DEFINABLE MAXIMAL COFINITARY GROUPS

VERA FISCHER, SY DAVID FRIEDMAN, AND ASGER TORNQUIST

ABSTRACT. Using countable support iteration of S-proper posets, for some appropriate stationary
set S, we obtain a generic extension of the constructible universe, in which b = ¢ = Ny and there is
a maximal cofinitary group with a IT3-definable set of generators.

1. INTRODUCTION

Following standard notation, we denote by S the set of all permutations of the natural numbers.
A function f € S is said to be a cofinitary permutation, if it has only finitely many fixed points.
A subgroup G of S, is said to be a cofinitary group if each of its non-identity elements has only
finitely many fixed points, i.e. is a cofinitary permutation. A maximal cofinitary group, abbreviated
mcg, is a cofinitary group, which is maximal with respect to these properties, under inclusion. The
minimal size of a maximal cofinitary group is denoted a4. It is known that b < a, (see [6]).

There has been significant interest towards the existence of maximal cofinitary groups which
are low in the projective hierarchy. The existence of a closed maximal cofinitary group is still
open, while S. Gao and Y. Zhang (see [7]) showed that the axiom of constructibility implies the
existence of a maximal cofinitary group with a co-analytic generating set. The result was improved
by B. Kastermans, who showed that in the constructible universe L there is a co-analytic maximal
cofinitary group (see [6]).

There is little known about the existence of nicely definable maximal cofinitary groups in models
of ¢ > Ny. Our main result can be formulated as follows:

Theorem. There is a generic extension of the constructible universe in which b = ¢ = Ny and
there is a mazimal cofinitary group with a 113-definable set of generators.

The extension is obtained via a countable support iteration of S-proper posets, for some ap-
propriate stationary set S. Along the iteration cofinally often we add generic permutations which
using a ground model set of almost disjoint functions provide codes for themselves. Of use for
this construction is on the one hand the poset for adding a maximal cofinitary group of desired
cardinality, developed in [5], and on the other hand the coding techniques of [2] and [4].

The paper is organized as follows: in section 2 we give an outline of a poset which adjoins a
cofinitary permutation to a given co-fnitary group and describe our main coding techniques; section
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3 contains a detailed proof of our main theorem and in section 4 we conclude with the discussion
of some remaining open questions.

2. MAXIMAL COFINITARY GROUPS AND CODING

2.1. Adding generic permutations. Our methods for adding a generic permutation are based
on [5], where the first and third authors provide a poset which given an arbitrary index set A and
a (freely generated) cofinitary group G, generically adjoins a family of permutations {gg }qca such
that the group generated by GU{gq, }ac4 is cofinitary. We will be interested in the particular case in
which |A] = 1. Following the terminology of [5], given a non-empty set B, a mapping p : B — S is
said to induce a cofinitary representation if the natural extension of p to a mapping p: Fp — S,
where Fg denotes the free group on the set B, has the property that its image is a cofinitary group.
For A # ), we denote by W4 the set of all reduced words on the alphabet A and by /V[Z; the set
of all words on the same alphabet which start and end with a different letter, or are a power of a
single letter. We refer to the elements of W:; as good words. Note that every word is a conjugate of
a good word, that is Vw € Wa3Jwg € /V[Z;Hu € W4 such that w = uwou~'. The empty word is not
a good word.

Whenever a is an index, which does not belong to the set B, s is a finite partial injection from w
to w, p: B = S is a mapping which induces a cofinitary representation and w is a reduced word
on the alphabet {a}U B, we denote by eyls, p] the (partial) function obtained by substituting every
appearance of a letter b from B with p(b), and every appearance of the letter a with the partial
mapping s. By definition, let eg[s, p] be the identity. For the exact recursive definition see [5]. Note
that if s is injective, then so is ey[s, p| (see [5]).

