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Abstract. The fact that “natural” theories, i.e. theories which have something like an “idea” to them,
are almost always linearly ordered with regard to logical strength has been called one of the great
mysteries of the foundation of mathematics. However, one easily establishes the existence of theories
with incomparable logical strengths using self-reference (Rosser-style). As a result, PA + Con(PA) is
not the least theory whose strength is greater than that of PA. But still we can ask: is there a sense in
which PA + Con(PA) is the least “natural” theory whose strength is greater than that of PA? In this
paper we exhibit natural theories in strength strictly between PA and PA + Con(PA) by introducing a
notion of slow consistency.
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1 Preliminaries

PA is Peano Arithmetic. PA �k denotes the subtheory of PA usually denoted by IΣk.
It consists of a finite base theory P− (which are the axioms for a commutative discretely
ordered semiring) together with a single Πk+2 axiom which asserts that induction holds
for Σk formulae. For functions F : N → N we use exponential notation F 0(x) = x and
F k+1(x) = F (F k(x)) to denote repeated compositions of F .

In what follows we require an ordinal representation system for ε0. Moreover, we
assume that these ordinals come equipped with specific fundamental sequences λ[n] for
each limit ordinal λ ≤ ε0. Their definition springs forth from their representation in
Cantor normal form (to base ω). For an ordinal α such that α > 0, α has a unique
representation :

α = ωα1 · n1 + · · ·+ ωαk · nk,
where 0 < k, n1, . . . , nk < ω, and α1, . . . , αk are ordinals such that α1 > · · · > αk.

Definition 1.1 For α an ordinal and n a natural number, let ωαn be defined inductively
by ωα0 := α, and ωαn+1 := ωω

α
n .

We also write ωn for ω1
n. In particular, ω0 = 1 and ω1 = ω.
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2 Slow Consistency

Definition 1.2 For each limit ordinal λ ≤ ε0, define a strictly monotone sequence, λ[n],
of ordinals converging to λ from below. The definition is by induction on λ.

Case 1. λ = ωα+1 · (β + 1).
Put λ[n] = ωα+1 · β + ωα · n. (Remark: In particular, ω[n] = n.)

Case 2. λ = ωγ · (β + 1), and γ < λ is a limit ordinal.
Put λ[n] = ωγ · β + ωγ[n].

Case 3. λ = ε0.
Put ε0[0] = ω and ε0[n+ 1] = ωε0[n]. (Remark: Thus ε0[n] = ωn+1.)

It will be convenient to have α[n] defined for non-limit α. we set (β + 1)[n] = β and
0[n] = 0.

Definition 1.3 By “a fast growing ” hierarchy we simply mean a transfinitely extended
version of the Grzegorczyk hierarchy i.e. a transfinite sequence sequence of number-
theoretic functions Fα : N → N defined recursively by iteration at successor levels and
diagonalization over fundamental sequences at limit levels. We use the following hierar-
chy:

F0(n) = n+ 1
Fα+1(n) = Fn+1

α (n)
Fα(n) = Fα[n](n) if α is a limit.

It is closely related to the Hardy hierarchy:

H0(n) = n

Hα+1(n) = Hα(n+ 1)
Hα(n) = Hα[n](n) if α is a limit.

Their relationship is as follows:

Hωα = Fα(1)

for every α < ε0. If α = ωα1 ·n1 + · · ·+ωαk ·nk is in Cantor normal form and β < ωαk+1,
then

Hα+β = Hα ◦Hβ.(2)

Ketonen and Solovay [6] found an interesting combinatorial characterization of the
Hα’s. Call an interval [k, n] 0-large if k ≤ n, α + 1-large if there are m,m′ ∈ [k, n] such
that m 6= m′ and [m,n] and [m′, n] are both α-large; and λ-large (where λ is a limit) if
[k, n] is λ[k]-large.

Theorem 1.4 (Ketonen, Solovay [6]) Let α < ε0.

Hα(n) = least m such that [n,m] is α-large
Fα(n) = least m such that [n,m] is ωα-large.

The order of growth of Fε0 is essentially the same as that of the Paris-Harrington
function FPH .

