
Safe Recursive Set Functions

Arnold Beckmann∗ †

Department of Computer Science

College of Science

Swansea University

Swansea SA2 8PP, UK

a.beckmann@swansea.ac.uk

Samuel R. Buss‡

Department of Mathematics

University of California, San Diego

La Jolla, CA 92093-0112, USA

sbuss@math.ucsd.edu

Sy-David Friedman§

Kurt G??del Research Center for Mathematical Logic

University of Vienna

A-1090 Vienna, Austria

sdf@logic.univie.ac.at

March 11, 2012

Abstract

We introduce the safe recursive set functions based on a Bellantoni-Cook style subclass
of the primitive recursive set functions. We show that under a natural encoding of finite
strings by hereditarily finite sets, the functions computed by safe recursive set functions
are exactly the functions computed by alternating exponential time Turing machines with
polynomially many alternations.

We characterise the safe recursive set functions on arbitrary sets in definability-theoretic
terms. In its strongest form, we show that a function on arbitrary sets is safe recursive if,
and only if, it is uniformly definable in some polynomial level of a refinement of Jensen’s
J-hierarchy, relativised to the transitive closure of the function’s arguments.

We observe that safe-recursive functions on infinite binary strings are equivalent to
functions computed by so-called infinite-time Turing machines in time less than ωω. We
also give a machine model for safe recursion which is based on set-indexed parallel pro-
cessors and the natural bound on running times.

1 Safe Recursive Set Functions

We consider a subclass of the primitive recursive set functions [?]. Inspired by Bellantoni and
Cook’s characterization of the polynomial time computable functions [?], we divide arguments

∗All three authors thank the John Templeton Foundation, Project #13152, for supporting their participa-
tion in the CRM Infinity Project at the Centre de Recerca Matemàtica, Barcelona, Catalonia, Spain during
which this project was instigated.

†This research was partially done while the author was a visiting fellow at the Isaac Newton Institute for
the Mathematical Sciences in the programme “Semantics & Syntax”.

‡Supported in part by NSF grants DMS-0700533 and DMS-1101228, and by a grant from the Simons
Foundation (#208717 to Sam Buss).

§Supported in part by the FWF (Austrian Science Fund) through FWF project number P 22430-N13.

1

of set functions into normal and safe ones. By writing f(~x/~a) we indicate that ~x are f ’s
normal arguments, and ~a its safe arguments. Bellantoni and Cook use the notation f(~x;~a)
instead of f(~x /~a), using semicolon (;) instead of slash (/). We use the slash instead, as we
find it improves readability. Set functions whose arguments are typed in this way will be
denoted safe set functions.

1.1 Safe Rudimentary Set Functions

We first define safe rudimentary set functions based on rudimentary set functions [?].

Definition 1.1. The set of safe rudimentary set functions (sRud) is the smallest class of safe
set functions that contains the initial functions (i)–(iii) and is closed under bounded union
(iv) and safe composition (v):

(i) (Projection) πn,m
j (x1, . . . , xn /xn+1, . . . , xn+m) = xj, for 1 ≤ j ≤ n+m, is in sRud.

(ii) (Difference) d(/ a, b) = a \ b is in sRud.

(iii) (Pairing) p(/ a, b) = {a, b} is in sRud.

(iv) (Bounded Union) If g is in sRud, then

f(~x /~a, b) =
⋃

z∈b

g(~x /~a, z)

is in sRud.

(v) (Safe Composition) If h,~r,~t are in sRud, then

f(~x /~a) = h(~r(~x /) /~t(~x /~a))

is in sRud.

We list a few functions which are definable in sRud. Details of the definitions of some of
these can also be found in [?]. Let (a, b) denote Kuratowski’s ordered pair {{a}, {a, b}}. The
functions prℓ and prr extract the first and second element from an ordered pair.

• Union(/ a) = ∪a and Intersec(/ a, b) = a ∩ b.
Union(/ a) =

⋃

z∈a π
0,1
1 (/ z) and Intersec(/ a, b) = c \ ((c \ a) ∪ (c \ b)) for c = a ∪ b.

• Succ(/ a) = a ∪ {a}, kop(/ a, b) = (a, b), prℓ(/ (a, b)) = a, prr(/ (a, b)) = b.

f(/ c) =
⋃

z∈c

⋃

y∈c(z \ y) satisfies f(/ (a, b)) =

{

{b} if a 6= b

∅ otherwise
,

thus prℓ(/ c) = ∪(∪c \ f(/ c)).

g(/ c) = ∪(c \ {∪c}) satisfies g(/ (a, b)) =

{

{a} if a 6= b

∅ otherwise
, thus prr(/ c) = ∪(∪c \ g(/ c)).

• Cond=(/ a, b, c, d) =

{

a if c = d

b otherwise.
Let ḡ(/ a, c, z) =

⋃

{a : u ∈ c\z ∪ z\c} and g(/ a, c, z) = a \ ḡ(/ a, c, z),

then ḡ(/ a, c, z) =

{

a if z 6= c

∅ otherwise
and g(/ a, c, z) =

{

a if z = c

∅ otherwise.

Thus Cond=(/ a, b, c, d) = g(/a, c, d) ∪ ḡ(/ b, c, d).

2

• Cond∈(/ a, b, c, d) =

{

a if c ∈ d

b otherwise.
Let h(/ a, c, d) =

⋃

{g(/ a, c, z) : z ∈ d} (g as defined for Cond=) and h̄(/ b, c, d) = b \ h(/ b, c, d),

then h(/ a, c, d) =

{

a if c ∈ d

∅ otherwise
and h̄(/ b, c, d) =

{

b if c /∈ d

∅ otherwise.

Thus Cond∈(/ a, b, c, d) = h(/ a, c, d) ∪ h̄(/ b, c, d).

• Appl(/ a, b) = {y : (∃x ∈ b)(x, y) ∈ a}.

Let g(/ b, c) =

{

{prr(c)} if prℓ(c) ∈ b

∅ otherwise
, then Appl(/ a, b) =

⋃

{g(/ b, c) : c ∈ a}.

• Prod(/ a, b) = {(x, y) : x ∈ a, y ∈ b} =: a× b, by first observing that

f(/x, b) = {(x, y) : y ∈ b} =
⋃

{

{(x, y)} : y ∈ b
}

is in sRud, and then that Prod(/ a, b) =
⋃

{

f(x, b) : x ∈ a
}

.

1.2 Predicative Set Recursion

We extend the safe rudimentary set function by a predicative set recursion scheme.

Definition 1.2. The set of safe recursive set functions (SRSF) is the smallest class which
contains the safe rudimentary set functions and is closed under safe composition, bounded
union and the following scheme:
(Predicative Set Recursion) If h is in SRSF, then

f(x, ~y /~a) = h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x})

is in SRSF. Observe that according to our convention for denoting functions, x is a normal
argument of f , and {f(z, ~y /~a) : z ∈ x} is substituted at a safe argument of h.

We show that ordinal addition and multiplication are in SRSF. We will see later that
ordinal exponentiation cannot be defined in SRSF. In a set context, let 0, 1, 2, . . . denote
ordinals in the usual sense, e.g., 0 = ∅ and 1 = {∅}.

• Add(x / a) =











a if x = 0

Succ(/
⋃

{Add(z / a) : z ∈ x}) if x = Succ(/
⋃

x)
⋃

{Add(z / a) : z ∈ x} otherwise.

α+β := Add(β /α)

satisfies the usual recursive equations for ordinal addition. Observe that for α+ β, β is
a normal argument and α a safe argument.

• Mult(x, y /) =











0 if x = 0

Add(y /
⋃

{Mult(z, y /) : z ∈ x}) if x = Succ(/
⋃

x)
⋃

{Mult(z, y /) : z ∈ x} otherwise.

α·β := Mult(β, α /)

satisfies the usual recursive equations for ordinal multiplication. Observe that for α · β,
both α and β are normal.

It should be pointed out here that as Mult has no safe arguments we cannot similarly
define exponentiation via predicative set recursion, as we did for Add and Mult.

In many situations it will be convenient to define predicates instead of functions. In the
following we provide the necessary background for this.

3

Definition 1.3 (Predicates). A predicate R(~x /~a) is in SRSF (in sRud, resp.) if the function

χR(~x /~a) =

{

1 if R(~x /~a)

0 otherwise

is in SRSF (in sRud, resp.) Remember that 0 and 1 in a set theoretic context denote ordinals.

Examples of predicates in sRud are a ∈ b, a /∈ b, a = b, and a 6= b for safe a, b, which can
be seen using the safe rudimentary functions Cond∈ and Cond= as provided before.

