c, c′′′) : c′′′ ∈ c′′}. To see this,
let G = {f∗(~a, c, c′′′) : c′′′ ∈ c′′} and suppose there is an F = y′⊙G 6= G
satisfying IsCofVSetg(F,~a) with y′ ∈ tc(y). Take F and y′ to be of minimal
rank satisfying these conditions. We have y′ 6= ∅; furthermore, any y′′ ∈ y′

satisfies IsCofVTopg(y
′′⊙G). Thus y′′ 6= ∅, and y′′′ = MnR(y′′) ∈ y′′ satisfies

IsCofVSetg(y
′′′⊙G). By the minimality of y′, we have y′′′⊙G = G. It follows

that y′′ = {∅, 〈c′′, f(~a, c, c′′)〉}. This contradicts y′′ ∈ tc(y) and the choice
of y.

Therefore, we can recover c′′ from x by

cValueg(x,~a) = {MxR1(F ) : F ∈ TopCofVSetg(x,~a)}.

We are now ready to define τ∗ and h∗. By Lemma 20, from τ we can
construct a CRSF function τ ′ such that τ ′(x,~a, c, c′′) : f(~a, c, c′′) 4 h(~a, c),
as long as c′′ ∈ tc+(c) since in this case c′′ 4 c by the identity embedding.
From this, it follows readily that there is a #-term s(~a, c) and a CRSF
function τ ′′ such that

τ ′′(x,~a, c, c′′) : {{∅, 〈c′′, f(~a, c, c′′)〉}} 4 s(~a, c) (17)
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whenever c′′ ∈ tc+(c). Let h∗(~a, c) equal c#s(~a, c). Finally define τ∗(x,~a, c)
to equal

{σc,s(~a,c)(c
′′, u) : u ∈ τ ′′(x⊙−1TopCofVSetg(x,~a),~a, c, c

′′)}

where c′′ = cValue(x,~a).
It is straightforward to verify that τ∗ is a CRSF function and is a (multi-

valued) embedding f∗(~a, c) 4 h∗(~a, c). The intuition is that c′′ is such that x
is in the “{∅, 〈c′′, f(~a, c, c′′)〉}” part of the course-of-values set, and then τ∗ is
computed taking the values given by τ ′′ and mapping them to the c′′-th copy
of s(~a, c) in c#s(~a, c). In particular, suppose that x2 ∈ x1 ∈ tc(f∗(~a, c, c′))
and let c′′ = cValue(x1,~a) and c′′′ = cValue(x2,~a). If c′′ = c′′′ then
TopCofVSetg(x1,~a) = TopCofVSetg(x2,~a) and for every u ∈ τ∗(x1,~a, c)
there is a v ∈ τ∗(x2,~a, c) ∩ tc(u) by the properties of τ ′′. The only other
possibility is that x1 = TopCofVSetg(x1,~a) and x2 = f∗(~a, c′′′) with c′′′ ∈ c′′.
In this case the embedding property follows from the properties of σc,s(~a,c).

This completes the proof that f∗ is in CRSF.

3.6 Impredicative embeddings

The section proves that CRSF is closed under Cobham recursion even when
“impredicative” embeddings are used to bound functions. Recall that (Cob-
ham Recursion4) and (Cobham RecursionCofV

4 ) were defined with the
condition that for all ~a, c we have τ(x,~a, c) : f(~a, c) 4 h(~a, c). We form im-
predicative versions of these by allowing τ to have f(~a, c) as an additional
input and requiring instead that, for all ~a, c,

τ(x,~a, c, f(~a, c)) : f(~a, c) 4 h(~a, c). (18)

Like the earlier bounding condition, this impredicative bounding condition
implies that f(~a, c) has rank bounded by rank(h(~a, c)) and has |tc(f(~a, c))| ≤
|tc(h(~a, c))|. The difference is that with f(~a, c) as an additional parameter,
it is potentially easier for τ to compute a 4-embedding. Nonetheless, the
next theorem shows that this gives no additional power for defining CRSF
functions.

Theorem 30. CRSF is closed under the impredicative versions of (Cob-
ham Recursion4) and (Cobham RecursionCofV

4 ).

As a corollary, CRSF is also closed under the impredicative version of
(Embedded Replacement), as the proof of part 2. of Theorem 13 still
applies.
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Proof. The proof uses the techniques of the proof of Theorem 29 from the
previous section. We prove only the (Cobham RecursionCofV

4 ) case. The
case of (Cobham Recursion4) follows as a corollary, or alternatively can
be proved directly by using the “RecValues” function introduced in Sec-
tion 5.1 below in place of the “AllValues” function.

Similarly to the proof of Theorem 29, assume f(~a, c, c′) is defined from
the CRSF functions g and τ and a #-term h by

f(~a, c, c′) =

{

g(~a, c′, f↾tc(c′)(~a, c,−)) if c′ ∈ tc+(c)

∅ otherwise

but now with only the impredicative embedding condition

τ(x,~a, c, c′, f(~a, c, c′)) : f(~a, c, c′) 4 h(~a, c′). (19)

We henceforth implicitly assume whenever necessary that c′ ∈ tc+(c). Let
f∗(~a, c, c′) be defined by (15). To show that f∗, and thus f , is in CRSF it
suffices to give a bounding term h∗ and an embedding function τ∗(x,~a, c) :
f∗(~a, c, c′) 4 h∗(~a, c) in CRSF. By (19) and similarly to (17) there is a
CRSF function τ ′(x,~a, c, c′, u) and a #-term s(~a, c) so that

τ ′(x,~a, c, c′, f(~a, c, c′)) : {∅, 〈c′, f(~a, c, c′)〉} 4 s(~a, c)

whenever c′ ∈ tc+(c). Again let h∗(~a, c) equal the #-term c#s(~a, c).
Now define τ∗(x,~a, c) to equal

{σc,s(~a,c)(c
′′, u) : u ∈ τ ′(x⊙−1F,~a, c, c′′, g(~a, c′′,AllValues(F )))}

where F = TopCofVSetg(x,~a) and c′′ = cValueg(x,~a). Clearly, τ∗ is in
CRSF. The input x is in the “{∅, 〈c′′, f(~a, c, c′′)〉}” part of the course-of-
values set, so x⊙−1F is a member of tc+({∅, 〈c′′, f(~a, c, c′′)〉}). The embed-
ding τ∗ takes the values given by τ ′ and maps them to the c′′-th copy of
s(~a, c) in c#s(~a, c). For this, τ ′ needs to have f(~a, c, c′′) as an input: this is
computed by applying g to the course-of-values set AllValues(F ) obtained
from the earlier values of f encoded in F .

4 Polynomial time on binary strings

This section proves that polynomial time functions, and only polynomial
time functions, can be defined in CRSF under a canonical encoding of (finite)
binary strings as hereditarily finite sets.
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There are many good ways to encode binary strings s ∈ {0, 1}∗ as hered-
itarily finite sets. These include the “list” or “map” methods of [2] and the
sequence-based encoding used by Arai [1]. We shall use instead the simpler
encoding defined below. All these methods have the property that an encod-
ing ν(s) of a binary string s has its rank and the cardinality of its transitive
closure polynomially bounded (even linearly bounded) by the length |s| of s,
and in addition has rank ≥ |s|. Furthermore, all these methods are “nat-
ural” and, although we omit the proofs, it is not hard to show that these
methods are equivalent in that there are CRSF functions which translate
between these encodings. Thus, for the purpose of defining CRSF functions
on binary strings, it does not matter which of these encodings we use.

