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Abstract. Suppose κ is λ-supercompact witnessed by an elementary
embedding j : V →M with critical point κ, and further suppose that F
is a function from the class of regular cardinals to the class of cardinals
satisfying the requirements of Easton’s theorem: (1) ∀α α < cf(F (α))
and (2) α < β =⇒ F (α) ≤ F (β). In this article we address the question:
assuming GCH, what additional assumptions are necessary on j and F
if one wants to be able to force the continuum function to agree with F
globally, while preserving the λ-supercompactness of κ?

We show that, assuming GCH, if F is any function as above, and in
addition for some regular cardinal λ > κ there is an elementary embed-
ding j : V → M with critical point κ such that κ is closed under F ,
the model M is closed under λ-sequences, H(F (λ)) ⊆ M , and for each
regular cardinal γ ≤ λ one has (|j(F )(γ)| = F (γ))V , then there is a
cardinal-preserving forcing extension in which 2δ = F (δ) for every reg-
ular cardinal δ and κ remains λ-supercompact. This answers a question
of [CM13].

1. Introduction

In this article we address the following question, which is posed in [CM13].

Question 1.1. Given a λ-supercompact cardinal κ and assuming GCH,

what behaviors of the continuum function on the regular cardinals can be

forced while preserving the λ-supercompactness of κ, and from what hy-

potheses can such behaviors of the continuum function be obtained?

Let us first consider the special case where κ is κ-supercompact, in other

words κ is measurable. Silver proved that if κ is κ++-supercompact and

GCH holds, then there is a cofinality-preserving forcing extension in which

κ remains measurable and 2κ = κ++, but one can also obtain such a model

from a much weaker hypothesis. Woodin proved that the existence of a mea-

surable cardinal κ such that 2κ = κ++ is equiconsistent with the existence

of an elementary embedding j : V → M with critical point κ such that

j(κ) > κ++ and Mκ ⊆ M . The forward direction of Woodin’s equicon-

sistency is trivial, and for the backward direction the embedding is lifted

to a certain forcing extension V [G][H][g0] where g0 is an “extra forcing”
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necessary for carrying out a surgical modification of a generic filter on the

M -side (see [Cum10, Theorem 25.1] or [Jec03, Theorem 36.2]). A more

uniform method for proving Woodin’s equiconsistency, in which no “extra

forcing” is required, is given in [FT08]. This method involves lifting an ele-

mentary embedding through Sacks forcing on uncountable cardinals, an idea

which has found many additional applications (see [FM09], [FH08], [FZ10],

[Hon10], [DF08], [FH12a] and [FH12b]). The uniformity of the method led

to answers [FH08] to Question 1 in the case that κ is a measurable cardinal

and in the case that κ is a strong cardinal.

In a result analagous to Woodin’s equiconsistency mentioned above, the

first author proved [Cod12] the equiconsistency of the following three hy-

potheses.

(i) There is a cardinal κ that is λ-supercompact and 2κ > λ++.

(ii) There is a cardinal κ that is λ-supercompact and 2λ > λ++.

(iii) There is an elementary embedding j : V → M with critical point κ

such that j(κ) > λ++ and Mλ ⊆M .

In the argument of [Cod12], a model of (ii) is obtained from a model of (iii)

by lifting the embedding j to a forcing extension of the form V [G][H][g0] by

using Woodin’s technique of surgically modifying a generic filter. However,

in the final model, κ is λ-supercompact and one has 2κ = 2λ = λ++, so the

final model satisfies both (i) and (ii). Furthermore, it is remarked in [Cod12]

that the surgery argument does not seem to yield a model with GCH on

the interval [κ, λ) and 2λ = λ++, where κ is λ-supercompact.

The second and third authors showed that the more uniform method

involving Sacks forcing on uncountable cardinals can be used to address this

discordance. Indeed, it is shown in [FH12b] that from the hypothesis (iii)

above, and assuming GCH, there is a cofinality-preserving forcing extension

in which κ remains λ-supercompact, GCH holds on the interval [κ, λ) and

2λ = λ++. The following question is posed in [FH12b]. Starting with a model

of (iii) and GCH, is there a cofinality-preserving forcing extension in which

κ is λ-supercompact and for some regular cardinal γ with κ < γ < λ one

has GCH on [κ, γ) and 2γ = λ++? This question was recently answered in

[CM13] where it is shown that Woodin’s method of surgically modifying a

generic filter to lift an embedding can be extended to include the case where

modifications are made on “ghost-coordinates.” Indeed [CM13] estabilshes

that if GCH holds, F : [κ, λ] ∩ REG → CARD is any function satisfying

Easton’s requirements

(E1) α < cf(F (α)) and
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(E2) α < β implies F (α) ≤ F (β)

where λ > κ is a regular cardinal, and there is a j : V → M with

critical point κ such that j(κ) > F (λ) and Mλ ⊆ M , then there is a

cofinality-preserving forcing extension in which κ remains λ-supercompact

and 2γ = F (γ) for every regular cardinal γ with κ ≤ γ ≤ λ. This provides

an answer to the above Question 1.1 if we restrict our attention to control-

ling the continuum function only on the interval [κ, λ] while preserving the

λ-supercompactness of κ.

In this article we combine the methods of [FH08] and [CM13] to address

Question 1.1 in the context of controlling the continuum function at all

regular cardinals by proving the following theorem.

Theorem 1.2. Assume GCH. Suppose F : REG → CARD is a function

satisfying Easton’s requirements (E1) and (E2), for some regular cardinal

λ > κ there is an elementary embedding j : V → M with critical point κ

such that κ is closed under F , the model M is closed under λ-sequences,

H(F (λ)) ⊆ M , and for each regular cardinal γ ≤ λ one has (|j(F )(γ)| =

F (γ))V . Then there is a cardinal-preserving forcing extension in which 2δ =

F (δ) for every regular cardinal δ and κ remains λ-supercompact

The forcing used to prove Theorem 1.2 will be an Easton-support iter-

ation of Easton-support products of Cohen forcing. To lift the embedding

through the first κ-stages of the forcing, we will use the technique of twist-

ing a generic using an automorphism in order to obtain a generic for the

M -side (see [FH08]). In order to lift the embedding through through a later

portion of the iteration we will use the technique of surgically modifying

a generic filter on ghost-coordinates (see [CM13]), which will require us to

use an “extra forcing” over V . We will prove a lemma which establishes not

only that the extra forcing preserves cardinals, but it also does not disturb

the continuum function (see Lemma 3.10 below). Note that the later was

not necessary in [CM13].