Predicates can be used to define functions by separation in the usual way. E.g., as-
sume R(~x /~a, b) is a predicate in SRSF, and B(~x /~a) a function in SRSF. Then f(~x /~a) =
{b ∈ B(~x /~a) : R(~x /~a, b)} is a function in SRSF. To see this, let

sel(~x /~a, b) =

{

{b} if R(~x /~a, b)

∅ otherwise
= Cond=(/ ∅, {b}, χR(~x /~a, b), 0) .

Then f(~x /~a) can be defined by bounded union as
⋃

b∈B(~x /~a) sel(~x /~a, b).

Proposition 1.4 (Closure Properties of Predicates). Predicates in SRSF (in sRud, resp.)
are closed under Boolean operations and bounded quantification over safe arguments.

Proof. Let Q, Q1 and Q2 be predicates in SRSF (in sRud, resp.). Then ¬Q1(~x /~a), Q1(~x /~a)∨
Q2(~x /~a) and (∃c ∈ a1)Q(~x /~a, c) are predicates in SRSF (in sRud, resp.):

• P (~x /~a) ⇔ ¬Q1(~x /~a) can be defined as χP (~x /~a) = {∅} \ χQ1(~x /~a).

• P (~x /~a) ⇔ Q1(~x /~a) ∨Q2(~x /~a) can be defined as

χP (~x /~a) = Cond∈

(

/ 1, 0, 1,
{

χQ1(~x /~a), χQ2(~x /~a)
}

)

.

• P (~x /~a) ⇔ (∃c ∈ a1)Q(~x /~a, c) can be defined as

χP (~x /~a) = Cond∈

(

/ 1, 0, 0,
⋃

c∈a1

χQ(~x /~a, c)
)

.

Further examples of predicates in sRud are trans(/ a) (a is transitive) and Ord(/ a) (a is
an ordinal.) This can be seen using the previous proposition:

trans(/ a) ⇔ ∀b ∈ a ∀c ∈ b c ∈ a

Ord(/ a) ⇔ trans(/ a) ∧ ∀b ∈ a trans(/ b)

1.3 Bounding Ranks

A very important property of safe recursive set functions is that they increase ranks only
polynomially. This can be proven similarly to the corresponding Lemma 4.1 in [?]. Let
rk(x) =

⋃

{rk(y) + 1: y ∈ x} denote the rank of x. Observe that rk(x /) is in SRSF. It
should be stressed that the next theorem is not restricted to sets of finite rank.

4

Theorem 1.5. Let f be a function in SRSF. There is a polynomial qf such that

rk(f(~x /~a)) ≤ max
i

rk(ai) + qf (rk(~x))

for all sets ~x, ~a.

Proof. The proof is by induction on the definition of f in SRSF. Our construction will ensure
that qf will always be a multi-variable polynomial with coefficients given by natural numbers.
This implies that it will be a monotone polynomial on ordinals, i.e., if any of its arguments
will be increased, leaving the other arguments the same, its value does not decrease.

We will only consider the case that f is defined by predicative set recursion, the other
cases (base cases, bounded union, safe composition) are left to the reader.

If f(x, ~y /~a) is defined by predicative set recursion from h, then by induction hypothesis
we have qh bounding h. Define qf such that

qf (α, ~β) = (1 + qh(α, ~β)) · (1 + α) .

We will show that rk(f(x, ~y /~a)) ≤ max{rk(~a)}+ qf (rk(x), rk(~y)) by ∈-induction on x.

rk(f(x, ~y /~a))

= rk
(

h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x})
)

≤ max
{

rk(~a), rk
(

{f(z, ~y /~a) : z ∈ x}
)}

+ qh(rk(x), rk(~y))

= max
{

rk(~a),
⋃

{

rk(f(z, ~y /~a)) + 1: z ∈ x
}

}

+ qh(rk(x), rk(~y))

≤ max
{

rk(~a),
⋃

{

max{rk(~a)}+ qf (rk(z), rk(~y)) + 1: z ∈ x
}

}

+ qh(rk(x), rk(~y))

= max{rk(~a)}+
⋃

{

qf (rk(z), rk(~y)) + 1: z ∈ x
}

+ qh(rk(x), rk(~y))

= max{rk(~a)}+
⋃

{

qf (rk(z), rk(~y)) + 1 + qh(rk(x), rk(~y)) : z ∈ x
}

where for the second “≤” we used the ∈-induction hypothesis. Let α be rk(x), βi be rk(yi),
and γ be rk(z). Assume γ < α, then we will show that

qf(γ, ~β) + 1 + qh(α, ~β) ≤ qf (α, ~β) . (1.1)

Using this we can continue our calculation showing

rk(f(x, ~y /~a)) ≤ max{rk(~a)}+ qf (rk(x), rk(~y)) .

We finish by proving (1.1):

qf(γ, ~β) + 1 + qh(α, ~β) = (1 + qh(γ, ~β)) · (1 + γ) + 1 + qh(α, ~β)

≤ (1 + qh(α, ~β)) · (1 + γ) + 1 + qh(α, ~β)

= (1 + qh(α, ~β)) · (1 + γ + 1)

≤ (1 + qh(α, ~β)) · (1 + α)

= qf (α, ~β) .

Corollary 1.6. Ordinal exponentiation cannot be computed by a safe recursive set function.

5

2 Computing on Hereditarily Finite Sets

For this section, we restrict our attention to the set HF of hereditarily finite sets only. Our
main result for HF is that the SRSF functions acting on HF can be characterized in terms
of ATIME(2n

O(1)
, nO(1)); namely, the class of predicates computable by an alternating Turing

machine which runs in time 2n
O(1)

with up to nO(1) many alternations. It is interesting to
note that this complexity class is known to characterize the decision problem for the theory
of the reals with addition. In particular, the theory of the reals with addition is many-one
complete for ATIME(2n

O(1)
, nO(1)) under polynomial time reductions [?, ?, ?].

On HF we will often drive a recursion by some special sets which we denote skinny
drivers. We define the skinny drivers of rank n, sdn, by induction on n as follows: sd0 = ∅
and sdn+1 = {sdn}. Turning our attention to skinny drivers on HF is not a restriction, as
the function sd(x /) = sdrk(x) is in SRSF, which can be seen as follows:

sd(x /) = sd(rk(x /) /) sd(α /) = h(/
{

sd(β) : β ∈ α
}

)

h(/ b) =
⋃

z∈b

g(/ z,
⋃

b) g(/ z, c) =

{

∅ if z ∈ c

{z} otherwise

Predicative set recursion based on skinny drivers can be written in a simplified way.

Proposition 2.1 (Skinny Predicative Set Recursion). Let g, h be in SRSF of appropriate
arities. Then there exists some f in SRSF which satisfies

f(∅, ~y /~a) = g(~y /~a)

f({d}, ~y /~a) = h({d}, ~y /~a, f(d, ~y /~a)) .

Proof. Let

H(x, ~y /~a, b) =

{

g(~y /~a) if x = ∅

h(x, ~y /~a,
⋃

b) otherwise.

Then f defined by predicative set recursion on x in H satisfies the required equations.

In the previous subsection we have seen one important property of SRSF that ranks of sets
grow polynomially only. Another important property deals with sizes of sets, in particular
their growth rate. Since there are super-exponentially many sets of rank n, Theorem 1.5
implies a super-exponential bound on the size of the transitive closure of f(~x /~a) for f ∈ SRSF.
The following Theorem 2.3 will give a substantial improvement over this by showing a double
exponential upper bound. Functions which satisfy such a double exponential size upper bound
will be called dietary – the following definition will make this notion precise.

Let |a| denote the cardinality of a set a, and tc(a) its transitive closure.

Definition 2.2. A function f(~x /~a) in SRSF is called dietary if for some polynomial p,

| tc(f(~x /~a))| ≤ | tc({~x,~a})|2
p(rk(~x))

for all ~x,~a ∈ HF .

Theorem 2.3. All functions in SRSF are dietary.

6

Proof. The proof is by induction on the definition of f in SRSF. We will construct monotone
polynomials qf , and show that they can serve as the polynomial p in the bound of the assertion
that f is dietary. We will only consider the case that f is defined by predicative set recursion,
the other cases (base cases, bounded union, safe composition) are left to the reader.

If f is defined by predicative set recursion from h, then by induction hypothesis we have
h dietary with bounding polynomial qh. Define qf such that

qf (α, ~β) = (1 + qh(α, ~β)) · (1 + α) .