Definition 2.1. Let B be a non-empty set, a ¢ B and p : B — S a mapping which induces
a cofinitary representation. The poset Qy,y,, consists of all pairs (s, F) where s € <“w is a finite
partial injection, F' is a finite set of words in W{a}u - The extension relation states that (¢, H) <
(s, F') if and only if ¢ end-extends s, F' C H and Yw € FVn € w if ey[t, p|(n) = n then eyls, p|(n)
is already defined (and so eyls, p](n) = n).

Recall that a poset PP is said to be o-centered, if P = | J,,,, Pn where for each n, P, is centered,
that is whenever p, ¢ are conditions in P, then there is r € P, which is their common extension.
Note that Q(q},, is o-centered. If G is Qqqy p-generic, then g = J{s : IF (s, I') € G} is a cofinitary
permutation such that the mapping pg : {a} U B — S defined by pg(a) = g and pg|B = p,
induces a cofinitary representation in V[G]. For the proofs of both of these statements see [5].

2.2. Coding with a ground model almost disjoint family of functions. We work over the
constructible universe L. Recall that a ZF~ model M is said to be suitable iff

M E (ws exists and wy = wl).

In our construction, we will use a family F = {fi ¢ : ¢ € w-2,§ € w1} € L of almost disjoint
bijective functions such that F N M = { Jeg CEW-2,§ € (wlL YM1 for every transitive model M
of ZF~ (see [4, Proposition 3]).

For our purposes, we will need the following Lemma, which is analogous to [4, Proposition 4].
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Lemma 2.2. There is a sequence S = (Sg : B < wa) of almost disjoint stationary subsets of wy,
which is X1 definable over L, with parameter wi, and whenever M, N are suitable models of ZF~
such that w}! = wi¥, then SM agrees with SN on wd Nwl .

Proof. Let (D~ : v < wy) be the canonical L, definable { sequence (see [1]) and for each o < wo
let A, be the L-least subset of w; coding a. Now, let S, :={i < w;y : D; = A, Ni}. O

Let S be as in the preceding Lemma and let S be a stationary subset of w; which is almost
disjoint from every element of S. We will use the following coding of an ordinal & < wo by a subset
of wy (see [4, Fact 5]).

Lemma 2.3. There is a formula ¢(z,y) and for every a < w¥ a set X, € ([w1]*1)* such that

e for every suitable model M containing X Nwi, ¢(z, Xo NwM) has a unique solution in
M, and this solution equals o provided wi = w{\/[.
e for arbitrary suitable models M, N with wi = wi¥ and X, Nw} € M NN, the solutions of

(z, Xo NwM) in M, N coincide.

3. TI3-DEFINABLE SET OF GENERATORS

In this section we will provide a generic extension of the constructible universe L in which

b = ¢ = Ny and there is a maximal cofinitary group with a ITi-definable set of generators. Fix a
recursive bijection ¥ : w X w — w. Recursively define a countable support iteration of S-proper
posets (Pq, Qﬁ ta < wsg, B < we) as follows. If o < wy let Qq be a Py-name for Hechler forcing for
adding a dominating real.’ Suppose P, has been defined and

e for every € Lim(a\wq) the poset Qg adds a cofinitary permutation gs, and

e the mapping ps : Lim(a\wi) — Soc where po(5) = g induces a cofinitary representation.
In LPe define Q, as follows. If o is a successor, then Q, is a Po-name for Hechler forcing for
adding a dominating real. If a > wy is a limit, then a = wy - v + w - n for some v # 0, v < wo,
n < w; and the conditions of Q, are pairs ((s, F, s*), (ck, Yk)kew) Where

(1) (5, F) € Qa},pas

(2) Vk € w, ¢ is a closed bounded subset of wq\n such that ¢, N Sqix = 0;

(3) Vk € w, yi is a 0, 1-valued function whose domain |yi| is a countable limit ordinal, such
that 7 < |yk|, yxIn = 0 and for every ~ such that n <~ < |yx|, yx(27) = 1 if and only if
yeEN+Xa={n+tp:peXah

(4) for every k € v[s] and every countable suitable model M of ZF~ such that & = wM < |y,
£ is a limit point of ¢ and yi[€, ¢ N E are elements of M, we have that

M F yi[€ codes a limit ordinal & such that Sg4j is non-stationary.