Regarding the hypothesis of Theorem 1.2, notice that if j : V → M

witnesses the λ-supercompactness of κ then it follows that for γ ≤ λ we

have 2γ ≤ (2γ)M < j(κ) and futhermore, in V , the cardinality of (2γ)M is

equal to 2γ. Thus, if one desires to lift an embedding j : V →M to a forcing

extension in which the continuum function agrees with some F as in the

statement of Theorem 1.2, then one must require that (|j(F )(γ)| = F (γ))V .
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2. Preliminaries

We assume familiarity with Easton’s theorem [Eas70] as well as with

lifting large cardinal embeddings through forcing, see [Cum10].

In the proof of Theorem 1.2 we will use the following forcing notion.

Suppose F is a function from the regular cardinals to the cardinals satisfying

the requirements (E1) and (E2) of Easton’s theorem and that κ < λ are

regular cardinals. We will let Q[κ,λ] denote the Easton-support product of

Cohen forcing that will ensure that, assuming GCH in the ground model, the

continuum function agrees with F on [κ, λ]∩REG in the forcing extension.

We can regard conditions p ∈ Q[κ,λ] as functions satisfying the following.

• Every element in dom(p) is of the form (γ, α, β) where γ ∈ [κ, λ] is

a regular cardinal, α < γ, and β < F (γ).

• (Easton support) For each regular cardinal γ ∈ [κ, λ] we have

|{(δ, α, β) ∈ dom(p) | δ ≤ γ}| < γ.

• ran(p) ⊆ {0, 1}.

Lemma 2.1 ([Eas70]). Assuming GCH, forcing with the poset Q[κ,λ] pre-

serves all cofinalities and achieves 2γ = F (γ) for every regular cardinal

γ ∈ [κ, λ] while preserving GCH otherwise.

Remark 2.2. Suppose F and j are as in the hypothesis of Theorem 1.2.

Let us briefly show that one can assume, without loss of generality, that M

is of the form

M = {j(f)(j”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V }.

Let j : V →M be as in the statement of Theorem 1.2. We will show that

j can be factored through an embedding j0 : V →M0 having all the desired

properties. Let X0 = {j(f)(j”λ, α) | f : Pκλ×κ→ V ∧ α < F (λ) ∧ f ∈ V }
and X1 = {j(f)(j”λ, a) | f : Pκλ×H(κ)→ V ∧ a ∈ H(F (λ)) ∧ f ∈ V }.
Now let π0 : X → M0 and π1 : X1 → M1 be the Mostowski collapses of

X0 and X1 respectively. Define j0 := π−1
0 ◦ j : V → M0 and j1 := π−1

1 ◦ j :

V → M1. It follows that j0 : V → M0 has critical point κ, Mλ
0 ⊆ M0,

j0(κ) > F (λ) and M0 has the desired form

M0 = {j0(f)(j0”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V }.

It remains to show that H(F (λ)) ⊆M0. It is easy to see that H(F (λ)) ⊆M1

using the fact that

M1 = {j1(f)(j1”λ, a) | f : Pκλ×H(κ)→ V ∧ a ∈ H(F (λ)) ∧ f ∈ V }.
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Since the map i : M0 →M1 defined by i(j0(f)(j0”λ, α)) := j1(f)(j1”λ, α) is

an elementary embedding with critical point greater than F (λ), and since i

is the identity on F (λ), it follows that i is surjective, and thus H(F (λ)) ⊆
M0 = M1. To see that i is surjective onto H(F (λ)) (and thus onto M1)

one uses the fact that each x ∈ H(F (λ)) can be coded by a subset of some

cardinal δ < F (λ).

3. Proof of Theorem 1.2

Proof of Theorem 1. Our final model will be a forcing extension of V by an

ORD-length forcing iteration P, which will be broken up as P ∼= P1 ∗ Ṡ ∗ Ṗ2.

The first factor P1, will be an iteration forcing the continuum function to

agree with F at every regular cardinal less than or equal to F (λ). The second

factor S will be an “extra forcing” that will be necessary to cary out the

surgery argument to lift the embedding j through P1. We will argue that

the extra forcing S is mild in V P1
in the sense that it preserves all cofinalities

and preserves the continuum function. The last factor P2 ∈ V P1∗Ṡ will be a

≤F (λ)-closed, ORD length Easton-support product of Cohen forcing, which

will force the continuum function to agree with F at all regular cardinals

greater than or equal to F (λ)+.

For an ordinal α let ᾱ denote the least closure point of F greater than

α. For a regular cardinal γ, the notation Add(γ, F (γ)) denotes the forcing

poset for adding F (γ) Cohen subsets to γ.

Let λ0 be the greatest closure point of F which is less or equal to λ.

We now recursively define an Easton-support forcing iteration Pλ0+1 =

〈(Pη, Q̇η) : η ≤ λ0〉 as follows.

(1) If η < λ0 is a closure point of F , then Q̇η is a Pη-name for the Easton

support product

Q[η,η̄) =
∏

γ∈[η,η̄)∩REG

Add(γ, F (γ))

as defined in V Pη and Pη+1 = Pη ∗ Q̇η.

(2) If η = λ0, then Q̇η is a Pλ0-name for

Q[λ0,F (λ)] =
∏

γ∈[λ0,F (λ)]∩REG

Add(γ, F (γ))

as defined in V Pλ0 and Pλ0+1 = Pλ0 ∗ Q̇λ0 .

(3) Otherwise, if η < λ0 is not a closure point of F , then Q̇η is a Pη-name

for trivial forcing and Pη+1 = Pη ∗ Q̇η.

Let Gλ0+1 be generic for Pλ0+1 over V .
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Remark 3.1 (Notation). We will adopt the notation and conventions used

in [FH08]. We will use
∏

[η,η̄) Qγ to denote Q[η,η̄) where Qγ := Add(γ, F (γ))

denotes an individual factor of the product, and similarly g[η,η̄) denotes the

corresponding generic filter. It will be understood that, for example, g[η,η̄) is

a product over just the regular cardinals in the interval [η, η̄) of the relevant

generic filters. In particular, if η is a singular cardinal then there is no forcing

over η in the product g[η,η̄) ⊆
∏

[η,η̄) Qγ.

3.1. Lifting the embedding through Pκ by twisting a generic using

an automorphism. By Remark 2.2 we can assume that j : V →M is an

embedding as in the statement of Theorem 1.2 such that

M = {j(f)(j”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V }.

First we will lift j through Gκ ⊆ Pκ by finding a filter for j(Pκ) that is

generic over M . We will need the following definitions of various cardinals

relating to F and λ.

Definition 3.2. The first three definitions will be needed because the forc-

ings Pλ0+1 and j(Pλ0+1) are iterations of products over intervals determined

by closure points of F and j(F ) respectively, and these three cardinals are

important such closure points.

