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Abstract

If the bounded proper forcing axiom BPFA holds and ω1 = ωL
1 , then

there is a lightface Σ1
3 well-ordering of the reals. The argument combines a

coding due to Caicedo-Veličković with “David’s trick.” We also present a
general coding scheme that, in particular, establishes the following weaker
result: BPFA is equiconsistent with the additional requirement that there
is a lightface Σ1

4 well-ordering of the reals. This is accomplished through a
use of David’s trick and a coding through the Σ2 stable ordinals of L, and
has the advantage of not requiring the theory of the mapping reflection
principle, unlike the optimal result.

1 Introduction

BPFA denotes the Bounded Proper Forcing Axiom introduced in Goldstern-
Shelah [6]. In this paper we show that BPFA implies the existence of well-
orderings of descriptive set theoretic optimal complexity under the anti-large
cardinal assumption that ω1 = ωL1 .

Recall that ~C = (Cα : α < ω1) is a C-sequence (or a ladder system) iff
Cα ⊆ α is cofinal in α and of least possible order type, for all α < ω1.

In Caicedo-Veličković [3] it is shown that BPFA implies that for any C-
sequence ~C there is a Σ1 well-ordering of R in ~C as a parameter.
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Here, we combine this result with a coding method of David (see Friedman
[4] or [5, §6.2]) to prove:

Theorem 1. If BPFA holds and ω1 = ωL1 , then there is a lightface Σ1
3 well-

ordering of the reals.

This is best possible in the sense that already MA implies that there are
no Σe 1

2 well-orderings. Notice that we obtain an implication rather than merely
a consistency result. The coding used in Caicedo-Veličković [3] requires an
understanding of the theory of the Mapping Reflection Principle MRP, see Moore
[8]. To provide a further illustration of the use of “David’s trick” for those
readers not familiar with MRP, we include the following weaker result:

Recall that a cardinal κ is reflecting iff κ is regular and Vκ is Σ2-elementary
in the universe V . In Goldstern-Shelah [6] it is shown that BPFA is equiconsis-
tent over ZFC with the existence of a reflecting cardinal.

Theorem 2. The following are equiconsistent:

1. There is a reflecting cardinal.

2. BPFA holds, and there is a (lightface) Σ1
4 well-ordering of the reals.

Remark 3. Actually, the argument of Theorem 2 allows us (consistently) to
code in a Σ1

4 fashion many relations on R that can be “locally certified” in a
certain sense, see Remark 9.

It was shown in Caicedo [2] that BPFA is consistent with the existence of pro-
jective well-orderings of the reals, and it was already noted in Caicedo-Veličković
[3] that if ωL1 = ω1 and BPFA holds, then there is a lightface projective well-
ordering. However, the coding arguments used in these papers do not seem to
suffice to obtain a well-ordering of smaller complexity than Σ1

6.
As explained in Section 3, one can obtain a well-ordering of smaller complex-

ity by enhancing the standard (Goldstern-Shelah) iteration that forces BPFA,
by including stages at which certain trees are specialised, following a method
of Baumgartner [1], and at which “Π1

2 witnesses” to these specialisations are
added, following the method of David. To prevent the witnessing of BPFA from
damaging the codings, we are forced to concentrate the iteration on stages α
that are ΣL2 stable, i.e., such that Lα is Σ2-elementary in L. Unfortunately,
this forces us to also introduce Π1

2 witnesses to failures of ΣL2 stability. These
last witnesses lead us to a Σ1

4, rather than Σ1
3, definition of the well-ordering.

In Section 2 we review the notion of S-properness which will be needed in
the argument, and prove a combinatorial lemma that will be used to carry out
the coding.

It is shown in Friedman [5, Theorem 8.51] that MA + ω1 = ωL1 is consistent
with a Σ1

3 well-ordering. The argument uses an iteration of Jensen-like codings.
A natural attempt by the second author at generalizing this approach failed
because we do not have the kind of reflection needed to ensure BPFA at the end
of the iteration—while the kind of reflection required by MA poses no difficulties.
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The well-ordering of optimal complexity is exhibited in Section 4. We show
that, in the presence of BPFA + ω1 = ωL1 , David’s trick allows one to convert
a well-ordering of R that is Σ1 over H(ω2) in ω1 as a parameter, into a Σ1

3

well-ordering.
The proof of Theorem 2, in particular the fact that we seem forced to use

Σ2-stable stages, suggested initially that BPFA would rule out the existence of
Σ1

3 well-ordering of the reals.
There were other obstacles: Assuming that every real has a sharp, the exis-

tence of a Σe 1
3 well-ordering of the reals implies CH. In addition, in the presence

of sharps, MAω1 (Martin’s axiom for partial orders of size ω1) implies that ev-
ery Σe 1

3 set of reals is Lebesgue measurable. These two statements are proved in
Hjorth [7].