We will show that |f(x, ~y /~a)| ≤ | tc(x, ~y,~a)|2
qf (rk(x),rk(~y))

by ∈-induction on x. We have

|f(x, ~y /~a)| = |h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x})|

≤ | tc
(

{x, ~y,~a, {f(z, ~y /~a) : z ∈ x}}
)

|2
qh(rk(x),rk(~y))

≤
(

| tc({x, ~y,~a})|+
∑

z∈x

| tc(f(z, ~y,~a))|+ |x|+ 1
)2qh(rk(x),rk(~y))

Let α be rk(x) and βi be rk(yi). For z ∈ x we compute, using ∈-induction hypothesis,

| tc(f(z, ~y /~a))| ≤ | tc({x, ~y,~a})|2
qf (rk(z),~β)

≤ | tc({x, ~y,~a})|2
qf (α−1,~β)

We continue our computation from above:

|f(x, ~y /~a)| ≤
(

| tc({x, ~y,~a})|+ |x| · | tc({x, ~y,~a})|2
qf (α−1,~β)

+ |x|+ 1
)2qh(α,~β)

≤
(

(|x|+ 1) · | tc({x, ~y,~a})|2
qf (α−1,~β)

)2qh(α,~β)

≤ | tc({x, ~y,~a})|2
qf (α−1,~β)+1

·2qh(α,~β)

≤ | tc({x, ~y,~a})|2
qf (α,~β)

.

For the last inequality we observe:

2qf (α−1,~β)+1 · 2qh(α,
~β) = 2qf (α−1,~β)+1+qh(α,~β)

= 2(1+qh(α−1,~β))·(1+α−1)+1+qh(α,~β)

≤ 2(1+qh(α,~β))·(1+α−1)+1+qh(α,~β)

= 2(1+qh(α,~β))·(1+α) = 2qf (α,
~β) .

That the bounds given in the definition of “dietary” are sharp, can be seen in the following
way. Let Sq(/ a) = Prod(/ a, a). Define f by skinny predicative set recursion as follows:
f(∅ / a) = a and f({d} / a) = Sq(/ f(d / a)). Then f is in SRSF, and satisfies |f(sdn / a)| =
|a|2

n
.

7

2.1 Simulating Alternating Turing Machines

We will describe a way in which alternating Turing machine computations can be simulated in
SRSF. An alternating Turing machine (ATM) is given by an 8-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject, g)
where the first 7 components form the ingredients of a nondeterministic Turing machine in
the usual way, that is, Q is a finite set of states which includes three designated states: the
start state q0, the accepting state qaccept, and the rejecting state qreject, Σ is the input al-
phabet, Γ the work tape alphabet which includes Σ and an additional symbol ⊔ denoting a
blank tape cell, and δ ⊂ Q × Γ × Q × Γ × {L,R} is the transition relation. In addition to
this, g : Q → {∨,∧} divides the set of states into universal (∧) and existential (∨) states. A
configuration is given by a 3-tuple (u, q, v) where q is a state in Q, u and v are words over Γ ,
which indicates the configuration where the current state is q, the tape content is uv, and the
head position is the first symbol of v (the tape contains only blanks following the last symbol
of v,) and the label of this configuration is given by g(q).

We will not define the behavior of our ATMs in full detail, these will be obvious from
the context. We do use two special conventions, however, that might lead to confusion if
not stated explicitly. First, we assume that the tape is open only to the right, initially the
input word is written as the first entries from the left with the head positioned at the first
symbol. Second, when we mention a time bound for an ATM, then we assume that the ATM
is equipped with a counter, and enters the reject state should the time bound be exceeded.

We are interested in a complexity class of alternating time with a bounded number of
alternation. Given functions t(n) and q(n) we define the set ATIME(t(n), q(n)) to consist
of all languages which can be decided by some alternating Turing machine which runs, on
inputs of length n, in time bounded by O(t(n)), such that the number of alternations on each
computation path is bounded by O(q(n)).

For our simulation of an ATM (Q,Σ,Γ, δ, q0, qaccept, qreject, g) within SRSF, we assume
that the alphabet Γ consists of sets only, and that ∅ /∈ Γ. Taking into considerations that
functions in SRSF are dietary, and increase ranks of sets only polynomially, we will represent
configurations as sets in the following way: The tape content will be encoded as a full binary
tree (the tape tree) whose leaves are labeled with elements from Γ; and the head position will
be encoded as a binary sequence (the head path) of length corresponding to the height of the
tape tree. For this, we define the empty sequence by ∅, and in general the binary sequence
〈i1, . . . , in〉 of length n by (i1, (i2, . . . , (in, ∅) . . .)). Let T

Γ
n be the set of all tape trees of height

n, and Pn be the set of all head paths of length n. Observe that a tape tree of height n stores
tapes of length 2n. The set of all configurations of size 2n is now given as CM

n = Q×Pn×T Γ
n .

All these sets can be defined by functions in SRSF: Choose P in SRSF satisfying P(∅ /) = {∅}
and P({d} /) = Prod(/ {0, 1},P(d /)), then P(sdn /) = Pn. Choose T M in SRSF such that
T M (∅ /) = Γ and T M ({d} /) = Sq(/T M (d /)), then T M (sdn /) = T Γ

n . Define CM (d /) as
Prod(/Q,Prod(/P(d /),T M (d /))) then CM (sdn /) = CM

n .
We define a predicate NextM describing successor configurations according toM . NextM (sdn / c, c′)

will be true if c, c′ ∈ CM
n and c′ is a possible next configuration from c. It can be defined as a

predicate in SRSF in the following way:

NextM (d / (q, p, t), (q′,p′, t′)) ⇔
∨

(q,s,q′,s′,o)∈δ

[

Read(d / p, t) = s ∧ Moveo(d / p) = p′ ∧ Prt(d / p, t, s′) = t′
]

8

〈0, 0, 0〉 〈1, 0, 0〉 〈0, 1, 0〉 〈1, 1, 0〉 〈0, 0, 1〉 〈1, 0, 1〉 〈0, 1, 1〉 〈1, 1, 1〉

Figure 1: A tape of length 8 with pointers. Note that the cells are indexed by binary strings
in reversed bit order.

where Read(d / p, t) outputs the symbol on tape t at position p:

Read(∅ / p, t) = t

Read({d} / (i, p), (t0 , t1)) = Read(d / p, ti) .

Moveo(d / p) computes the head position obtained by moving from position p in direction
o ∈ {L,R}, where 〈0, . . . , 0〉 denotes the very left position (see Figure 1):

Moveo(∅ / p) = 0

MoveL({d} / (i, p)) =











〈0, . . . , 0〉 if (i, p) = 〈0, . . . , 0〉

(0, p) if i = 1

(1,MoveL(d / p)) if i = 0

MoveR({d} / (i, p)) =











〈1, . . . , 1〉 if (i, p) = 〈1, . . . , 1〉

(1, p) if i = 0

(0,MoveR(d / p)) if i = 1

and Prt(d / p, t, s′) computes the tape obtained by printing the symbol s′ on tape t at position
p:

Prt(∅ / p, t, s) = s

Prt({d} / (0, p), (t0 , t1), s) = (Prt(d / p, to, s), t1)

Prt({d} / (1, p), (t0 , t1), s) = (t0, P rt(d / p, t1, s)) .

We also need a predicate Next
M

describing successor configurations according to M for which
the label according to g does not change. Let the labeling function g be extended to configura-

tions in the obvious way: g((q, p, t)) := g(q). Next
M
(d / c, c′) can be defined as NextM (d / c, c′)

and g(c) = g(c′).
Our next aim is to define a binary relation NM

n on CM
n which represents the iteration of

Next
M
. The situation of iterating a binary relation R on a set A will occur at various places,

therefore we will first explain how to achieve this as a function in SRSF.
Given two sets r and s (think of r ⊆ A×B and s ⊆ B × C) we define their composition

r ◦ s to be the set {(x, z) ∈ A× C : (∃y ∈ B)(x, y) ∈ r ∧ (y, z) ∈ s} . This can be defined in
sRud as Comp(/ r, s) = r ◦ s because sRud is closed under Boolean connectives and bounded
quantification. Let A and R be sets (think of R being a binary relation on A.) We define the
iteration of R on A as

Iter(dn /R,A) = {(x, y) ∈ A×A : there is a path in R from x to y of length ≤ 2n}

9

which can be defined by skinny recursion in SRSF as follows:

Iter(∅ /R,A) = R ∪ {(x, x) : x ∈ A}

Iter({d} /R,A) = Comp(/ Iter(d /R,A), Iter(d /R,A)) .