• λ0 := “the greatest closure point of F that is at most λ”

• λ1 := “the least closure point of F greater than λ0”

• λM1 := “the least closure point of j(F ) greater than λ0”

The way one builds a generic for the forcing Add(γ, F (γ)) depends, of

course, on the size of F (γ) and the regular cardinals γ0 and γ1 defined

below are important transition points in the size of F (γ).

• γ0 := “the least regular cardinal less than or equal to λ

such that F (γ0) = F (λ)”

• γ1 := “the least regular cardinal such that F (γ1) > F (λ)”

We have κ ≤ λ0 ≤ γ0 ≤ λ < γ1 ≤ F (λ) = F (γ0) ≤ j(F )(γ0) <

λM1 < j(κ) < F (λ)+ < λ1. Furthermore, if γ ∈ [κ, γ0) is a regular cardinal

we have |j(F )(γ)|V = F (γ) and since M and V have the same cardinals

≤ F (λ), it follows that j(F )(γ) = F (γ). In other words, F and j(F ) agree

on [κ, γ0)∩REG. This implies that we may let GM
[κ,λ0) = G[κ,λ0) and gM[λ0,γ0) =

g[λ0,γ0). Note that F and j(F ) may disagree at γ0 because M has cardinals

strictly between F (γ0) = F (λ) and (F (λ)+)V .

Suppose γ ∈ [γ0, F (λ)] is a regular cardinal. Since j(κ) is a closure point

of j(F ) we have F (λ) ≤ j(F )(γ) < j(κ), and since |j(κ)|V ≤ F (λ) it follows
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that |j(F )(γ)|V = F (λ). Let us define a forcing
∏

[γ0,F (λ)] Q
+
γ in V [Gλ0 ]

that will be used to obtain a generic for QM
[γ0,F (λ)] over M [Gλ0 ]. Working in

V [Gλ0 ], for regular γ ∈ [γ0, γ1) let Q∗γ = Add(γ, j(F )(γ)) and notice that Q∗γ
is isomorphic to Add(γ, F (γ)) since |j(F )(γ)|V = |j(κ)|V = F (λ) = F (γ).

For regular γ ∈ [γ1, F (λ)], let Q∗∗γ = Add(γ, j(F )(γ)) and notice that Q∗∗γ is

a truncation of Add(γ, F (γ)) because for such γ one has j(F )(γ) < j(κ) <

F (λ)+ ≤ F (γ). Now define∏
[γ0,F (λ)]

Q+
γ :=

∏
[γ0,γ1)

Q∗γ ×
∏

[γ1,F (λ)]
Q∗∗γ .(3.1)

It is easy to see that
∏

[γ0,F (λ)] Q
+
γ completely embeds into

∏
[γ0,F (λ)] Qγ, and

hence there is a filter g+
[γ0,F (λ)] ∈ V [Gλ0 ∗ (g[λ0,γ0) × g[γ0,F (λ)])] generic over

V [Gλ0 ∗ g[λ0,γ0)] for
∏

[γ0,F (λ)] Q
+
γ .

The lifting of j through Gκ will be broken up into two cases, depending

on the regularity or singularity of F (λ). If F (λ) is regular, the proof is

substantially simpler because it almost directly follows from the assumption

H(F (λ)) ⊆ M (see Lemma 3.3 below). If F (λ) is singular, there are two

cases to distinguish depending on whether the V -cofinality of F (λ) is λ+

or not; in both cases the assumption of H(F (λ)) ⊆ M is again essential,

but an additional argument is required. Assuming F (λ) is singular, the

case in which cf(F (λ))V = λ+ is easier to handle than the case where

cf(F (λ)) > λ+. The later case requires an induction along a matrix of

coordinates (see Lemma 3.4). To avoid long repetitions of the relevant proofs

in [FH08], we include only outlines of the proofs of Lemma 3.3 and Lemma

3.4, with detailed references to [FH08] where appropriate (the proofs in

[FH08] apply almost verbatim here when one identifies κ with λ).

Lemma 3.3. Assume F (λ) is regular. There is in V [Gλ0∗(g[λ0,γ0)×g[γ0,F (λ)])]

an M [Gλ0∗g[λ0,γ0)]-generic for
∏M

[γ0,λM1 ) Q
M
γ , which we will denote as gM

[γ0,λM1 )
.

Furthermore, we can take gM[γ0,λ] to agree with g+
[γ0,λ], that is, gM

[γ0,λM1 )
=

g+
[γ0,λ] × gM(λ,λM1 )

.

Proof. Since F (λ) is regular in V and hence also in M , it follows that∏M
[γ0,F (λ)] Q

M
γ is (F (λ)+)M -c.c. inM [Gλ0∗g[λ0,γ0)]. Furthermore,

∏M
(F (λ),λM1 ) Q

M
γ

is (F (λ)+)M -closed in M [Gλ0 ∗ g[λ0,γ0)]. It follows by Easton’s Lemma that

generic filters for these forcings are mutually generic and therefore it suffices

to obtain generic filters for them separately.

As in [FH08, Lemma 3.9], one may check that gM[γ0,F (λ)] := g+
[γ0,F (λ)] ∩∏M

[γ0,F (λ)] Q
M
γ isM [Gλ0∗g[λ0,γ0)]-generic and one can build anM [Gλ0∗g[λ0,γ0)]-

generic filter gM
(F (λ),λM1 )

for
∏M

(F (λ),λM1 ) Q
M
γ in V [Gλ0 ∗ g[λ0,γ0)].
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Now we define gM
[γ0,λM1 )

:= gM[γ0,F (λ)] × gM
(F (λ),λM1 )

and it remains to show

that gM
[γ0,λM1 )

= g+
[γ0,λ] × gM(λ,λM1 )

. Since M [Gλ0 ] is closed under λ-sequences in

V [Gλ0 ] we have
∏M

[γ0,λ] Q
M
γ =

∏
[γ0,λ] Q

∗
γ. Now use (3.1) to obtain the desired

conclusion. �

Lemma 3.4. Assume F (λ) is singular. There is in V [Gλ0 ∗ (g[λ0,γ0) ×
g[γ0,F (λ)))] an M [Gλ0 ∗g[λ0,γ0)]-generic for

∏M
[γ0,λM1 )Q

M
γ , which we will denote

as gM
[γ0,λM1 )

. Furthermore, we can take gM
[γ0,λM1 )

to be of the form σ[g+
[γ0,λ]] ×

gM
(λ,λM1 )

where σ is an automorphism of
∏

[γ0,λ] Q
+
γ in V [Gλ0 ] and gM

(λ,λM1 )
is

M [Gλ0 ∗ g[λ0,γ0)]-generic for
∏M

(λ,λM1 )Q
M
γ .