(5) s* is a finite subset of { fi,¢:m € Y[s],§ € e} U{ futme :m € Y[s],ym(§) = 1}.
The extension relation states that ¢ = ((¢, H, t*), (dk, 2k ) kew) extends p = ((s, F, s*), (ck, Yk)kew) iff

(1) (t, H) <qay,, (5:F),
(2) Vfes  t\snf=0,

Iror bookkeeping reasons it is more convenient to introduce the generators of the maximal cofinitary group at
limit stages greater or equal wi.
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(3) Vk € ¢[s], di, end-extends ¢; and yi C zi

With this the recursive definition of Py, is complete. If p € Q,, where p = ((s, F, s*), (Ck, Yk)kew)
we write fin(p) for (s, F, s*) and inf(p) for (cx, yr)kew- In particular fin(p)o = s.

Lemma 3.1. For every condition p = ((s, F, s*), ¢k, Yk)kew) € Qa and every v € wy there exists
a sequence (dy, zi)kew Such that ¢ = ((s, F, s*), (dk, zk)kew) € Qa, ¢ < P and for all k € w we have
that |zx|, max dy > 7.

Proof. As in [2, Lemma 1.1]. O

Lemma 3.2. For every p € Q, and every dense open set D C Qg, there is ¢ < p such that

fin(q) = fin(p) and for every p1 € D, p1 < q there is p2 € D, pa < q such that fin(p2)o = fin(p1)o
and inf(pg) = inf(q).

Proof. Let p = ({to, Fo, ), (dY, 29 kew). Let M be a countable elementary submodel of Lg, for
O sufficiently large regular cardinal, which contains Q., p, X,, D as elements and such that
j=MnNuw ¢ Ukew[to} Stk Let (T, Sp)new enumerate all pairs (7, s,,) where 7, € Q, N M, s,
is a finite partial injective function from w to w and each pair is enumerated cofinally often. Let
{jn}new be an increasing sequence which is cofinal in j. Inductively we will construct a decreasing
sequence (Pp)new € Q N M such that for all n, fin(p,) = fin(p).

Let po = p. Suppose p, has been defined. If there is 71, € M N Q such that 71, < pp, 7,
and fin(7,,) = s, then extend inf(71 ) to a sequence (d}™", 2} ke, in M in such a way that
for all k¥ € w, maXdZH > Jn, |z,?+1| > jn. Then let pp+1 = (fin(po), (dz+1,2£+1>k6w>. If there
is no such 7 5, then extend inf(p,) to a sequence (dg“, zz+1>k€w in M such that for all k € w,
max dZH > in, |z,7€‘+1| > jn. With this the inductive construction is complete. For every k € w, let
dp = UnEw dz U {]} and zj, = UnEw ZIZL‘ Let ¢ = <ﬁn(1§), <dk’? Zk>kEUJ>'

We will show that ¢ is indeed a condition. For this we only need to verify part (4) of being
a condition, since the other clauses are clear. Fix k € 9[tg]. Let My be a countable suitable
model of ZF~ such that wi N My = j and 2, d), are elements of M. Let M be the Mostowski
collapse of the model M and let 7 : M — M be the corresponding isomorphism. Note that
j=wi NM =w; NM. Since X, € M and M is an elementary submodel of Lg, « is the unique
solution of ¢(z, X4) in M. Therefore & = 7(a) is the unique solution of ¢(z, XoNj) = ¢(z, 7(X4))
in M. Note also that Séik = T(Sa+k) = Sa+k N j. Since wit = w{wo and X, Nj € M N My, the
solutions of ¢(x, X, N j) in M and My coincide. That is, the solution of ¢(z, X, Nj) in My is a.
By the properties of the sequence of stationary sets which we fixed in the ground model, we have

éj_(}ﬁ = Sé\j‘rk = W(Sﬁk) = Sa+k N J. Since di € My and dj, is unbounded in j, we obtain that

Sé\jlr‘}g is not stationary in Mg. Therefore ¢ is indeed a condition.