There are encodings such as the “tree” or “Ackermann” encodings of [2]
which are not suitable for our purposes; for these encodings, the rank of
ν(s) is too small and does not permit sufficiently long ∈-recursion. See
Sazonov [11] for more discussion of how to select encodings.

Definition 31. Let s = s0s1 · · · s|s|−1 be a binary string in Σ = {0, 1}∗. The
encoding ν(s) of s is the set defined by

ν(s) = {|s|} ∪ {i < |s| : si = 1}.

For example, ν(11010) = {0, 1, 3, 5}. The empty string is denoted ǫ, and
ν(ǫ) = {0} = 1. We use the notation ν(~a) for ν(a1), . . . , ν(an).

Definition 32. A function f : Σn → Σ is represented by the n-ary set
function F under the encoding ν provided

F (ν(a1), . . . , ν(an)) = ν(f(a1, . . . , an))

for all a1, . . . , an ∈ Σ. When this holds, we write f = F ν.

The next two theorems state that the CRSF functions represent exactly
the polynomial time functions.

Theorem 33. If f is a polynomial time function, then f = F ν for some F
in CRSF.

Theorem 34. Every function f = F ν for F in CRSF is in polynomial time.

To define some simple CRSF functions that operate on encodings of
strings, note that if s ∈ {0, 1}∗ and S = ν(s), and n ≥ 0, then

|s| =
⋃

S

ν(s0) = (S \ {|s|}) ∪ {Succ(|s|)}

ν(s1) = S ∪ {Succ(|s|)}

s↾n = (S ∩ n) ∪ {n}

28



where Succ(x) = x ∪ {x}, and where s↾n is the string consisting of the first
n bits of s when n ≤ |s|.

The notation |s| should not be confused with the use of | · | for set
cardinality; it should always be clear from the context which is intended.
For an integer i > 0, its predecessor i − 1 is denoted Pred(i) and it also
equals

⋃

i. Thus Pred is a CRSF function.
For S = ν(s), the value si is computable by the CRSF function

Bit(i, S) =

{

1 if i ∈ S and i <
⋃

S
0 otherwise.

Proof of Theorem 33. As discussed in the introduction, Cobham’s charac-
terization of P states that the class of polynomial time functions is the small-
est class containing the constant function ǫ and the two successor functions
s 7→ s0 and s 7→ s1 and closed under composition and limited recursion on
notation. The constant ν(ǫ) is clearly represented by a CRSF function. As
just shown above, s 7→ s0 and s 7→ s1 are represented by CRSF functions.
Also, CRSF is closed under composition. So it suffices to establish clo-
sure under Cobham limited recursion. For this, suppose that the functions
g(~a), h0(~a, b, s), and h1(~a, b, s) are represented by CRSF functions G( ~A),
H0( ~A,B, S), and H1( ~A,B, S), and that p is a polynomial, and let f(~a, s) be
defined by limited recursion, with

f(~a, ǫ) = g(~a)

f(~a, s0) = h0(~a, f(~a, s), s)

f(~a, s1) = h1(~a, f(~a, s), s)

and satisfying |f(a1, . . . , an, s)| ≤ p(|a1|, . . . , |an|, |s|). We need to show that
a function F that represents f is also in CRSF.

It suffices to prove that there is a CRSF function F ′(N, ~A, S) so that for
all strings ~a, s and finite ordinals N ,

F ′(N, ν(~a), ν(s)) = ν(f(~a, s↾N)),

since then F ( ~A, S) = F ′(|S|, ~A, S) is a CRSF function which represents f .
Using Lemma 4, we can define an ordinal-valued CRSF function P (N, ~A, S)

where for all such N,~a, s,

P (N, ν(~a), ν(s)) ≥ p(|a1|, . . . , |an|, |s↾N |) + 1,
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with the consequence that ν(f(~a, s↾N)) ⊆ P (N, ν(~a), ν(s)). We then define
F ′(N, ~A, S) by (Cobham RecursionCofV

4 ) so that

F ′(N, ~A, S) =



































G( ~A) ∩ P (N, ~A, S) if N = 0

H0( ~A,F ′(Pred(N), ~A, S), S↾Pred(N))∩P (N, ~A, S)

if N 6= 0 and Bit(Pred(N), S) = 0

H1( ~A,F ′(Pred(N), ~A, S), S↾Pred(N))∩P (N, ~A, S)

if N 6= 0 and Bit(Pred(N), S) = 1.

The value of F ′(Pred(N), ~A, S) can be computed by a CRSF function from
F ′
↾tc(N)(−, ~A, S). The intersection with P (N, ~A, S) has no effect when N ∈ ω

and ~A, S are encodings of binary strings; however, it ensures that for all
inputs there is a trivial embedding F ′(N, ~A, S) 4 P (N, ~A, S). Hence F ′ is a
CRSF function.

Proof of Theorem 34. Since the Mostowski graph of a set a is a directed
graph on the set of nodes tc(a), the Mostowski graph of a hereditarily finite
set a can be described by a binary string of length O(|tc(a)|2).

Theorem 34 follows from the observation that if f(x1, . . . , xn) is a CRSF
function, then there is an n-ary polynomial time function g such that if g is
given (binary strings describing the) Mostowski graphs of hereditarily finite
sets a1, . . . , an, then g outputs (a binary string describing) the Mostowski
graph for the hereditarily finite set f(~a). This fact is proved by induction
on the definition of CRSF functions.

For instance, for the base function cond∈, the condition c ∈ d can be
tested by checking whether c = x for each x ∈ d. This is polynomial time
since equality of two sets given by Mostowski graphs is readily calculated
by determining an isomorphism between all members of their transitive clo-
sures, traversing the graphs in rank-order.

The main case to consider is a CRSF function f(~a, c) defined by (Cob-
ham Recursion4) using recursion on g with respect to c. For this, the em-
bedding condition ensures that all intermediate values f(~a, c′) for c′ ∈ tc+(c)
are sets that have polynomial size Mostowski graphs. Therefore, by the in-
duction hypothesis applied to g, all these values f(~a, c′) can be computed in
polynomial time.

To finish the proof of Theorem 34, note that there is a polynomial time
function mapping a binary string s to a description of the Mostowski graph
of ν(s), and vice-versa.
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It is worth remarking that the converse to the proof of Theorem 34
does not hold; namely, there are polynomial time functions that operate on
Mostowski graphs of sets, and which do not calculate a function in CRSF.
For instance, there is a polynomial time function, which given a Mostowski
graph for a set a, produces a Mostowski graph for the von Neumann inte-
ger |tc(a)|. However, the function a 7→ |tc(a)| is not in CRSF. To prove
this, note that on the one hand, |a| may be superexponentially larger than
rank(a), but on the other hand, any CRSF function f has rank(f(a)) poly-
nomially bounded by rank(a) by Corollary 22.

5 An equivalence of CRSF and PCSF+

In this section we prove an equivalence between the power of CRSF and an
extension PCSF+ of the class PCSF of predicatively computable set func-
tions introduced by Arai [1]. For functions on binary strings (equivalently,
on integers), the notion of safe/normal functions was introduced by Bel-
lantoni and Cook [5], extending related constructions of Leivant [9]. The
notion of safe/normal recursion for set functions was introduced by [2], who
defined a class of Safe Recursive Set Functions (SRSF) and showed that,
using hereditarily finite sets with suitable encodings, SRSF can define pre-
cisely the functions of binary strings which can be computed by alternating
Turing machines that use exponential time and polynomially many alter-
nations. Arai modified the definition of SRSF in [2], and defined a class of
safe/normal set functions called the Predicatively Computable Set Functions
(PCSF) which, on hereditarily finite sets, captures exactly the functions on
binary strings which are in polynomial time.