This suggested that if there were at all a model of BPFA with a Σ1
3 well-

ordering of the reals, then there was likely one satisfying ω1 = ωL1 . This led us
to reexamine the coding in Caicedo-Veličković [3] and eventually to Theorem 1.
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through grant DMS-0801189. The second author wishes to thank the Austrian
Science Fund (FWF) for its generous support through Project Number P 19375-
N18.

2 Preliminaries

To prove Theorem 2, we define in Section 3 a countable support iteration that
forces BPFA. Unlike the usual argument, and for reasons having to do with the
forcings that add localising witnesses (as explained in Section 3), the factors in
the iteration will not be proper but only S-proper, in the sense described below.

Definition 4. Say that a class S is closed under truncation iff for all regular
uncountable cardinals θ and all x ∈ S, we have that x ∩H(θ) ∈ S.

A class S is everywhere stationary iff S is closed under truncation, and
its intersection with [H(θ)]ω is stationary for all uncountable regular cardinals
θ.

Suppose that S is everywhere stationary. A partial order P is S-proper iff
for all regular cardinals θ > ω1 such that P ∈ H(θ), there is a club of countable
elementary substructures x of H(θ) with the property that if x ∈ S and p ∈ P∩x,
then there is q ≤ p in P which forces the generic to intersect D∩x for any D ∈ x
that is dense in P.

S-properness is a Σ2 notion (in the predicate S), as “all regular cardinals
θ” can be replaced by “the least regular cardinal θ” in the above definition.
This is because if θ > ω1 is the least regular cardinal such that P ∈ H(θ), C
witnesses the desired property for θ, and τ > θ is regular, then (using closure
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under truncation) we have that

C∗ = {x : x ∩H(θ) ∈ C}

witnesses the desired property for τ .
Just as with the usual notion of properness, S-proper forcing notions preserve

ω1, and S-properness is preserved under countable support iterations (see Shelah
[9]).

Our method for obtaining a definable well-ordering is based on the following
lemma. For β a regular uncountable cardinal, let T (β) be the tree (β+)<β of
sequences through β+ of length less than β.

Lemma 5. Assume V = L and that β > ω1 is regular. Let S be an everywhere
stationary class. Suppose that Q is an S-proper forcing, that |Q| < β, and that
G is Q-generic over L. Then:

1. T (β), viewed as a forcing, is S-proper in L[G].

2. There is a proper forcing R in L[G] of size β++ that destroys the S-
properness of T (β); in fact, if H is R-generic over L[G], then in any
ω1-preserving outer model of L[G][H] there is no branch through T (β)
which is T (β)-generic over L.

Proof. (1) It suffices to show that Q is S-proper in T (β)-generic extensions
of L. But the forcing T (β) is β-closed and therefore does not add subsets of
max{|Q|, ω1}; it follows that any witness to the S-properness of Q in L is still
a witness to its S-properness in any T (β)-generic extension of L.

(2) First add β++ Cohen reals with a finite support product over L[G],
producing L[G][H0]. Then Lévy collapse β++ to ω1 with countable conditions,
producing L[G][H0][H1]. As ccc and ω-closed forcings are proper, this is a proper
forcing extension of L[G].

Note that (as originally shown by Silver) in L[G][H0][H1], any β-branch
through T (β) in fact belongs to L[G][H0]: Otherwise we choose an L[G][H0]-
name ḃ for the new branch and build a binary ω-tree U of conditions in the Lévy
collapse, each branch of which has a lower bound, such that distinct branches
force different interpretations of the name ḃ. It follows that in L[G][H0], T (β)
has 2ℵ0 = β++ nodes on a fixed level, which is impossible because GCH holds
in L.

Thus the tree T (β) has at most ω1-many branches in L[G][H0][H1], none of
which contains ordinals cofinal in β+ and therefore none of which is T (β)-generic
over L. Also, every node of T (β) belongs to a β-branch.

Now we use Baumgartner’s general method of “specialising a tree off a small
set of branches”.

Fact 6. If T is a tree of height ω1 with at most ℵ1 cofinal branches (and every
node of T belongs to a cofinal branch of T ) then there is a ccc forcing P such
that if G is P-generic over V then in any ω1-preserving outer model of V [G],
all cofinal branches through T belong to V .
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Proof. We outline the argument and refer the reader to Baumgartner [1] for
details.