Let us return to our task of iterating Next
M
. We define

N
M
(d /) =

{

(c, c′) ∈ CM (d /) : Next
M
(d / c, c′)

}

NM (d /) = Iter(d /N
M
(d /), CM (d /))

Thus N
M
n = N

M
(sdn /) and NM

n = NM (sdn /).
Let NEXTM (sdn / c, c′) denote the predicate on configurations c, c′ ∈ CM

n which is true
iff c′ follows from c according to M such that either c, c′ and all intermediate configurations
have the same label and c′ is an accepting or rejecting configuration, or c and all intermediate
configurations have the same label, and c′ is the first with a different label.

NEXTM (d / c, (q′, p′, t′))

⇔ (∃c′′ ∈ CM (d /))
[

(c, c′′) ∈ NM (d /) ∧ NextM (d / c′′, (q′, p′, t′))

∧ [g(c) 6= g(q′) ∨ q′ ∈ {qaccept, qreject}]
]

NEXTM (d /) =
{

(c, c′) ∈ CM (d /) : NEXTM (d / c, c′)
}

Finally, we define the accepting states of an alternating computation according to M . Let
C be a set (the set of configurations) and N a binary relation on C (taking configurations to
a next alternating configuration.) AcceptM (sdn / c, C,N) will be true if c has an accepting
computation of at most n alternations.

AcceptM (∅ / c, C,N) ⇔ c ∈ C ∧ state(c) = qaccept

AcceptM ({d} / c, C,N) ⇔

AcceptM (d / c,C,N)

∨ [g(c) = “∧” ∧ (∀c′ ∈ C)((c, c′) ∈ N → AcceptM (d / c′, C,N))]

∨ [g(c) = “∨” ∧ (∃c′ ∈ C)((c, c′) ∈ N ∧ AcceptM (d / c′, C,N))]

AcceptM (d /c) ⇔ AcceptM (d / c, CM (d /),NEXTM (d /))

Now that we have described how accepting configurations of ATMs can be computed in
SRSF, we turn to the missing bit of initializing the tape with an input word. This initialization
part depends on how words are coded in HF , a topic we will discuss next.

2.2 Encoding Words in HF

Any encoding ν : Σ∗ → HF of finite words into HF gives rise to a class of computable functions
over Σ∗ which we will denote by SRSFν .

Definition 2.4. A function f : Σ∗ → Σ∗ is in SRSFν , if there exists some F ∈ SRSF such
that the following diagram commutes:

HF
F

−−−−→ HF
x





ν

x





ν

Σ∗ f
−−−−→ Σ∗

10

In general, the function f : (Σ∗)k → Σ∗ is in SRSFν , if

∀w1, . . . , wk ∈ Σ∗ ν(f(w1, . . . , wk)) = F (ν(w1), . . . , ν(wk) /)

for some F ∈ SRSF.

Definition 2.5. We call two encodings ν and ν ′ equivalent if they can be transformed in
each other with functions from SRSF. That is, there exist f, g ∈ SRSF such that

∀w ∈ Σ∗
(

f(ν(w) /) = ν ′(w) & g(ν ′(w) /) = ν(w)
)

Lemma 2.6. If ν and ν ′ are equivalent, then SRSFν = SRSFν′ .

Several encodings of Σ∗ in HF are possible, but not all will be suitable. We will discuss
a few encodings mentioned in the literature.

2.2.1 The Ackerman Encoding

The Ackerman encoding (cf. [?]) Ack : N → HF is given by

Ack(2n1 + 2n2 + · · ·+ 2nk) = {Ack(n1),Ack(n2), . . . ,Ack(nk)}

for n1 > n2 > · · · > nk ≥ 0, k ≥ 0. This encoding does not give rise to a nice class SRSFAck

of functions. For example, SRSFAck does not include the function n 7→ n ·− 1: Let 2n denote
the exponentiation tower to base 2 of height n, then Ack(2n) = sdn. It is then easy to see that
a function F which represents n 7→ n ·− 1 on HF w.r.t. Ack cannot be dietary, by considering
F ’s behavior on Ack(2n).

2.2.2 Two Feasible Encodings

We will now define two feasible encodings νl and νm. We call them feasible, because the rank
of the encoded word will be of order the length of the word. Actually, both encodings will be
equivalent and thus give rise to the same class of functions.

The first encoding, νl, encodes words as a list using ordered pairs. Let νl(λ) = ∅ and
νl(wx) = (x, νl(w)), then rk(νl(w)) = 2|w| + O(1) (the constant term comes from the ranks
contributed by elements in Σ.)

The second encoding, νm, of a word is given as a map from the position of a letter (coded
by the rank of a skinny driver) to the letter. Let xn . . . x1 denote a word over Σ of length n.
We define

νm(xn . . . x1) = {(sdj, xj) : j = 1, . . . , n}

Then rk(νm(w)) = |w|+O(1).
We leave it to the reader to verify that νl and νm are equivalent.
The main result of this section is the characterization of SRSFνm as the functions com-

putable by an ATM in exponential time with polynomial many alternations.

Theorem 2.7. A function f(x) is in SRSFνm if, and only if, f can be computed by some
machine in ATIME(2n

c
, nc) for some constant c.

Here we prove one part of this result, that all functions computable by ATM’s in expo-
nential time with polynomial many alternations are in SRSFνm. The other part will be the
subject of the next section.

11

Theorem 2.8. Let f be a function computable in ATIME(2n
k
, nk) for some constant k. Then

f is in SRSFνm.

Proof. Let L ⊆ Σ∗ be a language computable by some O(2n
k
)-time ATM M with O(nk) many

alternations on each computation path. We will define some predicate P ∈ SRSF such that

w ∈ L ⇔ P (νm(w))

for all w ∈ Σ∗. In the following, we will use w to range over words in Σ∗, and m to range
over codes of words νm(Σ

∗).
First, we define a function cwl in sRud which computes the length of a coded word as a

skinny driver:

cwl(/m) =
⋃

x∈
⋃

m

h(/x,m) h(/x,m) =

{

{x} if Appl(m,x) 6= ∅& Appl(m, {x}) = ∅

∅ otherwise.

cwl(m/) = cwl(/m)

Then cwl(/ νm(w)) = sd|w| for w ∈ Σ∗.

Second, we have seen that ordinal multiplication is in SRSF, so is f1(α /) = αk for ordinals
α. Let

f2(m/) = sd(f1(rk(cwl(m/) /) /) /) .

Fix w ∈ Σ∗. Let l denote the ordinal representing |w|. We observe that rk(sd|w| /) = l. Thus

f2(νm(w) /) = sd(f1(rk(sd|w| /) /) /) = sd(f1(l /) /)

= sd(lk /) = sdrk(lk) = sd|w|k

Third, we define some functions suitable to produce the initial configuration based on an
input word. null(sdn /) = 〈0, . . . , 0〉 points to the first position of the tape:

null(∅ /) = ∅ null({d} /) = (0,null(d /)) .

blank(sdn /) computes the blank tape of length 2n:

blank(∅ /) = ⊔ blank({d} /) = (blank(d /),blank(d, /)) .

The next function, moveR, computes the movement of the head position to the right. moveR(sdk, sdn / p)
computes the head position after moving k steps to the right from position p, assuming that
p is of length n:

moveR(∅, e / p) = p moveR({d}, e / p) = MoveR(e / moveR(d, e / p)) .

moveR(sdk, e /) = moveR(sdk, e / null(e /)) then computes the head position after moving k
steps to the right from the first position.

Finally, we can compute initial configurations. InitM (νm(w) /) computes the initial tape

of length 2|w|k with νm(w) standing at the very left end of the tape:

Init(m/) = Init(cwl(m/), f2(m/) /m)

Init(∅, e /m) = blank(e /)

Init({d}, e /m) = Prt(e / moveR(d, e /), Init(d, e /m),Appl(/m, d))

12

Now we can put things together. Define P as

P (m/) ⇔ AcceptM (f2(m/) / InitM (/)) .

Then P ∈ SRSF has the desired property that w ∈ L if and only if P (νm(w)) for all w ∈
Σ∗.

2.3 The Converse of Theorem 2.8

For the converse of Theorem 2.8, we shall prove the following theorem.

Theorem 2.9. Let f(x) be an SRSFνm function. Then f can be computed y some machine
in ATIME(2n

c
, nc), for some constant c.