Proof. Case I: Suppose F (λ) is singular in V with cf(F (λ))V = λ+ (F (λ)

can be singular or regular in M). As in [FH08, Sublemma 3.12], we can find

a condition p∞ ∈
∏

[γ0,λM1 ) Q
+
γ (which may only exist in V [Gλ0 ∗ g[λ0,γ0)])

such that if h is generic for
∏

[γ0,F (λ))Q
+
γ with p∞ � [γ0, F (λ)) ∈ h and

h′ = {p∞ � [F (λ), λM1 )} ∪ {q ∈
∏M

[F (λ),λM1 ) Q
M
γ | p∞ � [F (λ), λM1 ) ≤ q}, then

(h× h′) ∩M [Gλ0 ∗ g[λ0,γ0)] is M [Gλ0 ∗ g[λ0,γ0)]-generic for
∏M

[γ0,λM1 ) Q
M
γ .

We define gM
[γ0,λM1 )

as follows. A homogeneity argument can be used to find

an automorphism σ of
∏

[γ0,F (λ))Q
+
γ such that p∞ � [γ0, F (λ)) ∈ σ[g+

[γ0,F (λ))].

We obtain the desired generic by letting

gM[γ0,λM1 ) :=
(
σ[g+

[γ0,F (λ))]× h
′
)
∩M [Gλ0 ∗ g[λ0,γ0)].(3.2)

Since M [Gλ0 ] is closed under λ-sequences in V [Gλ0 ] we have
∏M

[γ0,λ] Q
M
γ =∏

[γ0,λ] Q
∗
γ. Now using (3.1) and the definition (3.2), we obtain gM[γ0,λ] =

σ[g+
[γ0,λ]].

Case II: Suppose F (λ) is singular in V and cf(F (λ))V 6= λ+ (F (λ) can

be singular or regular in M). If F (λ) is regular in M then, as in [FH08,

Sublemma 3.13] we can use a “matrix of confitions” argument to find a p∞

as above. As in Case I, we have gM
[γ0,λM1 )

:= σ[g+
[γ0,F (λ))]×h′ is M [Gλ0 ∗g[λ0,γ0)]-

generic for
∏M

[γ0,λM1 ) Q
M
γ where h′ is some M [Gλ0 ∗ g[λ0,γ0)]-generic filter for∏M

[F (κ),λM1 ) Q
M
γ . As in Case I we get gM[γ0,λ] = σ[g+

[γ0,λ]].

If F (λ) is singular in M then an easier argument will suffice (see [FH08,

Case (2), page 205]). �

By Lemmas 3.3 and 3.4 above, if F (λ) is regular or singular in V , there

is an M [Gλ0 ∗ g[λ0,γ0)]-generic filter gM
[γ0,λM1 )

for
∏M

[γ0,λM1 ) Q
M
γ in

V [Gλ0 ∗ g[λ0,F (λ)]] = V [Gλ0 ∗ (g[λ0,γ0) × g[γ0,F (λ)])].
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Define gM
[λ0,λM1 )

:= g[λ0,γ0)×gM[γ0,λM1 )
. We will now use the fact that, depending

on whether F (λ) is regular or singular, gM
[γ0,λM1 )

agrees with either g+
[γ0,λ] or

an automorphic image of g+
[γ0,λ] to establish the following.

Lemma 3.5. M [Gλ0 ∗ gM[λ0,λM1 )
] is closed under λ-sequences in V [Gλ0 ∗

g[λ0,F (λ)]].

Proof. It will suffice to argue that if X is a λ-sequence of ordinals in

V [Gλ0 ∗ (g[λ0,γ0) × g[γ0,F (λ)])] then X is in M [Gλ0 ∗ (g[λ0,γ0) × gM[γ0,λM1 )
)]. Since∏

(λ,F (λ)] Qγ is ≤ λ-distributive in V [Gλ0∗g[λ0,λ]] we have X ∈ V [Gλ0∗g[λ0,λ]].

Furthermore, since λ < γ1 it follows from (3.1) that

X ∈ V [Gλ0 ∗ g[λ0,λ]] = V [Gλ0 ∗ (g[λ0,γ0) × g+
[γ0,λ])].

Since M [Gλ0 ] is closed under λ-sequences in V [Gλ0 ], it follows that∏M

[λ0,λ]
QM
γ =

∏
[λ0,γ0)

Qγ ×
∏

[γ0,λ]
Q∗γ.(3.3)

First let us assume that F (λ) is regular so that, by Lemma 3.3, we have

gM[λ0,λ] = g[λ0,γ0) × g+
[γ0,λ]. As the forcing in (3.3) is isomorphic to

∏
[λ0,λ] Qγ

in V [Gλ0 ], we see that it is λ+-c.c. in V [Gλ0 ], and therefore the model

M [Gλ0 ∗ (g[λ0,γ0) × g+
[γ0,λ])] = M [Gλ0 ∗ gM[λ0,λ]]

is closed under λ-sequences in V [Gλ0 ∗ g[λ0,λ]]. Thus X ∈ M [Gλ0 ∗ gM[λ0,λ]] ⊆
M [Gλ0 ∗ gM[λ0,λM1 )

].

Now let us assume F (λ) is singular. By Lemma 3.4 we have gM[λ0,λ] =

g[λ0,γ0) × σ[g+
[γ0,λ]] for some automorphism σ of

∏
[γ0,λ] Q

+
γ in V [Gλ0 ]. Since

V [Gλ0 ∗ (g[λ0,γ0) × g+
[γ0,λ])] = V [Gλ0 ∗ (g[λ0,γ0) × σ[g+

[γ0,λ]])]

and since g[λ0,γ0)×σ[g+
[γ0,λ]] is V [Gλ0 ]-generic for the λ+-c.c. forcing in (3.3), it

follows as before that the modelM [Gλ0∗(g[λ0,γ0)×σ[g+
[γ0,λ]])] = M [Gλ0∗gM[λ0,λ]]

is closed under λ-sequences in V [Gλ0 ∗ g[λ0,λ]]. Thus X ∈ M [Gλ0 ∗ gM[λ0,λ]] ⊆
M [Gλ0 ∗ gM[λ0,λM1 )

]. �

Lemma 3.6. We can build an M [Gλ0 ∗ (g[λ0,γ0) × gM
[γ0,λM1 )

)]-generic filter

GM
[λM1 ,j(κ))

for PM
[λM1 ,j(κ))

in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. There are at most λ+ functions in V that represent names for dense

subsets of a tail of j(Pκ). Thus every dense subset of PM
[λM1 ,j(κ))

in M [Gλ0 ∗
gM

[λ0,λM1 )
] has a name represented by one of these functions. We may use the

fact that PM
[λM1 ,j(κ))

is ≤ F (λ)-closed in M [Gλ0 ∗ gM[λ0,λM1 )
] and that M [Gλ0 ∗

gM
[λ0,λM1 )

] is closed under λ-sequences in V [Gλ0∗g[λ0,F (λ)]] to build a decreasing

λ+-sequence of conditions from PM
[λM1 ,j(κ))

in V [Gλ0 ∗ g[λ0,F (λ)]] meeting every
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dense subset of PM
[λM1 ,j(κ))

in M [Gλ0∗gM[λ0,λM1 )
]. It follows that this λ+-sequence

of conditions generates the desired generic filter. �

Thus we may lift j to

j : V [Gκ]→M [j(Gκ)],

where j(Gκ) = Gλ0 ∗ gM[λ0,λM1 )
∗GM

[λM1 ,j(κ))
and j is a class of V [Gλ0 ∗ g[λ0,F (λ)]].