We give here a quick definition of the classes PCSF and PCSF+; the
reader should refer to [1, 2] for more details.

In the safe/normal setting, functions take two types of parameters, “nor-
mal” and “safe”. The notation f(~x/~y) indicates that the parameters ~x are
normal, whereas the parameters ~y are safe. A function is called m,n-ary
if it has m normal parameters and n safe parameters. The class PCSF of
Predicatively Computable Set Functions is the smallest class of functions
containing the following five initial functions and three closure operations.

(ProjectionSN) For m,n ≥ 0 and 1 ≤ j ≤ n+m,

πn,m
j (a1, . . . , an/an+1, . . . , an+m) = aj .

(NullSN)
null( / ) = ∅.
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(PairSN)
pair(/a, b) = {a, b}.

(UnionSN)

union(/a) =
⋃

a.

(ConditionalSN

∈ )

cond∈(/a, b, c, d) =

{

a if c ∈ d
b otherwise.

(CompositionSN) If g is a m,n-ary function, ~h is a vector of m many
k, 0-ary functions, and ~r is a vector of n many k, ℓ-ary functions, then safe
composition gives the k, ℓ-ary function f :

f(~x/~a) = g(~h(~x/)/~r(~x/~a)).

(Safe SeparationSN) If g is a 0, n-ary function with n ≥ 1, then safe
separation gives the 0, n-ary function f :

f(/~a, c) = {b ∈ c : g(/~a, b) 6= ∅}.

(Predicative Set RecursionSN) If g is m,n-ary with m,n ≥ 1, then
predicative set recursion gives the m,n−1-ary function f :

f(~a, c/ ~d) = g(~a, c/ ~d, {f(~a, b/ ~d) : b ∈ c}).

Arai [1] proves a variety of closure properties for PCSF, including under
the following recursion that takes values of f on c as a set of ordered pairs:

(Predicative Function RecursionSN) If g is m,n-ary with m,n ≥ 1, then
predicative function recursion gives the m,n−1-ary function f :

f(~a, c/ ~d) = g(~a, c/ ~d, f↾c(~a,−/ ~d)).

Arai [1] also mentions a form of separation which allows normal parameters:

(Normal SeparationSN) If g is a m,n-ary function with n ≥ 1, then
normal separation gives the m,n-ary function f :

f(~d/~a, c) = {b ∈ c : g(~d/~a, b) 6= ∅}.

We define the class PCSF+ similarly to PCSF, but using (Normal SeparationSN)
in place of (Safe SeparationSN). Arai conjectures that PCSF+ strictly
contains PCSF, but this remains an open question.
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PCSF+ enjoys all the closure properties that Arai [1] established for
PCSF. In addition, it follows easily from (Normal SeparationSN) that
the PCSF+ relations are closed under set bounded quantification. That is,
if R(~a/~b, x) is a PCSF+ relation, then so is S(~a/~b, c) ⇔ (∀x ∈ c)R(~a/~b, x).

5.1 CRSF includes PCSF+

We show that every PCSF+ function can be expressed as a CRSF function.

Theorem 35. Suppose f(~a/~b) is a PCSF+ function. Then there are CRSF
functions g(~a,~b) and τ(x,~a,~b), and a #-term t(~a) such that, for all ~a,~b,

a. g(~a,~b) = f(~a/~b),

b. τ : f(~a/~b) 4 t(~a)⊙{~b}, and

c. τ is the identity on tc({~b}). Namely, if x ∈ tc({~b}), then τ(x,~a,~b) =
{x}. And, if τ(x,~a,~b) ∩ tc({~b}) 6= ∅, then x ∈ tc({~b}).

The notation {~b} denotes {b1, . . . , bm}, namely the set of safe parameters.
Part b. of Theorem 35 puts sharp bounds on how the safe parameters ~b can
affect the value of f(~a/~b). A similar bound is given by Theorem 5.1 of [1]
in terms of the cardinality of the transitive closure of f(~a/~b) when ~a and ~b
are hereditarily finite. Theorem 35(b) sharpens this, and is applicable to all
sets, not just hereditarily finite sets.

Proof. The proof is by induction on the formation of the PCSF+ func-
tion f(~a/~b). For f one of the initial functions null, pair, union, cond∈
or the projection function πn,m

j with j > n, the theorem is obviously true
with t(~a) = 1. (Even t(~a) = ∅ would work, but ∅ is not a permitted #-term.)
For the projection function πn,m

i (~a/~b) with i ≤ n, set t(~a) = ai (the i-th
normal input to f), and set the embedding function equal to

τ(x,~a,~b) =

{

{x} if x ∈ tc({~b})

{x⊙{~b}} otherwise.

For f defined by (Normal SeparationSN),

f(~d/~a, c) = {b ∈ c : f1(~d/~a, b) 6= ∅},

the induction hypothesis for f1 gives a CRSF function g1(~d,~a, b) equal to
f1(~d/~a, b). By (Separation) using g1, the function g(~d,~a, c) = f(~d/~a, c) is
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in CRSF. Since g(~d,~a, c) ⊆ c, setting t = 1 (again, even t = ∅ would work)
and τ the identity, τ : x 7→ {x}, proves the theorem for f .

Next suppose f is defined by (CompositionSN) as

f(~a/~b) = f1(~f2(~a/)/ ~f3(~a/~b)).

The normal parameters ~f2 (resp., safe parameters ~f3) are a list of func-
tions f2,j for 1 ≤ j ≤ ℓ2 (resp., functions f3,j for 1 ≤ j ≤ ℓ3). The induction

hypothesis for the PCSF+ function f1(~c/ ~d) gives CRSF functions g1(~c, ~d)
and τ1(x,~c, ~d), and a #-term t1(~c). The induction hypotheses for the f2,j’s

and f3,j’s give CRSF functions g2,j(~a), τ2,j(x,~a), g3,j(~a,~b), and τ3,j(x,~a,~b),

and #-terms t2,j(~a) and t3,j(~a). We must define g(~a,~b), τ(x,~a,~b), and t(~a)

for f . The function g(~a,~b) = f(~a/~b) is immediately seen to be CRSF by
(Composition):

g(~a,~b) = g1(~g2(~a), ~g3(~a,~b)).

By the induction hypothesis, x 7→ τ1(x,~g2(~a), ~g3(~a,~b)) is a 4-embedding of

g1(~g2(~a), ~g3(~a,~b)) 4 t1(~g2(~a))⊙{~g3(~a,~b)}, (20)

and for j = 1, . . . , ℓ2,

τ2,j : g2,j(~a) 4 t2,j(~a)⊙∅ = t2,j(~a).

By composition and Lemma 20, τ2,1, . . . , τ2,ℓ2 give a CRSF function τ ′1(x,~a)
such that

τ ′1 : t1(~g2(~a)) 4 t′1(~a) (21)

where t′1(~a) is the #-term

t1(t2,1(~a), . . . , t2,ℓ2(~a)).

The induction hypothesis also gives, for 1 ≤ j ≤ ℓ3,

τ3,j : g3,j(~a,~b) 4 t3,j(~a)⊙{~b}.

Letting t′3,j(~a) = 1⊙t3,j(~a), we readily get a CRSF function τ ′3,j(x,~a, b) so
that

τ ′3,j : {g3,j(~a,
~b)} 4 t′3,j(~a)⊙{~b}.