The proof of Theorem 2.9 will use induction on the formation of SRSFνm functions, with
the main induction step being the definition by safe recursion. However, the definition of an
SRSFνm function may use intermediate SRSF functions which may not be SRSFνm functions.
Even worse, these intermediate functions may output sets which have double exponential size

22
nc

. For instance, the set CM
n defined above is an example of a set with double exponential

size. For this reason it is necessary to state and prove a generalized form of Theorem 2.9 that
will apply to all SRSF functions, not just SRSFνm functions.

Definition. A set A has local cardinality N provided A and every member of tc(A) has
cardinality ≤ N .

Definition. An indexed tree T is a finite rooted tree in which, for a given node x in T , the
children of x are indexed by non-negative integers. That is, for each i ≥ 0, there is at most
one node y which is the child of x of index i. We call y the i-th child of x, however it should
be noted that some children may be missing; for example, x might have a third child, but no
second child.

Definition. An indexed tree T has local index rank N provided that all nodes in T have their
children indexed by numbers < N .

Definition. Let A be a set with local cardinality N and rank ≤ R. A can be (non-uniquely)
represented by an indexed finite tree T as follows. The subtree of T rooted at the i-th child
of the root of T is called the i-th subtree of T . If A is empty, then T is the tree with a single
node, namely its root node has no children. For A a general set, T represents A is defined by
the condition that the elements of A are precisely the sets B for which there is some i < N
such that the i-th subtree of T represents B. That is, T represents A provided:

A = {B : for some i, the i-th subtree of T exists and represents B} .

Definition. Let 〈i1, . . . , iℓ〉 be a sequence of integers and T be a tree. This sequence denotes
a path in T that starts at the root, and proceeds to the i1-st node of T if it exists, and
continues along the path represented by 〈i2, . . . , iℓ〉 in the i1-st subtree of T (if it exists). For
I = 〈i1, . . . , iℓ〉, we write TI for the subtree of T rooted at the end of the path I in T .

Let the rank of an indexed tree T be defined by assigning the tree with a single node rank
0, and inductively assigning a general tree rank the supremum of the successors of ranks of
children of T ’s root, i.e. max

{

(rank of T〈i〉) + 1: i < N
}

where N is the local index rank of

13

T . We observe that a set of local cardinality N and rank R can be represented by an indexed
tree of local index rank N and rank R. Conversely, an indexed tree of local index rank N
and rank R represents a set of local cardinality N and rank R.

Definition. An algorithm M recognizes a tree T provided that on input 〈i1, . . . , iℓ〉, M
returns a Boolean value indicating whether the path 〈i1, . . . , iℓ〉 exists in T .

When working with an algorithm M that recognizes a tree T of local index rank N , we
shall often have N equal to the value 22

p
for some p ≥ 0. Note that if the rank of T is

bounded by R, then any path 〈i1, . . . , iℓ〉 is bounded by NR, and hence is coded by a bit
string of length O(R logN) = O(R · 2p).

More generally, we may have N = q2
p
for some value q, at least for the intermediate parts

of some of our proofs.
In our applications, we will have both p and R equal to nO(1), and we usually have q = 2.

Logarithms are always base 2.

Lemma 2.10. There are algorithms M= and M∈ which take as input values p,R > 0 and
oracles for trees S and T both with local index rank ≤ N = 22

p
and rank ≤ R, and which

output Boolean values indicating whether A = B and A ∈ B, respectively, where A and B are
the sets represented by S and T , respectively. Furthermore, the algorithms M= and M∈ run
in time 2p ·RO(1) using O(R) many alternations.

Proof. We define slightly more general algorithms MS,T
= (p,R, I, J) and MS,T

∈ (p,R, I, J) which
decide whether AI = BI and AI ∈ BI , where AI and BJ are the sets represented by SI and
TJ .

MS,T
= (p,R, I, J) universally calls two algorithms for checking AI ⊆ BJ and AI ⊇ BJ . The

algorithm for AI ⊆ BJ first universally chooses i < N and checks whether path I ∗ 〈i〉 exists
in S. If not, it accepts. Otherwise, it then existentially chooses j < N , checks that J ∗ 〈j〉
in T exists and rejects if not. Otherwise, it verifies whether MS,T

= (p,R, I ∗ 〈i〉 , J ∗ 〈j〉). This
determines whether AI ⊆ BJ .

The same algorithm is used to determine whether AI ⊇ BJ .
MS,T

∈ (p,R, I, J) existentially chooses j < N , and checks whether J ∗ 〈j〉 is in T . If not, it
rejects, otherwise it determines whether MS,T

= (p,R, I, J ∗ 〈j〉).

The proof of Lemma 2.10 actually proves a better bound on the number of alternations
used by the two algorithms. Namely,

Lemma 2.11. Lemma 2.10 still holds if the algorithm M is required to use O(min{RS , RT })
alternations, where RS and RT are the ranks of S and T , respectively.

Proof. The algorithms as described already have alternations bounded in this way.

Definition. A safe set function f(~x /~a) is AEP-computable (where “AEP” stands for “ATIME(Exp,Poly)”)
provided there are polynomials p, q and r, and an ATM M , such that the following holds.
Let ~X and ~A be trees which represent sets ~x and ~a. Let the local index rank of ~X and ~A
be bounded by Nx and Na, respectively, and their ranks be bounded by Rx and Ra, respec-

tively. Let Nxa = max{Nx, Na, 2} and Ha = max{Ra, 1}. Then M
~X, ~A recognizes a tree T

which represents the set f(~x /~a) such that T has local index rank ≤ N = N2p(Rx)

xa and rank

≤ R = Ra + r(Rx). Furthermore, M
~X, ~A runs in time (Ha · logN)O(1) with ≤ Q = Ha · q(Rx)

many alternations.

14

Note that Q depends on Ra multiplicatively, and N depends on only Rx.

Lemma 2.12. The set equality relation, the set membership relation, the projection functions,
the difference function and the pairing function are AEP-computable.

Proof. For set equality and set membership, use the algorithm from the proof of Lemma 2.10
above. The theorem is obvious for the projection functions since M just computes the same
function as one of its oracles. Next consider the pairing function p(/ a, b) = {a, b}. If A and
B are trees representing the sets a and b, then the tree representing the pair {a, b} is

{〈i〉 ∗ I : I is a path in A if i = 0, or a path in B if i = 1 } .

The property “I is a path in A” (resp, “in B”) is computed by invoking one of the oracle
inputs. Finally, consider the set difference function d(/ a, b) = a \ b. The tree representing
the set difference a \ b consists of the following paths:

{I = 〈i1, i2, ..., iℓ〉 : I is a path in A, and for all j, Ai1 is not equal to Bj} .

M computes this property by universally branching to verify both (a) check that I ∈ A
using the oracle for A, and (b) universally choosing j (this takes logNb time where Nb bounds
the local index rank of tree B) and invoking M= to verify that Ai1 is not equal to Bj.

Theorem 2.13. Every SRSF function is AEP-computable.

The proof of Theorem 2.13 will show that the formation methods of bounded union,
safe composition, and safe recursion preserve the property of being AEP computable. An
important ingredient in the construction is how one composes algorithms that use alternation
without losing control of the number of alternations. Specifically, suppose that f and g are
algorithms that use run times tf and tg, and have number of alternations bounded by qf and
qg. Then, loosely speaking, their composition f ◦ g can be computed in time approximately
tf + tg with qf + qg + O(1) many alternations. The basic idea for the algorithm for f ◦ g
is as follows. Run the algorithm for f ; but whenever it needs to query its input (namely,
the value of g), it existentially guesses the needed input value, and branches universally to
both (a) verify the correctness of its guess by executing the algorithm for g, and (b) continue
the computation of f . (Alternately, it could branch universally and then existentially.) Note
that the algorithm for g is run only once in any given execution path, so contributes only
additively to the run time. However, this “basic idea” can increase the number of alternations
by the number of times f reads its input (which is more than we can allow); and a better
construction is needed. The better construction is as follows:

Algorithm for f ◦ g: Simulate f by splitting the computation up into existential portions
and universal portions. There are at most qf such portions by assumption. When starting an
existential portion, initially guess all input values provided by g that will be needed throughout
the computation for this portion. In addition, existentially guess (or, non-deterministically
execute) the entire computation for this existential portion using the guessed input values.
Then branch universally to either (a) check any one of the guessed input values, by running
the algorithm for g and accepting iff it gives the guessed input value, or (b) proceed to the
next universal portion. Universal portions of the computation of f are handled dually.

The run time for the algorithm is clearly O(tf + tg). And, the number of alternations is at
most qf + qg +O(1). (The +O(1) is needed for an alternation that may occur as g is invoked;
it is also needed to handle the case where f is deterministic and qf = 0.)