Furthermore, we have that M [j(Gκ)] is closed under λ-sequences in V [Gλ0 ∗
g[λ0,F (λ))] and

M [j(Gκ)] = {j(f)(j”λ, α) | f : Pκλ× κ→ V ∧ α < F (λ) ∧ f ∈ V [Gκ]}.

3.2. Outline. Our goal is to lift j through the forcing P[κ,λ0) ∗ Q̇[λ0,λ] =

P[κ,λ0) ∗
∏

[λ0,λ] Qγ. Our strategy will be to first use a master condition for

lifting j through P[κ,λ0) of this forcing and then to use the surgery argument

of [CM13] to lift j through Q[λ0,λ].

3.3. Lifting the embedding through P[κ,λ0) via a master condition

argument. In V [Gκ], the poset P[κ,λ0) has size no larger than λ and thus,

j”G[κ,λ0) has size at most λ in V [Gλ0 ∗g[λ0,F (λ))]. Hence j”G[κ,λ0) ∈M [j(Gκ)]

and since j(P[κ,λ0)) is <j(κ)-directed closed in M [j(Gκ)], there is a master

condition p[κ,λ0) ∈ j(P[κ,λ0)) extending every element of j”G[κ,λ0). We now

build an M [j(Gκ)]-generic filter below p[κ,λ0). First notice that every dense

subset of j(P[κ,λ0)) in M [j(Gκ)] can be written as j(h)(j”λ, α) where h ∈
V [Gκ] is a function from Pκλ×κ into the collection of dense subsets of P[κ,λ0)

and α < F (λ). Since in V [Gκ] there are no more than λ+ such functions,

it follows that we can enumerate them as 〈hξ | ξ < λ+〉 ∈ V [Gκ] so that

every dense subset of j(P[κ,λ0)) in M [j(Gκ)] is of the form j(hξ)(j”λ, α) for

some ξ < λ+ and some α < F (λ). One can build a decreasing λ+-sequence

of conditions 〈pξ | ξ < λ+〉 ∈ V [Gλ0 ∗ g[λ0,F (λ))] below p[κ,λ0), such that

for every ξ < λ+ the condition pξ ∈ j(P[κ,λ0)) meets every dense subset of

j(P[κ,λ0)) in M [j(Gκ)] appearing in the sequence 〈j(hξ)(j”λ, α) | α < F (λ)〉.
Let GM

[j(κ),j(λ0)) ∈ V [Gλ0∗g[λ0,F (λ))] be the filter generated by 〈pξ | ξ < λ+〉. It

follows by construction that GM
[j(κ),j(λ0)) is M [j(Gκ)]-generic and j”G[κ,λ0) ⊆

GM
[j(κ),j(λ0)). Thus we may lift j to

j : V [Gκ ∗G[κ,λ0)]→M [j(Gκ) ∗ j(G[κ,λ0))](3.4)

where j(G[κ,λ0)) = GM
[j(κ),j(λ0)) and where j is a class of V [Gλ0 ∗ g[λ0,F (λ)]].

Furthermore, M [j(Gκ) ∗ j(G[κ,λ0))] is closed under λ-sequences in V [Gλ0 ∗
g[λ0,F (λ)]].
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3.4. Obtaining a generic for j(Q[λ0,λ]) for use in surgery. Now we will

lift j through the forcing Q[λ0,λ] by applying the surgery technique of [CM13].

We will factor the embedding in (3.4) through an ultrapower embedding j0,

force with j0(Q[λ0,λ]) over V [Gλ0 ∗ g[λ0,F (λ)]] and then modify the generic to

lift the embedding.

Let X = {j(h)(j”λ) | h : Pκλ → V [Gλ0 ], h ∈ V [Gλ0 ]}. Then it fol-

lows that X ≺ M [j(Gλ0)]. Let k : M ′
0 → M [j(Gλ0)] be the inverse of

the Mostowski collapse π : X → M ′
0 and let j0 : V [Gλ0 ] → M ′

0 be de-

fined by j0 := k−1 ◦ j. It follows that j0 is the ultrapower embedding

by the measure U0 := {X ⊆ Pκλ | j”λ ∈ j(X)} and we will see that

U0 ∈ V [Gλ0 ∗ π(gM[λ0,F (λ)])]. Using a theorem of Laver [Lav07], which says

that the ground model is always definable from a parameter in any set forc-

ing extension, it follows by elementarity that M ′
0 is of the form M0[j0(Gλ0)],

where M0 ⊆M ′
0 and j0(Gλ0) ⊆ j0(Pλ0) ∈M ′

0 is M0-generic.

Remark 3.7. Since j”λ ∈ X it follows that X is closed under λ-sequences

in V [Gλ0 ∗ g[λ0,F (λ)]]. Thus λ+ ⊆ X and hence the transitive collapse π is

the identity on [0, λ+). In fact λ+ also belongs to X so the critical point of

k is greater than λ+.

In Lemma 3.8 and Lemma 3.9 below, we show that the forcing j0(Q[λ0,λ])

behaves well in the model V [Gλ0 ∗ g[λ0,F (λ)]], in the sense that it is highly

distributive and has a good chain condition. Then it easily follows that

forcing with j0(Q[λ0,λ]) over V [Gλ0 ∗ g[λ0,F (λ)]] preserves cardinals, and since

SCH holds in V [Gλ0 ∗ g[λ0,F (λ)]], this forcing does not disturb the continuum

function (see Lemma 3.10).

Lemma 3.8. j0(Q[λ0,λ]) is ≤λ-distributive in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. Define S := j0(Q[λ0,λ]) and gM0

[λ0,λ] := π(gM[λ0,λ]). It follows that gM0

[λ0,λ] is

generic over M0[Gλ0 ] for T := π(
∏M

[λ0,λ] Q
+
γ ). Notice that T is a “truncated”

version of
∏M

[λ0,λ] Q
+
γ because π is the identity on [0, λ]; moreover, gM0

[λ0,λ] is

generic for T over V [Gλ0 ] and T is λ+-c.c. over V [Gλ0 ].