Definition 1.5 Let X be a finite set of natural numbers and |X| be the number of
elements in X. X, is large if X if X is non-empty, and, letting s be the least element of
X, X has at least s elements. If d ∈ N then [X]d denotes the set of all subsets of X of
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cardinality d. If g : [X]d → Y , a subset Z of Y is homogeneous for g if g is constant
on [Z]d. Identify n ∈ N with the set {0, . . . , n− 1}.

Let a, b, c ∈ N. Then a → (large)bc if for every map g : [a]b → c, there is a large
homogeneous set for g of cardinality greater than b.

Let σ(b, c) be the least integer a such that a→ (large)bc and fPH (n) = σ(n, n).

Theorem 1.6 (i) (Harrington, Paris [10]) The function fPH dominates all PA-
provably recursive functions.

(ii) (Ketonen, Solovay [6]) For n ≥ 20:

Fε0(n− 3) ≤ σ(n, 8) ≤ Fε0(n− 2)
fPH (n) ≤ Fε0(n− 1).

The computation of Fα(x) is closely connected with the step-down relations of [6]
and [13]. For α < β ≤ ε0 we write β −→

n
α if for some sequence of ordinals γ0, . . . , γr we

have γ0 = β, γi+1 = γi[n], for 0 ≤ i < r, and γr = α.

Lemma 1.7 There is a ∆0-formula expressing Fα(x) = y (as a predicate of α, x, y).

Proof : This is shown in [16, 5.2]. ut

Lemma 1.8 The following are provable in IΣ1:
(i) If β −→

x
α and Fβ(x) ↓, then Fα(x) ↓ and Fβ(x) ≥ Fα(x).

(ii) If Fβ(x) ↓ and x > y, then Fβ(y) ↓ and Fβ(x) > Fβ(y).
(iii) (i) and (ii) hold with Hβ and Hα in place of Fβ and Fα, respectively.

Proof : (i) follows by induction on the length r of the sequence γ0, . . . , γr with γ0 = β,
γi+1 = γi[n], for 0 ≤ i < r, and γr = α. In the proof one uses the fact that ‘Fδ(x) = y’ is
∆0 as a relation with arguments δ, x, y, and also uses [16, Theorem 5.3] (or rather Claim
1 in Appendix A of [15]).

(ii) follows from [16, Proposition 5.4(v)]. ut

Lemma 1.9 For all x < ω, ωx+1 −→
2
ωx + ωx.

Proof : We use induction on x. As ω1 = ω, ω0 = 1 and ω[2] = 2 this holds for x = 0.
Now suppose x > 0. Note that ωx+1 = ωωx , thus we have ωx+1[2] = ωωx[2]. Inductively
we also have ωx[2] −→

2
ωx−1 + ωx−1. By [6] Lemma 5 (p. 282) we conclude that

ωx+1[2] = ωωx[2] −→
2
ωωx−1+ωx−1 .(3)

We also have ωx−1 + ωx−1 −→
2
ωx−1 + 1 by [6] Lemma 1 (p. 281), and hence

ωωx−1+ωx−1 −→
2
ωωx−1+1,(4)

using [6] Lemma 5 (p.282) again. As ωωx−1+1 −→
2
ωωx−1 · 2 = ωωx−1 +ωωx−1 = ωx +ωx, it

follows from (3) and (4), owing to the transitivity of −→
2

, that

ωx+1 −→
2
ωx + ωx.

ut

Corollary 1.10 For all integers x and y ≥ 2 we have:
(i) ε0[x+ 1] −→

2
ε0[x] + ε0[x].
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(ii) Fε0[x+1](y + 1) > Fε0[x+1](y) ≥ Fε0[x]+1(y) ≥ Fε0[x](Fε0[x](y)).

Proof : As ε0[u] = ωu+1, (i) is a consequence of Lemma 1.9.

We have

Fε0[x](Fε0[x](y)) = Hωε0[x](Hωε0[x](y)) = Hωε0[x]+ωε0[x](y)
(∗)
≤ Hωε0[x+1](y)

(∗∗)
= Fε0[x+1](y)

(∗∗∗)
< Fε0[x+1](y + 1).