Consider an arbitrary extension p; = (fin(p1),inf(p1)) of ¢ from the dense open set D and let
fin(p1)o = 1. Then (r1, Fo,t5) € M, and so for some m, 7 = ((r1, Fo, t5), (d}", 21" ) kew) € Qo N M.
Then there is some n > m such that s, = r1, 7, = 7*. Note that p; < ¢,7, and so p; is a common
extension of py, 7,. By elementarity there is 71, € M N D which is a common extension of p,,
Tn, such that fin(7y ) = (r1 = sp, F2,73). Let po := ((r1, F2,73), (dk, 2k)kew). Note that inf(pp41)
extends inf(7; ) and so pa < 71, which implies that po € D. Clearly p2 < ¢ and so py is as
desired. ([l
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Lemma 3.3. Let M be a countable elementary submodel of Lo for sufficiently large © containing
all relevant parameters, i = M Nwi, p = (s, F, s*),(dY, 20V rew) an element of M N Qq. If i ¢
Ukew[s] Sotk, then there exists an (M, Qq)-generic condition ¢ < p such that fin(q) = fin(p).

Proof. Let {D,, }new be an enumeration of all dense open subsets of Q, from M and let {i, }new C
M N be an increasing sequence which is cofinal in 7. Inductively, construct a sequence (G )new C
M N Qg such that gy = p, and
(1) for every n € w, Gn+1 < Gn, fin(g,) = fin(p);
(2) if inf(gn) = (d}}, 2}}) kew then for all k € w, maxd}} > iy, |2}}| > in;
(3) for every p; € D, extending gy, there is po € D,, which extends g, and such that fin(p2)o =
fin(p1)o, inf(p2) = inf(g,).

Now define a condition ¢ such that fin(q) = fin(p), inf(q) = (dg, 2x)rew Where di = ¢, 4 U{i},
2k = Unew 2~ To verify that ¢ is indeed a condition, proceed as in the proof of ¢ being a condition
from Lemma 3.2. Then ¢ < p and we will show that g is (M, Qg )-generic. For this it is sufficient
to show that for every n € w, the set D, N M is predense below ¢q. Thus fix some n € w and
p1 = ((t1, F1,t}),inf(p1)) an arbitrary extension of g. Without loss of generality p1 € D,,. Since
P1 < Gn we obtain the existence of Fh,t5 € M such that py = ((t1, F2,t3), (d}}, 21 ) kew) < Gn and
P2 € M N D,. Then p3 = ((t1, F1 U Fy, t] Uts),inf(p1)) is a common extension of p; and po. O

Corollary 3.4. For every o < wa, the poset Q, is S-proper. Consequently, P,,, is S-proper and
hence preserves cardinals. More precisely, for every condition p = ({(s, F, s*), {cx, Y )kew)) € QL the

poset {7 € Qq : 7 < P} is w1\ U, ey(s) Sa+n-proper.

3.1. Properties of Q = Q,. Throughout the subsection, let o be a limit ordinal such that wy <
o < wy. We study the properties of Q := Q, in LFe.

Claim 3.5 (Domain Extension). For every condition p = ((s, F, s*), (Cn, Ym)mew), natural number
n such thatn ¢ dom(s) there are co-finitely many m € w such that ((sU{(n,m)}, F, s*), (Cm, Ym)mew)
1 a condition extending p.

Proof. Fix p, n as above. By [5, Lemma 2.7] there is a co-finite set I such that for all m € I
(sU{(n,m)}, F) <q,,,. (s, F). Since s* is finite, we can define No = max{f(n) : n € s*}. Then
for every m € I\ Ny,
((sU{(n,m)}, F,s%), (ck, Yr)kew) < P-
O

Claim 3.6 (Range Extension). For any condition p = ((s, F,s*), (¢m, Ym)mew), natural number
m ¢ ran(s) there are co-finitely many n € w such that ({(s U {(n,m)}, F,s*), (ck, Yk)kew) S a
condition, extending p.