We prove the lemma in two steps: (i) Firstly, we show that M0[j0(Gλ0)] is

closed under λ-sequences in V ∗ := V [Gλ0 ][g
M0

[λ0,λ] × g(λ,F (λ)]]; this will imply

that S is ≤ λ-closed in V ∗. (ii) Secondly, we show that S remains ≤ λ-

distributive in V [Gλ0 ∗ g[λ0,F (λ)]], which can be written – as we will argue –

as V ∗[g[λ0,λ]].

As for (i), notice that j0|V : V → M is elementary, and M is closed

under λ-sequences in V . The generic Gλ0 ∗ gM0

[λ0,λ] is added by a λ+-c.c.

forcing over V , and hence M0[Gλ0 ][g
M0

[λ0,λ]] is still closed under λ-sequences
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in V [Gλ0 ][g
M0

[λ0,λ]]. Finally, the forcing adding g(λ,F (λ)] is, by the Easton’s

lemma, ≤ λ-distributive over V [Gλ0 ][g
M0

[λ0,λ]] (and therefore does not add

new λ-sequences); now (i) follows because M0[j0(Gλ0)] is included in V ∗.

As for (ii), notice that
∏

[λ0,λ] Qγ (with the associated generic g[λ0,λ]), is

isomorphic in V [Gλ0 ] to T ×
∏

[λ0,λ] Qγ. Now (ii), and hence the lemma,

follows by another application of the Easton’s lemma, using the λ+-cc of∏
[λ0,λ] Qγ. �

Lemma 3.9. j0(Q[λ0,λ]) is λ++-c.c. in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. Notice that each condition p ∈ j0(Q[λ0,λ]) can be written as j0(hp)(j”λ)

for some function hp : Pκλ → Q[λ0,λ] in V [Gλ0 ]. Thus, each condition

p ∈ j0(Q[λ0,λ]) leads to a function h̄p : λ → Q[λ0,λ] in V [Gλ0 ], which is a

condition in the full-support product of λ copies of Q[λ0,λ] taken in V [Gλ0 ],

denoted by Q̄ = (Q[λ0,λ])
λ.

Let us argue that Q̄ is λ++-c.c. in V [Gλ0∗g[λ+,F (λ)]]. We define the domain

of a condition p = 〈pξ | ξ < λ〉 ∈ Q̄ to be the disjoint union of the domains

of its coordinates: domain(p) :=
⊔
ξ<λ dom(pξ). It follows that each p ∈ Q̄,

being the union of λ sets, each of size less than λ, has domain of size at

most λ. Suppose A is an antichain of Q̄ in V [Gλ0 ∗ g[λ+,F (λ)]] of size λ++. If

there are λ++ conditions in A that have a common domain, say d, then we

immediately get a contradiction because, in V [Gλ0 ∗ g[λ+,F (λ)]], there are at

most 2λ = λ+ functions in 2d. Otherwise, the set domain(A) = {domain(p) |
p ∈ A} has size λ++. Since 2λ = λ+ in V [Gλ0 ∗ g[λ+,F (λ)]], it follows that

(λ+)<λ
+

= λ+, and hence, by the ∆-system lemma, domain(A) contains a

∆-system of size λ++ with root r. This produces a contradiction because,

in V [Gλ0 ∗ g[λ+,F (λ)]] we have |2r| = 2λ = λ+.

To see that Q̄ is λ++-c.c. in

V [Gλ0 ∗ g[λ0,F (λ)]] = V [Gλ0 ∗ g[λ+,F (λ)]][g[λ0,λ]](3.5)

we will use the fact that the product of θ+-Knaster forcing with θ+-c.c.

forcing is θ+-c.c., where θ > ω is a cardinal. Since the forcing g[λ0,λ] ⊆ Q[λ0,λ]

is λ++-Knaster and Q̄ is λ++-c.c. in V [Gλ0 ∗ g[λ+,F (λ)]], it follows that Q̄ is

λ++-c.c. in the model V [Gλ0 ∗ g[λ0,F (λ)]] = V [Gλ0 ∗ g[λ+,F (λ)]][g[λ0,λ]].

It remains to show that an antichain of j0(Q[λ0,λ]) in V [Gλ0 ∗ g[λ0,F (λ)]]

with size λ++ would lead to an antichain of Q̄ in V [Gλ0 ∗ g[λ0,F (λ)]] of size

λ++, but this is quite easy. Suppose A is an antichain of j0(Q[λ0,λ]) with

size δ in V [Gλ0 ∗ g[λ0,F (λ)]]. Each p ∈ A is of the form j0(hp)(j”λ) where

hp : Pκλ → Q[λ0,λ]. As mentioned above, each hp leads to a condition h̄p ∈
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Q̄. It is easy to check that Ā := {h̄p | p ∈ A} is an antichain of Q̄ in

V [Gλ0 ∗ g[λ0,F (λ)]] of size λ++. �

Lemma 3.10. Forcing with j0(Q[λ0,λ]) over V [Gλ0 ∗g[λ0,F (λ)]] preserves car-

dinals and does not disturb the continuum function.

Proof. By Lemma 3.8, j0(Q[λ0,λ]) is ≤λ-distributive in V [Gλ0 ∗g[λ0,F (λ)]] and

thus preserves cardinals in [ω, λ+] and does not disturb the continuum func-

tion on the interval [ω, λ].

Lemma 3.9 implies that cardinals in [λ++,∞) are preserved. Further-

more, by counting nice names we will now show that the continuum function

is not disturbed on [λ+,∞). Working in V [Gλ0 ∗ g[λ0,F (λ)]], since j0(Q[λ0,λ])

has size at most |λF (λ) ∩ V [Gλ0 ]| = F (λ) and is λ++-c.c., it follows that

if δ ∈ [λ+,∞) is a cardinal then there are at most F (λ)λ
+·δ = F (λ)δ nice

j0(Q[λ0,λ])-names for subsets of δ. Since SCH holds in V [Gλ0 ∗ g[λ0,F (λ)]], it

follows that for all infinite cardinals µ and ν, if µ ≤ 2ν then µν = 2ν (see

[Jec03, Theorem 5.22(ii)(a)]). In particular, we have F (λ) ≤ F (λ+) ≤ 2δ

and thus F (λ)δ = 2δ in V [Gλ0 ∗ g[λ0,F (λ)]]. Thus there are at most 2δ nice

j0(Q[λ0,λ])-names for subsets of δ, and the result follows. �

Let J be a V [Gλ0 ∗ g[λ0,F (λ)]]-generic filter for j0(Q[λ0,λ]).