Further letting t′3(~a) be t′3,1(~a)⊙ · · · ⊙t′3,ℓ3(~a), we can define a CRSF func-

tion τ ′3(x,~a,
~b) so that

τ ′3 : {~g3(~a,
~b)} 4 t′3(~a)⊙{~b}; (22)
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namely, letting τ ′3(x,~a,
~b) = {x} for x ∈ tc({~b}), and for all other x, letting

τ ′3(x,~a,
~b) equal

{u⊙t′3,k+1(~a)⊙ · · · ⊙t′3,ℓ3(~a)⊙{~b} : u⊙{~b} ∈ τ ′3,k(x,~a,
~b), 1 ≤ k ≤ ℓ3}.

With (20), (21) and (22), it is straightforward to combine τ1, τ
′
1 and τ ′3 to

form a CRSF function τ(x,~a,~b) so that

τ : g(~a,~b) 4 t′1(~a)⊙t′3(~a)⊙{~b}.

All of τ3,j, τ
′
3,j, τ3 and τ are the identity on {~b}. Letting t(~a) be the #-term

t′1(~a)⊙t′3(~a), this completes the proof of Lemma 35 for PCSF+ functions
defined using composition.

Finally, suppose f(~a/~b) is defined by (Predicative Set RecursionSN),

f(~a, c/~b) = f1(~a, c/~b, {f(~a, c
′ /~b) : c′ ∈ c}).

The induction hypothesis for f1(~a, c/~b, F ) gives CRSF functions g1(~a, c,~b, F )
and τ1(x,~a, c,~b, F ) and a #-term t1(~a, c). We must find suitable g(~a, c,~b),
τ(x,~a, c,~b), and t(~a, c) for f .

It is straightforward to write a recursive definition of g, but unlike in
previous cases where we showed that a function is in CRSF, this time there
is no readily available bound on the complexity of f which we could use
to construct an embedding that bounds g. Hence the main work in the
proof is to construct such an embedding. For this, it is crucial to use the
assumption that the embeddings given by the induction hypothesis are the
identity on safe arguments; in particular, the fact that τ1 is the identity on
the argument F of g1 which holds the previous recursive values.

The construction of g and τ is based on the proof of Theorem 29. In
order to use c as a side parameter, define

g′1(~a, c, c
′,~b, F ) =

{

g1(~a, c
′,~b, F ) if c′ ∈ tc+(c)

∅ otherwise.

Define a function g∗ by

g∗(~a, c, c′,~b) = {∅, 〈c′, g′1(~a, c, c
′,~b,RecValues(G))〉}⊙G, (23)

where G = G(~a, c, c′,~b) = {g∗(~a, c, c′′,~b) : c′′ ∈ c′} and

RecValues(G) = {MxR2(G
′) : G′ ∈ G}.
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Thus, g∗ is the course-of-values set obtained by iterating g′1. We define

g(~a, c,~b) = MxR2(g
∗(~a, c, c,~b)). Hence g(~a, c,~b) = f(~a, c/~b), and to show

that g is in CRSF it suffices to show that g∗ is.
Analogously to the earlier definition of IsCofVg, define IsCofV′

g1
by

IsCofV′
g1
(F,~a, c,~b) =



































∅ if F = {∅, 〈MxR1(F ),MxR2(F )〉}⊙MnR′(F ),

IsCofV′
g1
(MnR′(F ),~a, c,~b) = 1,

MxR1(F ) = {MxR1(F
′) : F ′ ∈ MnR′(F )}, and

MxR2(F ) = g′1(~a, c,MxR1(F ),~b,RecValues(MnR′(F )))

1 if {IsCofV′
g1
(F ′,~a, c,~b) : F ′ ∈ F} ⊆ {∅}

2 otherwise.

This is similar to the definition of IsCofVg except that “RecValues” re-
places “AllValues” since we are now using (Cobham Recursion4) instead
of course-of-values recursion. Further, define TopCofVSet′g1(x,~a, c,

~b) and

cValue′g1(x,~a, c,
~b) similarly to TopCofVSetg and cValueg but using IsCofV′

g1

instead of IsCofVg.
We want to define an embedding function τ∗ ∈ CRSF and a CRSF

function h∗ so that

τ∗(x,~a, c,~b) : g∗(~a, c, c′,~b) 4 h∗(~a, c), (24)

showing that g∗ is in CRSF. (We will use τ∗ and h∗ to construct suitable
functions τ and t bounding g.) Since (24) has to hold for all c′ ∈ tc+(c), it
is equivalent to

τ∗(x,~a, c,~b) : g∗(~a, c, c,~b) 4 h∗(~a, c)

and this is what we will show.
By the induction hypothesis, τ1 : g1(~a, c,~b, F ) 4 t1(~a, c)⊙{~b, F}. From

this, it is easy to see there is a CRSF function τ ′1(x,~a, c, c
′,~b, F ) and a #-

term s(~a, c) so that

τ ′1 : {{∅, 〈c
′, g′1(~a, c, c

′,~b, F )〉}} 4 s(~a, c)⊙{~b, F} (25)

whenever c′ ∈ tc+(c). Furthermore, τ1 and τ ′1 are the identity on tc({~b, F}).

We shall construct a CRSF function τ2(x,~a, c, c
′,~b,G) such that

τ2 : {{∅, 〈c
′, g(~a, c′,~b)〉}} 4 (c#(s(~a, c)⊙1))⊙{~b} (26)

whenever IsCofVSetg′
1
(G,~a, c,~b) and c′ ∈ tc+(cValueg′

1
(G,~a, c,~b)), and such

that τ2 is the identity on tc({~b}). We henceforth write S for s(~a, c)⊙1.
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It is easy to define τ∗ once we have τ2. Let h
∗(~a, c,~b) be c#((c#S)⊙{~b}).

To define τ∗(x,~a, c,~b), suppose x ∈ tc(g∗(~a, c, c,~b)). Let c′ = cValue′(x,~a, c,~b),
let G = TopCofVSet′g1(x,~a, c,

~b), and let y = x⊙−1G. Then y ∈ tc+({∅, 〈c′, g(~a, c′,~b)〉})

and we set τ∗(x,~a, c,~b) equal to

{σ
c,(c#S)⊙{~b}(c

′, w) : w ∈ τ2(y,~a, c, c
′,~b,G)}.

This shows that g∗ and g are in CRSF.
Given τ2, we can now define the embedding function τ and the #-term h

as needed for the theorem. Define τ(x,~a, c,~b) to equal τ2(x,~a, c, c,~b,G)
where G is the course-of-values set g∗(~a, c, c,~b). From (26),

τ : {{∅, 〈c, g(~a, c,~b)〉}} 4 (c#S)⊙{~b}

and is the identity on {~b}. Set t equal to the #-term c#S. It follows that
τ is also an embedding of g(~a, c,~b) into t(~a, c,~b)⊙{~b} and satisfies conditions
b. and c. of the theorem.

It remains to define τ2(x,~a, c, c
′,~b,G). We use (CobhamRecursionCofV

4 )

on c′. We first obtain the set F = {g(~a, c′′,~b) : c′′ ∈ c′} as a CRSF function
of G by F = rng(AllValues(G)↾c′), where rng is the range function. Note
that g′1(~a, c, c

′,~b, F ) = g(~a, c′,~b), so the domains of τ ′1 and τ2, as shown in
(25) and (26), are the same. Then there are four cases.

i. If x /∈ tc({~b, F}), then τ2 maps x to

{σc,S(c
′, w⊙1)⊙{~b} : w⊙{~b, F} ∈ τ ′1(x,~a, c, c

′,~b, F )}.