Proof. Fix p, m as above. By [5, Lemma 2.7] there is a co-finite set I such that for all n € I,
(s U{(n,m)}, F) <qq, . (5:F). Now for every n, consider the set Ap, = {f(n)}es. If there are
infinitely many n such that m € A,, then 3f € s*3°°n such that f(n) = m, which is a contradiction
to f being a bijection. That is V*®n(m ¢ A,). Choose N such that Yn > N(m ¢ A,). Then
Vn € I\N({((sU{(n,m)}, F,s™), (ck, Yk)kew)) is an extension of p with the desired properties. [

The following claim is straightforward.
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Claim 3.7. For every wo € Wiy Lim(a\w,) the set Dw, = {p€Q:wy € fin(p)1} is dense.

Claim 3.8. Suppose ¢ = ((s, F, s*), (Ck, Uk)kew) IFQ. €wlpa)(n) = n for some w € Wza}uLim(a\wl)'

Then ew[s, pal(n) is defined and ey|s, pa)(n) = n.

Proof. Let G be Q, generic over LFe such that ¢ € G. By definition of the extension relation
there is a condition 7 = ((¢, H,t*), (dk, zk)kew) In G such that ey,[pc|(n) = eyw(t, pa](n) = n. Then
(t, H) <qqa,.,, (s, F) and since the extension of Q(qy,, does not allow new fixed points we obtain
ewls, pal(n) = n. O

Lemma 3.9. Let G be Qu-generic over LFe and let g, = Upe fin(p)o- Then go is a cofinitary
permutation and (g3)g<a 5 a cofinitary group.

Proof. Since for every n,m in w, the sets D, = {p € Q : n € dom(fin(p)o)}, Rm = {p € Q,m €
ran(fin(p)o)} are dense, it is easy to see than g = g, is a surjective function. Injectivity follows
directly from the properties of Q3 ,, (see [5]), and so g is a permutation.

We will show that the group generated by {gg} seLim(a\wr) V {ga} is a cofinitary group. Fix an

arbitrary word w € W{a}uLim(
1

o\wy)- Then there are S W apuLim(a\wn) 204 U € Wi Lim(a\w)
w'u. Since D,y is dense, there is a condition p = ((s, F, s*), (¢k, Yk ) kew) in G such
that w’ € F. Suppose ey [pg](n) = n. Then there is § € G, ¢ < p such that g IF ey [pg](n) = n.
By the above Lemma, e, [t, po](n) = n, where ¢ = ((¢, F',t*), (dk, 2k)kew) and so by the extension
relation e [s, po](n) = n. Then fix(ey [pa|) = fix(ew[s, pa]) which is finite and so fix(e,[pg]) is

also finite. OJ

such that w = u~

Lemma 3.10 (Generic Hitting). In LF> suppose ({h}U{gs}s<a) is a cofinitary group and h is not
covered by finitely many members of F with indices above . Then LFe+1 = 3%n € w(gy(n) = h(n)).

Proof. We claim that for every N € w, the set Dy = {q: In > N(s(n) = h(n))} is dense in Q,.
Let p = ((s, F, s*), (Ck, Yk ) kew) be an arbitrary condition. By [5, Lemma 2.19] there is N such that
for allm > N,

(s U{(n,h(n)}, F) <Qray., (85 F)-
Since h is not covered by the members of s*, we have that 3°°n such that h(n) ¢ {f(n)}ses+-
Denote this set I;(p). Let n € I;(p)\ max{Np, N}. Then
q:= <<S U {(TL, h(n))}a F7 8*>7 <ck7 yk>k€w> <p
and § € Dy. Therefore LFe+1 = 3%n(g,(n) = h(n)). O

Lemma 3.11. The group G := (ga) added by P, is a mazimal cofinitary group.

aE Lim(w2 \w1)

Proof. Suppose G is not maximal. Then there is a cofinitary permutation h such that