Lemma 3.11. k”J generates an M [j(Gλ0)]-generic filter for j(Q[λ0,λ]),

which we will call K.

Proof. Suppose D ∈ M [j(Gλ0)] is an open dense subset of j(Q[λ0,λ]) and

let D = j(h)(j”λ, α) for some h ∈ V [Gλ0 ] with dom(h) = Pκλ × κ and

α < F (λ). Without loss of generality, let us assume that every element of the

range of h is a dense subset of Q[λ0,λ] in V [Gλ0 ]. We have D = j(h)(j”λ, α) =

k(j0(h))(j”λ, α). Define a function h̃ ∈ M0[j0(G)] with dom(h̃) = π(F (λ))

by h̃(ξ) = j0(h)(j0”λ, ξ). Then dom(k(h̃)) = k(π(F (λ))) = F (λ) and we

have D = k(h̃)(α). Now the range of h̃ is a collection of π(F (λ)) open dense

subsets of j0(Q[λ0,λ]). Since j0(Q[λ0,λ]) is ≤π(F (λ))-distributive in M0[j0(G)],

one sees that D̃ =
⋂

ran(h̃) is an open dense subset of j0(Q[λ0,λ]). Hence

there is a condition p ∈ J ∩ D̃ and by elementarity, k(p) ∈ k”J ∩ k(D̃) ⊆
D. �

3.5. Performing surgery. We will modify the M [j(Gλ0)]-generic filter

K ⊆ j(Q[λ0,λ]) to get K∗ with j”g[λ0,λ] ⊆ K∗. Then we will argue that

K∗ remains an M [j(Gλ0)]-generic filter for j(Q[λ0,λ]) using the main lemma

from [CM13].
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Let us define K∗. Working in V [Gλ0 ][g[λ0,F (λ)]], define

dom(j(Q[λ0,λ])) :=
⋃
{dom(p) | p ∈ j(Q[λ0,λ])}

and let Q be the partial function with dom(Q) ⊆ dom(j(Q[λ0,λ])), defined by

Q =
⋃
j”g[λ0,λ]. Given p ∈ K, let p∗ be the partial function with dom(p∗) =

dom(p), obtained from p by altering p on dom(p)∩dom(Q) so that p∗ agrees

with Q. Let

K∗ = {p∗ | p ∈ K}.
Clearly, j”g[λ0,λ] ⊆ K∗ and it remains to argue that p∗ is a condition in

j(Q[λ0,λ]) for each p ∈ K and that K∗ is an M [j(Gλ0)]-generic filter. This

follows from the next lemma, which appears in [CM13].

Lemma 3.12 ([CM13]). Suppose B ∈M [j(Gλ0)] with B ⊆ j(dom(Q[λ0,λ]))

and |B|M [j(Gλ0 )] ≤ j(λ). Then the set

IB = {dom(j(q)) ∩B | q ∈ Q[λ0,λ]}

has size at most λ in V [Gλ0 ∗ g[λ0,F (λ)]].

Proof. Let B be as in the statement of the lemma and let B = j(h)(j”λ, α)

where h : Pκλ
V × κ→ Pλ+(dom(Q[λ0,λ]))

V [Gλ0 ], α < F (λ), and h ∈ V [Gλ0 ].

Then
⋃

ran(h) is a subset of dom(Q[λ0,λ]) in V [Gλ0 ] with |
⋃

ran(h)|V [Gλ0 ] ≤
λ. Since V [Gλ0 ] |= λ<λ = λ (in V [Gλ0 ] we have GCH on [λ0, λ] and λ is a

regular cardinal), it will suffice to show that

IB ⊆ {j(d) ∩B | d ∈ Pλ(
⋃

ran(h))V [Gλ0 ]}.

Suppose dom(j(q))∩B ∈ IB where q ∈ Q[λ0,λ]. We will show that dom(j(q))∩
B = j(d)∩B for some d ∈ Pλ(

⋃
ran(h))V [Gλ0 ]. Let d := dom(q)∩

⋃
ran(h),

then dom(j(q)) ∩B = j(d) ∩B since

j(d) = dom(j(q)) ∩
⋃

ran(j(h)) ⊇ dom(j(q)) ∩B.

�

It now follows from Lemma 3.12 exactly as in [CM13] that K∗ is an

M [j0(Gλ0)]-generic filter for j(Q[λ0,λ]). Now let us show that K∗ ⊆ j(Q[λ0,λ]).

Suppose p ∈ j(Q[λ0,λ]), then since | dom(p)|M [j(Gλ0 )] < j(λ), it follows from

Lemma 3.12, that the set Idom(p) := {dom(j(q)) ∩ dom(p) | q ∈ Q[λ0,λ]} has

size at most λ in V [Gλ0 ∗ g[λ0,F (λ)]]. Let 〈Iα | α < λ〉 ∈ V [Gλ0 ∗ g[λ0,F (λ)]]

be an enumeration of Idom(p). By the maximality of the filter K, for each

α < λ we can choose qα ∈ K such that dom(j(qα))∩ p = Iα. It follows that

〈j(qα) | α < λ〉 ∈M [j(Gλ0)] because M [j(Gλ0)] is closed under λ-sequences

in V [Gλ0 ∗ g[λ0,F (λ)]]. Since j(Q[λ0,λ]) is <j(λ0)-directed closed, it follows

that the partial master condition m :=
⋃
{j(qα) : α < λ} is a condition in



EASTON FUNCTIONS AND SUPERCOMPACTNESS 15

j(Q[λ0,λ]), and moreover, q∗ can be computed in M [j(Gλ0)] by comparing p

and m.

To see that K∗ is M [j(Gλ0)]-generic, suppose A is a maximal antichain

of j(Q[λ0,λ]) in M [j(Gλ0)]. Since Q[λ0,λ] is λ+-c.c. in V [Gλ0 ], it follows by

elementarity that dom(A) :=
⋃
{dom(r) | r ∈ A} has size at most j(λ)

in M [j(Gλ0)]. Hence by Lemma 3.12, we see that Idom(A) := {dom(j(q)) ∩
dom(A) | q ∈ Q[λ0,λ]} has size at most λ in V [Gλ0 ∗g[λ0,F (λ)]] and is therefore

in M [j(Gλ0)]. Using this one can show, as in [CM13], that there is a bit-

flipping automorphism πA of j(Q[λ0,λ]) in M [j(Gλ0)] such that if r ∈ K

and dom(r) ⊆ dom(A) then dom(πA(r)) = dom(r) and πA(r) = r∗. Then

since π−1
A [A] ∈ M [j(Gλ0)] is a maximal antichain of j(Q[λ0,λ]), and K is

generic for j(Q[λ0,λ]) over M [j(G[λ0,λ])], it follows that there is a condition

s ∈ K ∩ π−1
A [A]. Then πA(s) = s∗ ∈ K∗ ∩A, and therefore K∗ is generic for

j(Q[λ0,λ]) over M [j(Gλ0)].