Because τ ′1 is the identity on tc({~b, F}), τ ′1 maps x to a subset of the
“s(~a, c) part” of the righthand side of (25). Thus the value of τ2 gives
the corresponding subset of the c′-th copy of s(~a, c) in (26).

ii. If x ∈ tc({~b}) then τ2 is the identity, mapping x to {x}.

iii. If x = F and F /∈ tc({~b}), then τ2 maps x to {σc,S(c
′, ∅)⊙{~b}}.

iv. If none of i.-iii. hold, then x ∈ tc(F ). By choice of F , we have x ∈
tc+(g(~a, c′′,~b)) for one or more values of c′′ ∈ c′. Then τ2 uses course-
of-values recursion, mapping x to

{w : c′′ ∈ tc(c′), w ∈ τ2(x,~a, c, c
′′,~b,G),

x ∈ tc+(g(~a, c′′,~b)), x /∈ tc(Fc′′)} (27)
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where Fc′′ = {g(~a, c′′′,~b) : c′′′ ∈ c′′}. Both Fc′′ and g(~a, c′′,~b) can
be computed from AllValues(G). The values c′′ satisfying the con-
ditions above are exactly the minimal values c′′ ∈ tc+(c′) for which
x ∈ tc+(g(~a, c′′,~b)), so there is at least one such c′′. The condition
x ∈ tc+(g(~a, c′′,~b)) implies that x is in the domain of τ2(x,~a, c, c

′′,~b,G),
and the condition x /∈ tc(Fc′′) implies that it falls under case i. or iii.
there. Hence the part of (27) corresponding to c′′ is a subset of the
c′′-th copy of s(~a, c)⊙1 in (26).

To prove that τ2(x,~a, c, c
′,~b,G) is an 4-embedding, we inductively assume

that τ2(x,~a, c, c
′′,~b,G) is an embedding for c′′ ∈ tc(c′). Then for c′, restricted

to each case τ2 is a total injective multifunction, and the cases have disjoint
ranges. The embedding property is clear by inspection.

This completes the proof of Theorem 35.

5.2 PCSF+ includes CRSF

We show that every CRSF function can be expressed as a PCSF+ function.

Theorem 36. If f(~a) is in CRSF, then g(~a/) = f(~a) is in PCSF+.

Corollary 37. Suppose g(~a/) = f(~a). Then f(~a) ∈ CRSF if and only if
g(~a/) ∈ PCSF+.

Before proving Theorem 36, we need to bootstrap some PCSF functions.
The safe transitive closure function f(/a) = tc(a) is not in PCSF+, since
f(/a) has no normal parameters and thus (Predicative Set RecursionSN)
cannot be used. However, we can define tc(a) for a safe parameter a, pro-
vided we are given a normal input c of sufficiently large rank. Define, as a
PCSF function,

tc′(c/a) = a ∪
⋃⋃

{tc′(c′/a) : c′ ∈ c}.

It is easy to verify that tc′(c/a) = tc(a) whenever either rank(c) ≥ rank(a)
or rank(c) ≥ ω. When proving Theorem 36, we will always have a #-term t
involving only normal inputs ~A so that c = t has sufficiently large rank.
To reduce clutter, we often abuse notation by writing just tc(a) instead of
tc′(t/a).

Second, the function f⊙(a/b) = a⊙b is in PCSF since

f⊙(a/b) =

{

b if a = ∅
{f⊙(a

′/b) : a′ ∈ a} otherwise.
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Likewise, f#(a, b/) = a#b is in PCSF by (4):

f#(a, b/) = f⊙(b/{f#(a
′, b/) : a′ ∈ a}).

These constructions are not good enough for our purposes however, as we
will need to compute a⊙b and a#b even when a and b are safe. The next
two lemmas give replacement constructions:

Lemma 38. There is a PCSF+ function f ′
⊙(A/a, b) such that, whenever

a ∈ tc+(A), we have f ′
⊙(A/a, b) = a⊙b.

Lemmas 38 and 39 also hold for PCSF instead of PCSF+, but we give only
the proof for PCSF+ as it better motivates our constructions.

Proof. The idea is to define f ′
⊙ by recursion on A instead of a:

f ′
⊙(A/a, b) =







b if A = ∅
{f ′

⊙(A
′/a, b) : A′ ∈ A} if a /∈ tc(A) and A 6= ∅

f ′
⊙(a/a, b) if a ∈ tc(A)

To see that this works, observe that, arguing by induction on A, f ′
⊙(A/a, b) =

A⊙b when a /∈ tc(A), and is equal to a⊙b when a ∈ tc(A). This however
does not give f ′

⊙ as a PCSF+ function since the third case uses a as a normal
parameter. Instead, we let F abbreviate f ′

⊙↾A
= {〈A′, f ′

⊙(A
′/a, b)〉 : A′ ∈ A}

and use (Predicative Function RecursionSN):

f ′
⊙(A/a, b) =















b if A = ∅
rng(/F ) if a /∈ tc(a) and A 6= 0
⋃

{z ∈ rng(/F ) : ∃A′∈A,
a ∈ tc+(A′) ∧ 〈A′, z〉∈F}

if a ∈ tc(A)

rng(/F ) is equal to {z ∈
⋃⋃

F : ∃y∈
⋃⋃

F, 〈y, z〉 ∈ F}. The third case
uses (Normal SeparationSN), so this shows f ′

⊙ is in PCSF+.

Lemma 39. There is a PCSF+ function f ′
#(A,B/a, b) such that, whenever

a ∈ tc+(A) and b ∈ tc+(B), we have f ′
#(A,B/a, b) = a#b.

Proof. The idea is to define f ′
# by

f ′
#(A,B/a, b) =

{

f ′
⊙(B/b, {f ′

#(A
′, B/a, b) : A′ ∈ A}) if a /∈ tc(A)

f ′
#(a,B/a, b) if a ∈ tc(A)

The details of the proof are similar to the definition f ′
⊙ given above. Note

that the normal parameter B is needed in order to invoke f ′
⊙.
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The proofs of Lemmas 38 and 39 showed how recursion on a safe pa-
rameter a can be simulated using recursion on a normal parameter A, as
long as a ∈ tc+(A). This suggests that CRSF functions can be simulated
by PCSF+ functions in the sense that any CRSF function f(a) should be
computable as a PCSF+ function F (A/a) with F (A/a) = f(a) provided
that a ∈ tc+(A). However, we need an even more general construction for
the proof of Theorem 36; namely, instead of assuming a ∈ tc+(A) we assume
only that a is 4-embeddable in A. The assumption a 4 A means that a is
no more complex than A; and this allows recursion on a to be simulated by
recursion on A. The assumption “a 4 A” needs to be expressed in a rather
strong way, with the embedding variable x a safe input to the embedding
function.

Definition 40. Let u and v be sets. A safe embedding u 4 v is given by a
function τ(/x) such that the mapping x 7→ τ(/x) is an embedding u 4 v.

As usual, ~a denotes a1, . . . , ak; and similarly for ~A. We write ~σ : ~a 4 ~A
to mean that ~σ is a vector of functions such that each σi is a safe embedding
σi : ai 4 Ai. It is implicit in the notation that the ai’s and Ai’s may be
given by functions of other variables, and the σi’s may have these variables
as additional inputs. The next definition uses αi’s as metavariables for safe
embeddings.