Here the first and second equality hold by (1) and (2), respectively. (∗) follows from (i)
with the help of Lemma 1.8(iii) since

ωε0[x+1] = ε0[x+ 2] −→
2
ε0[x+ 1] + ε0[x+ 1] = ωε0[x] + ωε0[x].

(∗∗) is again a consequence of (1) whilst (∗ ∗ ∗) follows from Lemma 1.8(ii). ut

2 Slow consistency

To motivate our notion of slow consistency we recall the concept of interpretability of
one theory in another theory. Let S and S′ be arbitrary theories. S′ is interpretable
in S or S interprets S′ (in symbols S′ /S) “if roughly speaking, the primitive concepts
and the range of the variables of S′ are defined in such a way as to turn every theorem
of S′ into a theorem of S” (quoted from [8] p. 96; for details see [8, section 6]).

To simplify matters, we restrict attention to theories T formulated in the language
of PA which contain the axioms of PA and have a primitive recursive axiomatization,
i.e. the axioms are enumerated by such a function. For an integer k ≥ 0, we denote by
T �k the theory consisting of the first k axioms of T . Let Con(T ) be the arithmetized
statement that T is consistent.

A theory T is reflexive if it proves the consistency of all its finite subtheories, i.e.
T ` Con(T �k) for all k ∈ N. Note that theories satisfying the conditions spelled out
above will always be reflexive.

Another interesting relationship between theories we shall consider is T1 ⊆Π0
1
T2, i.e.

every Π0
1 theorem of T1 is also a theorem of T2.

Theorem 2.1 Let S, T be theories that satisfy the conditions spelled out above. Then:

S / T if and only if T ` Con(S �n) holds for all n ∈ N(5)
if and only if S ⊆Π0

1
T.(6)

Proof : (5) seems to be due to Orey [9]. Another easily accessible proof of (5) can
be found in [8, Section 6, Theorem 5]. (6) was first stated in [5] and [7]. A proof can
also be found in [8, Section 6, Theorem 6]. ut

We know that
Con(PA) ↔ ∀xCon(PA�x).

Given a function f : N→ N (say provably total in PA) we are thus led to the following
consistency statement:

Conf (PA) := ∀xCon(PA�f(x)).(7)
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It is perhaps worth pointing out that the exact meaning of Conf (PA) depends on the
representation that we choose for f .

Statements of the form (7) are interesting only if the function f grows extremely
slowly, though still has an infinite range but PA cannot prove that fact.

Definition 2.2 Define

F−1
ε0 (n) = max({k ≤ n | ∃y ≤ nFε0(k) = y} ∪ {0}).

Note that, by Lemma 1.7, the graph of F−1
ε0 has a ∆0 definition. Thus it follows that

F−1
ε0 is a provably recursive function of PA.

Let Con∗(PA) be the statement ∀xCon(PA �F−1
ε0

(x)). Of course, in the definition of
Con∗(PA) we have in mind some standard representation of Fε0 referred to in Lemma
1.7. Note that Con∗(PA) is equivalent to the statement

∀x [Fε0(x) ↓→ Con(PA�x)].

Proposition 2.3 PA 6` Con∗(PA).

Proof : Aiming at a contradiction, suppose PA ` Con∗(PA). Then PA�k` Con∗(PA)
for all sufficiently large k. As PA �k` Fε0(k) ↓ on account of Fε0(k) ↓ being a true Σ1

statement, we arrive at PA �k` Con(PA �k), contradicting Gödel’s second incomplete-
ness theorem. ut

Proposition 2.3 holds in more generality.

Corollary 2.4 If T is a recursive consistent extension of PA and f is a total recursive
function with unbounded range, then

T 6` ∀xCon(T �f(x))

where f(x) ↓ is understood to be formalized via some Σ1 representation of f .

Proof : Basically the same proof as for Proposition 2.3. ut
It is quite natural to consider another version of slow consistency where the function

f : N→ N, rather than acting as a bound on the fragments of PA, restricts the lengths
of proofs. Let ⊥ be a Gödel number of the canonical inconsistency and let ProofPA(y, z)
be the primitive recursive predicate expressing the concept that “ y is the Gödel number
of a proof in PA of a formula with Gödel number z ”.

Con`f (PA) := ∀x ∀y < f(x)¬ProofPA(y,⊥)(8)

Let Con#(PA) be the statement Con`
F−1
ε0

(PA).