List the branches as (bi | i < ω1) and write T as the disjoint union of bi(xi),
where the xi are distinct nodes of the tree chosen so that each xi is a node on
bi and bi(xi) denotes the tail of bi starting at xi. Now force to add a function
f with finite conditions from {xi | i < ω1} into ω such that if xi is below xj in
T then f(xi) is different from f(xj). Baumgartner [1] shows that this forcing
is ccc. Now if b is a cofinal branch through T distinct from the bi’s in an ω1-
preserving outer model of V [f ], then b must intersect uncountably many of the
bi(xi)’s and therefore contains uncountably many xi’s. But then the f(xi)’s are
distinct for these uncountably many xi’s, contradicting the fact that f maps
into ω.

This completes the proof of Fact 6.

Now use Fact 6 to create a ccc extension L[G][H0][H1][H2] of L[G][H0][H1]
to ensure that T (β) (viewed as a tree of height ω1 using a cofinal ω1-sequence
through (β+)L) will have no new branches in any ω1-preserving outer model.
As no β-branch through T (β) in L[G][H0] is T (β)-generic over L and all cofinal
branches through T (β) in any ω1-preserving outer model of L[G][H0][H1][H2] =
L[G][H] belong to L[G][H0], we are done.

This completes the proof of Lemma 5.

3 BPFA and a Σ1
4 well-ordering

We now begin the proof of the direction Con(1) → Con(2) of Theorem 2; the
other direction follows from Goldstern-Shelah [6].

Assume V = L and let κ be reflecting. Fix an appropriate bookkeeping
function f : κ → H(κ) (so that f “guesses” every object in H(κ) stationarily
often). We will use f throughout the argument to select certain objects. We
use a countable support iteration of length κ. As mentioned in the previous
section, the factors in our iteration will be S-proper for a suitable everywhere
stationary class S, that we now proceed to describe. As usual, by ZF− we denote
ZF without the power set axiom.

Suppose that θ is regular and uncountable, and that x is a countable ele-
mentary substructure of Lθ. Let (x,∈) be isomorphic to Lα. We say that x
collapses nicely iff for all β ≥ α, if Lβ is a model of ZF− and x ∩ ω1 is a
cardinal in Lβ , then every cardinal of Lα is also a cardinal of Lβ .

Let S be the class of all x in L which collapse nicely.

Lemma 7. S is everywhere stationary.

Proof. Let θ be regular and uncountable, and let C ⊆ [Lθ]ω be club, so C ∈ Lθ+ .
Let x be the least elementary substructure of Lθ+ that contains C as an element.
Then x ∩ Lθ ∈ C. Let Lα be the transitive collapse of (x,∈). Then there is
an Lα+1-definable injection from Lα into ω and, therefore, there is no β > α
such that Lβ |= ZF− and x ∩ ω1 is a cardinal of Lβ . It follows that x ∈ S and
therefore x ∈ S∩C. Since S is clearly closed under truncation, we are done.
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Let C enumerate the closed unbounded subset of κ consisting of those α such
that Lα is Σ2-elementary in Lκ. (As κ is regular, C is indeed unbounded in
κ.) We perform an S-proper iteration of length κ with countable support which
is nontrivial at stages α in C. The iteration Pα ∗ Q(α) up to and including
stage α will belong to Lβ where β is the least element of C greater than α.
In particular, |Pα| < κ for each α < κ, and therefore κ remains reflecting
throughout the iteration.

Suppose that α belongs to C. We proceed to describe the forcing Q(α) as a
six-step iteration Q0(α) ∗Q1(α) ∗Q2(α) ∗Q3(α) ∗Q4(α) ∗Q5(α).

3.1 Q0(α)

Inductively, Pα has size at most (α+)L. By Lemma 5, we know that the forcing
T (β), consisting of (< β)-sequences through β+, is S-proper in L[Gα] when β
is regular and at least (α++++)L. In addition, there is a forcing R(β) of size
β++ in L[Gα] which guarantees that there is no T (β)-generic over L.

Now let αn be (α+4(n+1))L for each finite n, and let T (n),R(n) denote
T (αn),R(αn). Then both T (n) and R(n) are S-proper in any extension of
L[Gα] obtained by forcing with U(0) ∗ U(1) ∗ · · · ∗ U(n− 1) where each U(i) is
either T (i) or R(i).