15

Clearly, this construction can be iterated for repeated compositions and this will allow us
to handle safe recursion.

Proof of Theorem 2.13. The argument splits into cases of bounded union, safe composition,
and safe recursion. The basic idea is to use the method described above for nesting calls to
functions, along with the bounds established in the proofs of Theorems 1.5 and 2.3.

Case: Bounded Union. f(~x /~a, b) = ∪z∈b g(~x /~a, z). The induction hypothesis that g is
AEP-computable gives polynomials pg, qg and rg, and an ATM Mg. Let ~X , ~A, B be trees
representing sets ~x, ~a, b, with local index ranks bounded by Nx, Na and Nb, respectively, and
ranks bounded by Rx, Ra and Rb, respectively. W.l.o.g. Nx, Na, Nb ≥ 2 and Ra, Rb ≥ 1. Let
Nxab = max{Nx, Na, Nb}, and Rab = max{Ra, Rb}.

We describe the behavior of M
~X, ~A,B on input 〈i〉 ∗ I: M treats i as a pair (j1, j2), and

universally (a) checks that 〈j1〉 is a path in B, and (b) runs M
~X, ~A,Bj1
g on input 〈j2〉 ∗ I.

Clearly, M
~X, ~A,B computes a tree T representing f(~x /~a). Let Ng be an upper bound to the

local index rank of the tree computed by M
~X, ~A,Bj1
g , and Rg an upper bound to its rank. Let

Qg bound the number of alternations for M
~X, ~A,Bj1
g .

T has local index rank bounded by O(Ng · Nb) = O(N2pg(Rx)

xab · Nb) = N2pg(Rx)+O(1)

xab and
rank bounded by Rg ≤ Rab + rg(Rx) . The algorithms runs in time bounded by

(Rab logNxab)
O(1) + (Rab logNg)

O(1) ≤ (Rab logN
2pg(Rx)

xab)O(1)

with Qg + 1 ≤ Rab · (qg(Rx) + 1) many alternations.

Case: Safe composition. f(~x /~a) = h(s(~x/)/t(~x/~a)). Here s and t may be vectors of
functions, but we omit this for simplicity (nothing essential is changed in the proof). The
induction hypotheses give polynomials ph, ps, pt, qh, qs, qt, rh, rs, and rt, and machines Mh,
Ms, and Mt. Let ~X and ~A be trees representing sets ~x and ~a, repectively, with local index
ranks bounded by Nx and Na, respectively, and ranks bounded by Rx and Ra respectively.
W.l.o.g. Nx, Na ≥ 2 and Ra ≥ 1. Let Nxa = max(Nx, Na), Nst = max(Ns, Nt), pst = ps + pt,

and qst = qs + qt. We have that Nst ≤ N2pst(Rx)

xa .
Let M be the straightforward algorithm for f , based on composing the algorithms for h,

s and t. M
~X, ~A will recognize a tree T whose rank is bounded by

Rt + rh(Rs) ≤ Ra + rt(Rx) + rh(rs(Rx))

so we can choose rf = rt + rh ◦ rs. The local index rank of T is bounded by

N2ph(Rs)

st ≤
(

N2pst(Rx)

xa

)2ph(rs(Rx))

= N2pst(Rx)+ph(rs(Rx))

xa .

The run time of M is bounded by, for some c = O(1),

O(max{(runtime(s), runtime(t)}+ runtime(h))

≤ O
(

max{(logNx) · 2
ps(Rx), Ra · (logNxa) · 2

pt(Rx)}c +
(

Rt · (logNst) · 2
ph(Rs)

)c
)

≤ O
(

(

Ra · (logNxa) · 2
pst(Rx)

)c
+

(

(Ra + rt(Rx)) · (logNxa) · 2
pst(Rx)+ph(rs(Rx))

)c
)

≤
(

Ra · (logNxa) · 2
pf (Rx)

)c

16

for an appropriately chosen polynomial pf . Say, pf = ps + pt + rt + ph ◦ rs +O(1).
The number of alternations of this algorithm is bounded by

max{alternations(s), alternations(t)}+ alternations(h) +O(1)

≤ max{qs(Rx), Ra · qt(Rx)}+Rt · qh(Rs) +O(1)

≤ Ra · qst(Rx) + (Ra + rt(Rx)) · qh(rs(Rx)) +O(1)

≤ Ra · qf (Rx)

for an appropriate polynomial qf .

Case: Safe recursion. f(x, ~y /~a) = h(x, ~y /~a, {f(z, ~y /~a) : z ∈ x}). The induction hypoth-
esis gives polynomials ph, qh, rh, and a machine Mh. Let X, ~Y and ~A be trees representing
sets x, ~y and ~a, respectively, with local index ranks bounded by Nx, Ny and Na, respectively,
and ranks bounded by Rx, Ry and Ra, respectively. W.l.o.g. Nx, Ny, Na ≥ 2 and Ra ≥ 1.
Let Nxya = max(Nx, Ny, Na), and Rxy = max(Rx, Ry). With M we denote the (yet to be
defined) algorithm for computing f .

Let f̄(x, ~y /~a) be the set {f(z, ~y /~a) : z ∈ x}. f̄ can be computed by a machine MX,~Y , ~A
f̄

which on input 〈i〉 ∗ I first tests whether 〈i〉 is a path in X, and if so calls MXi,~Y , ~A on input

I. Then, MX,~Y , ~A computes the composition of h with f̄ using the above algorithm. Let Rf̄

(Nf̄ , respectively) denote a bound to the rank (local index rank, respectively) of the tree

computed by MX,~Y , ~A
f̄

.

Clearly, MX,~Y , ~A computes a tree T which represents f(x, ~y /~a). To obtain a bound for
the rank of T we can choose rf similar to the proof of Theorem 1.5: Let rf (z) = r′f (z, z) with
r′f (z, z

′) = (1 + rh(z
′))(1 + z). The same calculation done in that proof carries over here to

show by induction on Rx that the rank is ≤ Ra + r′f (Rx, Rxy).
In order to bound the local index rank of T we choose pf similar to the proof of Theo-

rem 2.3. Let pf (z) = p′f (z, z) for p′f (z, z
′) = (ph(z

′) + rf (z
′) + O(1)) · (1 + z). We show by

induction on Rx that the local index rank of T is ≤ N = N2
p′f (Rx,Rxy)

xya and that the run time

is ≤ (Ra logN)O(1). In case Rx = 0 both assertions follow easily. For Rx > 0, we calculate as
a bound for the local index rank of T

max{Nxya, Nf̄}
2ph(Rxy)

≤ max{Nxya, Nx, N
2
p′f (Rx−1,Rxy)

xya }2
ph(Rxy)

≤ N2
p′
f
(Rx−1,Rxy)+ph(Rxy)

xya ≤ N2
p′
f
(Rx,Rxy)

xya

17

The run time of M can be bounded by, for some c = O(1),

O(runtime(Mh) + runtime(Mf̄))

≤ O
(

(

max{Ra, Rf̄} · (logmax{Nxya, Nf̄}) · 2
ph(Rxy)

)c

+
(

Ra · (logNf̄) +Ra · (logNxya) · 2
p′f (Rx−1,Rxy)

)c
)

≤ O
(

(

(Ra + rf (Rxy)) · (logNxya) · 2
p′f (Rx−1,Rxy) · 2ph(Rxy)

)c

+
(

Ra · (logNxya) · 2
p′f (Rx−1,Rxy) +Ra · (logNxya) · 2

p′f (Rx−1,Rxy)
)c
)

≤
(

log(Nxya) · 2
ph(Rxy)+rf (Rxy)+O(1)+p′f (Rx−1,Rxy)

)c

=
(

log(Nxya) · 2
p′f (Rx,Rxy)

)c

Let q′f (z, z
′) = (rf (z

′) + O(1)) · qh(z
′) · (1 + z). We will show that the overall number of

alterations of MX,~Y , ~A is bounded by Ra · q′f (Rx, Rxy) by induction on Rx. Then choosing
qf (z) = q′f(z, z) gives the desired bound. If Rx = 0, the overall number of alterations can be
calculated as

alternations(Mh) ≤ Ra · qh(Rxy) ≤ Ra · q
′
f (0, Rxy)

If Rx > 0 we obtain

alternations(Mh) + alternations(Mf̄) +O(1)

≤ max{Ra, Rf̄} · qh(Rxy) +Ra · q
′
f (Rx − 1, Rxy) +O(1)

≤ (Ra + rf (Rxy)) · qh(Rxy) +Ra · q
′
f (Rx − 1, Rxy) +O(1)

≤ Ra · ((rf (Rxy) +O(1)) · qh(Rxy) + q′f (Rx − 1, Rxy))

= Ra · q
′
f (Rx, Rxy) .