Note that Con#(PA) is equivalent to the following formula:

∀u [Fε0(u)↓ → ∀y < u¬ProofPA(y,⊥)].

As it turns out, by contrast with Con∗(PA), Con#(PA) is not very interesting.

Lemma 2.5 PA ` Con#(PA).

Proof : First recall that Gentzen showed how to effectively transform an alleged
PA-proof of an inconsistency (the empty sequent) in his sequent calculus into another
proof of the empty sequent such that the latter gets assigned a smaller ordinal than the
former. More precisely, there is a reduction procedureR on proofs P of the empty sequent
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together with an assignment ord of representations for ordinals < ε0 to proofs such that
ord(R(P )) ≺ ord(P ). Here ≺ is the ordering on ordinal representations induced by the
ordering < of the pertaining ordinals. The functions R and ord and the relation � are
primitive recursive (when viewed as acting on codes for the syntactic objects). With
g(n) = ord(Rn(P )), the n-fold iteration of R applied to P , one has g(0) � g(1) � g(2) �
. . . � g(n) for all n, which is absurd as the ordinals are well-founded.

We will now argue in PA. Suppose that Fε0(u)↓. Aiming at a contradiction assume
that there is a p < u such that ProofPA(p,⊥). We have not said anything about the
particular proof predicate ProofPA we use, however, whatever proof system is assumed,
p will be larger than the Gödel numbers of all formulae occurring in the proof. The proof
that p codes, can be primitive recursively transformed into a sequent calculus proof P
of the empty sequent in such a way that ord(P ) < ωp since p is larger than the number
of logical symbols occurring in any cut or induction formulae featuring in P (for details
see [17, Ch.2]). Inspection of Gentzen’s proof, as e.g. presented in [17, 2.12.8], shows
there is a primitive recursive function ` such that the number of steps it takes to get
from ord(P ) to 0 by applying the reduction procedure R is majorized by `(Fε0(u)). As
a result we have a contradiction since there is no proof P0 of the empty sequent with
ordinal ord(P0) = 0.

The authors realize that the foregoing proof is merely a sketch. An alternative proof
can be obtained by harking back to [1]. The reader will be assumed to have access to [1].
That paper uses an infinitary proof system with the ω-rule (of course). But this system is
also quite peculiar in that the ordinal assignment adhered to is very rigid and, crucially,
it has a so-called accumulation rule. To deal with infinite proofs in PA, though, one has
to use primitive recursive proof trees instead of arbitrary ones (for details see [3]). The
role of the repetition rule (or trivial rule) (cf. [3]) is of central importance to captur-
ing the usual operations on proofs, such as inversion and cut elimination, by primitive
recursive functions acting on their codes. In the proof system of [1] the accumulation
rule takes over this role. Now assume that everything in [1] has been recast in terms of
primitive recursive proof trees. Then the cut elimination for infinitary proofs with finite
cut rank (as presented in [3, Theorem 2.19]) can be formalized in PA. Working in PA,
suppose that Fε0(u)↓. Aiming at a contradiction assume that there is a p < u such that
ProofPA(p,⊥). As above, the proof that p codes, can be primitive recursively trans-
formed into a proof P of ⊥ in the sequent calculus of [1] with ordinal ωp and cut-degree
0 (in the sense of [1, Definition 5]). The plan is to reach a contradiction by constructing
an infinite descending sequence of ordinals (αi)i∈N such that α0 = ωp and αi+1 <li+1

αi
for some li+1 < Fωp(2). This is absurd since it imlpies that Fαi(k

∗) > Fαi+1(k∗) where
k∗ = Fωp(2). The definedness of Fαi(k

∗) follows from the following facts: Fε0(u)↓ implies
Fε0(p − 1) ↓ and hence Fωp(p − 1) ↓, thus Fωp(2) ↓ by [16, 5.4(v)]. By induction on i,
using [16, 5.3)] as well as [16, 5.4(v)], one concludes that Fαi(li+1) ↓ for all i.