Definition 41. Let α1, . . . , αk be a vector of function symbols, with αi a
0, 1-ary symbol, that is, with no normal inputs and one safe input, so αi =
αi(/x). A PCSF+(α1, . . . , αk) term T is a term built from the functions αi,
the initial functions of PCSF+, and the operations of (CompositionSN),
(Normal SeparationSN), and (Predicative Set RecursionSN). In other
words, PCSF+(~α) terms are specifications of PCSF+ functions, but allow-
ing the αi’s as 0, 1-ary metavariables for additional initial functions. If
σ1, . . . , σk are PCSF+ functions, then T [~σ] denotes the PCSF+ function
which is the result of substituting the σi’s for the αi’s.

In the sequel, variables α (generally with subscripts) will always be 0, 1-
ary function symbols and serve as metavariables for safe embeddings. We
allow a very general notion of substitution when substituting the σi’s for
the αi’s. Namely, each σi has arity mi, ni+1: one of the safe inputs of σi is
the distinguished embedding variable x. The remaining mi + ni inputs are
side parameters. Note that σi has as safe input x plus ni other safe inputs;
thus αi’s can be used only in contexts where safe parameters are permitted.

The next lemma shows how safe embeddings are sufficient for defin-
ing PCSF+ analogues of ⊙, #, and their inverses. Its proof method will
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be helpful for the main induction case of Theorem 44 below. In addition,
Corollary 43 will be important for the proof of Theorem 44 and thus Theo-
rem 36.

Lemma 42. There are PCSF+(αa, αb) terms G⊙(A,B/a, b), G#(A,B/a, b),
G⊙−1(A,B/a, b), Gσ(A,B/a, b, a′, b′), Gπ1

(A,B/a, b, u) and Gπ2
(A,B/a, b, u),

such that whenever σa : a 4 A and σb : b 4 B are safe embeddings, then

1. G⊙[σa, σb](A,B/a, b) = a⊙b.

2. G#[σa, σb](A,B/a, b) = a#b.

3. G⊙−1 [σa, σb](A,B/a, b) = a⊙−1b.

4. Gσ(A,B/a, b, a′, b′) = σa,b(a
′, b′) for a′ ∈ tc+(a) and b′ ∈ tc+(b).

5. Gπ1
[σa, σb](A,B/a, b, u) = π1,a,b(u).

6. Gπ2
[σa, σb](A,B/a, b, u) = π2,a,b(u).

Proof. The idea for the proof of part 1. is to somewhat mimic the construc-
tion of Lemma 38, but exploit the embedding αa : a 4 A instead of using
a ∈ tc+(A). We again recurse on A′ ∈ tc+(A) instead of on a′ ∈ tc+(a). For
the purposes of recursing on A′ ∈ tc+(A), a set A′ in tc(A) will correspond
to the unique a′ ∈ tc(a) such that A′ ∈ αa(/a

′) (if there is any such a′).
And, for A′ = A ∈ tc+(A), A corresponds to the whole set a. We write just
“A′ αa∼ a′” to succinctly denote the condition that A′ ∈ tc+(A) corresponds
to a′ ∈ tc+(a). Formally, “A′ αa∼ a′” means

A′ ∈ αa(/a
′) ∨ (A′ = A ∧ a′ = a).

This relation is, of course, given by a PCSF(αa) term with normal inputs A
and A′ and safe inputs a and a′.

In the proof below, the function tc is applied to safe parameters, e.g.,
for tc+(a) = tc({a}). These can always be replaced with uses of tc′. In-
deed, every set constructed in the proof will have rank less than the rank
of 4⊙A⊙B, and this set can serve as the normal parameter for computing
transitive closures with tc′. (The parameter B is usually suppressed in the
notation.) Similar considerations apply also to future proofs.

We will define G′
⊙(A,A

′/a, b) as a PCSF+(αa) term that computes the
“course-of-values” set (sets of this type are denoted with the variable e):

{〈A′′, a′′⊙b〉 : A′′∈tc+(A′) ∧ a′′∈tc+(a) ∧A′′ αa∼ a′′}. (28)
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To define G′
⊙ by (Predicative Set RecursionSN), we need to extract

from e the set of values a′′⊙b such that a′′ ∈ a′. This is done with:

G′′
⊙(A,A

′ /a, e) = {u ∈ tc(e) : ∃A′′∈tc(A′)∃a′∈tc+(a)∃a′′∈a′

s.t. 〈A′′, u〉∈e ∧A′ αa∼ a′ ∧A′′ αa∼ a′′}.

This definition uses (Normal SeparationSN) and the fact that ∆0 predi-
cates are in PCSF; therefore, G′′

⊙ is a PCSF+(αa) term. Now, the course-
of-values function can be defined using (Predicative Set RecursionSN)
by

G′
⊙(A,A

′ /a, b) =

{

e ∪ {〈A′, G′′
⊙(A,A

′ /a, e)〉} if (∃a′ ∈ tc+(a)\{∅})A′ αa∼ a′

e ∪ {〈A′, b〉} otherwise

where e is
⋃

{G′
⊙(A,A

′′ /a, b) : A′′ ∈ A′}. Finally, G⊙ can be defined as a
PCSF+(αa) term by

G⊙(A,B/a, b) =
⋃

{u ∈ tc(G′
⊙(A,A/a, b)) : 〈A, u〉 ∈ G′

⊙(A,A/a, b)}.

Here we again used (Normal SeparationSN). That completes the proof of
part 1. The proofs of parts 2. and 3. are similar, and left to the reader.

Parts 1. and 2. imply that the function satisfying

Gσ(A,B/a, b, a′, b′) = σa,b(a
′, b′)

for a′ ∈ tc+(a) and b′ ∈ tc+(b) is given by a PCSF+(αa, αb) term (since the
embeddings αa and αb also are embeddings a′ 4 A and b′ 4 B respectively).
Therefore the definitions for π1,a,b and π2,a,b given for the proof of part 13. of
Theorem 13 immediately yield PCSF+(αa, αb) definitions for Gπ1

and Gπ2
.

Corollary 43. Let h(~a) be a #-term. Then there is a PCSF+(~α) term T ( ~A/~a, x)
so that the following holds: If ~σ is a vector of PCSF+ functions such that
~σ : ~a 4 ~A are safe embeddings and if τ = T [~σ], then x 7→ τ( ~A/~a, x) is a
safe embedding h(~a) 4 h( ~A).

Proof. This is a consequence of Lemma 42, the proof of Lemma 19, and
Proposition 3.2 of Arai [1], using induction on the complexity of h.

We can now establish the main technical result for this section.

Theorem 44. Suppose f(~a) is in CRSF. Then there are PCSF+(~α) terms
G( ~A/~a) and T ( ~A/~a, x), and a #-term t( ~A) so that the following holds: If
~σ is a vector of PCSF+ functions such that ~σ : ~a 4 ~A are safe embeddings,
and if g = G[~σ] and τ = T [~σ], then
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1. g( ~A/~a) = f(~a),

2. τ( ~A/~a, x) is a safe embedding, τ : g( ~A/~a) 4 t( ~A).

Theorem 36 is an immediate consequence of Theorem 44 since we may let
~A equal ~a and let ~σ be the identity (multi-valued) embeddings x 7→ {x}.

Proof. Theorem 44 is proved by induction on the formation of CRSF func-
tions. The initial function (Null) is trivial. The (Projection) function πn

i

is also trivial: g( ~A/~a) = ai is an initial function of PCSF, and we let t( ~A)
be Ai, and T ( ~A/~a, x) be equal to αi(/x).

For f equal to pair(a1, a2), let g(A1, A2/a1, a2) equal pair(/a1, a2), and
let t equal 1⊙A1⊙1⊙A2. The (multivalued) safe embedding T is defined by

T (A1, A2/a1, a2, x) =















α2(/x) if x ∈ tc(a2)
{A2} if x = a2
{y⊙1⊙A2 : y ∈ α1(/x)} if x ∈ tc(a1) \ tc

+(a2)
{A1⊙1⊙A2} otherwise.