Let <α denote the natural well-ordering of L[Gα] and let xα <α yα be the
pair of reals in L[Gα] provided by the bookkeeping function (which guarantees
that any pair (x, y) of reals which appears in the iteration is of the form (xα, yα)
for some α, provided it satisfies x <β y where β is least such that x, y both belong
to L[Gβ ]).

Now take Q0(α) to be the (fully supported) ω-iteration U(0) ∗ U(1) ∗ . . .
where U(n) equals T (n) if n belongs to xα ∗ yα (the join of xα and yα) and
equals R(n) otherwise. This is an S-proper forcing and Pα ∗ Q0(α) belongs to
Lβ , where β is the least element of C greater than α.

3.2 Q1(α)

Now we consider the Σ1 sentence with parameter from L[Gα]∩P(ω1), provided
by the bookkeeping function (which ensures that all Σ1 sentences with parameter
from the final P(ω1) will be considered at some stage α < κ in C).

Ask of this sentence whether it holds in an S-proper forcing extension of
L[Gα][H0], where H0 is our Q0(α)-generic. If so, then as κ is reflecting in
L[Gα][H0], there is such an S-proper forcing in Lκ[Gα][H0], and also the witness
to the Σ1 sentence can be assumed to have a name in Lκ[Gα][H0]. Let β be
the least element of C greater than α; then as Lβ is Σ2-elementary in Lκ, it
follows that Lβ [Gα][H0] is Σ2-elementary in Lκ[Gα][H0]. Thus we can choose
our S-proper forcing Q1(α) witnessing the Σ1 sentence to be an element of
Lβ [Gα][H0], necessary to satisfy the requirement that Pα ∗Q(α) belong to Lβ .
Let H1 denote the generic for Q1(α).

6



3.3 Q2(α)

The forcing Q2(α) is the Lévy collapse with countable conditions of a suffi-
ciently large ordinal less than κ to ω1, to ensure that the resulting extension
L[Gα][H0][H1][H2] is of the form L[Xα] where Xα is a subset of ω1 which codes
the ordinal α as well as the generic H0 ∗H1 ∗H2. Then we have:

(∗) If M = Lδ[Xα] is a model of ZF−, then (α+ω)L is an ordinal
of M , and in M there is a branch through T ((α+4(n+1))L) whose
ordinals are cofinal in (α+4(n+1))L iff n belongs to xα ∗ yα.

3.4 Q3(α)

The purpose of the forcing Q3(α) is to add Yα ⊆ ω1 that “localises” property
(∗) in the following sense. Let Even(Yα) denote {δ | 2δ ∈ Yα}. Then:

(∗∗) For any γ < ω1 and countable ZF− model M containing Yα ∩ γ
as an element: If γ = ωM1 = (ωL1 )M then Even(Yα ∩ γ) codes
an L-cardinal ᾱ of M such that there is a branch through the
T ((ᾱ+4(n+1))L) of M whose ordinals are cofinal in the (ᾱ+4(n+1))L

of M iff n belongs to xα ∗ yα.

We now describe the forcing Q3(α) for adding the witness Yα to (∗∗). A
condition in Q3(α) is an ω1-Cohen condition r : |r| → 2 in L[Xα] with the
following properties:

1. The domain |r| of r is a countable limit ordinal.

2. Xα∩|r| is the even part of r, i.e., for γ < |r|, γ belongs to Xα iff r(2γ) = 1.

3. (∗∗) holds for all limit γ ≤ |r| with Yα ∩ γ replaced by r � γ, i.e.:

(∗∗)r For any limit γ ≤ |r| and countable ZF− model M contain-
ing r � γ as an element: If γ = ωM1 = (ωL1 )M then Even(r � γ)
codes some ᾱ, an L-cardinal of M , such that there is a branch
through the T ((ᾱ+4(n+1))L) of M whose ordinals are cofinal in
the (ᾱ+4(n+1))L of M iff n belongs to xα ∗ yα.

Lemma 8. Q3(α) is S-proper.

Proof. First note that we have the following extendibility property : Given r
and a countable limit γ greater than |r|, we can extend r to r∗ of length γ.

This is because we can take the odd part of r∗ on the interval [|r|, |r|+ω) to
code γ and to consist only of 0’s on [|r|+ω, γ); then there are no new instances of
requirement (3) for being a condition to check because no ZF− model containing
r∗ � |r|+ ω can have its ω1 in the interval (|r|, γ].