It remains to determine (αi)i∈N. To this end we construct a branch of the proof-
tree P with `αi ∆i,Γi being the i-th node of the branch (bottom-up). The sequent Γi
contains only closed elementary prime formulas and formulas of the form n ∈ N whereas
∆i is of the form {n1 /∈ N, . . . , nr /∈ N} or ∅. We set k∆i := max({2} ∪ {3 ·n1, . . . , 3 ·nr})
in the former and k∆i := 2 in the latter case. We say that Γi is true in m if Γi is true
when N is interpreted as the finite set {n | 3 · n < m}. Let Γ0 = {0 = 1} and ∆0 = ∅.
Clearly, Γ0 is false in Fα0(2). Now assume `αi ∆i,Γi has been constructed in such a
way that Γi is false in Fαi(k∆i) and Fαi(k∆i) ≤ Fα0(2). Since Γi is false in Fαi(k∆i)
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and Fαi(k∆i) > k∆i , it follows that ∆i,Γi is not an axiom. Thus `αi ∆i,Γi is not an
end-node in P and therefore it is the result of an application of an inference rule. As the
cut-rank of P is 0, the only possible rules are a cut rank 0, an N -rule, and Accumulation.

If it is an N -rule, Γi contains “Sn ∈ N” for some n and `β ∆i,Γ′i, n ∈ N will
be a node in P immediately above `αi ∆i,Γi with Γ′i ⊆ Γi and β + 1 = αi. We let
αi+1 = β, li+1 = 1, ∆i+1 = ∆i and Γi+1 = Γi, n ∈ N . Since Γi is false in Fαi(k∆i) and
Fαi+1(k∆i) + 3 ≤ Fαi(k∆i) it follows that Γi+1 is false in Fαi(k∆i+1).

If the last rule is Accumulation, `β ∆i,Γi will be a node in P immediately above
`αi ∆i,Γi for some β <k∆i

αi. Then let ∆i+1 = ∆i, Γi+1 = Γi, αi+1 = β, and li+1 = k∆i .
Since Fβ(k∆i) ≤ Fαi(k∆i), Γi+1 is false in Fαi+1(k∆i+1), too. Inductively we also have
Fαi(k∆i) ≤ Fα0(2), and hence li+1 < Fα0(2).

If the last rule is a cut with a closed elementary prime formula A, the immediate
nodes above `αi ∆i,Γi in P are of the form `β ∆i,Γi, A and `β ∆i,Γi,¬A, respectively,
where β + 1 = αi. Let ∆i+1 = ∆i, αi+1 = β, and li+1 = 1. If A is false let Γi+1 = Γi, A.
If A is true, let Γi+1 = Γi,¬A. Clearly, Γi+1 will be false in Fαi+1(k∆i+1) since this value
is smaller than Fαi(k∆i).

Finally suppose the last rule is a cut with cut formula “n ∈ N”. Then the immediate
nodes above `αi ∆i,Γi in P are of the form `β ∆i, n ∈ N,Γi and `β ∆i, n /∈ N,Γi,
respectively, where β + 1 = αi. Set αi+1 = β and and li+1 = 1. If Fβ(k∆i) ≤ 3 · n,
then “n ∈ N” will be false in Fβ(k∆i), and hence, as Fβ(k∆i) < Fαi(k∆i), it follows
that n ∈ N,Γi will be false in Fβ(k∆i) as well. So in this case let ∆i+1 = ∆i and
Γi+1 = n ∈ N,Γi.

If on the other hand 3 · n < Fβ(k∆i), we compute that

Fβ(k∆i,n/∈N ) < Fβ(Fβ(k∆i)) ≤ Fαi((k∆i).

Hence Γi will be false in Fβ(k∆i,n/∈N ), and we put ∆i+1 = ∆i, n /∈ N and Γi+1 = Γi.
ut

The next goal will be to show that Con(PA) is not derivable in PA + Con∗(PA).
We need some preparatory definitions.

Definition 2.6 Let E denote the “stack of two’s” function, i.e. E(0) = 0 and E(n+1) =
2E(n).

Given two elements a and b of a non-standard model M of PA, we say that ‘ b is
much larger than a’ if for every standard integer k we have Ek(a) < b.