(29)
Here we are using the convention that tc(a2) means tc′(A2/a2). The set
{y⊙1⊙A2 : y ∈ α1(/x)} in the third case is equal to

{z ∈ tc(A1⊙1⊙A2) : ∃y∈tc(A1), z=y⊙1⊙A2 ∧ y∈α1(/x)}.

Although y is a safe parameter, y⊙1⊙A2 can be computed by the PCSF+

function f ′
⊙(A1/y, 1⊙A2). Thus T is a PCSF+ function.

The case of f equal to cond∈ is handled similarly to pair. The (Union)
function, a1 7→

⋃

a1, is easily handled by lettingG(A1 /a1) =
⋃

a1, t(A1) = A1,
and T (A1/a1, x) = α1(/x).

For f the smash function, f(a1, a2) = a1#a2, the function g(A1, A2/a1, a2) =
a1#a2 is definable with a PCSF+(α1, α2) term by Lemma 42. Define the #-
term t(A1, A2) to equal A1#A2. Then Corollary 43 gives a PCSF+(α1, α2)
term T (A1, A2 /a1, a2, x) which gives the desired safe embeddings.

Now suppose f(~a) is defined by (Composition) as

f(~a) = f0(f1(~a), . . . , fℓ(~a)).

The induction hypotheses for the fi’s, for i > 0, give PCSF+(~α) terms
Gi( ~A/~a) and Ti( ~A/~a, x) and #-terms ti( ~A). For appropriate embeddings ~σ,
let gi = Gi[~σ] and τi = Ti[~σ]. The induction hypothesis also gives that
gi( ~A/~a) = fi(~a) and

τi( ~A/~a, x) : gi( ~A/~a) 4 ti( ~A) (30)
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for each i > 0. The induction hypothesis for f0(b1, . . . , bℓ) gives PCSF+(~β)
terms G0( ~B/~b) and T0( ~B/~b, x) and a #-term t0( ~B). Let g0 = G0[~τ ] and
τ0 = T0[~τ ]. Furthermore, let Bi = ti( ~A) and bi = fi(~a). Then we have, again
by induction hypothesis for f0(b1, . . . , bℓ) and using (30), that g0( ~B/~b) =
f0(~b) and

τ0( ~B/~b, x) : f0(~b) 4 t0( ~B) .

Let G be the PCSF+(~α) term

G( ~A/~a) = (G0[T1, . . . , Tℓ])(t1( ~A), . . . , tℓ( ~A)/G1( ~A/~a), . . . , Gℓ( ~A/~a)),

T be the PCSF+(~α) term

T ( ~A/~a) = (T0[T1, . . . , Tℓ])(t1( ~A), . . . , tℓ( ~A)/G1( ~A/~a), . . . , Gℓ( ~A/~a), x),

and t be the #-term t0(t1( ~A), . . . , tℓ( ~A)). Finally, let g be G[~σ] and τ be
T [~σ]. Unwinding the definitions shows that

g( ~A/~a) = g0(t1( ~A), . . . , tℓ( ~A)/g1( ~A/~a), . . . , gℓ( ~A/~a))

= g0(B1, . . . , Bℓ/b1, . . . , bℓ)

= f0(f1(~a), . . . , fℓ(~a)) = f(~a),

and τ( ~A/~a, x) : g( ~A/~a) 4 t( ~A).
The rest of the proof deals with the case where f is defined by (Cobham

Recursion4). We have

f(~a, c) = f0(~a, c, {f(~a, c
′) : c′ ∈ c}),

with z 7→ τ1(z,~a, c) as the embedding function τ1 : f(~a, c) 4 h(~a, c) where,
w.l.o.g. by Theorem 21, h is a #-term. The induction hypothesis for f0(~a, c, d)
gives PCSF+(~α) terms G0( ~A,C,D/~a, c, d) and T0( ~A,C,D/~a, c, d, x) and a
#-term t0( ~A,C,D). The induction hypothesis for τ1 gives a PCSF+(~α)
term G1(Z, ~A,C /z,~a, c). (It also gives T1(Z, ~A,C /z,~a, c, x) and #-term
t1(Z, ~A,C), but we will not need to use these, since h is a #-term.)

Let the lists ~a and ~A have length k. We let ~αa denote a vector of
metavariables αai(/x) for safe embeddings ai 4 Ai for i = 1, . . . k. We also
let αc(/x), αd(/x) and αz(/x) be metavariables for safe embeddings c 4 C,
d 4 D and z 4 Z respectively. We use ~σa, σc, σd and σz to denote particular
safe embeddings (that are substituted for the α’s).

The idea for this case is to define an intermediate PCSF+(~αa, αc) term
G′( ~A,C,C ′/~a, c) which represents the “course-of-values” function for f as
a set of ordered pairs. There are two difficulties that have to be overcome
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in order for this work. The first difficulty is that PCSF+ functions cannot
recurse on safe inputs: for this reason, G′ takes a normal parameter C ′

and the recursion will be on members C ′ of tc+(C), not on members c′ of
tc+(c). As in the proof of Lemma 42, the embedding αc will be used to
make C ′ represent a set c′ ∈ tc+(c), allowing us to simulate ∈-recursion
on members c′ ∈ tc+(c) using ∈-recursion on members C ′ ∈ tc+(C). The
second difficulty is that G′ will work by recursively invoking G0 to generate
the course-of-values, but to use G0 we need a safe embedding σd of the
safe parameter d (representing the set of previous values of f) into some
#-term D. The natural way to define σd would be by a separate recursion,
but this seems not to work easily. Instead, G′ will compute the graph of
such a safe embedding at the same time as it computes the course-of-values
of f .

Specifically, we will define G′ so that, when ~σa, σc are safe embeddings
for ~a, c into ~A,C and g′ = G′[~σa, σc] and C ′ ∈ tc+(C), then g′( ~A,C,C ′/~a, c)
is equal to a set e = 〈e1, e2〉 for which the following hold:

(A) The set e1 gives the course-of-values pairs for f on tc+(C ′). Namely,
e1 is equal to

{〈C ′′, f(~a, c′′)〉 : C ′′∈tc+(C ′) ∧ c′′∈tc+(c) ∧ C ′′ σc∼ c′′}. (31)

(B) For each C ′′ ∈ tc+(C ′), the set e2 explicitly describes an embedding
of f(~a, c′′) into h( ~A,C), for c′′ corresponding to C ′′. Formally, if there
is a c′′ ∈ tc+(c) such that C ′′ σc∼ c′′, then e2 contains triples 〈C ′′, x, y〉
where x ∈ tc(f(~a, c′′)) and y ∈ h( ~A,C) such that the map

x 7→ {y : 〈C ′′, x, y〉 ∈ e2} (32)

gives a safe embedding of f(~a, c′′) into h( ~A,C).

Note that in (B), we used “tc(f(~a, c′′)”; this is a permitted use of transi-
tive closure since rank(f(~a, c′′)) is bounded by rank(h( ~A,C)). Similar con-
siderations apply to later uses of the transitive closure function with safe
parameters.