Now in L[Xα] let θ be large and regular, let M be countable and elementary
in H(θ) with M ∩ L in S and let r belong to Q3(α) ∩M . Successively extend
r to r = r0 ≥ r1 ≥ · · · in M so that if D in M is dense on Q3(α) then for
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some k, rk meets D. (In particular, rk forces the Q3(α)-generic to meet D in a
condition belonging to M .) By extendibility, sup rk converges to δ := M ∩ ω1.

We want to show that the rk’s admit the lower bound rω =
⋃
k rk. For this,

it suffices to verify property (∗∗)rω when γ = δ, i.e.:

(∗∗∗) For any countable ZF− model N containing rω as an element:
If δ = ωN1 = (ωL1 )N then Even(rω) codes some ᾱ, an L-cardinal of
N , such that there is a branch through the T ((α+4(n+1))L) of N
whose ordinals are cofinal in the (α+4(n+1))L of N iff n belongs to
xα ∗ yα.

M is elementary in H(θ) = Lθ[Xα]. Let M̄ = Lθ̄[Xα ∩ δ] be the transitive
collapse of M , where α is sent to ᾱ under the transitive collapse map. As Xα

codes the generic Gα ∗H0 ∗H1 ∗H2, it ensures that in Lθ[Xα] there is a branch
through T ((α+4(n+1))L) whose ordinals are cofinal in (α+4(n+1))L iff n belongs
to xα ∗yα. By elementarity, in M̄ there is a branch through the T ((α+4(n+1))L)
of M̄ whose ordinals are cofinal in the (α+4(n+1))L of M̄ iff n belongs to xα ∗yα.

Now if N̄ is any countable ZF− model containing rω as an element such that
ωN̄1 = δ, N̄ also contains Xω ∩ δ as an element (as Xω ∩ δ is the even part of
rω) and as M ∩ L = LM collapses nicely, the (α+4(n+1))L, T ((α+4(n+1))L) of
M̄ are equal to those of N̄ . It follows that also in N̄ , there is a branch through
the T ((α+4(n+1))L) of N̄ whose ordinals are cofinal in the (α+4(n+1))L of N̄ iff
n belongs to xα ∗ yα, establishing (∗ ∗ ∗).

3.5 Q4(α)

We next code the Q3(α)-generic Yα by a real using Q4(α), a ccc almost disjoint
coding with finite conditions.

To each countable ordinal β associate the set bβ of numbers that code a
finite initial segment of the β-th real in the natural well-ordering of the reals in
L. Then distinct bβ ’s have a finite intersection. A condition in Q4(α) is a pair
(s,A) where s is a finite subset of ω and A is a finite subset of {bβ | β ∈ Yα}.
Extension is defined by: (s,A) ≤ (t, B) iff s end-extends t, A contains B as a
subset and s \ t is disjoint from each element of B.

This forcing is ccc because any two conditions with the same first component
are compatible and there are only countably many first components. The generic
produces a subset Rα of ω that is almost disjoint from bβ exactly if β belongs
to Yα.

As the sequence of bβ ’s belongs to L, it follows that Yα belongs to L[Rα].
Most importantly, as for any countable ZF− model M containing Rα as an
element, Yα ∩ (ωL1 )M can be decoded from Rα in M , we have:

(∗)Rα For any countable ZF− model M containing Rα as an element
and such that ωM1 = (ωL1 )M , Rα codes in M some ᾱ, an L-cardinal
of M , such that T ((ᾱ+4(n+1))L) has a branch whose ordinals are
cofinal in (ᾱ+4(n+1))L iff n belongs to xα ∗ yα.
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3.6 Q5(α)

To complete stage α of the iteration we apply a forcing Q5(α) introducing Π1
2

witnesses to failures of ΣL2 stability.
Let zα be the real in L[Gα] provided by the bookkeeping function (so that

each real that appears anywhere in the iteration is equal to zα for some α ∈ C).
We say that zα is a coding witness for x < y (where x, y are reals in

L[Gα]) iff (∗)zα,x,y holds (where (∗)zα,x,y is (∗)Rα with Rα, xα, yα replaced by
zα, x, y).

Note that by reflection, (∗)zα,x,y holds without the restriction that M be
countable. Let δ be the L-cardinal witnessing (∗)zα,x,y for the model

M = Lκ+ [Gα][H0][H1][H2][H3][H4],

where Hi is the generic for Qi(α). Then if δ is not ΣL2 stable, the forcing Q5(α)
introduces a real wα such that:

(∗ ∗ ∗∗)zα,wα For all countable ZF− models M containing zα, wα as
elements and such that ωM1 = (ωL1 )M , wα codes in M some β̄, an
L-cardinal of M , such that Lᾱ, where ᾱ is the L-cardinal of M coded
by zα, is not Σ2-elementary in Lβ̄ .