If M is a model of PA and I is a substructure of M we say that I is an initial
segment of M, if for all a ∈ |I| and x ∈ |M|, M |= x < a implies x ∈ |I|. We will write
I < b to mean b ∈ |M| \ |I|. Sometimes we write a < I to indicate a ∈ |I|.

Theorem 2.7 Let N be a non-standard model of PA (or ∆0(exp)), n be a standard
integer, and e, d ∈ |N| be non-standard such that N |= Fωen(e) = d. Then there is an
initial segment I of N such e < I < d and I is a model of Πn+1-induction.

Proof : This follows e.g. from [16, Theorem 5.25], letting α = 0, c = e, a = e and
b = d. The technique used to prove Theorem 5.25 in [16] is a variation of techniques
used by Paris in [12]. ut

Corollary 2.8 Let N be a non-standard model of PA, e, r ∈ |N| be non-standard such
that N |= Fε0(e) = r. Then for every standard n there is an initial segment I of M such
e < I < r and I is a model of Πn+1-induction.
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Proof : In view of the previous Theorem we just have to ensure that FN
ωen

(e) ↓, i.e.,
N |= Fωen(e) = d for some d with d ≤ r. To show this we utilize the fact that the
computation of Fα(x) is closely connected with the step-down relation β −→

n
α.

In what follows we argue in N. By induction on x one readily verifies that ε0[x] = ωωx .
By [6, Theorem 2.4] we have ε0[x] −→

1
ε0[y] whenever x > y. As ε0[0] = ω and ω −→

e
e we

arrive at ε0[x] −→
e
e for all x by [6] (Proposition (a), p. 281). Thus ε0[e− n] −→

e
e, so that

by iterated applications of [6] Lemma 5 (p. 282), we get

ε0[e] = ωε0[e−n]
n −→

a
ωen.

By [6] (Proposition (d), p. 283), the latter yields Fωen(e) ↓ and Fε0(e) ≥ Fωen(e). ut

Definition 2.9 Below we shall need the notion of two models M and N of PA ‘agreeing
up to e’. For this to hold, the following conditions must be met:

(1) e belongs to both models.
(2) e has the same predecessors in both M and N.
(3) If d0, d1, and c are ≤ e (in one of the models M and N), then M |= d0 + d1 = c

iff N |= d0 + d1 = c.
(4) If d0, d1, and c are ≤ e (in one of the models M and N), then M |= d0 · d1 = c

iff N |= d0 · d1 = c.
If M and N agree up to e, d ≤ e and θ(x) is a ∆0 formula, it follows that M |= θ(d) iff
N |= θ(d) (cf. [2, Proposition 1]).

Theorem 2.10 PA + Con∗(PA) 6` Con(PA).

Proof : Let M be a countable non-standard model of PA + Fε0 is total. Let M be
the domain of M and a ∈M be non-standard. Moreover, let e = FM

ε0 (a). As a result of
the standing assumption, M |= Con(PA�a). Owing to a result of Solovay’s [14, Theorem
1.1], there exists a countable model N of PA such that:

(i) M and N agree up to e (in the sense of Definition 2.9).
(ii) N thinks that PA�a is consistent.
(iii) N thinks that PA �a+1 is inconsistent. In fact there is a proof of 0 = 1 from

PA�a+1 whose Gödel number is less than 22e (as computed in N).
In actuality, to be able to apply [14, Theorem 1.1] we have to ensure that e is much
larger than a, i.e., Ek(a) < e for every standard number k. It follows from [6, p. 269]
that E(s) ≤ F3(s) holds for all non-standard elements s of M and hence

Ek(s) ≤ F k3 (s) ≤ F s3 (s) ≤ F4(s) < Fε0(s),

so that Ek(a) < e holds for all standard k, leading to e being much larger than a.
We will now distinguish two cases.

Case 1: N |= Fε0(a + 1) ↑. Then also N |= Fε0(d) ↑ for all d > a by Lemma 1.8(ii).
Hence, in light of (ii), N |= Con∗(PA). As (iii) yields N |= ¬Con(PA), we have

N |= PA + Con∗(PA) + ¬Con(PA).(9)

Case 2: N |= Fε0(a + 1) ↓. We then also have e = FN
ε0 (a), for M and N agree up to e

and the formula ‘Fε0(x) = y’ is ∆0 by Lemma 1.7. Let c := FN
ε0 (a+ 1).