It is easy to verify that Theorem 2.9 is a corollary of Theorem 2.13.

3 Computing on Arbitrary Sets

Our goal in this section is to characterise the safe-recursive functions (i.e., the functions in
SRSF) in definability-theoretic terms. To achieve this we will use a relativisation of Gödel’s
L-hierarchy. Our result breaks into two parts: an upper bound result, showing that every safe-
recursive function satisfies our definability criterion, and a lower bound result, showing that
any function satisfying our definability criterion is in fact safe-recursive. First we introduce:

3.1 The Relativised Gödel Hierarchy

For a transitive set T , define the LT -hierarchy as follows:

LT
0 = T

LT
α+1 = Def(LT

α)

LT
λ = ∪α<λL

T
α for limit λ ,

18

where for any set X, Def(X) denotes the set of all subsets of X which are first-order definable
over the structure (X,∈) with parameters. The following facts are easily verified:

Lemma 3.1. For any transitive set T :

1. T is an element of LT
1 .

2. Each LT
α is transitive and α ≤ β implies LT

α ⊆ LT
β .

3. Ord(LT
α) = Ord(T) + α, where Ord(X) denotes Ord∩X for any set X.

Gödel demonstrated the following definability result for the L-hierarchy: For limit α, the
sequence (Lβ : β < α) is definable over (Lα,∈) and the definition is independent of α. (See for
example [?, Chapter II, Lemma 2.8].) His argument readily yields the following refinement,
which will be needed for our upper bound result.

Lemma 3.2. Let k < ω be sufficiently large, and let T be transitive, α an ordinal and ϕ(~x, ~y)
a formula. Let D consist of all triples (U, β, ~p) such that for some γ < α: U is a transitive
element of LT

γ+1, γ + β + k < α and ~p is a sequence (with the same length as ~y) of elements

of LU
β . Then the function with domain D sending (U, β, ~p) to (LU

β , {~x : L
U
β � ϕ(~x, ~p)}) is

definable over LT
α via a definition independent of T, α.

For our lower bound result we will need the following (see [?, Corollary 13.8]):

Lemma 3.3. (Gödel) There exists a list of functions G1(x, y), . . . , G10(x, y) such that for
transitive T , T ∪

⋃

1≤i≤10 range(Gi ↾ T ×T) is transitive and Def(T) consists of those subsets
of T which belong to the closure of T ∪{T} under the Gi’s. Moreover, for each i the associated
function G∗

i defined by G∗
i (/x, y) = Gi(x, y) belongs to sRud.

3.2 The Upper Bound Result

Recall that we identify finite sequences ~x of sets with individual sets, using Kuratowski pairing.
For any set x let tc(x) denote the transitive closure of x. The rank of tc(x) (in the von
Neumann hierarchy of Vα’s) is the same as rk(x), the rank of x. Given two finite sequences
~x, ~y, we write ~x ∗ ~y for their concatenation.

Definition 3.4. For sequences ~x, ~y and 0 < n ≤ ω we define SRn(~x /~y) as L
tc(~x∗~y)
n+rk(~x)n .

Our upper bound result is the following refinement of Theorem 1.5:

Theorem 3.5. If f(~x /~y) is safe-recursive then for some finite n, f(~x/~y) is uniformly de-
finable in SRn(~x /~y), i.e., for some formula ϕ(~x, ~y, z) we have:

1. f(~x /~y) belongs to SRn(~x /~y) for all ~x, ~y;

2. f(~x /~y) = z iff (SRn(~x /~y),∈) � ϕ(~x, ~y, z).

To see that this implies Theorem 1.5, note that all elements of SRn(~x /~y) have rank at
most rk(~x∗~y)+n+rk(~x)n ≤ max(rk(~x), rk(~y))+k+rk(~x)n for some finite k, which is bounded
by maxi rk(yi) + a polynomial in rk(~x).

19

Proof of Theorem 3.5. As in the proof of Theorem 1.5 we proceed by induction on the clauses
that generate f as a safe-recursive function. The base cases of Projection, Difference and
Pairing are left to the reader. For Bounded Union we have:

f(~x /~y, z) =
⋃

w∈z

g(~x /~y,w)

and by induction there is a finite n such that g(~x /~y,w) is uniformly definable in SRn(~x /~y,w).
By the definability of union, it then follows from Lemma 3.2 that f(~x /~y, z) is uniformly
definable in SRn+k(~x /~y, z) for sufficiently large k.

Safe Composition

We have:
f(~x /~y) = h(~r(~x /) /~t(~x /~y))

and by induction nh, nri and ntj witnessing the theorem for the functions h, ri for each i and
tj for each j, respectively. By Lemma 3.2 we can choose a large n and combine the uniform
definitions of the ri(~x /)’s in the SRnri

(~x /)’s, of the tj(~x /~y)’s in the SRntj
(~x /~y)’s and of

h(~r(~x /) /~t(~x /~y)) in SRnh
(~r(~x /) /~t(~x /~y)) to produce a uniform definition of f(~x /~y) inside

SRn(~x /~y).

Predicative Set Recursion

We have:
f(x, ~y / ~z) = h(x, ~y / ~z, {f(w, ~y /~z) : w ∈ x}) .

Choose n > 1 to witness the Theorem for h, i.e., so that h(x, ~y / ~z, u) is uniformly definable
in SRn(x, ~y / ~z, u). Fix ~y and ~z. By induction on rk(x) we show that f(x, ~y / ~z) is uniformly

definable in L
tc(〈x〉∗~y∗~z)
n+rk(〈x〉∗~y)n·k·(rk(x)+1) (where k > n is fixed as in Lemma 3.2). If rk(x) is 0 then

we want to show that f(0, ~y / ~z) = h(0, ~y / ~z, 0) is an element of L
tc(〈0〉∗~y∗~z)
n+rk(〈0〉∗~y)n·k

, which is true

by the choice of n. If rk(x) > 0 then by induction we know that for w ∈ x, f(w, ~y /~z) is

uniformly definable in L
tc(〈w〉∗~y∗~z)
n+rk(〈w〉∗~y)n·k·(rk(w)+1); it follows that {f(w, ~y /~z) : w ∈ x} is uniformly

definable over L
tc(〈x〉∗~y∗~z)
n+rk(〈x〉∗~y)n·k·rk(x). By choice of n, f(x, ~y / ~z) = h(x, ~y / ~z, {f(w, ~y /~z) : w ∈ x})

is uniformly definable in L
tc(〈x〉∗~y∗~z∗〈{f(w,~y / ~z) : w∈x}〉)
n+rk(〈x〉∗~y)n and therefore by Lemma 3.2 also in

L
tc(〈x〉∗~y∗~z)
n+rk(〈x〉∗~y)n·k·(rk(x)+1). This completes the induction step.

Now by choosing m large enough so that n + rk(〈x〉 ∗ ~y)n · k · (rk(x) + 1) is less than
m+rk(〈x〉∗~y)m we have that f(x, ~y / ~z) is uniformly definable in SRm(x, ~y / ~z), as desired.

Note that if there are no safe arguments then SRn(~x /) takes a particularly nice form and
we have:

Corollary 3.6. Suppose that f(~x /) is safe-recursive. Then for some finite n and some
formula ϕ we have (for ~x 6= 〈0〉):

1. f(~x /) belongs to L
tc(~x)
n+rk(~x)n .

2. f(~x /) = y iff L
tc(~x)
n+rk(~x)n � ϕ(~x, y).

20

For any transitive set T let SR(T) denote LT
(2+rk(T))ω .

Corollary 3.7. For transitive T , SR(T) contains T ∪{T} and is closed under SRSF functions
(i.e., T contains f(~x /~y) whenever f is safe-recursive and T contains the components of ~x,
~y).

We shall soon see that SR(T) is in fact the smallest such set.

3.3 The Lower Bound Result

Now we aim for a converse of Theorem 3.5. We begin by showing that a certain initial segment
of the LT -hierarchy can be generated by iteration of a safe-recursive function.

Lemma 3.8. Suppose that f(x /) is safe-recursive with ordinal values and g(/x) is safe-
recursive with the property that x ⊆ g(/x) for all x. By induction on α define gα(/x) by:
g0(/x) = x, gα+1(/x) = g(/ gα(/x)), gλ(/x) = ∪α<λg

α(/x) for limit λ. Then the function
h(x /) = gf(x /)(/x) is safe-recursive.