The forcing Q5(α) is defined analogously to the two-step iteration Q3(α) ∗
Q4(α), and like that forcing, it is S-proper.

This completes stage α of the iteration.

3.7 The well-ordering

The iteration so defined is S-proper, forces κ to be at most ω2, and is κ-cc. It
follows that κ = ω2 in the generic extension L[G], and the standard argument
shows that BPFA (indeed, the bounded forcing axiom for S-proper forcings)
holds there.

To describe the desired Σ1
4 well-ordering of the reals, say that a real z is a

good coding witness for x < y iff it is a coding witness for x < y, and there
is no w witnessing the failure of the ΣL2 stability of the L-cardinal coded by z,
i.e., there is no real w such that (∗ ∗ ∗∗)z,w holds.

The set of good witnesses is Π1
3. Thus the desired well-ordering of the reals

in L[G] is given by:

x < y iff for some α in C, (x, y) = (xGα , y
G
α ) iff there exists a good

coding witness for x < y.

This completes the proof of Theorem 2.

Remark 9. Although we organized the presentation of the argument above
around the proof of Theorem 2, it should be clear that it is really more gen-
eral. In fact, it allows us to code in a Σ1

4 way many relations R on R that
can be added in a local fashion throughout an iteration as the one we described.
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More specifically, work in L, and suppose that κ is reflecting. Suppose that there
is a countable support iteration P of size κ with intermediate stages Pα of size
below κ that are S-proper, where S is as above. Suppose there is a definable rela-
tion R′ such that, uniformly in the ground model, whenever G is P-generic, for
each tuple ~r of reals of V [G], we can identify an intermediate stage α such that
~r already belongs to the α-th intermediate model V [Gα], and V [Gα] |= R′(~r).
Suppose that the forcing Qα at stage α uses David trick as in Subsections 3.4–
3.6 above, to code R′(~r) and, if necessary, the failure of ΣL2 -stability of α, by
reals. Let R in V [G] be the relation given by R(~r) iff V [Gα] |= R′(~r) for α as
above. Then R is Σ1

4 in V [G].
Note that Theorem 2 is a particular instance of this scheme.

4 BPFA and a well-ordering of optimal complex-
ity

Here we prove Theorem 1.
We begin by noticing that the argument from Caicedo-Veličković [3] shows

that whenever BPFA holds and ω1 = ωL1 , then there is a Σ1 well-ordering of
H(ω2) in ω1 as a parameter, since any transitive model M of an appropriate
fragment of ZFC + BPFA that computes ω1 correctly would be able to compute
correctly the L-least C-sequence ~C, which is also a C-sequence in V and M .

But now David’s trick allows us to turn this into a Σ1
3 well-ordering: Say

that x < y iff φ(x, y, ω1), where φ is Σ1. Then, x < y iff

(∗) For some real z, M |= φ(x, y, ωM1 ) for each countable transitive
model M of ZF− containing x, y, and z such that ωM1 = (ωL1 )M .

The point is that with countably closed forcings, we can first collapse κ = iω1

to size ω1 and then, using the fact that κ+ = (κ+)L (which holds by covering),
code the resulting H(ω2) into a subset of ω1, i.e., arrange that

H(ω2) = Lω2 [A]

for some A ⊆ ω1. Then, over this model, the forcing that produces the real
z (given a witness to φ(x, y, ω1), as in Section 3) is proper and of size ω1; the
appropriate version of (∗∗) from Subsection 3.4 is:

For any γ < ω1 and countable M |= ZF− containing Y ∩ γ as an
element, we have that if γ = ωM1 = (ωL1 )M , then Even(Y ∩ γ) codes
a witness to φ(x, y, γ) in M .

As the L-cardinals are not being used in the coding, the notion of “collapsing
nicely” is no longer needed and the forcing to add such a Y is fully proper.

Then, as in Subsection 3.5, we apply a ccc forcing to obtain the desired
witnessing real z satisfying (∗) above. Finally, as the forcing to produce z is
proper and BPFA holds, such a z must exist in V .
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5 Open questions

We close the paper with some natural problems suggested by the results above:

1. In Theorem 1, can the hypothesis ω1 = ωL1 be weakened to 0] does not
exist?

2. Is MA + ω1 = ωL1 consistent with the nonexistence of a projective well-
ordering of the reals?
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