In view of Theorem 2.7 we just have to ensure that for each standard n, FN
ωen

(e) ↓
with value not bigger than c, i.e., N |= Fωen(e) = d for some d with d ≤ c. To show this
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we utilize Corollary 1.10. In what follows we argue in N. By [6, Theorem 2.4] we have
ε0[x] −→

1
ε0[y] whenever x > y. As ε0[0] = ω and ω −→

e
e we arrive at ε0[x] −→

e
e for all x

by [6] (Proposition (a), p. 281). Thus ε0[a− n] −→
e
e, so that by repeated applications of

[6] Lemma 5 (p. 282), we have

ε0[a] = ωε0[a−n]
n −→

e
ωen.(10)

By Corollary 1.10 we have

c = Fε0[a+1](a+ 1) ≥ Fε0[a]+1(a) ≥ Fε0[a](Fε0[a](a)) = Fε0[a](e).(11)

In particular, Fε0[a](e) ↓. By [6] (Proposition (d), p. 283), the latter together with (10)
and (11) entails that Fωen(e) ↓ and c ≥ Fωen(e).

As a consequence of Theorem 2.7 there is thus an initial segment I of N such e < I < c
and I is a model of Πn+1-induction. Moreover, it follows from the properties of N and
the fact that 22e < I, that

(1) I thinks that PA�a is consistent.
(2) I thinks that PA�a+1 is inconsistent.
(3) I thinks that Fε0(a+ 1) is not defined.

Consequently, I |= Con∗(PA) + ¬Con(PA) + Πn+1-induction. Since n was arbitrary,
this shows that PA + Con∗(PA) + ¬Con(PA) is a consistent theory. ut

Proposition 2.3 and Theorem 2.10 can be extended to theories T = PA + ψ where
ψ is a true Π0

1 statement.

Theorem 2.11 Let T = PA+ψ where ψ is a Π1 statement such that T+‘Fε0 is total’ is a
consistent theory. Let T�k to be the theory PA�k +ψ and Con∗(T) := ∀xCon(T�F−1

ε0
(x)).

Then the strength of T + Con∗(T ) is strictly between T and T + Con(T), i.e.
(i) T 6` Con∗(T).
(ii) T + Con∗(T) 6` Con(T).

(iii) T + Con(T) ` Con∗(T).

Proof : For (i) the same proof as in Proposition 2.3 works with PA replaced by T.
(iii) is obvious. For (ii) note that Solovay’s Theorem also works for T so that the proof
of case 1 of Theorem 2.10 can be copied. To deal with case 2, observe that I |= ψ since
ψ is Π1, N |= ψ and I is an initial segment of N. ut

The methods of Theorem 2.10 can also be used to produce two ‘natural’ slow growing
functions f and g such that the theories PA + Conf (PA) and PA + Cong(PA) are
mutually non-interpretable in each other.

Definition 2.12 The even and odd parts of Fε0 are defined as follows:

F evenε0 (2n) = Fε0(2n), F evenε0 (2n+ 1) = Fε0(2n) + 1 ,

F oddε0 (2n+ 1) = Fε0(2n+ 1), F oddε0 (2n) = Fε0(2n+ 1) + 1 if n > 0.

f(n) = max({k ≤ n | ∃y ≤ nF evenε0 (k) = y} ∪ {0})
g(n) = max({k ≤ n | ∃y ≤ nF oddε0 (k) = y} ∪ {0}).

By Lemma 1.7, the graphs of f and g are ∆0 and both functions are provably recursive
functions of PA.
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Remark 2.13 In a much more elaborate form, the method of defining variants of a
given computable functions (such as Fε0) in a piecewise manner has been employed in
[11] to obtain results about degree structures of computable functions and in [4] to obtain
forcing-like results about provably recursive functions.

Theorem 2.14 (i) PA + Conf (PA) 6` Cong(PA).
(ii) PA + Cong(PA) 6` Conf (PA).

Proof : (i) The proof is a variant of that of Theorem 2.10. Let M be a countable
non-standard model of PA + Fε0 is total. Let M be the domain of M and a ∈ M be
non-standard such that M thinks that a is odd. Let e = FM

ε0 (a). As before, there exists
a countable model N of PA such that:

(i) M and N agree up to e.
(ii) N thinks that PA�a is consistent.