Proof. Imitating the proof that multiplication can be defined from addition via a safe recur-
sion, first define the function k(x, y /) via a safe recursion as follows:

k(x, y /) =











y if x = 0

g(/ ∪ {k(z, y /) : z ∈ x}) if x = Succ(/ ∪ x)

∪{k(z, y /) : z ∈ x} otherwise.

Then k is safe-recursive and note that for each ordinal α, k(α, y /) = gα(/ y). It follows
from safe composition that h(x /) = k(f(x /), x /) is also safe-recursive.

Recall that the rank function rk(x /) is safe-recursive. We say that a function f(~x /~y)
is safe-recursive with parameter p iff for some safe-recursive function g(~x, z / ~y), we have
f(~x /~y) = g(~x, p / ~y) for all ~x, ~y.

Corollary 3.9. 1. The function tc(x /) computing the transitive closure of x, is safe-
recursive.

2. The function L(x, T /) = LT
rk(x) is safe-recursive with parameter ω.

3. For each finite n, the function SRn(~x /) is safe-recursive with parameter ω.

Proof. 1. The transitive closure of x is obtained by iterating the sRud function g(/x) =
(x ∪ (∪x)) rk(x) times. So the result follows from the previous lemma.

2. The function g(/x) = x∪ the union of the ranges of the Gödel functions on x (see
Lemma 3.3) belongs to sRud. It follows from the previous lemma that the function
g∗(T /) = Def(T) = the closure of T ∪ {T} under g∗ (restricted to transitive T) is safe-
recursive with parameter ω, as Def(T) is obtained by iterating g ω times. Similarly,
as the function rk(x /) is safe-recursive, an application of the previous lemma gives the
safe-recursiveness of L(x, T /).

3. This follows from 1 and 2, using the fact that ordinal multiplication is safe-recursive.

21

We therefore get the following partial converse to Theorem 3.5.

Theorem 3.10. Suppose that for some finite n, f(~x /~y) is uniformly definable in SRn(~x /~y).
Then f(~x /~y) is safe-recursive with parameter ω. Moreover there is a safe-recursive function
g(~x /~y) such that f(~x /~y) = g(~x /~y) whenever ~x has a component of infinite rank (i.e.,
whenever rk(~x) is infinite.)

Proof. By Corollary 3.9, 3, the function SRn(~x /~y) is safe-recursive with parameter ω. For
any formula ϕ(~x, ~y, z), the function g(/T, p) = {(~x, ~y) : T � ϕ(~x, ~y, p)} is in sRud (see
for example [?, Chapter VI, Lemma 1.17]). It follows that any function which is uniformly
definable in SRn(~x /~y) is also safe-recursive with parameter ω. For the “moreover” clause,
note that there is a safe-recursive function f(x /) whose value is ω for x of infinite rank, and
therefore ω can be eliminated as a parameter when ~x has a component of infinite rank.

Corollary 3.11. The safe-recursive functions with parameter ω are exactly the functions
f(~x /~y) which are uniformly definable in SRn(~x ∗ 〈ω〉 /~y) for some finite n.

Note that the closure of {0} under safe-recursive functions is Lω, the set of hereditarily
finite sets and when T is transitive of infinite rank then ω belongs to the safe-recursive closure
of T . Therefore we have:

Corollary 3.12. For transitive T , SR(T) = LT
(2+rk(T))ω is the smallest set which contains

T ∪ {T} as a subset and is closed under safe-recursive functions.

We therefore obtain the following hierarchy of iterated safe-recursive closures. Define:

SR0 = ∅

SRα+1 = SR(SRα)

SRλ = ∪α<λ SRα for limit λ.

Corollary 3.13. For every α, SR1+α = Lωωα .

To eliminate the parameter ω from Corollary 3.11 we redefine SRn slightly, using a slower
hierarchy for LT . Define MT

α inductively as follows:

MT
0 = T

MT
α+1 = MT

α ∪
⋃

1≤i≤10

range(Gi ↾ ((M
T
α ∪ {MT

α })× (MT
α ∪ {MT

α }))

MT
λ = ∪α<λM

T
α for limit λ.

This hierarchy is very close to Jensen’s S-hierarchy, a refinement of his J-hierarchy (see
[?, page 244]). We have the following (see [?, page 255]):

Lemma 3.14. For any transitive set T :

1. T is an element of MT
1 .

2. Each MT
α is transitive and α ≤ β implies MT

α ⊆ MT
β .

22

3. Ord(MT
λ) = Ord(T) + λ for limit λ.

4. MT
α = LT

α if α is ω or ω · α = α. In particular, MT
rk(x)ω = LT

rk(x)ω if x has rank greater
than 1.

Definition 3.15. For sequences ~x, ~y and 0 < n ≤ ω we define SR∗
n(~x /~y) to be M

tc(~x∗~y)
n+rk(~x)n .

Lemma 3.2 and Theorem 3.5 (the upper bound result) go through with L replaced by M
and SRn(~x /~y) replaced by SR∗

n(~x /~y). But now the lower bound result can be improved, as
the parameter ω can be dropped in the version of Corollary 3.9 (2), (3) in which L is replaced
by M and SR is replaced by SR∗: Whereas obtaining LT

α+1 from LT
α requires a safe recursion

of length ω, MT
α+1 is obtained from MT

α by a single application of a function in sRud. In
conclusion, we get the following characterisation:

Theorem 3.16. The safe-recursive functions are exactly the functions f(~x /~y) which are
uniformly definable in SR∗

n(~x /~y) for some finite n.

3.4 Safe Recursion on Binary ω-Sequences

We let {0, 1}ω denote all ω-sequences of 0’s and 1’s. Note that if x belongs to {0, 1}ω then

x has rank ω. It follows that SRn(x /) is equal to L
tc(x)
ωn for 0 < n ≤ ω. Moreover the latter

can be equivalently written as Lωn [x], where Lα[x] is the α-th level of the relativised Gödel’s
L-hierarchy in which x is introduced as a new unary predicate.

Thus the safe-recursive functions restricted to elements of {0, 1}ω as normal inputs take
the following form:

f(x /) = y iff Lωn [x] � ϕ(x, y)

for some formula ϕ.
The following is implicit in the analysis of the “Theory Machine”, the universal infinite-

time Turing machine considered in [?].

Theorem 3.17. For any function g : {0, 1}ω → {0, 1}ω , the following are equivalent:

1. g is computable by an infinite-time Turing machine (see [?]) in time β for some β < ωω.

2. g is of the form
g(x) = y iff Lβ[x] � ϕ(x, y)

for some formula ϕ and some β < ωω.

From this we see that the safe-recursive functions restricted to normal inputs in {0, 1}ω

with values in {0, 1}ω are equivalent to the functions computed by an infinite-time Turing
machine in time less than ωω. Interestingly, these are exactly the functions which are “com-
putable in polynomial time” on an infinite-time Turing machine in the sense of [?].

4 A Machine Model for Safe Recursion

We finish by briefly describing a simple machine model with parallel processors which with
the natural bound on running times yields the class of safe-recursive functions.

23

To each set x assign a processor Px, which computes in ordinal stages. The value computed
by Px at stage α is denoted by Pα

x . The entire machine M is determined by a function h(/x)
in sRud and a finite n > 0. We write M = Mn

h .

Pα
x is defined by induction on α as follows. for any x and α we denote {(y, β, P β

y) : y ∈

x, β ≤ α} by P≤α
∈x and {(x, β, P β

x : β < α} by P<α
x . Now define:

Pα
x = h(/P≤α

∈x ∪ P<α
x) . (4.1)

Thus the value computed by processor Px at stage α is determined by the history of the
values of processors Py for y ∈ x at stages ≤ α together with the values of processor Px itself
at stages < α.

The function f(x /) = fMn
h (x /) computed by Mn

h is given by: f(x /) = P
rk(x)n
x .

Theorem 4.1. The safe-recursive functions f(x /) are exactly those computed by a machine
Mn

h for some h(/x) in sRud and some finite n > 0.

Proof. It follows from the safe-recursion scheme that the function g(x, y /) = P
rk(y)n
x is safe-

recursive (where Pα
x is defined as above, using h). It follows that f(x /) = g(x, x /), the

function computed by Mn
h , is also safe-recursive. Conversely, in view of the improved char-

acterisation of safe-recursive functions given by Theorem 3.16, it suffices to observe that the
M -hierarchy, given by applying the Gödel functions iteratively, is obtained by iteration of a
function in sRud and therefore is captured by Definition (4.1) above.

24