Thus we may lift the embedding to

j : V [Gλ0 ∗ g[λ0,λ]]→M [j(Gλ0) ∗ j(g[λ0,λ])]

where j(g[λ0,λ]) = K∗ and j is a class of V [Gλ0 ∗ g[λ0,F (λ)] ∗J ]. It follows that

M [j(Gλ0)∗j(g[λ0,λ])] is closed under λ-sequences in V [Gλ0 ∗g[λ0,F (λ)] ∗J ] and

that

M [j(Gλ0) ∗ j(g[λ0,λ])] = {j(h)(j”λ, α) |h : Pκλ× κ→ V ∧ α < F (λ) ∧

h ∈ V [Gλ0 ∗ g[λ0,λ]]}.

Since the forcing g[λ+,F (λ)]∗J ⊆ Q[λ+,F (λ)]∗j0(Q[λ0,λ]) is ≤λ-distributive in

V [Gλ0 ∗ g[λ0,λ]], it follows that the pointwise image j[g[λ+,F (λ)] ∗ J ] generates

an M [j(Gλ0) ∗ j(g[λ0,λ])]-generic filter for j(Q[λ+,F (λ)] ∗ j0(Q[λ0,λ])), denote

this filter by j(g[λ+,F (λ)] ∗ J). Then the embedding lifts to

j : V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ]→M [j(Gλ0) ∗ j(g[λ0,F (λ)]) ∗ j(J)]

where j is a class of V [Gλ0∗g[λ0,F (λ)]∗J ], witnessing that κ is λ-supercompact

in this model.

3.6. Controlling the continuum function at F (λ)+ and above. In the

model V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ] one has 2γ = F (γ) for every regular cardinal

γ ≤ F (λ) and GCH holds at all cardinals greater than or equal to F (λ)+.

Working in V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ], let E be the Easton-support product of

Cohen forcing

E :=
∏

γ∈[F (λ)+,∞)∩REG

Add(γ, F (γ)).
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Let E be generic for E over V [Gλ0∗g[λ0,F (λ)]∗J ]. Standard arguments [Eas70]

can be used to see that in V [Gλ0∗g[λ0,F (λ)]∗J∗E], for every regular cardinal γ

we have 2γ = F (γ). Since E is ≤F (λ)-closed in V [Gλ0∗g[λ0,F (λ)]∗J ], it follows

that the pointwise image j[E] generates an M [j(Gλ0) ∗ j(g[λ0,F (λ)]) ∗ j(J)]-

generic filter for j(E), which we will denote by j(E). Then j lifts to

j : V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ∗ E]→M [j(Gλ0) ∗ j(g[λ0,F (λ)]) ∗ j(J) ∗ j(E)]

where j is a class of V [Gλ0 ∗ g[λ0,F (λ)] ∗ J ∗ E] witnessing that κ is λ-

supercompact in that model. �

4. Open Questions

First let us discuss the problem of globally controlling the continuum

function on the regular cardinals while preserving multiple instances of par-

tial supercompactness. Suppose GCH holds and we have regular cardinals

κ0 < η0 < κ1 < η1 such that for each α ∈ {0, 1}, κα is ηα-supercompact.

Additionally, assume F is a function satisfying the requirements of Easton’s

theorem (E1) and (E2), and that for each α there is a jα : V →Mα with crit-

ical point κα such that κα is closed under F , Mηα ⊆ M , H(F (ηα)) ⊆ M ,

and for each regular cardinal γ ≤ ηα, (|jα(F )(γ)| = F (γ))V . Then, as a

corollary to the proof of Theorem 1.2 above, we obtain the following.

Corollary 4.1. There is a cardinal preserving forcing extension in which

2γ = F (γ) for every regular cardinal γ and κα remains ηα-supercompact for

α ∈ {0, 1}.

This corollary can be obtained by essentially applying the above proof

of Theorem 1.2 twice. For example, first we carry out the proof of Theorem

1.2 with κ0 and η0 in place of κ and λ and where the forcing iteration used

terminates before stage κ1. Lifting the embedding j0 : V → M0 witnessing

that κ0 is η0-supercompact requires the “extra forcing” that depends on j0.

Let P0 denote the iteration defined so far, including the extra forcing. Since

P0 has size less than the critical point κ1 of the next embedding j1 : V →M1

witnessing the η1-supercompactness of κ1, it follows by the Levy-Solovay

theorem that j1 lifts through the iteration performed so far. Next, working

in V P0 , we perform an iteration for controlling the continuum function that

picks up where the last one left off. Call the iteration P1, and lift j1 through

the iteration P0 ∗P1 just as we lifted j0 through P0. Furthermore, since P1 is

highly distributive in V P0 the first embedding j0 will easily extend to V P0∗P1 .

Corollary 4.1 only covers a simple configuration of partially supercom-

pact cardinals. Is a more general result possible? It seems that the need
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for the “extra forcing” in our proof of Theorem 1.2 prevents the method

from providing a clear strategy for obtaining a more general result in which

more complicated configurations of partially supercompact cardinals are

preserved. It may be the case that the uniformity of the Sacks-forcing

method, which is applied in [FH08] to obtain analogous global results for

measurable as well as strong cardinals, could lead to an answer to Ques-

tion 4.2 below. One would desire a two-cardinal version of Sacks forcing for

adding subsets to κ that satisfies λ-fusion.

Question 4.2. Assuming GCH, and given a class of partially supercompact

cardinals S and a function F from the class of regular cardinals to the class

of cardinals satisfying Easton’s requirements (E1) and (E2), under what

conditions can one force the continuum function to agree with F at all

regular cardinals, while preserving cardinals as well as the full degree of

partial supercompactness of each cardinal in S?

Another potential way of strengthening Theorem 1.2 is to weaken the

hypothesis. This was done for the analagous theorem concerning measurable

cardinals in [FH12a]. In this direction, we pose the following question.

Question 4.3. Can the hypothesis of Theorem 1 be weakened by replac-

ing the assumption H(F (λ)) ⊆ M by the weaker assumption “V and M

have the same cardinals up to and including F (λ)”? Or, in the special case

when F (λ) = µ+ for some regular cardinal µ, by the ostensibly stronger as-

sumption that H(µ) ⊆M and (µ+)M = µ+? (Note however that the latter

assumption is actually optimal for the analogous case when one wants to

find a model with a measurable cardinal κ with 2κ = µ+, where µ = κ+n

for some n > 0; see [FH12a] for more details.)
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