(iii) N thinks that PA �a+1 is inconsistent. In fact there is a proof of 0 = 1 from
PA�a+1 whose Gödel number is less than 22e (as computed in N).

Again we distinguish two cases.

Case 1: N |= Fε0(a + 1) ↑. Then also N |= Fε0(d) ↑ for all d > a by Lemma 1.8(ii).
Since M thinks that a + 1 is even, so does N, as both models agree up to e. Thus
N |= F evenε0 (d) ↑ for all d > a. As a result, N |= ∀x f(x) ≤ a, and hence, N |= Conf (PA).
On the other hand, since N |= F oddε0 (a + 1) = e + 1 and N thinks that PA �a+1 is
inconsistent, it follows that N 6|= Cong(PA).

Case 2: N |= Fε0(a + 1) ↓. As in the proof of Theorem 2.10, letting c := FN
ε0 (a + 1),

for each n we find an initial segment I of N such e < I < c and I is a model of Πn+1-
induction. Moreover, it follows from the properties of N and the fact that 22e < I,
that

(1) I thinks that PA�a is consistent.
(2) I thinks that PA�a+1 is inconsistent.
(3) I thinks that Fε0(a+ 1) is not defined.

Consequently as I thinks that a + 1 is even, I |= ∀x f(x) ≤ a, whence I |= Conf (PA).
On the other hand, since I |= F oddε0 (a + 1) = e + 1, we also have that N 6|= Cong(PA).
Since n was arbitrary, this shows that PA + Conf (PA) + ¬Cong(PA) is a consistent
theory.

(ii). The argument is completely analogous, the only difference being that we start with
a non-standard a ∈M such that M thinks that a is even. ut

Corollary 2.15 Neither is PA+Conf (PA) interpretable in PA+Cong(PA) nor PA+
Cong(PA) interpretable in PA + Conf (PA).

Proof : This follows from Theorem 2.14 and Theorem 2.1. ut

2.1 A natural Orey sentence

A sentence ϕ of PA is called an Orey sentence if both PA+ϕ / PA and PA+¬ϕ / PA
hold.

Corollary 2.16 The sentence ∃x (Fε0(x) ↑ ∧∀y < xFε0(y) ↓ ∧x is even) is an Orey
sentence.
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Proof : Let ψ be the foregoing sentence. In view of Theorem 2.1, it suffices to show
that PA ` Con(PA�k +ψ) and PA ` Con(PA�k +¬ψ) hold for all k. Fix k > 0.

First we show that PA ` Con(PA �k +ψ). Note that PA proves the consistency of
PA �k +∀xFωk+1

(x) ↓ +∃xFε0(x) ↑. Arguing in PA we thus find a non-standard model
N such that

N |= PA�k +∀xFωk+1
(x) ↓ +∃xFε0(x) ↑ .

In particular there exists a least a ∈ |N| in the sense of N such that N |= Fε0(a) ↑. If
N thinks that a is even, then N |= ψ, which entails that Con(PA �k +ψ). If N thinks
that a is odd, we define a cut I such that I |= PA �k and FN

ε0 (a − 2) < I < FN
ε0 (a − 1),

applying Theorem 2.7. Then I |= ψ which also entails Con(PA�k +ψ).
Next we show that PA ` Con(PA�k +¬ψ). As PA proves Con(PA�k +∀xFωk+1

(x) ↓),
we can argue in PA and assume that we have a model M |= PA �k +∀xFωk+1

(x) ↓. If
M |= ∀xFε0(x)↓ then M |= ¬ψ, and Con(PA�k +¬ψ) follows. Otherwise there is a least
a in the sense of M such that FM

ε0 (a) ↑. If M thinks that a is odd we have M |= ¬ψ, too.
If M thinks that a is even we introduce a cut FM

ε0 (a − 2) < I′ < FM
ε0 (a − 1) such that

I′ |= PA�k. Since I′ |= Fε0(a− 1) ↑ we have I′ |= ¬ψ, whence Con(PA�k +¬ψ). ut
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