We define G′( ~A,C,C ′ /~a, c) by (Predicative Set RecursionSN). The
set U of previous values from the recursion,

U := {G′( ~A,C,C ′′/~a, c) : C ′′ ∈ C ′},

is used as a safe parameter. Each member of U is a pair 〈eC
′′

1 , eC
′′

2 〉. Forming
the unions of these components, we let e− henceforth denote the expression

〈

⋃

{π1(u) : u ∈ U},
⋃

{π2(u) : u ∈ U}
〉

(33)
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and will call the first and second components of this respectively e−1 and e−2 :
they are given by PCSF functions of U with U as safe parameter. Suppose
inductively that conditions (A) and (B) hold for all pairs in U . Let (A−)
and (B−) be (A) and (B) with each occurrence of “C ′′ ∈ tc+(C ′)” replaced
with “C ′′ ∈ tc(C ′)”. Then we have that e−1 satisfies (A−) and e−2 satisfies
(B−). In the case of e−1 this is automatic. The fact e−2 satisfies (B−) follows
from the fact that our recursive construction of e2 will make the embedding
at each C ′ uniquely determined by the embeddings on tc(C ′); this ensures
the embeddings encoded by members of U are consistent with each other.

Suppose that there is no c′ ∈ tc+(c) such that C ′ αc∼ c′. In this case we
let G′( ~A,C,C ′/~a, c) simply be e−, and (A) and (B) follow from (A−) and
(B−). On the other hand, if there is such a c′ then it must be unique, and
we can compute it from ~A,C,C ′/~a, c using (Normal SeparationSN). We
then have three tasks. The first is to compute the set

d = {f(~a, c′′) : c′′ ∈ c′}.

The second is to use G0 to compute f(~a, c′), and add the pair 〈C ′, f(~a, c′)〉
to e−1 to get e1 satisfying (A). The third is to use G1 and T0 to find an

embedding f(~a, c′) 4 h( ~A,C), so that we can extend e−2 to e2 satisfying (B).
The first task is easy, as we can recover d by reading the values f(~a, c′′)

out of e−1 , using (Normal SeparationSN). Precisely, d is

{u ∈ tc(e−) : (∃C ′′∈tc(C ′))(∃c′′∈c′)[C ′′ αc∼ c′′ ∧ 〈C ′′, u〉∈e−1 ]} . (34)

Before we can use G0 and T0, we need a safe embedding σd of d into
some set D, where D can be used as a normal parameter. We let D be given
by the #-term D( ~A,C) = C#(1⊙h( ~A,C)) and define σd( ~A,C /~a, c, e−, z)
to be the PCSF+(~αa, αc) term equal to

{σ
C,1⊙h( ~A,C)(C

′′, y) : C ′′ ∈ tc+(C) ∧ y ∈ tc+(h( ~A,C))

∧[〈C ′′, z, y〉 ∈ e−2 ∨ (〈C ′′, z〉 ∈ e−1 ∧ y = h( ~A,C))]}.

By (A−) and (B−), the expression in square brackets describes an embedding
of tc+(f(~a, c′′)) into 1⊙h( ~A,C), if C ′′ σc∼ c′′. The function σ

C,1⊙h( ~A,C) is used
to combine these into an embedding of d into D. The value σ

C,1⊙h( ~A,C) is

computed with the PCSF+ function Gσ of Lemma 42.
For the second task, recall thatG0( ~A,C,D/~a, c, d) is a PCSF+(~αa, αc, αd)

term given by the induction hypothesis for the function f0(~a, c, d) which com-
putes one step in the recursion defining f . Let G0[σd] be the PCSF

+(~αa, αc)
term that results from G0 by substituting σd( ~A,C /~a, c, e−, x) for αd(/x).
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We compute f(~a, c′) as G0[σd]( ~A,C,D( ~A,C)/~a, c′, d). This requires having
embeddings ~a 4 ~A and c′ 4 C; since c′ 4 c, we can use σc as the latter
embedding. The result is that f(~a, c′) is expressed as a PCSF+(~αa, αc) term
with arguments ~A,C,C ′/~a, c, U , since D, c′, d and e− are computed by such
terms. We let e1 be e−1 ∪ {〈C ′, f(~a, c′)〉}.

For the third task, we want a PCSF+(~αa, αc) termK( ~A,C,C ′ /~a, c, e−, z)
which, when we substitute safe embeddings ~σa : ~a 4 ~A and σc : c 4 C
for ~αa and αc, computes an embedding f(~a, c′) 4 h( ~A,C). Recall the
PCSF+(αz, ~αa, αc) term G1(Z, ~A,C /z,~a, c) from the induction hypothesis,
which gives an embedding f(~a, c) 4 h(~a, c), with z being used as the embed-
ding variable. Below we will define a #-term Z( ~A,C) and a PCSF+(~αa, αc)
term σz( ~A,C,C

′ /~a, c, e−, x) which defines an embedding z 4 Z( ~A,C) for all
z ∈ tc+(f(~a, c′)), with embedding variable x. Then, substituting σz for αz,
G1[σz](Z( ~A,C), ~A,C /z,~a, c′) is almost the required PCSF+(~αa, αc) term,
since it computes, for suitable ~σa and σc, an embedding f(~a, c′) 4 h(~a, c′).
To get the term K we compose this with a PCSF+(~αa, αc) term given by
Corollary 43, computing an embedding h(~a, c′) 4 h( ~A,C) whenever suitable
safe embeddings ~σa, σc are substituted for ~αa, αc. (Throughout we are using,
as before, that a safe embedding c 4 C is also a safe embedding c′ 4 C.)

To define Z( ~A,C), recall from the inductive hypothesis that we have
a PCSF+(~αa, αc, αd) term T0( ~A,C,D/~a, c, d, x) and a #-term t0( ~A,C,D)
such that, for suitable safe embeddings ~σa, σc, σd, the term T0 gives an
embedding f0(~a, c, d) 4 t0( ~A,C,D). We let σz( ~A,C,C ′/~a, c, e−, x) be the
PCSF+(~αa, αc) term T0[σd]( ~A,C,D/~a, c′, d, x) and let Z( ~A,C) be the #-
term t0( ~A,C,D), where D, c′ and d are computed from A,C,C ′/~a, c, U as
above. Then σz gives an embedding f0(~a, c

′, d) 4 Z( ~A,C). But f0(~a, c
′, d)

equals f(~a, c′), and it follows that σz and Z( ~A,C) have exactly the proper-
ties needed in the previous paragraph. This completes the construction of
the embedding K. We let e2 be

e−2 ∪ {〈C ′, x, y〉 : x ∈ tc(f(~a, c′)) ∧ y ∈ tc(h( ~A,C))

∧ y ∈ K( ~A,C,C ′/~a, c, e−, x)}.

We let e = 〈e1, e2〉. We have shown how e can be computed by a
PCSF+(~αa, αc) term from ~A,C,C ′ /~a, c, U . This completes the definition
of G′( ~A,C,C ′/~a, c) by (Predicative Set RecursionSN).

Now thatG′ has been defined, it is easy to define the desiredG( ~A,C /~a, c)
as a PCSF+(~α, αc) term. Namely, G( ~A,C /~a, c) is the unique u ∈ tc(G′( ~A,C,C /~a, c))
such that 〈C, u〉 is in π1(G

′( ~A,C,C /~a, c)). (Here we use (Normal SeparationSN).)
With this, we have G[~σa, σc]( ~A,C /~a, c) = f(~a, c) whenever ~σa and σc are ap-
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propriate safe embeddings. The desired PCSF+(~αa, αc) term T and #-term t
for part 2. of Theorem 44 are obtained by letting t = h( ~A,C) and defining
T ( ~A,C /~a, c, x) to equal {y ∈ h( ~A,C) : 〈C, x, y〉 ∈ π2(G

′( ~A,C,C /~a, c))}.
This completes the proof of Theorem 44.
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