<{9a}aeLim(wQ\w1) U {h}>
is cofinitary. Let o < wy be the least limit ordinal such that o = wy - £ for some £ # 0 and such
that h € LFe. Then there is 7 > 0 such that h is not covered by finitely many members of F
whose second index is above 7). Therefore by the Generic Hitting Lemma the poset Q. .¢4.,., adds
a generic permutation g, .c4w., Which is infinitely often equal to h, which is a contradiction. O



DEFINABLE MAXIMAL COFINITARY GROUPS 7

3.2. Coding. Let G, be Q,-generic filter over LF» and let g, := UpeG fin(p)o. For every k € 1[g4]
define Vi := e, inf(P)1, CF := Upeq, inf(p)o and S* := e, fin(p)2. Let G := Gu,.
The following is clear using easy extendibility arguments together with Lemmas [?], [?], [?].

Lemma 3.12. The sets Y, CY, and S* have the following properties:

S* ={fimeg :m € V[gal,§ € CR Y U{flwrme : m € ¥[ga], Y3 (§) = 1}.

If m € 9]ga] then dom(Y,S) = wy and C2 is a club in wy disjoint from Sotm,.
If m € 1lga] then |ga N frm.e)| < w if and only if § € Cy,.

If m € Y[ga] then |ga N fluyme)| < w if and only if Y (§) = 1.

Corollary 3.13. Let n € w\t[ga]. Then S,., remains stationary in LF«v2.

Proof. Let G be P,,-generic over L and let p € G such that pI- g ¢ {a+n:n € Y¥[gy]}. Then G
is also IP,,, (p)-generic, where Py, (p) := {q : ¢ < p} is the countable support iteration of Q,(p(v))
for v < wo. However for every v, the poset Q,(p(v)) is Sg-proper and so the entire iteration is
Sg-proper. O

Lemma 3.14. In L|G] let A = {go : w1 < a < ws}. Then g € A if and only if for every countable
suitable model M of ZF~ containing g as an element there exists a limit ordinal & < w3! such that
Sé_‘ik is mon-stationary in M for all k € v[g].

Proof. The proof is analogous to that of [4, Lemma 13]. Let g € A. Find o < wy such that g = ga,
and let M be a countable suitable model containing g as an element. Then C}' N wM, Y lwM are
elements of M for all k € 9[gs]. Fix any m € ¥[gs]. Then there is p = ((s, F, s*), (¢, Yk)kew) € G
such that m € ¥[s] and C% NwM = ¢, Y. NwM = y,,. By definition of being a condition we

obtain that
MEYSN w{w codes a limit ordinal &, such that Sg,,+m is not stationary.

Note that for every distinct mq, ms in 9[ga] we have that Y% Nwi = Y% Nwi™, and so a, does
not depend on m.

To see the other implication, fix g such that for every countable suitable model containing g
as an element there exists @ < wd! such that Séﬁk is non-stationary in M for all £ € ¢[g]. By
the Lowenheim-Skolem theorem the same holds for arbitrary suitable models of ZF~ containing
g. In particular this holds in M = Lg|[G]| for some sufficiently large ©, say © > wigo. Then
wHl = wé: - wl, SM = S and the notions of stationarity of subsets of w; coincide in M and
L[G]. Thus there is a limit ordinal o < wy such that S,y is non-stationary for all k € ¥[g]. By the
above corollary for every 3 ¢ {a + k : k € 9[go]} the set Sz is stationary. Therefore ¥[g] C 1[ga]

and so g = gq. O

Thus as the right-hand side of the equivalence stated in Lemma [?] is 13, we obtain:

Theorem 3.15. There is a generic extension of the constructible universe in which b = ¢ = Ny
and there is a mazimal cofinitary group with a 1Ii-definable set of generators.
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4. REMARKS

We expect that the techniques of [3] can be modified to produce a generic extension of the
constructible universe in which b = ¢ = X3 and there is a maximal cofinitary group with a II3-
definable set of generators. Of interest remains the following question: Is it consistent that there
is a I1} definable maximal cofinitary group and b = ¢ = Ry?
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